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PREFACE

A square mtrix M whose off diagonzl elements are nonpositive is
known as a Z-matrix. Z-matrices and their generalisations known as L
matrices have been used in interindustry models by Leontief and Gale,
More recently Z-maitrices have been considefered in the contexts of some

operatioml research problems such as the minimim cost multifacility

inventory systews and resource allocation.

Given a square matrix M of order n and a vector g in R, the
problem of finding nomnegative solutions in the variables wi‘s,

1= 1,2, eeveey n and z{s, i= 1,2, «ees.y 0 1o the system of

equations

w- Mz = g, W€Rna zZ R,

i=1
is known as the linear complementarity problem. This problem has been
shown to be a unified form of mony problems arising in mthemmtical

programming, game theory, structural engineering and fluid meechanics,

L
In this dissertation we consider the above linear complemeniarity

sroblem with M as a Z-matrix. A problem of fluid mechanics can be
formilated as a linear complementority problem with M as a Z-matrix.
More generally such problems occur in the discretisation of elliptic

partinl differential equations.

Chapter 1 provides a general introduction to the linear complementarity
problem and reviews the relevant results on this problem and on Z-matrices.
Our results on the linear complementarity problem with a Z-matrix are
presented in chapters 2,3 and 4. In section 1.7 we present a chapterwise

sunnicry of these results.
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i1,

A 1.l General introduction and review

The problem and its importance :

Let M be a given square matrix of order n and g a given
vector in R, The problem of determining sclutions we¢ BA and

n X .
z€ R~ satisfying the system (M, g) of eyuations

cee (1e1.1)

it
£2

£

v

o
8

&
It

o

w - liz

W oz = 0 o gy IEIIEE)

where WT is the transpose (row) of w is known as the linear
complementarity problem. This problem arises maturally in many
fields., M¥any mathemntical programming problems such ag the linear
programming problem, convex guadratic programming problem and: the
problem of finding the Nash equilibrium points of bimatrix games
can all be transformed into linear complementarity problems. Ve

refer the readers to / 7, pp.103-108 / and / 22, 23 /. There are

“also examples oOf engineering problems Z—18, 38_7 and problems of

structural mechonics / 12, 24 / which have been given thg above
complementarity formildation. In / 11/ it is shown that & problem
of fluid mechanics can be forimulated as linear complementarity

problem.
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We wish to point out here that there is one more class of
progmnming problems which can be given the linea;: complementarity
formilation. Iet c€R", d€Hn, ®xER, P ER, bER® and A a
mtrix of order m x n be given. Consider the fractional linear

programming problem

maximise rlx) = =2X2 g
d'x +8
subject to Ax ¢ b, x 20

This problem can be directly cast as a linear complementarity
problem. We believe that this example has not been observed in
the literature so far. We ftherefore give the details of formlation

in appendix 1.

In this work we consider the linear complementarity problem
(M, q) where M is a square metrix whose off diagormal elements are
nonpositive. In this chapter we give a general review of the
literature on the linear complementarity problem which is relevant
to our work. In section 1.2. we introduce our notations and basic
concepts. In section 1.3. we present a general review of the
various classes of matrices which have been considered in connection
with the problem (M, q). The relationship among these classes and

between fhese classes and the class of matrices with nonpositive off
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102.

1.2.1.

diagonal elements ig slso discussed. Section 1.4. sumnmarises

the kmown methods of computation o:f solutions te (’M, q) -aﬁﬁlicable
for various closses of nntrices.r Section 1.53 reviews the results
on the number of solutions to (M, g) and the-constant parity
property. The problem of existence of rays of solutions to (3, gq)
and its lmportance is indicated in section ;1.6. section 1.7.

presents a summary of the results obtained in this dissertation.

FNotations and basic definitions

Matrices, vectors : Throughout this dissertation M stands for a
square matrix of order n. mi;j denotes the ijth element of M.
For any matrix A, A ; stands for the 7™ colum of A ang &, for
the i row. AT denotes the transpose of A, Unless otherwise
indicated all vectors x€ R are colum vectors, xT's are row
vectors. e, ERn is the column vector whose coordinntes are all

equal to 1. I stands for the identity mtrix whose order is

determined from the context. The symbol 0 is used both for the

" null veetor in R and for 0 €R depending on the context. For

given x, y€R the symbol x> y indicates that eI P

1

[ PaN

i & n, the symbol x> y indicates that X, 2740 1<1i¢nm
and for at least one j, 1 £J <n, X > g (ive. x £ y) 3
and the symbol x > y indicates that X R v forail 1 ¢igm

and the possibility x = y 4is permitted. We write x > 0€ R™ for

XEBn$ OGRI'1 and x > Q.
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1.2.2,

1e243.

1.2.4.

._4-

»

The system (M, q) ¢ We use the symbol (M, q) as indicated before

for the system of equations andeinequalities given by (1.1.1) and
1 P w* . "
(1.1.2). ©Note that if Z*] € 2% is o solution to (M, q) atnost

* . v
n coordinaotes of {W*} are positive. We denote the solution by
Z

(w¥, 2%),

+

Complementary basis ¢ Tet B be a matrix of order n x n whose
columns are columms of { I, -M). B is said to be a basis motrix
if its colums are linearly independent. B is said to be a

complementary basis matrix if

i) I , is a2 column of B —— -Mj is not.

ii) -M . is a column of B —m—— I 4 is not.

o] .

4ii) All the n columns are linearly independent.

A solution (w¥, z*) to (M, q) is said to be a complementary

basic feasible solution if the set of columns I j for j

* .
such that Wj > 0 and the set of columns -NM i for k such

M :
$hat 2 > 0 form a linearly independent set. We note that

this set need not in general coniain n columns.

Degeneracy s A solution (w*, z*) to (M, g) is said to be degenerate
if less than n coordinates of (w*, z*) are positive. Ve say that
q is nondegenerate with respect to M if either (M, q) is infeasible

or if all solutions to (M, q) are nondegenerate.
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) 1.2.5.

We note that q is nondegeneraté with respect to M if and only
if all the complementary basic feasible solutions to (M, q) are

nondegenerate.

Complementary cones ¢ The concept of complementary cones was first
introduced by K.G. Murty / 31_/. A complementary set of column

vectors ig a set of n column vectors tA j J= 1525 eeves n.}

‘where A . is either I , or -M . . A complementary cone is a

J +J oJ
convex cone generated by a complementary set of column vectors.

(The convex cone generated by a set of column véctors ig the set
of all nomegative linear combinotions of these columms). There
are thus 2" complementary cones. We note that all complementary
basis matrices generate complementary cones with nonempty interior
in R. But there my be complementary sets of column vectors
which are linearly dependent. Such complementary sets generate

. . . n
complementary cones whose interior in R ls empty.

g0 i= 1,2, «... o™ are the complementary cones
n

2
of (I, -M). We use the symbol D(M) for \J €, . We note thnt
i=1

D(M) = {q | a €Rn A (M,q) hasg asolution;ﬁ .

3

% Suppoge C

We also let,

i

D1(M) {q | qelfz q is nondegenerate with respect to M}

D, (1)

i

{q | q cRY, g is nondegenerate with respect to M

and qu(M?} .
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Ve note that

D, () E D, (i)

We use the symbol Pos(®) far the convex cone generated by

the coluuns of B.

1.2.6. Nondegenerate cones $¢ A complementary cone POS(B) where B forms
a complementary set of columm vectors is said 10 be nondegenerate
if

bl
$x 18 = 0, x 30, XERH= {ovi

We note that according to this definition & complementary
cone whose interior is empty can also be a nondegenerate cone.
However it is easy to see that g is nondegenerate with respect to
Il only if it is not comtained in any complementary ccne whose

interior is empty.

1.2.7. Prineipal rearrangement, principal submatrix ;

, et ¥-= {1,2, n} and M be o mtrix of order n.

‘Buppose that
J1 = {11’¢-..¢ irs H J2: {J13 sa® so0 e JSX.

are two subsets of ¥ and that 1, ¢ 12 Cees <1,

y P 31 (.32(---(35-

The symbol Mj J stands for the matrix formed by elements mij 3
172

1.€J1, j€d, taken in the order yCeea iy and iy oo g iy -
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E¢2 080

The symbol MJ is used for the submatrix MJJ. It is cnlled a
principal submatrix of M. The determinant of a principal subaatrix

is called principel minor.

Let ¥ be o mtrix obtained from M by permuting its rows and
columns, applying the sanme perlmtdtion rule both to the set of rows

and to the set of columns. M is called a principel rearrangement

of ¥« Iet 7 be a permmtation function defined on N to N. For

any x€Rn let = (x) denote the vector which is obtained from x
by permiting its coordinates acccrding to the rule m. Iet = {M)
denote the prineipal rearrangement of M according to the rule n.
We note that ( W, z ) is a solution to ( n (M), n(g)) if and only
if (n_1 (w), n—1(E)) is o solution to (M, q), where x| e
inverse permutation. In particular therefore D(M) = D{ = (&)}),

D, (51) = D,]( a2 (M) and. D2.(M) = ZDE(‘TI (M)). Also the conplementary

cones of M correspond to those of = (M) in an obvious manr er.

E(i) and regular B(M) :

Let B be a complementory set of columm vectors and let B1 be

a submatrix of some columns of B. The cone
Pos(B1) = {y[ y = Byx, for some x 2 0, x €X"  where m
is the mumber of colums in B12] 5
is called @ k-face of the cone Pos(B) where k is the rank of B,.

1

Also, Pos(B) is called an m—cone if rank (B) = m.
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1e3.

4

Let EQ) = fPos(B) ond their faces/ columns of B form a

complementary set, rank(B) 2 n-1 z] s

Let P be a (n—_=—fl) face of zome cone in E(M). ‘We say that the two

conplementary cones 01, C, incident on it are properly situated

2
if 011'\ C, = F; otherwise C, and C, are not properly situnted.

Let F be an {n-1) face of some cone in E(M). We say that P is on

the boundary of D(M) if q €F implies that g is a boundary point

of D{M). We say that o (n-1) face P of some conc in E{M) is proper
if either it is on the boundary of D(M), or if the two cones incident

on it are properly situateds

#e say that BE{M) is regular if all the (n-1) faces in it are
proper. We say that E(M) is nondegenerate if all the complementary

cones in E(M) are nondegenerate.

In the above we have andopted the definitions given by Romesh
Saigal in / 36, pp.47-48 /. These definitions will be useful to

us in our discussion of Sajgal's results. in sections 1.3 and 1.5.

Classes of matrices ¢

Different classes of matrices have been considered in the
literature on linear complementarity problems in the context of
computationnl methods and applications. 1In this section we review

the relevant results.
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1.3.1. D, Pos 8, 5, matrices : We say that M is a P matrix if all the
principal minors of M aré positive. M is called a PO matrix if

all its principal minors are nonnegative.

I ig said to be a s(so) matrix if and only if there exists

X2 O€E’ such that Mx >0 (Mx ) 0).
We have the following theorem.

Theorem 1.%.1 ¢ Bither M is a So mtrix or -M¢ is a S~mqtrixs

but never boih.

This result follows from o theorem of the altermative due to

Hotzkin. See 4f-27, ppp34;;7-

1.3.2. Todd's classes of matrices : The following classes of motrices
were introduced by M.J. Todd / 42, pp.61 /7 in the context of the
applicability of Lemke-Howson algorithm which will be discussed in

the next section.

Iet d€R" and let ( W, z ) be a solution to (i, d). Tet J

x
&

be any set such that

{i;§i> OJ e Fic fi"’_"i = oj ess  (1.3.1}

Let
i) det (M;) 2> 0,if J satisfies (1.3.1) (If J =4

define det (MJ) = 1)
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- 10 -

ot ~I'1
ii) There exists x2 O&R  such that ¥y = S x 20

X Ty ¥ LW

E (a)

tM | Bither (i) or (ii) is satisfiedg :

E
E (a)

E ¥ | (i) above is sa‘tisf:i.ed}[ g

et T(a) = Ba)a Bo); I (@) = B (@A E ().

1.3.3., Garcia's classes s Todd's classes are generalisations of the

following classes Of matrices considered by C.B. Garcia /16, p.303/.

Let ¢ €RY and consider the conditions

i) (W, ), z #0 is a solution to (M, &) == There exists

x>0 € R® such that y = '-MTX}__ 0, ng, Yy W

31) (%, 2) is a solution to (M, 4) == I

Let E(a) = {Ml (i) above is sa‘tisfied} a
*(d) = { 1] (i1) above is satisfiedi..
@) = B(a)NnE0); ) = B*(a)n ().

Garcia observes that matrices arising from polymatrix goames

are in L(d) for a suitable & 20. See / 16, ppe307 /s

1.3.4, Boves' classes ¢ The followi clagses of mtrices were introduced
ng

by B.C. Eoves / 13, pp.619_/.
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1.3.5.

= il =

Consider the conditions

i) Porany x >0 ¢ B®  there is a 1 {k ¢<n such that

X, >0 and (Mx)k 2 0.

it) If for some x _>__O€Rn, Mx _>__O and XTM‘K = 0 then there
exist diagonnl motrices A and B , > 0 such that

(AM+MTB)x = 0. and Bx £0

B
il

fM | ¥ satisfies (i) and (ii) above }

L*

i

{ M | ¥ satisfies (1) above and xMx > O for all

X > 0€E" for which Ik 20 -j

We note that L = 1 L(a) and I* = ) 1*(a).
a>0 d>0

The class L contains mtrices arising from bimatrix games ,certain

P, motrices known as adequate matrices, {defined below) and the

copositive plus matrices introduced by C.E. Lemke / 22, vp. 687/,

Adequate matrices : 4 PO ~- matrix is sald to be an adequate matrix
if det (MJ) =0 for some J& N implies that the set of rows of M
and the set of columns of M, whose indicies are in J are linearly

dependent sets. See 1_13,- pp.622_7.

Copositive plus matrices : These matrices were considered by Cottle

and Dentzig in / 7, pp.116_/.

——

IS
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=P &

A matrix M is said to be copositive plus if

i) For all x 210 € ", % M 20

ii) XTMX =0,y x 20¢€ R masey (M + MT)X = 0

A matrix which satisfies (i) above alone is called copositive
matrix and if x Mz > 0 for all x > 0 €R" then M is gtrictly
copositive. DMatrices arising from 1inear Programming problems,
convex quadratic programming problems, linear fractional pProgroammins
problems are all positive semi-definite and therefore are also
coposgitive plus. Tet cpt denote the class of copositive plus motrices,

CP the class of copositive matrices and  SCP the class of all strictly

copositive mtrices.

We have,

cpt

N

L& ud) ¢ I(d) and

SCPC I*C 1*(a) € T#(d) for any a > o €R™

We also note that positive semi~definite matrices belong to cp*
and positive definite matrices are contained in SCP. P matrices are
oleo in  L* However the class P, is mot contained in any of the

above classes, not even in I(d) for any d > o €R™

A more detniled discussion on the relationship among the above

‘classes Of matrices is given by Karamardian in.zfé1, pp.10347.
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136, Z-matrices 4 We say that M is a Z-matrix if m;i.j <0 for all
i#j. Mis sadd to be a :ZZ- m‘bm{% if it ig o Z-matrix and if

my 20 for all i = 1,2, v.ofeBe

The class of Z-mntrices and Tts generalisation kmown as Leontief
mtrideg have been used by Leontief in inter industry models. For
such opplications we refer the readers 1o 1_15_7. The properties of
Z-matrices have been studied by various authors. MNogt of these
results appear in a survey article by Fiedler and Ptaf / 14_/. The
class Z also arises in some resource allocatidn problems [ 40_7 and
in miltifacility inventory problems / 44_/. See also / 45 7. The
linear complementarity problems with Z-matrices arise in s_;)me fproblems
of fluid mechanics [ 8,9,1 1,32_7. Linear complementarity problems
with Z-matrices have earlier been considered by R.Chandrascknran,/ 1/,
Romesh Saigal / 33, 34_/. In this parograph we sumorise the
properties of Zemntrices which will be useful to us in our study of

the lirear complementarity problems with Z-matrices.

Theorem 1.3 2 (Piedler and Ptak) Let M€Z, The following statenents

 are equivalend.
1) There exists x » O € B© such that Mx > O (i.e. ME€8).
ii) fThere exists x > 0 € R" such that Dx > O -

iii) If A€Z, A M then A”' exists and AT 2 O.
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iv) All the principal minors of M are positive.

v) All the real eigen values of M are positive.

We denote the class of matrices satisfying any ome of the above

by K. See / 14, pp.387_/.

Theorem 1.3.3 (Fiedler and Ptak) ¢ Iet M€Z. The following statements

are equivalent.

i} All the principal minors of M are nommegative.

ii) M+ I €K rforall © >0, (©a real number)

iii) All the real eigen values of M are nonnegative.

We denote by KO the class of matrices satisfying any one of the

above conditions.

We note that K & K_ . See / 14, pp.391_7.

Theorem 1.3.4 (Fiedler and Ptak) : Tet M €Z.

If there exists

"l

x> C€R" such that Mx » O then MEK . See / 14, pp.391_/.

Theorem 1.3.5 : TLet M€K, be singular and irreducible (i.e. there

does not exist a prineipal rearrangement M of M of the form

M11 0

Mz 1 Mzz

¥y > 0€R" such that My = 0. See / 14, pp.391 /.

1) . Then M has rank (n-1) and there exists
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1 5

Theorem 1.3.6 (Fiedler and Piak) : Let ME K, be irreducible then

all the proper principal minors of M are pogitive. BSee [14, p.392_7.

Example 1.3.1 ¢ The following exawple shows that Ko matrices and

therefore J-mntrices are not contained in I{d) for any d €R .

5 D
s 2 5l =5 L 5
\ N B 1 2 -l
0 5 _2
0 -1 4 |
. r i
It is easy to verify that this is a K -matrix. 3 = g
G %0
and w = g solves (M, 0) and we also observe that the
0

T

principal minor
2 -1

det = Q.
-2 1

We also note that the system of inequalities x > 0,
¥y = —’iTx 20, x¢< E, ¥ < w has no solution because

7 < W o =0 and x 2 0, XTM=O=:$X1>O, e L

|7

3 > 0Oy X, 2 i
Thms x € z is impossible.

Therefore M § E (0), and hence M ¢ T (d) for any d €R".

We algso note the Tollowing trivial result.
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b=a i _ . = N
Theorem 1.3.7 ¢ Let M€K, be symmetric. Then MEC P .| In/36,p.50/

Romesh Saignl proves the following theorem.

Theorem 1.3.8 ¢ Tet M¢Z . Then E(M) is regular.

Bemark 1.3.1 ¢ We also note that K & 2,

Example 1.3.2 ¢ The following example shows thot if ME€Z - By

E(M) need not be regular.

E

-3 3

For this M the two cones incident on the (n-1) face -M T

Pog ("M.T’ -M 2) and.Pos (I 1 2) , are not properly situated.

St
Also Pos(-M .) does not lie on the boundary of D(M). In fact the

boundary of D(M) is Pos(I ,) \J Pos(I ,). Thus B(M) is not regular.

ed ., Computational methods

) In this section we summarise the computational methods available

in the literature for solving (M, gq).

t.4.1. ILemke-Howson algorithm & In connection with the problem of finding
the Nash equilibrium points of bimetrix games Lemke and Howson / 23_/,
/22 7 nhave givén an algorithm which can be used to solve (M, a).

See also / 7, pp.108_/, We discuss here a version of their algorithm.
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The algorithm is based on pivot steps. The initial solution to

(1.1.1) and (1.1.2) is taken as

w = Mz + q + €% z 0

Z = 0

where Z, ig an artificial variable which takes a large enough initial

value so that w2 O. This ig called the primry ray.

Step 1. Decrease z, S0 that one of the variables W iy = 12, o 11
By W, is reduced to O and w > ¢ is satisfied. We now have a
basic feasible solution with Z in place of Wy and with atleast one

palr of complementary variables (Wa’ Zey } as nonbasic. If we assume

that ail solutions to

m

1 = {i -
w'j&"%ﬁo = g, u%z,%) > 0, wz=20

are nondegenerate ythe pair of nonbasic complementary varianbles is

uniguely determined.

" Step 2. At each iteration the complement of the varisble which was
removed in the previous iteration is to be incr;ased. If nondegeneracy
assumption holds the algorithm uniquely determines the variable to be
increased at each iteration. {In the second iterdtion, for instance,

zy Will be increased).


http://www.cvisiontech.com

1e4.2.

- 18 ~

Step 3. If the variable selectied at step 2 to enter the basis can
be arbitrarily increased then the procedure is saia 0 vermimpnte in
a secondary ray. If a new basic feasible solution is obtained with
2, = 0, we get a solution to (1, q). If in the new basic feasible

solution z, > 0 ,we obtain o new pair of complementary nonbasic

variables CWB, 2g }. We repeat step 2.

The algorithm congists of the repeated applications of steps 1
and 2. If nondegeneracy assumption is mde no basis repeats and the
algorithn terminates either in a seccndary ray or in a sclution to
(M, q) in a finite mumber of iterations. If degenerate scluticns are
generated by the algorithm the standard procedures as discussed by
B.C. Eaves ZTHB, pp.614;7 urigquely determines the variable to be
increased at ench iteration and ensures termination in a finite nuwmber

of steps.

The above algorithm can also be applied with any d > 0 € B
in place of e . We use the notation I{M, g, 4) for Lemke-Howson

procedure with d > O applied to (M, g).

Near complementary basis motrix ¢ Let 2 be o matrix of order n whoge
columns are columns of (I, -M, -d}. ¥ is said to be a near complemen-

tary basis matrix if the following conditions hold.

i) Cne of the columms of B is -d.
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i) IR : is o columm of B then -H 3 is not.

iii) If -M . is a columm of B then I . is not.

+J

iv) The colurms of B are linearly independent.

We note that L(M, O, d) starts with a near complemenﬁary bosis
mitrix and generates a sequence Of near complementary basis matrices
terminating in either a solution to {M, q) or in o secondary ray.

Cottle and Dantzig / 7, pp.111_/ proved the following theorem.

Theorem 1.4.1 ¢ (Cottle and Dantzig) VWhen I{M, q,d) is applied to
(M, q) the algorithm never terminates in the pripary ray. (i.e. the

secondary ray and the primary ray are different,.

The npplicability of L(M, q, d) ¢ It should be noted that in genersl
when L(M, Q, d) terminates in o secondary ray no conclusion can be:
renched about the existence of a solution to (M, a). Tﬁe procedure
terminates indeterminately. We then say thot L(M, d, d) is not
applicable 10 (M, q). There are rony sufficient conditions on M sc
that L(lM, g, d4) either computes a solution to (m, q) or termination
in a secondary ray implies that (1.1.1) does not have sclution. e

note the following sheorem proved by M.d. Todd / 42, pp.61_/.

Theorem 1.4.2 (M.J. Todd) : Suppose M€L (d) for some @ > 0 € R,

If I(M,q,d) terminntes in a secondary ray {(1.1.1) does not have a

-
solution. Suppose M¢TL (d). Then L(M,q,d) never terminates in a

" secondary Tray.
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There does not seem to be a simple algebraic proof of the above
theorem. However when stated for L#(d) L*(d) the above theorem

can be easily proved as demonstrated below.

Theorem 1.4.3. (C.B. Garcin) ¢  Suppose for some d > O EZRﬂg MeT {a).

Then L(M,q,d) never termimates = in a secondary ray. See ZTH6, pp.BO§;7.

Proof : Suppose for some d > O, MeL¥(d). We note that (M,d) am

(M, 0) have unique solutions.

Suppose L(M,q*,d) terminates in a secondary ray for some g% € &2,
TLet B be the near complementary basis matrix at terminntion and let

(w., zj) be the pair of nonbasic complementary voriables.
d

Termination in a secondary ray implies that y = il (4 j) <0

where A 3 ig either I : or -M 51 the columm selected to0 enter the

vasis by L(¥,q,d) entry criterion. Or

n
2 B y - A. a ] e c * e 0 (104'.:1)»
K1 oK k o]

¥

Without loss of generality let us assume that B T ~d.

Case 1 ¢ ¥q = C. We have,

n
x B, () = 0
oo .k e
which implies that there is a nonzero solution 1o (M,0) contradicting

our hypothesis that M € E (0).
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Case 2 ¢ y4 < 0. We get from(1.4.1)

. - n ¥y 4

Since %he primry ray is different from the secondary ray by
theorem 1+4+1. it follows from the above that (M,d) hos a solution
- different from w=d, z = 0. This eontradicts ocur hypothesis thot

¥eE (a).

Remnrk 1.4.1 ¢ If M €L (d) for some d > O then it is easy %o

see that (M,d) has unique solution. Therefore if L{M,q,4) terminates
" in o gecondary ray for some gq € B® then this rust imply, in view of
theorem 1.4.3, that (M,0) has a nontrivial solution. The conditions
imposed on M then ensure that (1.1.1) does not have a solution. It
follows from here that L(M,q,d) is applicable to B.C. Eaves' class
as well and hence also to matrices which arise in mthematical
progromming problems and game problems. The following two results

are due %o Romesh Saigal.
#

.Theorem 14444 ¢ (Romesh Saigal) Let d > O and suppose that E(3M)
is.regula.r and nondegenerate. L{M,q,d) is applicable to (M,q) if and
only if for each q € D(M) and for all © <& <1, ©d+ (1-0)q € (1),
lorecver the ar't:if;i.cial variable =z, decreases from iteration to

iteratio'n. See [36, pp.52_7.
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Theorem 1.4.5 : (Romesh Saigal) TLet M€ Z. L(mgq,en) is applicable

to (M,q). See / 34, pp.206_/.

Remnrk 1.4.% : Theorem 1.4.4 covers certain matrices not in T (d).

However not all mtrices in L (d) possess regular and nondegenerate

E(M) as the following example shows.

Exmmple 1.4.1.

diagram. o2

From the above diogram it is clear that (i,0) has unigue sclution

and there iz & d > O € R® such that (M,d) has unique sclution -
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d = is one such. Thus MeL(ez). But the cones incident on the

%
(n-1) face Pos{Il 1) are not properly situated.

1.4.4. The principal pivoting method : The principal piveting method was
first proposed by R.W. Cottle / 6_/ and later extended by Cottle
and Dnntzig ZHT, pp.119_7 to solve (M, G). The steps of the metkhod

are ag follows. Consider the eguation
w = Mz +q

The initial solution is taken as z =0 and w = q. This solves
(M, q) if q)> O. Otherwise it is a complementary basic soluiion

which is not feasible (i.e. which is not nonnegative).

Step 1 ¢+ Terminate if q» 0. We have a solution to (M, q).

Otherwise g0 to step 2.

Step 2

¢ Assume with out loss of generality that q1 < 0. Ve
‘ increanse Z, until it is blocked by o positive hasic
variable decreasing to zero or by the negative W increasing
0o zero.
Step 3 ¢+ We make the blocking variable nonbasic by pivoting its

complement into the basic get. The major cyele is

terminnted if w1 drops out of the basic set of variables.

Otherwise we return to step 2.
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Step 4 ¢+ At the end of a major c¢ycle we obtain a new system of
equations

w = Wz +4q

We go to step i

Theorem 1.4.6 3 {(Cottle and Dontzig) The above procedure computes

o solution to (M,q) for any arbitrary q €F® in a finite nurber of

steps,if MEP.

Saigznl Chandraselaran algorithm : Romesh Saigel / 33, p.180/
and Chandrasekaran / 1, pp.267_/ have given an algorithm to solve
(M, q) when M€z, which is based on the prinecipal pivoting method

described above. The steps of the algorithm are as follows.

Wie consider the tableau {-M, q} and use the syzbols (-1 Q%
at every step so that -M, g stand for the given matrix - and
given q€¢R~ as well as for their principal transforms (i.e. principal

pivot transformntions).
Step 1 : Let J = [i] a < o} 5
If J=90 goto step 5. Otherwisé go 0 step 2.
Step 2 ¢+ Let je€J. I mj“’ >0 go to step 3. Otherwise go to
o
step 4.

Step 3

-

j < 0 as a pivotal element obitain a principal

transformation of the tableau. Go to step 1.

Using -mj
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Step 4 : Terminate. There is ne solution to (1.1.1).

- Step 5 ¢ Terminote with the current tableau. The column g of the

tablean gives the values of the basic variables in the

golution.

The above algorithm is applicable when M¢ Z. It has been shown
that thig algorithm computes a solution to (M9 q) or detects infeasi-

bility in atmost n iterations if M€ 2.

We also note the following theorem proved by varicus authorsg.

Theorem 1.4.7 : Let either M€Z or MEL (a). Then (M, q) has a

solution whenever (1.1.1) has solution. Thus D{¥)} is a comvex cone

with nonempty interior, as Hil £ D(M) always.

Remark 1.4.4 We say that M is a Q matrix if (M,q_) has o solution
for each q €R and a K¥ matrix if (M,q) has a solution whenever
(1.1.1) has a solution. The problem of getting a complete characteri-
sation of § and K* matrices is not yet solved. However we gee that

- = .
I (@) Q forall 4 >0 € R® and L (a) amd 2 CK*.

Constant parity property i

The problem of determining the mumber of solutions to (M,q) when
q €D, (M) or q €D, (M) is interesting from the point of view of its |
relevance to mathematical programming and engiheering applicationg.

Also, it was noted in the begining that the classes of matrices such
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‘ane L(d) or L, for which L(M,q,d) wag found applicable, possessed the
property of having an odd number of solutions to (M,q) for all g €D, ().
(This is not true of L(d) or Z). This prompted the study of such
properties. See /33, p.176_/. In this section we summarise the
important results on the number of solutions to (M,q) when g € ID2 (M)

or D1(IVI). These results are relevant to our study of such properties

in Chapter 3.

Theorem 1.5.1. (K.G. Murty) : The mumber of solutions to (3,q) is

finite for all q € R if and only if all the principal minors of M
are nonzero. (equiv:xlently if and only if all the complementary conecs

-of (I, -M) have nonempty interior). See / 31, p.73_/.

Theorem 1.5.2. {(K.G. Mur‘ty) t Suppose YL Rn has nonempty interior.

Then there is a g €Y such that q 1s nondegenerate with respect +0 M.

S?e Z—B 1, p.75_7.

A number of authors have contributed to the following result.

. Theorem 1.5.3 ¢ {(M,q) has a unique solution for each g EBn if and

‘Orﬂ_y if MeP. In terms of complementary cones this means that the
complementary cones of (I, -l) form a partition of R" if and only if

MEP. See / T, 18, 31, 38 /.
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Definition 1.5.1 ¢ For any nonnegative integer r we say that its

parity is odd if it is an odd number, even if it is O or dnfeven
number. ILet Yg;_Rn. M is said to have constant parity property
over the set Y if for all «of€ Y,(M,q) has a finite number of sclutions

and this mumber has the same parity.

The following theorem has been Observed by Lomesh Saigal in
[ 35, p.d3 /e

Theorem 1.5.4 (Romesh Saigal) 3 Let C(M) be the elass of all

complementary cones of (I, -M) and their (n-1) faces. For a (n-1)
face FEC(M) let H(F) denote the {n-1) dimensiomnl space which
EOntains F. A necessary and sufficient condition for M to have
constant parity property over D1(M) is that if F be a (n-1) face in
C(M) then any q in H(F) which is not in any (n-2) or less faces of
the cones in C(M) is contained in an even number of degenernte (n—-1)

%

cones lying in H(F).

A number of results observed by many authors follow from this
L;theorem, We however note that the conditions of the theorem are
- difficult to verify. A sufficient condition for cousiant parity

property of M over D1(M) is given by the following theorem.

Theorem 1.5.5 (S.R. Moban) Suppose (M,O) has unique solution. Then

for all g EDT(M), (M,q) has the same parity of mumber of solutions.

See /29, p.21_/.
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Theorem 1.5.6 (Karamardion) 3 Iet (M, O) bave unique solution and

let for some qOE D,I(M) there be an odd number of solutions to (M,qo).

Then M bas odd parity over D,(l). See / 35, p.4o_/.

Theorem 1.5.7 (K.G. Marty) : Let all the prineipal minors of K be

nonzero. Then M has constant parity property over D ,](M).

See / 31, p.85_/ and also see / 35, p.44_/.

Theorem 1.5.8 (R. Saigal) 3 et E(M) be regular. When M is not a

P matrix and all principal minors of M are nonzero, (M,q) has exactly

2 solutions for all g EDQ(M). See [36, p.53_7.

Theorem 1.5.9 (Romesh Saigal) : Suppose there exists a vector

z 20 € R such that ZTM <0, Then (M,q) has an even rumber of

solutions for all q€D,(M). See /35, D45 /e

-

Theorem 1.5.10 (B.C. Baves) ¢  Let M¢€ P (M,q) bas unique solution

for all q€D, (M), See /13, p.626_/.

&

‘Theorem 1.5.11 (B.C. Enves) ¢ Let M€ L. (M,q) bas an odd number of

golutions for all qEDz(M). See / 13, pe620_/.

Bemark 1.5.1 ¢ Prom theorem 1.5.11 it foliows that the linear

complementarity problems arising from linear programming, convex
quadratic programming problems and bimntrix game problems all have
an odd mumber of solutions, when they have atleast one solution and

all the basic feasible solutions are nondegenerate.
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Rerark 1.5.2 3 ’i‘h%e are also Q-mntrices which have even parity of

number of solutions for all q EBT(M)'. In 4—31,_ p.1j07_7 K.G. Murty

gives an example of such a matrix.

We also note the following theorem which iz o consequence df

theorems 1.3.8 and 1.5.8'._

Theorem 1.5.12 3 Let MGZ, and let all the piineipal minors of M

oe nonzero. If M¢K then there are exactly two solutions to (i,q)

for each g €D2(M).

Solution rays

In this section we introduce the concept of a ray of solutions

and present Cottle's result on the existence of g ray of solutions.

I one of hig recent papers R.W. Cottle studies a question
posed to him by Mhier in g private commnication £m4, p‘.GOJ. The

question posed by Bhier is as follows:

Let ¢ €Bn, p €RY and o >0 €R. Let M be a-given square
mitrix of order n. Consider the problem (M; q+o p). Suppose M is
syrmetric and positive semi-definite and (M, q +0p) has solutions
@ (a), z(Q)) for each ¢ in he inkerval / 0,4 7 but no solution
when o > & . Does there then exist o v >0 ¢E" such thet for some
w () 20w (N), Z(a) + A¥ ) solves {M; q + % p) for each

A2 0? Can the symietry assumption be dro;;péd?@s question was
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raised by Maier in the context of siructural mechanics and according
t0 him mechanical considerations indicate that the answer is M"yes"

atleast in the symmetric case.

In his paper Cottle gives affirmstive answers to the dbove
questions. In addition he shiows that the assumption of positive
gemi~definiteness can be weakeﬁed to the assumption that ME€C pt,
When M€C P+, D(M) is a convex polyhedral cone {Theorem 1.4.7) with
nonempty interior. Therefore Muier's question ig about q + gp
which is in the boundary of D(M}. Cottle proves the following

theorem.

Toneorem 1.6.1 ¢ Let MEC P" and consider (M, q). Toere exist

0, % 20, ¥20,all € R° such that (# (A), Z+A¥)
(M, q) for each XY O€R if and only if q is in the boundary
of D(M). Moreover in the above we my take (w (0), Z) as any

solution to (M, a)e

. We note that existence of rays of solutions is a specinl case of
the existence of infinitely many solutions to (M, q). A definite
result _on the existence of infinite mumber of solutions to (i, ¢) is
given by theorem 1.5.1. due to K.G. Murty. To the best of our
knowledge the only results about the existence of infinitely many

solutions and ray of sclutions are the ones due to K.G. Murty and
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R.W. Cottle quoted above. In chapter 4 we study conditions under
which infinitely many solutions and solution rays exist for (M, q)

when ME€Z. .

A summary of results obtained in this dissertation

Our results on the linear complementarity problem (M;q) with
MEZ are presenfed in three chapters. Chapter 2 deals with the
computatioml aspects of (M,q) when M€ Z. Chapter 3 considers the
problems of constant parity property and of determining the number
of solutions to (M,q) for those q for which finitely many solutions
‘to (M,q) exist. Chapter 4 presents results on the existence of

infinitely many solutions and golution rays. We give a chapterwise

summary of results here.
Chapter 2 ¢

i) We consider the problem
minimise 2,

subject to w - Mz -dz, = q

(w, 2, 2

0) 20
We show that when the ordinary simplex method is applied
to the above problem when (1.1.1) has a solution, the

sequence of basic feasible solutions genernted by the

gimplex method and the sequence of near complementary
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solutions genernted by L(M,q,d) for any d > 0 ¢R” are the
same. VWhen (1.1.1) has a solution the gimplex method finds

it and so does I(M,a,d) in atmost n iterations.

ii) Based on the above result we describe a new algorithm to

solve (M,q) when ME€Z. This we call S{¥,q,d).

iii) When (1.1.1) does not have solution S(I,q,d) never terminates
later than L(M,q,d), but in some problems may terminete
earlier. S(M,q,d) always termimates in atmost n iterations
whereas in some problems L(M,q,d) my require more tham n

iterations to terminate.

iv) When (1.1.1) does not have solution there are problems For
which S{M,q,d) terminates earlier than Chandrasekaran -
Saigal pivot algorithm presented in 1.4.5. But there are
also problems where Chandrasekoran - Saigal algorithm

terminates earlier than S(M,q,d).

v) The solutions generated by S(M,q,d) have isotomicity property.
Also S(M,q,d) obtains the least element of X{q) ={ z (M2 ).
z 20 }; Whatever d >0 € R© be considered, when (1.1.1)
has solution, S(M,q,d) and Chandrasekaran Saigal algorithm

require*™sag same number of iterations 10 find the soluticn.

vi) Tet (M, q)a be the problenm
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Pind {w, z) such that

q
w20, 220, z<{a

LV

w2z = 0.

where o > 0 €RY ig given. Iet E(a,M) = f q | (M’Q)'I has

a

solution}. We show that if M€Z, R(a,M) is convex Tor
each o € R® and o modification of the algorithm S(if,q,d)

solves (M,q)a.

Chapter 3 ¢ Let MEZ.

(i) A necessary and sufficient condition for (i,0)} to have

a

unique solution {only the trivial solution) is that there is no
x 20 € B' such that Mx = 0. {(This is not true in gemeral). Thus
a sufficient condition for M to have constant parity property over

D,(H) is that there 35 no X >0 €K' such that Mx = O.

{ii) If for some q < OERn,(M,q) has a solution then M€ K.

(1i1) If M is nonsingular and if for some q > 0€R" (M,q) has

o

unique solution then M€K,

(iv) Tet M ¢ XK - K. (i.e. all the principal minors of M are
nonnegative and there is atlenst one principal minor which is O) -

Then * there exists x 2 0 €R" such that ¥k = O.
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(v)  We then consider the case when there is nontrivinl solution
to (14,0). For Z mtrices we are able to give some sufficient
conditions on I so that constant parity property holds. These
conditions are in tertis of the representation of M in the partisioned
form and are easily verifiable, We also obtain a necessary condition

on ¥ for it to have constant parity property over D1(M).

(vi) Let M€7Z, and let N(q) be the number of solutions to (M, q).
If §(g) ¢ o then N(g) < 2. This is o generalisation of the rosult

of theorem 1.5.12.

Chopter 4

(1) First we obtain some results on the representationof M in the
partitioned form when M € Ko - K. Uging these forms we introduce

the clagss of motrices -Ko'

(i1) Ve prove some properties of Ko mirices such as if MEKO
s .
s ot e ¥ . . = . . =
'the_n M€ I\.o , 1T M€ Ko then for any I € N, MLE Ko'
(iii) Ve show that if N e:f{o then a ray of solutions exists for

(M,q) at some solution (W, z) to (M,q) if and only if q is in ihe

boundary of D{M).

{iv) 1f M€K, and at some solution {w, z) to (M,q) a ray of

solutions existsthen q is in the boundary of D(M).
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(v) In terms of the representation of M in the partitioned Torms
obtained by us we prove o necessary condition and a sufficient

condition on M€ Z go that no q in the interior of D(M) possesses

.4 solution ray.

(vi) TFor a symmetric Z-matrix I, (M,q) has a ray of solugicon only
if g is in the boundary of D(M). If Me¢XK o ond symmetric then at
each solution (w, Z) to (M, q), the problem has s solution ray, for

all those g which are in the boundary of D(M).

(vii) 1f M€K0 ’ (M,q)_ha.s infinitely many solutions if and only
if g belongs to a complementary cone of (I, -Ii) whose interior is

empty (The "if part" is not true in general ).

(viii) If M €X » (M,q) has infinitely many solutions if and only
if g is in the boundary of D(M). Thus the complementary cones with

ewpty interior constitute the boundary of D(H).

Most of the results appearing in Chapter 2 are already published
in /28 /. Those of Chapter 3 are published in 2297, Some of the

Tesults appearing in Chapter 4 are due to appear in Z 307,
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2. Computational methods for Z- matrices

Introduction : .

In this Chapter we discuss the various algorithms available for
solving (M,q) when M€ %. The first to propose an algorithm Ffor this
class of mmtrices was R, Chandrasekaran.l?ﬁ;7. His algoriﬂﬁm.was later
modified by Romesh Saigal who called it o greedy algorithm., In section
1.4.5. we presented & modificatien of their algorithms. In / 34 7/
Romesh Saigal showed that L(#,q,e ) is applicable to (M,q). This
was presented in theorem 1.4.5. The mnin interest in this chapter is
in obtaining a modification of the algorithm L(M,q,d) so that the
modified algorithm becomes more efficient than L(M,q,d) for any 4 > C.
In order,to do this we show that solving (M,-q) when M€ Z is-equiValent

-

t0 solving the following problem using the.simplex method,
Minjmise z,

gubject to w - Mz - dzo = g

(Wa Z, ZQ) > 0

This result is proved in section 2.2.

In section 2.3 we compare cur method with L(M,q,d4) and the

principal pivoting method of Saigal and Chandraselmran.
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In section 2.4 we sux;lmarise the recent results obtained by

A, Tomir [39_75 I. Kaneko Z—19_7 and R.¥. Cottle [-3_7 on the
least element and isotondicity properties of solutions to (M,Q) wien

ME€Z. We show how our resulis are related tofhese.

Most of the results appearing in this chaplier are published in

[87.

The simplex method for (M, ) whem ME€Z s

We can attempt to solve the system of eguations {(1.1.1) and

(1.1.2) by applying the simplex method to the problem
Minimise 2,
Subject to w - Mz - dz = q
w, 25 25) 2 0 Jidl N @1,200)

where 4 > 0 € R-.

The initial basic feasible solution can be taken as in Lemke's
algorithm IL{M,q,d). The difference between. these two methods
essen‘sially'lies in the choice of variable to enter the basis at each
iteration.- The eriterion for the choice of variable to be removed
:F‘rom th;e basis is the same. In general therefofe the simplex wmethod
applied $0 (2.2.1) does not necessarily obtain a near complementary

basic fensible solution at each iteration and therefore my not sclve

{(1.1.1) and (1.1.2).
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Given (M, q)'and d >0 € K we shall assume without 1oss of

4 4.
generality that En- = min [—a-*l} With this assumption L{i,q,d)
n d

when applied to (M, q) generates before terminating, o sequence of
near complementary basic feasible solutions and o corresponding seguence
of near complementory basis ratrices the last columms of which are - g,

if 4, < 0. In 54, p.203_7 Romesh Saigal observes the following lemm.

Lemma 2.2.1 ¢ TLet M€ Z. ConsiGer L{M,q,d) far (M,q). Tet Bbea
near complementary basis matrix generated by the algorithm. Then B

can be written in the form

i _T-
I ID1 - d

12
¢ = O D2 -d
oS G B

where O 1z obtained from B, if necessary by a principal rearrangement
‘of rows ond colurms of B and d is obtained from d by the corresponding
permatation of its coorahmtes. The first set of columms corresponds
to the Wy variables in the basis, the second set corresponds o
colums of -M in the basis anld the last column is -d. Any cone of the

first two sets of columns my be empty.

Notation 2.2.1 ¢ TLet M be the matrix obtained by applying to M the

same principal rearrangement as was applied to B in obtaining C. Ve
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note that the last colum of -fiis -B  and -M  and I~ are the
pair of nonbasic compleﬁen‘bary columns. We contimue 10 use the

symbol =z, for the variable corresponding to - g Ve als_b note

that g is a row vector of order 1 x n-k-1 where k is the order of

I in C. The coordinates of g are ( =0 LR I S ) where mij

denotes the 1™ clement of M. We note the following trivial lemma.
Lemrn 2.2,2 ¢ Let M €Z and let C be as in lemma 2.2.1. and'f as in
notation 2.2.1. If either (a) the second set of columns in C is

g
empty so that - C = ¥ =2 . or- (b) =D, is o P-matrix

B nid 2
n
then

i} h< 0 where h is the last row of C._1

ii) h {( -H j) £ 0 farall j# n.

Proof :~ Let k be the number of Wi variables in the basis (i.e. k is

the order of I in C).

If case (a) holds then note that

: -
1
P ! d 1
I e —
-1 dn
C =
) 1
1o =
n
— -

80 that the last row h { 0.
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Ir case (b) holds then k< n-1 and € C= I gives us the

equations

BRI =0y J=1,2,00e9k whicheph, =0y, J = 1,25..0k

i=k+1

* ) * ‘
and b (~-D,) = h g where h = (hk+1 .....hn_T)

Also note that g2 O since M€Z and -ﬁm is not a

coordinate of g.

Since —D2 iz a P-matrix from theorem 1.3.2 it follows that
(--D?)"1 2 0 and therefore all the coordinates of h* have the same

sign as h o From here it follows that h <O.

Since "h< 0, h(I ;‘;) <0 forall j = 1,2,.4... n. Now let

j#m be such that M j is not a column of C. It follows that I .

isacolumn of C, 1 ¢J <k and that hj 0. Therefore, we have

0 for i# j.

1
Il
™M
=]
Pt
1
=]
p—_
A
o
o
n
1
=
v

ij
Also it is clear that if j # n is such that -Tﬁj is a colum of

¢, thon n(-W,) = O. This completgs the proof of (ii) in both

of the casés (a) and (b),

Theorem 2.2.1 : Tet M€ Z. The simplex method applied to solve problem

(2.2.1) solves (1.1.1) and (1.1.2) or shows that no solution exists %0
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(1.1.1). Moreover the sequence of basic feagible solutions genernted
by the simplex mpthod applied to problem (2.2.1) is the same as the
sequence of near complementary basic Teasible solutions generated by

L(M,q,d) applied to solve (M,q), if (1.1.1) has a solution.

-

Proof ¢+ If (1.1.1) has no solution then the simplex method will
find an optiml solution to (2.2.1) with Z, 2 0 and this will show

that {1.1.1) has no solution.

Let (1.1.1) have solution. Note that the simplex method and
1{i,q,d) starts with the same initial near complementary basic
feasible solutions. (i.e. the solutions that correspond to near

complementary basis matrices). Also initially

{:j ;:{ s0 that k, the order of I in 01 is

n~1) and the second set of columns is empty. From lemma 2.2.2 it

‘follows that h £ G and hcﬂj) {0 for j#n where h is the

il

last row of C1 :

We note that the simplex multipliers ('zj - 3' in the standard
notation) corresponding to the variables wj‘s are h(I j)'s and the
variables zj’s are h(-R j)'s which are all negative except possibly

for h(-f n)' Since (1.1.1) has sclution the simplex method applied
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to (2.2.1) can net termimnte with Cye

both the simplex method®and lemke's algorithm L(M,q,d) select the

Therefore h{-H n) > 0 and

same column -~ , ‘Yo be included in the basis at the next iteration,

-

ench accordirg to its own criterion.

Let D2(2) be the D, of C,, the second near complementary or
complementary basis matrix (depending on which variable is eliminated
from the basis in obtaining 02) which is the same for both L(M—,q,d) ﬁ
and the simplex method. As we have oObserved in the previous paragraph
D2(2) ig of order 1 x 1 and is -m < 0. Therefore —D2(2) is a

nn

- P~matrix of order 1 x 1.

Induetion hypothesis Let the first s near complementary basis
mtrices generated by L{M,q,d) and the simplex method applied to
p‘roblem (2.2.1) bte the scme. ILet Dz(r) be the D, of C and let -Dz-(r)
be o P-mntrix for r £ s.

We shall show that the (s+1)-tbL near complementary <or complemeniary)

basis mtrices generated by the simplex method and L(M,q,d) are the

same and that -—D2(s+1) ig a P-mtrix.

If in the basic feasible solution corresponding tc GS, Z 0
then both L(M,q,d) and the simplex method obtain a degenerate solution
to (M,q) and terminate with C,» In this case therefore the theorem

holds. ILet us thereforé assume that in the solution corresponding
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te €, &, > 0. Since (1.1.1) has solution this rieans that the simplex
method does not terminote with C,» Siuce —Dz(s) is a P-natrix

lema 2.2.2 applies. In the notation of 2.2.1 we shall havey_f

h (1 j)g O i J = 1Byam oo, h(~!‘s_13,) < O H@f j#£n,

Therefore we tust have h( -} g )5 [Cf

Trus the column to enter the basis under the simplex eriterion

is - . . eon e (2.2.2)

(1 0’ M n) are the pair of nonbasie complementary columms in

notation 2.2.1. I.(M,q,d) mst alsC select - n t0 be included in

.

the basis in the next iteration. Por, if otherwise M o st have

been elirdimted from Cs which is incompatible with (2.2.2) in

-1
view of the inducticn hypothesis, ns a variable eliminated in an
iteratiorn can not reenter the basis in the immediate next iteration

under the simplex criterion.

Thus G, , &enerated by L(M,q,d) and the simplex methad are the
same.,

To complete the proof we must show that -—D2 (s+1) is a P-rmtrix.
Ve proceed ns folliows:

Let v = 0;1 (-I-J'I.n). We have already seen that Vi > 0. We

note that Tipq ? *ocrers Vg ?i;isfy the equations
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1
. Vw1
D, (s)f = a+4d yn' where f = . and
yn-1
e i) i
a - —mk+1n,ouooo’—mn_1n .

Since -D2 (s) is a P-matrix by induetion hypothesis and since
=2
a2 0, Jp?2 0 4~ > 0 by theorem 1.3.2, we have f < O.

S .
Tirus Cs ( - '}i < 0 for k+i <1ig n-1.

This shows that in obtaining Cs simplex method eliminates From

+1

Cg acolum I, »t ¢k and not any colunm -H . in C,. Thus

+d

-D, (s+1) 1is equal to

x
-

-We also note that

It

-3, (s+1) (75

-f d
1)2_09 Y. > 0

where

B
a1

Therefore from theorem 1.3.2 it follows that -Z, (s+1) is a
P-mtrix.

The following corollary igs oan immediate comsegquence.

E
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Gorollary 2.2.1 ¢ Let M€Z and (1.1.1) have solution. Let By By

olalstemsl a1y BS be the sequence of near complementary basic feasible
solutions generated by L(M,q,d); for'an;y a > O‘. Then (o) in the
representation C_ of B as in lemmn 2.2.1 —Dz(_s) J.s a P-motrix;
(b} (c;1 (-Ea.n))i $0, ki < i ¢ n-1 where k is 'the‘order of I
in G and —f?I_n is, as in notation  2.2.1, the column selected to be

included in the basis in the next iteration; Also L(qusd) solves

‘(Ms Ci) .

Corollary 2.2.2 3 When the simplex method is applied to prcblem
‘(2.2.1) a nonbasic Wj never becomes a basic¢ variable and a basic

zj never becomes nonbasic.

Proof : The proof of theorem 2.2.1 shows that when the simplex
method is applied to0 problem (2.2.1) the simplex multipliers
correspondirg to wj‘s o A 2y sesest B I0Te alwa-xys nonpozitive.
Therefore a nonbagic Wy never becomes a basic variable.
Corollary 2.2.1 shows that the variables 2y *s are nondecrensing
from iteration to iteration. Therefore a basic Zj never beccmes

nonbasic.

Corollary 2.2.3 ¢ The simplex method applied t0 problem (2.2.1)

finds a solution to{M,q)orshows that {1.71.1) does not have solution
in atmost n iterations, If (1.1.1) has a solution I{M,q,d) determines

o solution to (¥,q) in atmost n iterations.

/.
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Proof :  The simplex method applied” to problem (2.2.1) replaces ome
after another of th; variables wj's by zj's. Also a nonbasic wj
never enters the basis again. 7Therefore the algo;ithm must ferminate
in g‘tmos‘t n iterations. Since when (1;1.1) has a solution I,(I\:E;.qu)

is equivalent tc simplex method, L(M,q,d) also finds o solution to

(M,q) in atmost n iterations.

Remrk 2.2.1 ¢ When (1.1.1) does not have solutions L{¥,q,d) ond
the simplex method applied to (2.2.1) are not equivalent. We shall

illustrate this with an example in the next section.

Sorollary 2.2.4 : Wheﬁ the simplex method applied to problem (2.2.1)

terminates with Z, > 0 the row corresponding to 2z, in the terminal
tablean contains no positive element except in the columm correzponding
to 2 .

)

Proof : We observe that the row corresponding to 2, in the tableaun

X

contains the simplex miltipliers.

Remark 2.2.2 4+ In a recent paper C.B. Gareia / 17/ cbserves that
when M €L and when L(M,q,d) applied to (M,q) terminates in a
gecondary ray then the row corresponding to Z in the terminal tablenu
contains no positive element. Corollary 2.2.4 ig comparable to this
result. However, we shall show in the next section that coroliary

. /7 N
2.2.4 does not hold for L(M,q,d) applied to (i,q) when HE Z.

-~

/
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Comparisicns among the algorithms to solvé~(M,q} when M E€Z. ¢

Insed on the results of the previous section we present the

following algorithm for (M,q) when M¢Z. We call this algorithm

S(if,q,a).

¢

The algorithm  S(M,q,d) ¢+ Iet d >0 €R" be given.

Step 1

Step 2

Step 3

Given (M,q) choose mimimum nonnegative z, s0 that
0. If 2z =0 terminate with the solution

0. This solves (M,q). Otherwise go to step 2.

Choose the

-

initial basic near complementary solution as w = q + zod,

0 for some 1 @ <n.

JUppose (q + zodzx =

z =0 and 3z >0 as in step 1. The initial near

complementary bagis matrix is the matrix B whose jth column

is I j for j £ ® and whose (xth column is -d. The

columns. of the initial tableau are B~ (I R 51 (m e

7, TR, -1 N
ET(-d) and B (q). We note that B! initially is of

the form
i |
T -G
d
‘ n
. ]
O N L—.—.
d
{ n

At any iteration we obtain a nonbasic pair of compl enentary
variables. (In the first iteration (wa y 2, )). Let it be

A
/i
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(wﬁ. ) 2g ). If in the’ & row the coluimn 5 (-m B)

contains a'nonpositive element then termimnte. There is

no feasible solution to (1.1.1). Otherwise go to s‘tep‘f;.

Step 4 ¢ Choose z as the varisble to be introduced into the basic

B

gset. Select the variable to.bg elimirated from the hasic
set by the usual winimum ratio criterion. Carry out the

usual pivotal transformation of the simplex method. Go to

step 5.

‘Step 5 ¢+ If in step 4 1z, is the variable selected t0 be eliminated

from the basic set, terminate. The current solution does

not contain Zo and solves (M,q). Otherwise go to step 3..

Remark 2.%.17 3 We note that since the problem (2.2.1) always hos |
dh optimal solution, S(M,q,d) does not encounter the ‘ﬁnboun&edness'
case of the simplex method at step 4. Wé also note that it is not
né%essary to mintain columns corresponding to wj variables in the
“tableau. Also, since a basic zj never becomes nonbﬁsic and a !
jnonbasic wj never enters the basic set it is not necessary to

‘Introduce any nondegeneracy resolving mechanism. This observation

holds true also for L(M;q,d). .

As we have seen in the previous section if (1.1.1) has & solution

 then 8(M,q,d) and L(¥,q,d) generate the same sequence of basic
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feasible solutions. However if (1.1.1) does not have solution the
two methods are not equivalent. The following exanmples illué;rate

this.

Exarple 2.3.1 & Consider {(M,q) where

Fs o« 5 0 &
M e -3 6 -1 -2 e -2
-2 -4 3 -2 ~3
-1 -3 = T JL“4.A
g
1
Take 4 = e4 A,
1

At the end of the second iteration both $(M,q,d) and L(M,q,d)

obfain the following tableau.

W W W W Z % % Z % s0l Boisiie
1 X 2 3 4 1 2 3 4 0 ) variables
f = @ 134 1/3 -20/3' /3 11/3 0 @ * a5 W,

gj g -1 0 1 -10 4 0 0 1 W,

& o 13 -1/3 /3 i3 =1/5 1 0 1/3 Z,

0 0 -1/3 -2/3 -4/3 -10/3 -25/7 O 1 11/3 5

At this stage both S(M,q,%) and 'L(M?q,e4) determine the

variable t0 be included in the b/asic set as 24+ However S(T;'E,q.,ez;')
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terminates at this stage., since the elemeni if ‘the 2z, column ‘and the

3
Z, row in the tableau is -25/7, negative. L’(M,q,%) at this stage
does not terminate in secondary ray. In fact L(M_,q, 94) takes two

more iterations before terminating in a secondary ray.

e nlso note that all the elements in the Zo row of the current

tabieau except for the 1 in the 'z, = columm are negative.

Theorem 2.3.1 ¢ If (1.1.1) does not haove solutions S(M¥,q,d4) detects

this infensibility never later than L{M,q,d) does.

1

Proof : The termination requirement for S(M,q,d) is only thkat
% . - M .

(3 (-7 " ))n $ O where W o 18 as given by notation 2.2.1.

On the otherhand the termination rule for L(M,q,d) requires that

(3"1 (-—IT-'I‘n))i ¢ 0 for 1 ¢i ¢{n. Trhis concludes the proof.

Remark 2.3.2 3 When L(M,q,d) termimntes in & secondary ray for the
problem in example 2.3.1, the terminal tableau has positive elements
in the row corresponding to z_ . This is because the terminal solution

Q

is not an optimml solution for problem (2.2.1), with M and g as in

example 2.3.1, \ '

Example 2.3.2 Consider (M, q) where
r’“"" 1 ey,
Y o sk [
N o= —4 ! =y “2u b 1 ana q %= L
¢ = -1 5 -2 | ~3
1-1 -1 -3 6 -4 §
e mn ] Lo -
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Take @4 = e

4

For this problem L(M,q,%) takes 6 iterations (more than n = 4)
t0 terminate in a secondary ray. S(M,q,€34) detects that {1.1.1)

' v
does not have solution in 3 iterations. Thus we see that L(Iﬁ?q,d)

my recuire more than n iterations to terminate.

We ghall show in the next section that whatever may be the
given 4 > 0 € RY, s(M,q,d) ©or L(M,q,d) require the same mumber
of iterations to solve (M,q) if (1,1.1) has solutions. | This however
ig not true if t1.1.1) does not have solutions. The following example

illusirates this.

Fxample 2.3.3 : Consider {M,q) where

] [ —— S j
1 -2 0] 0 -1
-1 1 0 0 -1
-2 -1 =3 14 -2 1
-1 -1 1 =1 | F"B |
AR

-s(Mﬁqge_‘;) ‘take;/ll iterations before termimating with z_> 0.
. ‘ 1
However if we take d = | 2| , S(M,q,d) requires only 2 iterations
' 10 |
10

1

sbefore concliuding that (1.1.1) does not have soluiion. HNote that

éven if (T.?.1) has solutions the sequences of basic near conmplementary
N
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solutions generated by S{M,q,d) for different a € R may net be
the sare.

We shall now compare our algorithm with the Chandrasekaran -
. ] \
Soigal eslgorithm presented in section 1.4.5. ¥We snnll mnke the
comparision only when (1.1.1) does not have solutions. In the next
o g : a - 1 P it /.'."
section it will be shown that when (1&.1) hag solution b\m,q?d)
and the Chandrasekaran - Saigal algorithm reguire the some nurber

of iterations, although the seguence of near complementary bogls

mtrices generated ooy be different.

We shall slightly modify the algorithm presentec in 1.4.2 as

fellows.

(1) In step 2 consider all j€J and if for any

JEJ, m,jj 4 0 go tc step 4.

3
o

(ii) 1In step 3 choose the pivotal element as m. if k€

and g, = win q. -
k
jeg

odification (i) above helps faster terrmination in case (1.1.1)

has no solutie{. Mogification (ii) removes the arbitrariness in

L
g

selection of pivotal element in siep 3.
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Example 2.3.4 :.- Consider (M,q) where

r 1 ——radr — S
3 -1 -8 Ow @ Y -5 1
-2 2 -6 0 0 i -2
" -1 =2 g a1 ¢ wn i 0 -1
M = , 3 a =
0 0 0 5 - -3 ' -1
6O 0 0 -1 4 -2 -2
< 1. B = =B j ™

S(F:’L?q,e[a) termimntes in the 4°0 iteration concluding that (1.1.1)
has no solution. However the Chandraseckarsn - Salgal algorithm witn
the modifications (i) an;1 (ii) above termimates only after 6 pivoial
iterations. The choice of pivotal element under S(M,q,e6) differs
frori_"l thnt of Chandraseknran - Saigal method from the gecond iteration

owards.
‘However we can also construct examples t0 show thnt S(I‘J,q,en)

does worse than Chandrasekarsn-Saigal method in detecting infeasibility.

Thus %he twe methods are not comperable.

Banple 2.%.5 :  Congider (¥,q) where

Fég 1 -3 o o] f-ﬂ

H A @ @eh o 21
o= SRS =5, TREd  @IRHe ;i oq = 7
0 0 0 3 -1 -8 -1

B o @ s P =B L

4 o -4 2 8| -1}
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s {i,q,,) tokes 6 iterations to detect that (1.1.1) has ne solution.
The Chandrasekeran - Saigal algorithm takes only 3 iterations to

‘rench the same conclusion.

The isotonicity and least element properties of soluticns generated
by S(#,q,d) ¢

Consider the parametric linear complementarity problem

(¥, ¢ + & p) where a is a nonnegative real number. Suppose

| (M, « + ap) has unigue solution for 0 ¢ & < ¢ and let (@ G s

oz (fv)) be the solution. We say that the solutions possess
igotonicity property if Ei {¢) is a nondecreasing functicn of o
for each i = 1,2, ..... Do In the context of structural mechamnics
ipier [.25_7 nas posed the problem of determining conditions on M, p,
and g 20 €R" so that isotone solutions exist for (M, g *a p),
0 < o:_<'oo . In 1_3__7 Cottle considers the above problem for positive
comi-definite mutrices M and proves that for each ¢ » 0 €K', p ¢ &
(#, o + p ) bas isotone solutions if and only if M ¢K. He also
provides a monotonicity checking algorithm for positive gemidefinite
mmirices. Furthep@ observes that if MEK* to determine

T Iex {Oﬂ (8, q +ap ) has solutions j one need only solve the
o 20
following linear programming problem.

Maximise @&
. Subject to op + Mz 2 -q
| a0, =z 20.
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The isotonicity property of solutions to {M, q + ap ) when
M€Z has been considered by Kaneko 1;19___/-. Because of. the
possibility of nommigqueness ¢r nonexistence of solutions fo (I‘ﬂ,‘q )
Wwhen 1 €% the definition of isotonicity is modified as follows.
(My ¢ + ap ) for somé q20 ¢RY and p €R" is said to have isotc;ne

solutions if for O ga1 < o, oM, g + x, P Y and (M, q + 0C2 p) have

[l

solutions imply that they have solutions (W (2), (@) and

(# (), 2 (%)) respectively such tiat =z (Oé1) <z (oce),

I. Kaneko / 19, p.15_/ shows that if ME€Z £, q + Op) has isotonicity
,property for each g 2 O €R” and p €R". These results have further
been entended by Kaneko / 20_/ and have been used to characterise

the classes Z and K.

In relation to these we observe the following.

Remark 2.4.1 ¢+ Iet q > O€R" , p ¢K" bé given. We note thot when
s(M, p, q) is applied to solve (M, p) the algorithm generates
sé]eations o {4, z,Q + p) for ZZ ¢ B, (=, where zj is the
mininal valug of z, obtained by the algoritim for problen (2.2.1).

“Suppose ( w (zo), Z (zo))- is a solution to (M, g + p) for

- ¥ S ot
z ¢ z < =. Note that (= w(z ), & B (z_)) solves (M, g+ ap)
-0 = O : ZO Q Zo o
1
where o = ~_ ¢+ 50 that for O @ < l; we can get solutionsto
; 0 ‘ h 7
o

(M, ¢ #+0 p). We call these solutions the solutions generated by

8(4, p, g) to (M, g +ap) for 0 {a< —;;; o |CIE z"o* =0; We get a
o

solution fo (M, g +ap) for O { o <o),
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Theoren 2.4.1 ¢ Let g > O€Rn, p€Rn be given. The zolutions

-generated [od S(M, Dy q) to (I‘JI, d +0Lp) for 0 ¢ Otg -;?
o

(r 0ga w,if 2z%= 0) where z* is the value of z_ at the

terpination of the algorithm are isotone. If zg A0 (1\.«‘19 q+CL_p)

doeg not have solutions for o 2. JZ-; .
o

Proof i~ Tet nt the m'' iteration S(H, Ps q) generate the solution
(w (m), 2 (m)) te (1, zO(m) q + p). Without loss of generality

let us assunme that ﬁj(m), 1 < gk, -Z-;j (m), X+1 <J gm-1 aore
the basic varigbles. Let Z. be gelected to be included in the
basis at the next iteration and let LA 1 gi < k be the voriablc
t0 be excluded from the basis. Let ¥ & denote the column in the
S(I;-I,p.,q }  tableau of the mth iteration corresponding to the varioble

Z . We note that

* . ..
Wr (OC} = Oc(wr (m) - Gyrn ), 1 _m<_r _<;1{
5 = 0 y k+1 {r <n
{ = -{ & - @5 -
z. (o) /(zr () 8y, Yy k+1 £ r<on-t
s :
zn\a) = 8
*
zr(on) = 0 5 il ' m K

L]

1 1 1 1
where © = (z.(m) -3 ). — and = {a<
o z.ozmj ‘ zozm+‘l,i

=
Jl’ll’l

) "\l H ‘ 1 1
solves (I, g +0p) for ——(—”o m <« < ——-(—ZO m-_l-T)' .


http://www.cvisiontech.com

= G =

%:I,he isotonicity of z*{ &) row follows from corollary 2.2.1. s

E"rn <0, k+1 {r ¢ u-1. (If there is degeneracy z () = za(mﬂ)\.
1

1 - _ . . =S < o < oo .
It 2z (m+1) = O then we have isotone solutions for W <
This completes the proof of the theorem.

BV

et Xqg) = {z |¥z > ~q, = ?__O?’ ; for a given g€ R.. Ve

say that z* ¢ X (g) is a least element of X (q) if 2 & =y

i= 1,2, «... n for any zT = (21,.,., zn) ¢ X (q). Ve nove what

if X (q) possesses a least element then it is unique. In .[-10,3').24_@_7
Cottle and Veinott showed that the least element of X (q) is a
solution o (i, q) if and only if MEK. 4. Tamir / 39, pe28_/ extendsd

this result by showing that M is a 2 matrix if and only if when

X(q) # 9,% (q) bas a least element which is a solution to (id,q ).

In relation to the avove we observe the following.

Theorem 2.4.2 : Suppose X(q) ## . Then for any d 2 0 , s(i,,d)

cosputes the least element of X(g) in atmost n iterations.

"proof : S{(M,q,d4) terminates with a soluticn to (M,q) since X{q)# @.
Ye shell show thot this solution also solveg the problem
mnisise 2 cy 24

subject to w-ldz = q, w20, 320

for any (c:3 ""“'Cn) > 0.
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Let us assume without loss of geuerality that at the terminal

tableau of 8{M,q,d), Wi 1< i<k %5 kvt { j ¢n are the
basic varinbles. Then the basis matrix corresponding 0 the terminal

tableau is

where I ig of order k. Let f = (£, jecevs fﬂ) be the cost

e

cocfficients of the basic varisbles. Note that £, =0 if 1 ¢i<k

and fi 2 Ci for k—i-?gl(n.

Ve note that by theorem 2.2.1 -D2 ig a P-motrix and -D;1 2 O

For any nonbasic variable Zj 3 1<J <k, its simplex miltinlier

is,
’.,-—? _ ! = _"1 T

(B (-M.j)) i (o, £ I ¥ | -M_j) - e,
Whe?‘e f‘ = ( Ck+1 o w20 50w Cn ).

We note that since -ID;I >C and f) ¢, weget T D; < 0.
T 1 = 1
3 N il . ) B o {_ - SR—
g EE B ( M.j) cj = > i F ...)2 )i { mij) C;} < 0; as

(-n,) 20 for 1y k+1 axa (F T;' ), go.
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Similarly we can show that the simplex multipliers of the

ngnbasie WJ'S, i » k+1 are nonpositive. This proves that the
terminal solution of S(M,q,d) minindses ch Zj for any
(01,. — cn) 20, ond therefore is the least element of %(a).

Corollary 2.4.1 + When (1.1.1) ms solution S{M,q,d} takes the

gome number of iterations to terminate for any 4 >0 er™.

Proof :~ Note that when (1.1.1) has solution S(M,q,d) computes

the least element of X{g) for any d > 0. HNow in view of corollaxy

to termimnte is thersame for all & > O..

-H

9.2.2. it is clear that the mumber of iterations reguired by 8(H,q,d)
o ’ . il 2 ne3 :
Remrk 2.4.2 ¢ Consider M = . Take ¢

11

3 4 q |

ST -3 B = n 2 -3}
= {2] 31 @ —q/p _[Bj and g+2p = q [5}
1

Now . (i, qi) has two solutions ( ‘i_v1 9 51 ) and ( W*1 s &% )
>

o=t to b -1 ke3], k1 )0 A R Y
whe;r_e W= [1.5] R {.O] 5wt o= {O] and ¥ = [5:]

Similarly (M, q2) has two golutions (1?12, z° )} and (w*z, o#° )

.2 0 -2 H.5 0
where w = {:51 g = [O] . W*2 = [O and

and

Ii
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We note that the pair (w , 2z ), wl . 52) satisfy the
isotonicity property whereas the pair (w*!, o* | ), (w2 , 2%2 )
does not. Theorem 1.4.1. implies that S(M,p,q) does not generate

1 1 2 B . w1 42 .
(w*', z%') and (w*°, 2%¥°), We also note that z*', z are not the
’ 1 2y e ar 1
least elements of X (g ) and X {g°) respectively so that 5{if,q ,d)

ar 8(i,q°,a) for any 4 >0 €R% Go not terminmnte with these

solutions.

Wien X(q) # & , the Chandrasekaran - Saigal algorithz also

computes the least element. See ﬁQ,p.‘BJ. Thus it follows that

when X (q) # & , the number of iterations reguired by s{¥,q,d)

and the Chandrasekaran - Saigal algorithm are the sanme.

In the context of structurazl mechanics the following problen

7

has been considered by 0. De Donato and Maier 4_12_/.

4
Find (w, z) such that

# ‘
W o~ Mz

"
e

w

[

O, zzo, z ¢a cos - .o eer (2.4.7)
wlz = 0 cer e e e (24442)
where a > 0 ¢ R ig a given vector. This problem is dencted by (I-:I,q}a.
Assuminé that M is a P-matrix Cottle [5__7 showed that the s

R (a, K) = {q | (i, q)a has solutions\ﬁ g i

L]
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is convex for each a » O, if and only if M € K. ' In what follows
we shall extend this result 1o Z_mfrices. First we show that o
resuit analogous to that of Chandrasekaran for (l?vi,q} when MEZ

namely, theorem 1.4.7, holds for (M, q), alsc.

Theorem 2.4.3 : Tet M€Z. If (2.4.1) bas solution, then (i%q)

has solution.
Proof ¢+ Since M €Z the set X(q) has a uuique lesst element which

ig also & solution to (M, g}, when X(a) # #.

Let z° be the least element. If z_ { & then (2.4.1) bas no

: o o] Oy . -
solution, If 2z < a then (w, 2 ) is a solution to (M,,q)a where

w = u’ o+ q. If X(g) = ¢ then (2.4.1) tns no solution. These

observations conclude the prgbf of the theorem.

F

Theorem 2.4.4 3 Tet M€Z., R(a, ¥) is convex for each a > 0 €r".

Progf 3 This follows from theorem 2ed 43,

Remark 2.4.5 ¢ We note that the algorithm S(M,q,d4) with the

following modification solves (M, q)a in atmost n iterations.

At each iteration we verify if Z,j < aj for each j = 1,24,

-If for some j, z, > aj ; S(M,g,d) is termimted. fThere is no

solution to (2.4..1). Othexwise S(M,q,d) solves (1, q)a in atmost

n iterations.
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We note that S(H, q, 4) is applicable to the class of resource

allocations problems considered by A. Tamir in 1_405 p.320_7.

.

We conclude this chapter by noting that for X-mtrices with
special structures special algorithms to solve (M,q) have been
developed by R.S. Sacher / 32/, R.W. Cottle and R.S. Sacher /&_/
ond R.¥W. Cottle, G.H. Golub and R.S. Sacher / 9 /. Also,

- 0.L Mangasarian shows in / 26_/ that (M, g) can be solved as o
" linear programming problem for some classes of mtrices M which

include the Z-matrices.

£

/
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.3. Number of solutions and constant parity property

3ete Introaut_:ﬁion :
Tet M€ £. In this chapter we consider the problem of determining
how mny solutions does (M,q) have when there are only finitely mouy
solutions and what conditions need M satisfy so that M has constant

parity property over the sets D1(M) or Dz(M).

Theorems 1.5.9, 1.5.10 and 1.5.12 are some kmé¥n results On
thig problem. Some more results are obtained in aﬁf1npublished
report by Romesh Saigal 4?37722/ The results we prove in section 2
exteng. these known results. In this section we first prove a
necegsary aﬁd gufficient condition for ¥ to be o K-mitrix. We next
consider the constant. parity property problem and discuss Onlj the
Vcase where (M, O has unique solutfon. For B-mirices unigueness
of sollition to (M, 0) leads to o simple condition on M. Ve also
conside a conjucture by Romesh Sgigal s{:&i:é'd in 1_35, p.182_-/_ and

.show that this conjucture is not correct.

In section % we consider the case when (M, 0) has nontrivial
solutions. We prove some theorems on the representation of M in the
partitioned form and using these forms we optain gsome sufficient
conditions and o necessary condition on M for constant parity

property to nold over DQ(M). We extend theorem 1.5.12. by showing
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that when MEE  if N(q) denotes the number of solutions to {(M,q)
then H(q) ¢ oo implies that N(g) ¢ 2. Mony results appearing
in this chapter are already published. See / 29_/.

The case where (M, 0) hes unique solution.

Theorem 3.2.,1 8 Let M€ %. If (1.1.1) has a solution for some

® <0 ¢ E" then M is a K-mtrix and (M,q) has unique solution for

. 1
each g€ R .

Proot i~ Since (1.1.1) has a solution from Farkes' lemma / 27, p.34/

E3

it follows that the system

i <€ 0, uTqO) 0

A

c
7N
7

]

E

=
| [7aN

has no solution -uERn.

Since qO <0 any u 0 will satisfy uTq> 0. Therefore

A v <O such that -1VFu < 0.

A u SOE R" such that —TflTu 2 O
N
-l g SO.

From theorem 1.3.71 it follows that H€ 5 and from theorem 1.3%.2

we can conclude that MEK.

fron theorem 1.5.3 we see that (M,q) has unique solution for

a.ch qERn. This completes the proof.
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Remark 3.2.1 ¢ Tus 2¥1Q € K. We note that theorem 3.2.1 is

stronger than the necessary and sufficient condition for z mtrix
to be & P-matrix proved by A. Temir / 41_/.
In 1_33, p.182._7 Romesh Saigal makes the following conjucture.

Let M€Z. For q€D,(M), (¥,q) bos constant parity of number

of solutions; either odd or even. -

Theoren 3.2.2 3 The above conjucture is not correct.

: 2
Proof :~ Consider the examples (M,9') and (M, q°) where

2 -2 -2 -3 (77 E
g O e 2 o1 & Ly 31
O 0 6 -8 B g = 2
0 0 -9 2 T'J 7
o3 fni - L

m
We note that (M, qT) has exactly two solutions, namely (wt,z})"l =
A
( 2 2.7 - L
798725750909090) and (w 32 ) = (233901090509191) whereas (maq )
hag the unigque solution (w,z)T = (1,3,2,7,0,0,0,0). Thus constant
parity does not hold. In ["37_7 Romesh Saigal gives a similar

example.

Remark 3.2.2 The above conjucture is true under the additional

assunption that (Mso) has unique solution. This follows from
theorem 1.5.5. Note that in the above example (M, 0) bas a nontrivial

solution mamely w = 0 and zo'= (1,1,0,0).
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Theorem 3.2.2 ¢ Suppose ME€Z. If there is no x Z_C)éRn such

that M x = 0 then (M,0) has unique solution.

*
Proof :- BSuppose (M, O) has a nontrivial solution {w . z*), Without

*
loss of generality let us assume that 2, # @ yfor 1= "1325.pnn o

*
and z; = 0 for 1= k+lssaco. 1.

* *
The equation w - Mz = O gives us
=)
'y M :
- m, Z, = 0 , Fas 152, osoidh k& ceol3.2.1)
o 1] J
J=1
* 5 *
w, - » m,. B, = 0 , i=Kktly; eeorsm . (3.2.2)
i j=1 ij J

But for 12 kel, -myg 20 forall j= 1,2, ... k.

Theretore (3.2.2) implies that w]?f = 05 1= Ktlseuees N

5oy

*
Thus S M. =z, o= 0
- J=1 «d J
¥* *
Therefore 3 x = (29 oo B 0 400 0) € R such that x> O
.and MX = O-

‘Thig completes the proof.

Corollary 3.2.1 ¢ Tet M¢Z. (M,0) has unique solution if eiiher

(a) ¥ is non-singular, or

m
(b) there exists y¢R™ -such that X'y > O.
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Proof :- Case (a) 1s trivial. Case (b) follows from Gordan's

theorem of the altermative. See / 27, p.34_/.

Example 3.2.1 3 If M is singular it does net follow that (M,0)

nas a nontrivial solution. The following example shows this.

Clearly M is singular as column 3 is a multiple of column 2. But
. - i T .

(15,0) has unique solution sinece if we take y = (0,1,0), y M > 0,

and by Gordan's theorem of the altermative there does not exist

x 2 0€R® such that Mx = O.

Remark 3.2.3 : Ve note that the (b) part of corollary 3.2.1 and

theorem 1.5.5 strengthen and extend theorem 1.5.9 for Z_matrices.
B

We also note that case (o) implies case (b).

Thecren 3.2.4 @ Let M €2, BSuppose that there exists y¢ RE® such

;
that Mly > 0 and that for some qOERn qo > 0y (ngO) has a

-

unigue solution. Then M is a K-matrix. (Hote that y need not be

' nomegative ) .

Proef :~ Prom corollary 3.2.71 it follows that (M, 0) has unicue

*
solution. Therefore M el (qo) and.from theorem 1.4.3 it follaows
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*

that M is a € matrix. The conclusion of the theorem now follows

from theorem 3.2.1,

Thearem 3.2.5 ¢+ Let M ¢2. Suppose (i) M is singular and (ii)

there exists y (R such that MTy >0. Then for all g €D1(M),

N(g) Sl Gven  whend N{q) is the mumber of solutions to (M,q) .
i 1

Proof :~ TFrom case (b) of~eorollary 3.2.%1, (M,0) has unique
solution. Suppose for some q- € D, (1), (M,q°) has 2n odd number
of solutions. Then from theorem 1.5.6 it follows that for all

qe.p1(M) , (M,9) has an 0dd number of solutions. Since the set

= fq; 4y <0y 1= 12 ecesa 5 has non-empty interior
from theorem 1.5.2 it follows that there exists g <0 €D, (M) for
w’hich (¥,9) has an odd rumber of solutions-. Therefore from theorem
34241 we conclude thﬁ‘t Mis a K-motrix. However +his contradicts
the hypothesis th&ft M is singular. The conclusion of the theoren

‘follows.

Theorem 3.2.6 ¢ Let MEK . For all g€ Dz(M) , (M,q) has unique

[

solution.

Proof” s— This follows from theorem 1.%.% and. 1.5.10.

Taeorem 3.2.7 ¢ TLet MEZ. If there is a x > 0¢ &% such that

Mx 2 0 then for all q¢ Dé (M) , (M,q) has unigue solution.
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Proof :—- This follows from theorems 1.3.4 and %.2.6,

“

Theorem 3.2.8 : Let MéKo-K. Then there is a =x 20 €Rn such

that Mx = O.

Proof :- HNote that from theorems 1.3%.2 and 1.3.3 +the principal
- winors of M are nonnegative and ithere' is atleast one principal

—
minor which is zero.

Suppose there does not exist x 2 O €RE" such that Mx = O,
Theorem 3.2.3 implies that (M,0) hes unique solution. By theorem
1.5.5 we therefore conclude shat for all g ‘€D1(M) , (i,q0) has the
same parity of number ef solutions. Noting that Dz(l\!{) tl_':_.'L_D‘J (1),
we see from theorem 3.2.6 that this parity is odd. Thus we
- conclude that for a-ll q QD,](M), (M,q) has an odd number of sclutions.

(infaot a unigue solution). Since the set
¥ o= tQqu<O, 131923 YRR ﬂ}

hag nonempty interior there is a ¢ ¢ Y such that QQEDE(IVI)s and

(M,qo) has sclution.

Thecrem 7.2.1. now implies that M is o E-matrix. This

reontradicts our hypothesis. The proof is complete.

Remrk 3.2.4 We note that the above theorem is a partial converse

of theorem 1.3.4 and generalises a part of theorem 1.%.5. This
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theorem will be useful for us in chapter 4 to obtain a convenient

“

from of represénting Me KO- K and to obtain a few useful results

about such mtrices.

Theorenm 3.2.9 @ Let M€ 2. The constant parity property of mumber

of solutions to (M,q} holds

(i)

(ii)

Proof :-

(1)

(i1)

for all g ED,](M)X{ there exists no x €R, x > 0 such
that Mx = C or equivalen%.ly if there exists y <€ R suck
that MTy > 0. The parity is odd if all the principal

minors of M are positive. It is even if otherwise,

for all q‘€D2 (M) if all the principal mincrs are non-
negative but atlea;v,'t one is zerog L.e. if EJ’EK - K.
(K-matrices have been covered under case {(i}). In this
case there is unigue solut1011 for all g €D2(M) and

therefore M has odd parity over D, (M). Also there exists

x)OER such that Mx = 0O

This theorem follows from the earlier theorems.
follows from theorems 1.5.5, 3.2.3 and 3.2.1 and

corollary 3.2.1.

follows from theorems 3.2.6 and 3.2.8. In fact this

theorem only summarises the results of earlier theorems.
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Ixample 3.2.2 The following example shows that uniqueness of

solution to (M,0) when M €Z is not a necessary condition for coustant

parity to hold over D2{M).

2 2 0o 0 0

= 1o 10 110 1@

et M = {0 o0 3 -1 -2
@ IE” o\ 2 -5

0O O . GCa'<b =4
B i

Note that (M,0) kos the nontrivial solution (w,z) where W s (0,0,0,0),

o
z° = (1,1,0,0).

Let J1 = {1,2_5; J2 = {3,4,5% . We note that the principal

submtrix M

y is a Ko—zmtrix and M, has atleast one negative

1 9o

principal minor. We also observe that with yT = (0,0,~1) we

have yTMJ = i y > 0. Thus (M. , 0) has a unigue solution and

0 Iy

from theorem 3.2.9 it follows that for all q€D1(MJ ), (MJ , q)
2 2

’
J2

has an even mumber of solutions. Similarly for all g ng(MJ Yy
1

it follows from theorem 3.2.6, that (MJ , q) has either unique
1

solution or no solution.

We note further thad (w,z) is a solution to (M,q) for g €R5

if and only if (w, , 2. ) is a solution to (M. , g, )} and {w_ , z. )
J1 J,i -u1’ J_1 J2 J2
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LS 2
&
5 _
is a solution to (M, , q. J.» Thus q €D, (M) ¢e=> g, ¢ D, #M_ ) and
3,7 29, 1 P e
gr gIH(Nb ). From these observations it is easy to see that (iM,q)
2 )

hes an even number of solutions for all g i\ 31(M). Thus M hos
k-]

constabt parity property over the set D1(ﬁ).

Remnrk 5.2.5 1% Consider 2 x 2 ;zmatrices M. Suppose M is not
in KO. Since Ty 4 2 C and oy, 2 O, it follows that the

determinant of M is negative. That is, we have

mT2 My < O, which implies that

m,, < 0, m, 4 < O, Since M is nonsimgular (M, 0) has unigue solution.

fhug for 2 x 2 7 matrices either
: > .
{1i) Eé X 2 0€R° such that Mx =0 or

(i1) me¢ K,

holds. Ve gee from theorems 3.2.6 aind 1.5.5 that in either casc

Saigal's conjucture holds. Therefore for 2 x 2 cage Saigal's

~conjucture always holds.

Constant perity property when (},0) has nontrivial solutions :

Ve first state a result on the representation of M in the

partitioned form proved by Saigal in 5?37, p.7_?1
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Lomma 3.3.1 (R. Saigal} : Tet M ¢Z. Suppose all the principal

submntrices of M. are in ZﬁSO then M€ Ko'

I 4
Lemms 3.3.2 (K. Saigal) ¢  Let M€ Z. Then exactly one of the

following holds.
(i) —MTQ s, (ii) M¢K, ‘ond (iii) There exists a partition
N= Jd 1\_} J2 and a representation for M if necessary with a principal

rearrorgenent so that

: ol
where M. €K, , -M} €8, J.£8, I, £ 7.
Wo next observe the following result.

Temn 5.%.3 ¢ Tet M€ Z and case (iii) of lemma 3.3.2 hold with

MJ 13 K. Then there exists J ERn such that Mfl‘y > 9.
1.

Procf : We lave M = with M, € K and
L+

M 1



http://www.cvisiontech.com

- T4 -

Since MJ, € K and since the principal minors of M:TI are
: 1 1
the same as those of M‘Tf it follows from theorem 1.3.2 that Ng £ K
' 1
1941 :
‘and that there exists x 2 O€R ! such thav IvI’g x 7 0. Also,
| BEA
since -IVFJ € S, by defInition there exists y > 0 € R ~ such
2 : '
that M, (-y) > 0.
2

Choose A > 0 such that

T L y
A (MJ 7 Y x4+ Mg (-y) > 0. It is aasy to see that such a
172 2

A> 0 existss

Now ( J;X } € RY is the required vectcer and the conclusion of

‘the lemmn follows.

Remark 3.3.1 : In / 37, p.8 / Saigal proves the result that if

in lemma 3.3.2 either {a) case (i) holds or (b) case (ii) holds with
MEE or {e¢) case (1ii) holds with My € K, then M hns constant

: 1
parity property over the set D, (¥). Ve shall show how this result
is related to cur results in section 3.2. First we note thot if
-—IVITE 8 then by definition there exists y 20 €R"  such that

A T ¢ it > 1
-y >0 or M (-y) >0. If MEK from theoren 1.3.2 I €K and
there exists ¥y ZO‘ERn such that 'MTy > 0. If case {(c) holds

then lemm 3.3.3. shows taat there exists y¢R® such thot My > O.

Thus in all cases of (a),(b) and (c) there exists y¢€ R such that
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MTy > 0. Therefore Sa;.igal's conditions (a), (b) or (c) imxﬁlies,in
view of corollary 3.2.1#hat (M,0) has unique solution. How tc
completely establigh thé‘ equivalence between our results in section
3.2 ond the conditions-(a), @Por () of Saigol it is enough to
show that if either MEK -K or if cose (iii) of Lo, 3.3.2. holds

with M, € K - K, ‘then (M, 0) has nontrivial solutions. For
; ,

M€K - K this follows immediateiy from theorem 3.2.8. If case {iii)
of lemma 3+3¢2. h;lds with MJ1€ KO-K, by theorem 3.2.8 thzre

exists X » O gal ! such that M‘J'.‘lx - 0. Now consider y = ( g
‘It is eagy 10 see th‘;.tt My = O Thuér thé. equivalence between ocur

) €RF.

results in section 3.2 and Saigal's conditions (a), (b) or (e) for

congtont -parity property of M over the set D, (M) is established.

We shall now consider the case (iii) of lemma 3.3.2. with

MJ €X 5T K. To study the constont parity property of such mairices
1 ;

we first require a few results on the representation of M in the

‘partitioned form when M€ (Z-K)} 8,

‘Leuma 3.3.4 ¢+ Iet M€K -K. Then there exists a J1EN such

that {i) det (MJ‘ ) =0 (ii) no proper principsl minor of M when

1

defined {i.e. when J, is not a singleton set) is zero.

1

=
Proof @ Trivial.
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Lemma %.3.5 ¢+ Let MeX - K.  Then there is a partition

LY

N = JIL} J2 . o emerd UJ’r and o representation of M if necessary

with principal rearrangempt, as <

where r> 2 ., If Jr # @’,MJ is defined amd liy € K. S AP

r T
¢
and has the partition :
J = J11} J2 ceaes kJJr~1’ ench Ji satisfying -
(1) get (M, ) = 05 1 <i<rmi
: i ==
and (ii) no preper principal minor of My is O.
i
Proof 1—- 8inecs MZEKB-K from lemmn 3,%.4 we see that there is

a'd, £4, I C T such tiot

(1) det (Mj ) =0 (ii) no proper principal minor of M, is O.
1 1

It J,] = N, we have the above partition for M with r - 2,d = J,I:N,

J, =@ so thot M. is not defined.
9o

If # - J; # ¢ then consider My , .

1
are pogitive then the above
1

1 Jp =N -7, and iy

Thig is @ Ko~matrix.

If 81l the principal minors of MN_J

‘partition is obtained with J = J a K~matrix.
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It MN—J1 £ Ko -~ K we a:.}:ply lemma 3.3.4 1@ MN-J1 te obtain doe
Proceeding thus in o finite number of sieps we shall obtain the

¢ | :

Lemmo 3.3.6 : Let M€ (Z-K )Y S . Then case (iii) of lemma

mbove partition Tox-M.

3.%.2 holds. The converse is also true.

Proof :- Note that M€ So : —MT §E’ 3 by'theorem 1a3.1,+ 50

that case (i) of lemma 3.3.2 can not occur. Case (ii) is excluded

because M¢ Z - K . Case (iii) must therefore hold.

Suppose case (iii) of lemms 3.3.2 hglds with Hy € K. Then,
' ' {dy] ’ 1
since there exists x 2 CE€R ! such that ¥, x > 0, taking
<4

g = { g ) €R" we'have My ) 0. Therefore M€ 8, If case (iii)

holds with M € X - X then in remrk 3.%.1 it was shown thot
1

thore exists y > O € such that My = O, Therefore M€ S+ From

here the converse follows.

Remark 3.3.2 ¢ From the proof of the above lemme we also see thut
oD o Py 5 o : Il

#the conditions (i) M€ (Z- KO)(\ 5, (ii) there exists x > 0 ¢€R

such that Mz = 0 hold if and only if in lemma 3.3.2 case (iii)

fgececurs with MJ1E KO- K.

Temma 3.3.7 ¢ Let (a) Me(z-Ko)n 5, and (b) There exist

% > 0€RY such that Mx = O. Then there is a partition
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e =

¥ = J1&J J2 LS - Jr{J Jr+1 . whexg; r 22 and a representat%on

»
for M asg
ol My
‘ T r+1
L
M = MJ 3 MJ MJ 5
_ T r T r+1
{io ) M
‘ Jr+z
r-1 |
~such that {i) J = Y J; £ 4, I, wy be empty, I . # 7.
19 o4l
T
(11) g = yo0er ' suc? that XM, <o, |
e = -~
r+1

and (iii) di's; 1 ¢i ¢r-1 satisfy the conditions on J,'s
of lemma 3.3.5.
Proof i~ Usiyg lemma 3.3.6 we conclude thot case (iii) of lenmn
%

3.2.2 holds and there is a partition

N = syW®-1), L £ g, N-L £ ¢

- and M has the representation

Y 3

ML Hi N-1

O Mﬁ—L 4
where )

=
I

. . ' . L. T )
(i) M. is a K mtrix. (ii) _M§~L € 8, or there exists

Ne
X7 OER’ LI such. that XT MN-L < 0.
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Also because of condi'l:ioh (b) and remark 3.3.2 we have M'LE KO_ K.

~ Now applying lemma 3.3.5 to MI, we get-a partition I = Jju JQU 5000
eee WJ I, vhich satisfy the conditions of lemra 3.3.5. We take

N-T = Jr+‘l + This gives the desired partition and concludes the

rroct of the lemun. >

Theorem 3.5.1 ¢ Let (o) M€ (Z- Ko)hso and let (b) there exist
'x'}_ 0€R" such that Mx :.O. Consider the partition ¥ = J1u JEU'

ORI e C Jr W] Jr+1 as given by lemma 3.3.7. M haos constant parity

© property over the set D1(M) if (1) Mo =0 and (ii) when
r+1
Ji' #Z @ either MJJ =0 or MJJ = 0,
. T r+1

Proof :- The case I, = # is easy. Ve shall consider only the

case £ g

Gase (1) :+ M _.=0; XM = o.

g7 = J7
r r+1
Let L = J \Jd,,, ond consider
M M |
L J dJd
r r r+t
ML =
0 M-
J
r+1
. Here MJ is a K-matrix and —-Mﬁ € 8. Therefore case (c) in

Y 4 r+1
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e T , -
remrk 3.5.1 holds and thus there je even parity of number of ¢
solutions for all g€ D, (ML) by theorem 3.2.9, as there is atleast

one prineipal minor which is negative MJ - 1ot being a Ko—matrix.
r+1

By the hypothesis of the case we note that

’
M
Moo= J
0 Mo
oy ,
Consider any q = | €D, (1). Hote that if (w,z) is a
L

golution to (M,q), because My, =0, (ng zJ) is o solution to
4 4

- o LI oo / ||{' u
(M‘J, qJ). Therefore it follows that _ngD](uJ)

3ince MJE Koa'K, by thecrem 3.2.6 it follows that either

(M } bas unique solution or no solution.

A

Suppose (M } s a solution. Let the unique sclution be

7 4

(ﬁJ, EJ) and let

o i QL

- +

and note that (w,z) is a solution to (M,q) if and only if (ng ZL)

is a solution to (MLS qL). It therefore follows that a €D1(M)

|G g €D, (M), g, & D,(M).

g
1
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Therefore either there are an even numbér of solutions to

(Mi, EL) or there is no solution. If there are an even mnber of

solutions to (MLg iL), (ﬁJ, Eb) with eanch of these solutions gives

. a solution to (IVI, q).

From these obsefations we conclude that (M, g) has either

no solution or has on even number of solutions. M has even parity

0“;'er }31 (M) ‘This conclude_s "l;he proof for this case.

Case (2) : M =03 M. = 0. We let I = JUJ_ and note

d_dJ

JJr+1 r or+1

"that M is of the form

2

where M. is a Ko-matriXeand —Mi £ 3.

L r+1

We note that for any ' q ¢R", (w, z) is a solution to (M, 4)

if and only if (WL, ZL)'lS a solution to Gﬂbg qL) and (WJ‘ » By
: 1
is a solution to (MJ » 47 ). Therefore it follows that
r+1 r+1
q €D, (M) jmeey d €D, (ML) amd q; € D, (M, ).
r+1 T4
- We note that (M, g } has an even number of soluticns or

r+1 r+1

Has no solution for all gq; € D1(MJ ). Also from theorem 3.2.6
- I+

1 r+1

r+1

)
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we\see that (ML’ qL) hag either a umique solution or no solution

Y . I
for any qLE.'Q,‘ (ML)' From these observations it follows that (M,q)
either hos an even number of solutions or no solutien for all

q €D1(M). The c®hclusion of the theorem follows.

The case J_ = § my be treated similarly.

& : .
Lemms 5.3.8 ¢ Suppose. MEKO such that

(i) det (M) = 0 (ii) no proper principal minor of M is
zero. Then M is irreducible, rank of M is (n-1) and there exists

% > 0 €R® such that Mx = O.

Proof :- Suppose M is reducible and consider the represeniation

M 'o’—{

R S

M =

Since det (M) = det (MJ). det (MN_.J) = 0 it follows that
cither det (MJ) =0 or det (MN_J) = 0. 'This contradicts the
hypothesis of the lemmn. The other conclusions of the lemma now

‘follow from theorem 1.3.5.

Lemg 3.3.9 + Tet Me(Z-K )f1 S  and let there exist x > 0 €r™

such that Mx = 0. .Consider the partition N = J‘Iu Jr-1 U Jr‘

‘UJI‘+1 given by lemba 3.3.7. Let J:JTU.T“. UJI‘—'?' There

“exists x€RI7l, x> 0 such that 2 ¢ O
: |
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LY

*

Pr\ogf : Note that each MiDI satisfies the conditions of lemmn
- ’ i

3.3.8 for 1 <i {r-1. By lemma 3.3.9 therefore there exists
;1™
#:. 2D ER such that x; M =S 78

Ji. | Ji Ji

2 ,
Define x ¢ R'Ji by taking ::c; = Xp o4 1 <1 £r-1.
at i

Since MJ is a_g-mtrix it is easy to see that
* T
X3 MJ £ 0

This concludes the proof of the lemma.

[}

Temm 5.3.10 + Let M€ (6-KE ) VS, and let there exist x 20 €r™

such that Mx = 0. Consider the partition of N and the represenmtation
] : r-1 | T
of ¥ as in lemm 3.3.7 and let J = {J J . Givenany p 2 0€E

‘ i=1

- J '
there exists g > OER'J ’ and a real yember ?\0 > 0 such that

E({Dz (MJ) and (MJ ,4) has no solution for all q 3 - A P

171

Proof : Consider any gq*¥ >0 €R =~ . Iook at g* - Ap.

171

Let x > Q€ER be given by lemma 3.3.5 satisfying XEMJ < O

Choose }\0 > 0 s0 that XT (q* - .?\bp ) <C. Sucha )\.0 exists

gince pr> 0.

The set ¥ = {q, a¢a* a o?] has non-eupty imterior.

Therefore fram theorem 1.5.2 there is a q € Y such that E,eDz (MJ).
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lote that g "l&b L a =Ap.

Therefore for 5-111 q<q- )\b Py the following inequalities are
= .
satisfied. )

xTMJ < 0, XTq < 0.

Therefore using Forkas' lema we conclude that the system

w-Mz =g, w20, g 2 0 does not have solution for

°® -
q ~ N P

This cohcludes the proof ofA.the lemmn,.,

any q

I~

-~

 Theorem 3.3.,2 3  Let Me (2~ KO) M So' and let there exist x 2 0 €Rr™

suehl that UMx = 0., Congider the partition of N and representation

of Il ag in lemwa 3.3.7.  Let (M 3 ).  denote the i row or M
rre1 L ‘ .
in MJ I for i €J:|:' and let (MJJ ).i denote the i column
r r+] » r
of ¥ in M, for ig Ione A necessary condition for M to have
T

constant perif§ property over D, (M) is that if JI_' £,

(MJJ )i‘ <0 e (MJJ ).i = 0.
r+1 r
froof : . Suppose - J, # ¢ and for some i eJr,(MJ I )1. A0
I r+1
ard O # (MJJ ).i £ 0.
r
ey 1]

Considering the get R+ = Zq laeR s g O’ﬁ which
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has ‘non empty interior and using theorem 1.5.2 we oObtain a

st
& >oer TV such that oF €D, (M. ).
J g 2 J ‘
r+1 r+1 r+1
Since -ME. €8, by theorem 3.2.9 and remerk 3.3.1 there are an
r+1
. * . -.*
gven muaber of solutiong to (MJ » A ). Since a > 0
r+1 ™1 Tr+1
one such solution is ﬁJ = q; » 2 = 0. Therefore
Y Tr+1 r+1 r+1

. .
there.are anh odd nmumber s of solutions to (MJ > A3 ) such
T+ r+1

that 2 £.0; M= 1,2y seve & (w(m) . ey ) being the
J g J ; J
r+1 g r+1 r+1

solutions.

et Y= fq9. | a, >0 ,(q + M . z(m) }. < 0,m=1,2,:..84.
1°d J d J_d J i
2 ! i e r r r+1 r+1
/' §ince (MJ b )i < 0y Y is nonempty and has o nonempty interiocr.
' rr+1 70
ko * {m)
Therefore there exists q, €Y such that g, + U Z
. J d J d J -
r ‘ r r r+1 4+

are in D, (M_ }"or m = 1,2, .... s. Since M is a K-mairix
)

1 r r
there is a unigue solution to each of (MJ y a4y + MJ J ng) )
: r r r e+l I

<

x 111=1,2, sesee Se-

Let L = JrL)Jr_'_1 . Congider

5 %
J J g J
Tr r+1i * T
and itake A = | = P
M,]‘ q I
T+ r+1
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. , *
From our observations above we note that q; €D, (ML) and (MLs a7, )

. has (s+1) solutions, one of which is W, = q; ; z; = 0 and in the
remaining s solutions Z g = ng) g M= 1,24 ¢eua 5, 8.
r+1 r+1
*
We also note that since (q, + N z(m) . "o
d ) d i
o r r r+1 r+1
in each of thes®s solutions z; > C. Iet (wém) , z£m) ) dencte
these s solutions in each of which ng} > 0.
*
Tet 3z, = min zﬁm) and B > mx (MJL z£m) DL I
T¢mgs 1{mgs J
jed
= | T T | J1
", Using lemma 3.3.10 we can obtain a q; > 0€R such that

*
q;€5, (MJ) and .(MJ, qJ) has no solution for all

* *
G #e; - X, ("MJJr )i

From here it follows that (M q* - A z(m) (-¥_. ) .) has no
J? g o i JJI‘ .4
g

solution for 1¢ m¢ s. Thus if we take q*T

T * n

= {g*
(a%", & q7)> O¢E
there exists exactly one solution to (M, g*), namely W = q¥*3; 2 = O.

We algo note that -g*€ DQ(M).

On the other hand we can choose (EJ €D, (MJ), §J> 9] GBlJ’ S0

‘ tha = > = =~ T
— . 37 W — £ L,
b ClI ﬁel Il > 0. If we now take ¢ (q" , q¥ )’ then

§€D2(M) and (M,3) has (s+1) solutions, s of which correspond to the
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nondegenerate solutions to
- (m
(g0 d; - (M5 1) Zé)}’ Tgmg¢se

' Thus constant parity of number of solutions does not hold

even over .D2(M). #his completes the proof.

 Exanple 3.3.1 s+  The following example shows that M., = 03
. - S Ir

M = 03 M_ _ = O are not necessary conditions for
JJ J d
r+1 r r+1

congtant parity property over D‘l (M) to hold

i 't .4 =2 -1 o o |
. -
0 ) 2 &1 25 o 0
, 0 0 4 2 0 0
M = 1
) ) 0 0 0 0
&
0 0 0 0 0 I
0 o ) -1 -2 D &
|

' : " e 7 = §F=z1. = Sa.5 g1
In this example r = 2, J1 =J = {7,2;’; y dy = i31;: J3 = 745567,
X

¥e note that if any complementary set of columm vectars conitaing

_—M.4 » then in the matrix of these coluums the fourth row is O.

Theref or 7 i
cfore such complementary sets of column vectors which contoin

W i N . : .
v generate complementary cones with enpty interior. Because

: of_ thig D2 (#) is o subset of the union of the 2n-1 complementary
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conesg in which I 4 appears as a colum. Thus if g€ D2 (M) then
q, > 0. 1In fact.it is easy to see that if g ene(m} then g > ©
and  q¢ > 0.

Tet N be the gmtrix obtained by replacing +M 0

the fourth columm of -M ig I 4’ Now the complementary cones of

(I, - fv-T) are the same asd the complementary coneg of (1, -M) in which
I

v 4
twice. Thus D2 (M) = Dg.(l‘f‘l). But there are twice ag many solution

appears as a geunerativg ceclumn, but each such cone appearing

to (M, q) for each g EDQ(E) as there are solutions to (M,q).

* : ' a - e
We shall show that for each g EDQ(M),(IVI,q) has four scluticns.

Let I, :{1,2,33; L, ={4Y ond L, -§5,6%. ]

-

"\R'Pe nof:e that

— o
0 0 _l

£ |

Moo= 5 N 0 where M is of order

: 5, s _

0 0 ML _
L &

illzE Nl g ML2 = -1, I\f"if KO and MI.3 isa 2x2 VZ— mtrix whose

determinant is negotive., If g (5D2(EE)i as noticed earlier g, > O,
, 3

> 0. HNow in view of remrrk 3.2.5 ir ap, € D2 (%5) sthere ore

fn, 7 3

exactly two solutions to (MII ,qL }. It is also easy to see that
3 3
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thete nre two solutions to (ML » ag ) for each g, €D (ML ). Thus
‘ i 2 2 2 2

. there are four solutions to -each qL

€ Dol ), noting
VL 2, Nizu L,

3

that qp €D, (%QUI’B) if and only if qL2€D2 (ML ) and

AR >

4. €D (ﬁ&' }. Also it is easy to see that q €D, (H) if and only

Lo 2 Iy < R

if q, €D, () and q . €D (& ., ). Noting tiat M_ is
L, "2 Ni] LVUL, ~ 72 TL,VL 5

a K_-matrix, we conclude that for each q¢ D, (M) there are exactly

four solutions to (¥, q). TFrom here it follows that there are

exactly two solutions to (M,q) for each g €D, (m).

Thus we see that M has constant parity property over D1(M).
(It g €D1(M) - DQ(M), (M,q) has no solution and by definition

even parity holds).

We shall now consider Z-mitrices and extend the result of

theorem 1.5.72.

1 - m
Theorem 3.3.3 ¢ ILet M€Z and let -I €8. Then (M;q) has o constant

rumber of solutions for all q in ID2 (M). This constant is 2.

Proof i Since €S and E{K if all the principal minors of
M are nonzerc then the conclusion of the theorem is just the result

of theorem 1.5.12.

Suppose now some principal minors are zero. Since —D:FES by

remark 3.3.1 and theorem 5.2.9 it follows that M has even parity
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‘over DE(M)' Thus there exist an even mumber of solutions { »2) for

all q€D, (3).

Let us suppose that for some &t{Dz(ND, (M,q) hus atleast four

gsolutions. We mke the following observations.

(i) Por any JE N consider the equation

det (MJ+GI) = 0.

Tmis 1s a polynomial of degree n in © and hag only a finite

number ¢f real solutions. Therefore there exists G{J) >0

such that for 0 < 6 < 6(J), det (¥; + 61) ¥ 0. Tus,

choosing 8 = min & (J), we conclude that for 0 ¢ & < @ ,

o} : Q
: JEN
- I£H \
all the principal minors of (M + €I } are nongero.
(ii) Iet
0
Bi = ! : i = 1,2,3,4 Dbe the Tour

complementary basis matrices corresponding to four solutions
yi’ i=1,2,...4 of the even muuber of solutions to (i,q).
Hote tﬁat these complementary basis matrices are distinet and
Ji = is permitted for one i in which case the corresponding

Bi iz I. ©Since all the solutions are nondegeneraie we have

i
By = a, y >0-
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Now we can find B, < €, such that with. \
gt—— ‘P]"
MJ:L + 01 0
C, = '
i M
Ji 1~~Ji' I

we hove X, > O such that Cxg = a, for all © < By , i=T,eeude

it

Thus if we choose O, min B, then for all 0 < 6 <o, q is

11 ,
-in the interior of the four complemeniary cones generated by Ci's

of (I, -i - &I )

From observations (i) and (ii) above it follows that there
oxists @ > O such that q is in the interior of atleast four of
the complementary cones of (I,, -M - €I ) and the principal wminors

of M + 6I are nongero. Now consider the set

¥ = ‘Eq‘ H‘l*a ]|<a]where|iq-illis the

. usual nor;n in B'. We can choose o > O sp that Y is wholly
contained in all of the four complementary cones of (1, -M - €I )
which conmtain g. Since Y has nonempty interior fixrom theorem 1.5.2
there exists q* €Y which is also in Dy(m + 61). Moreover (1, g*)

hns atleast four solutions. This contradiets theorem 1.5.12.

The conclugion of the theorem follows.


http://www.cvisiontech.com

- 92 -

Theorem 3.%.4 $ Iet M€7Z and let q€D1(M). Then ¥(q) <2

where N(q) is the number of solutions to (M,q)

Proof ¢ We note that according to lemma 3.3.2 there are only three

cases Lo be cdnsidered.

(1) whes (i) M €K, and (iii) There is & partition of ¥ as
%

N = J.l\JJ2 and a representation.for M as

with M, €K and L € 8.
g ® Iy

If case (i) holds then from theorem 3.3.3 for all q EDQ(M);
N(q) = 2. If ocase (ii) holds then from theorem 3.2.6" for all

q EDQ(M) ,8(a) = 1. Ve need to consider only cose (iii)

Let q€D,(M), Note that this implies q; QDQ(MJ ). From
2

i . 2
theoren 3.3.3 it follows that (MJ » G ) has exactly two solutionss
‘ 2 2
Let the two solutions be (W, , Zz. ) and (w , z© ). These
J2 Jr J ol
2 2 2 3
solutions lead t0 the problens (Mj » Ayt Mj I EJ ) s
1 1 172 2
M * ¥ ¥ ;i) J—— i
( gy + Mooz ), Note that g€ D2(TI)____> (1)
1 i _ 172 2
q. + M z. €D, (M. ); g, + M z. €D, (M, )
J1 J1J2 J2 1 J1 J1 J1J2 J2 1 1
and (11) at least one of qJ + MJ I zJ

1 12 4
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* _ . .
and qJ7_+ ijJg ZJQ is in D, (N%T). Since MJ1€ K, it follows

that ench problem can have atmost one solution (theorem 3.2.6).

Thus it follows that (M,q) has atmost two solutions.

Since, if q €D1(M) = 132(15@), N{q) = 0, the conclusien of

the theorem follows.

Corollary 3.3.1 ¢

Tet M¢Z. If M has constant parity property ‘

over D2(M) then (M,q) has o constant rumber of solutions for all
a €D, ().

Proof @ Trivial.
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4+ Infinitely many solutions and solution rays

Introduction :

f
The definition of solution ray was given in section 1.6. In

the same sqption we algo posed the probfem of determining the
conditions on M and q so that (M,q) has o rgy of sgoluticns and
pointed out how this problem arose. We also noted that existence
of & ray of solutions to (M,q) implies the existence of infinitely
muny solutions. In this chapter for a subclass of the class Z we
characterise the set of q for which (M,q) possesses a solution ray
and also the set of q for which there are infinitely many solutions

to (M,q).

In section 4.2 we prove some more results on the representation
of M in the partitioned form when M({Ko— K. Using these results we
introduce the class ﬁogg‘Ko° We prove some properties of the class
K+ The min result proved in section 4.3 is that for M eﬁo a
weaker version of the result of Cottle for CF' matrices stated in
theorem 1.6.1. is true. Uore precisely the result we prove is
as follows: Let M€ K . At some solution (% (0), Z (0)) to (Myq)
there exists v 2_O€2Rn which generates a solution ray if and only
if g is in the boundary of D(M)}). We also prove that if M€ K then

the set of q for which (M,q) has a ray of solutions at some solution
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(w (0), z (0)) is contained in the boundary of D(M). ‘Purther if
M€ (Z—Kd) ﬂso we obtain a necessary and sufficient condition on
M so that for no g in the interiar of D(M), (M,q) possesses a ray
of s:olqtions. In section 4.4 we show that for M €K_,(M,q) has
infinitely many solutions if and only if g is in the boundary of

D(M). We also give examples to illustrate the .situation in cases

. of the other subclasse‘ss of Z.

We conclude this section after stating two preliminary lemnas

which will be useful in the latter sections.

Lemma 4.1.1 :  Suppose M €2 and suppose (@, v) > 0 is a nongero
[

solution to (M,0). Then U1 =0 and Mv = O.
Proof :~  Similar to the proof of thecrem 3.2.3.

Lemmn 4.1.2 (Cottle) : Iet (W, Z) be o solution to (M, g*). 4
vector v » O €R® generates a solution ray for (M, q*) at 2 if
and only if

(i) there is 4 » O€ B® such that (§, ¥) is a nonzero

solution to (M, 0).

T -
(i) v w = ©

A I
(idi) Z MV = 0
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4:2. The class Ko

Let M GKO— K. We congider the following partition 6f ¥ and

the corresponding representation of M as in lemm 3.3.5.

st i
v M M. aifs snogorsi. ool
| I 3,4, 349,
| MJ2J1 MJQ - L By ) MJQJI
M = .
M '3 eaeees M
J
J:r'-—1J1 Jr—“l 2 J:c'—--1J:c'
P M Sowers oty 0K
JI‘J,'I JI'JQ Ji—‘
N i b —
r R
where r > 2, %{J g, = ¥, J_, my be eupty and
: ool

(1) det (M ) =0, 1¢ K < r-1
k

(ii) ©No proper principal minor of M. is 0, 1¢ k¢ r-1.
k

- (44i) 1f I #9 »M;  is defined and is a K-matrix.
r

Lemma 4.2.1 3 Let M¢ Ko' K and let M be gsinguler with no proper
principal minor of M as zero. Then there does not exist x €R" ,

x 2 O. such that Mx > O.

Proof :~ We note that MTEKO with det (M“T) = 0 and no proper

T
principal minor of M as gero. From lemma 3.3.8 it follows that
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there exists y > O, yERn such that MTy = 0. Now the conclusion

of thé lemmn follows from Tucker's theorem of the altermntive
[ 27, p.34_7.

Theorem 4.2.1 ¢ Let M 61{0— K and consider the representation of M

as in lemma 3.3.5. Let V E-_” {1,2, ..... r—'l} + Then
(1) There exists mé€ V such that My ; =0 forall k €V
k'm
and k # m.

(1) If J £ ond if €T, the iV row (M. _ ). # O
: T T J J i,
! I
implies thnt the i’ colum (1,

= 0 for 1 ¢k ¢r~1.
k -

J ).i
B

" Proof (- Let I = U J, . Iook at ML + M_ €K -K. Therefore

by theorem 3.2.8 there exists . y QRILI ;

N Z'O such that MLy = 0,

Thus we have for this y

0 for each kE€EV

#

D L

Or
T M yy +M, y. = 0 for each k€V ... (4.2,1)
s€v ks Js Yk Yk
k# s
Since for k # s M { 0, and since M, € K - X with no proper
_ JkJs = Jk o

principal minor as zero, it follows from lemms 4.2.1 that equation

(4.2.1) can hold for any k €V only if
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g M. y. =0 and & M y. = 0, k€V ... ({4.2.2)
k#s

Since y # 0 it follows from lemma 2.%.8 that equations (4.2.2) can

hold only if for atleast one me€vV, Yy > 0.
' 13

Now censider M ¥y for each ke€V.
) J
k'm m

Noting that y, 2 C ond My ; (O for k Z s, equations (4.2.2)
s k's

can hold only if M y = 0 for kEV.
53 Y5
k'm m
Therefore M; ; = 0. This completes the proof of (1).
k'm
To prove (11) let 1< k< r-1 and let the i row (My ; ), be
. - r k L]
denoted by X and the i'" colum (M, ; ) ; by Y. Iook at
. ‘_k r -
Y
m. .
11

This is a K - K matrix and proceeding as in the proof of (1) we

can show that either X =0 or Y = 0.

Qomllary 4.2.1 % Let K EKO— K and consider the representaticn
of M given by lemma %.3.5. Let J = I\:): J, - Bya principal

K=
rezﬁ*rangement of rows and columns if necessary; MJ can be written
as an upper diagomal block matrix with zeros in the blocks of

matrices below the diagoml blocks.
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Proof : We take V = t1,2, r—1J and apply result (1) of

theorem 4.2.1., This gives us a my, 1 {m ¢ r-1 such that

'MJ g = 0 for 1<k {r-1, k # m. These blocks will form
“k'm - :
the first column blocks. We now omit m from V and apply result
(1) of theorem 4.2.1, to get the blocks of matrices that will form
the second column. Thus in a finite number of steps we obtain the

-desired representation for MJ. This concludes the proof.

Clemmn 4.2.2 ¢ Let IVI€K0- K and consider the representation of

M given by lemmn 33.5. Let

T = {i 1 <i r=1, there exists x 20 € B® such that Mx=0

and X5 >0 j .
. 1
Then

(1) T is nonempty (ii) Let J, = U J. . M. has only
T . i d,
igT
0 blocks in the off diagonal positions.
Proof i~ Since MEK_ - K by theorem 3.2.8 there exists x > 0€R"

such thaot Ix = 0.

Considering the equations
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we see from lemma 4.2.1 that if these equations were t0 hold

-1 :
2z MJ ; X5 = 0 foreach 1<k -
m="1 km m )

kAm

or equivalently, using the facts X, 2 0, and MJ 3 0, we

m km
get
M- x = 0 for k # m.
JkJm Jm
Therefore it follows that M. x. = O.
Jd J
k k
Now lemmn 3.3.8 implies that either x; >0 or Xy = 0.

k k

Since x # 0, we must have atleast one i such that x; 2 0.
i

Thus T is nonempty.

Suppose i €T. Then there exists x(l) 2_O€Rn such that

Xgl') > 0 and Mx(l) = 0.
i
As before we can show that this implies tlat M; ; xgl) =0
ki i

for 1 ¢k {r-1, k# i, and which in turn implies
i = 0 for 1<k {r-1, k#i,

i

Moreover by corollary 4.2.1, M, ; = 0 for i#k.
i’k

Thus MT has only O blocks in the off disgonal positions.
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Corollary 4.2.2 Let M¢ KO-- K. lI‘:her'e exists a partition of N,

N= J,0 ... UJr s+ T 22 and if necessary by a principal

rearrarngement of rows and columns of K, M can be represented in

B

the partitioned form given by lemma 3.3.5, with T = 11,2, s.z\ ,

1<{s g r-1 where T is as defined in lemms 4.2.2. Also in such a
. representation MJ has nonzero blocks of matrices only in the
4 r—1
diagonal positions, MJ s Where J = Ji s 1% an upper diagonal
i=1

block matrix with O's in the blocks below the dingonal blocks, and

if for x206Rn, Mx = O then xj 20 for some 1<k <s,
k

and x = 0. if s+1gi§r—1.

Proof :- This follows from lemma 3.3.5, oorollary 4.2.1 and

lemm 4.2.2.

Definition 4.2.1 : TLet M€K . We say that MEE sr either

(i) M€K or (ii) In the representation of M as in corollary 4.2.2,
T = ?1,2, r-—13 3 i.e. Given any 1 {k gr—ﬁ, there exists

x(k)({ R, L) > 0  such that xg.k) >0 and Mx = O.
k

Tetma, 4.2.3 3 Let M ({I-io- K and suppose in the representation

r-1
of M as in corollary 4.2.2, J = J Ji » MN; is a block diagonal
i=1

matrix with '0' blocks at the off dingonal positions.

Proof ¢+ This follows directly from the definition 4.2.1 and

corollary 4.2.2.
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Temma 4.2.4 ¢ Let MEK_O— K and suppose that in the representation

of M as in corollary 4.2.2, J =#. MER if and only if all
r-1

the off diasgonal blocks of Mj’ where d = J J, , ore O's.

i 1

gt
Proof i~  SuppOse Mei“co. From lemms 4.2.3 it follows that the

off diagonal blocks of MJ are O's.

Now suppose that the off diangonal vlocks of MJ are O's. For

9y |
each 1 <k {r-1, by lemm 3.3.8, there exists X €R =
a i k
x. >0 such that M, x = 0.
Jk Jk Jk

We note that y€R" defined by y, =X; 3 Y5 =03
5.9, 3

if i # k, satisfies My =0, ¥ 20, ¥ > 0. This completes
k

the proof of the lemma.

Lemma 4.2.5 Iet M€ KO- K and consider the representation of H
-1

as in corollary 4.2.2. Suppose J.. £¢ andlet J= ) J.. If
i=1

MJ nas '0' blocks at the off disgonal positions amd if either

MJrJ =0 or l‘uJJr = O then MﬁKO .

Proof : As in the proof of lemma 4.2.4, for each 1 { k gr-u

there exists x(k) >0 €R

(k) |
3 Xy > 0 such that

k

M x(k)

e TR
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For this xgk) congider the equations
<)
NI y = O LN LRI st (4—-203)
J ) JJr Jr
LK) "
MJ g% +tM ¥y =0 vee  ese  eee (4.2.4)
L. E
(k)
IfMJJJ =OtakeyJ~O
It M (k) £ 0 it follows that M = " .. (4.2.5)
J d J JJr
Since MJ is a K matrix there exisis a unique Y5 > 0 sueh
N r -
that equation (4.2.4) is satisfied, as M; ; <0, x§k) > 0 and,
r
by thecrem 1.3.2, 1\‘131 2 0.
T

From (4.2.5) it follows that for such a y; eguation (4.2.3)
r

is also satisfied.

(x) (k) (x) (k) _

Define y by taking Yy = X5 and yJ Yy

Then My = 0, ¥; >0, y 2 0. Therefore k€T and the conclusion
: k

of the lemman follows.

Lemm 4.2.6 ¢ Let MEKO- K and consider the representation of M
as in corollary 4.2.2. MGKO if and only if for each 1 { k £ r-1,

there exists ¥ () _>_O€Rn such that

(1) §Jﬁk) >0 (ii) §J(k) =0 if m#Zk, 1¢mgr-1, and
i )

(idi) M y (k) = 0.
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Proof :- Definition 4.2.1. of Ko matrices ensures for any

* F . *

1 ¢k ¢ r-1 the existence of a y 2 O€R  satisfying y; >0
= - k

and My" = 0. We must show that there isa y » 0€ E" which in

addition to (i) and (iii) satisfies (ii) also. We proceed as follows:

First we vote that fror any g > O the Tollowing equalities

hold.
* *
BMJ J yJ + ﬁMJ yJ = O P e . (4.2.6)
r r T
* *
-\ = Ly
ﬁMJJr er + B y; = O (4.2.7)

Also usirg lemma 4.2.1. as in the proof of lemmn 4.2.2., we get

’ *
BMJJ ‘YJ = Q * -0 e e (402.8)
r ]

Now, as in the proof of lemmn 4.2.4 noting that M€ io , We

) .
can get a y € R‘ ' such that y, >0, y, =0 if k # m,
’ 5 k m

1{m {r-1, and MJyJ-—_ O.

With this I3 consider the eguation

Mer F3 ® W, o = 6 cee eae (4.2.9)

Suppose MJI'J yJ = (O; Choose

yJr = 0. This satisfies the

ahove equation and 5_7 = ( OJ )E Rn 1s the required vector.
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Suppose MJ s & £ 0. Since MJ P MJ g ¥y and
b . g rk k
Y5 > 0, we conclude that Mj 5 £ 0. (i.e. MJ 7. £ 0).
k T s rk

¥*
Since y,; >0 it follows from equation (4.2.6) that
k

* r=1 *
SRR T A (R
I i=1 I 1 1

Therefore there exists B, > O such that

8 m 5 i
g u g Yy 2 L g dye
r ¥
A
Multiplying by MJ'1 > O both sides and using (4.2.7) and
r
(4.2.9) we get, - B y* -y = ! (M ¥o)e
* o] J = J J Jd JvJ
- I i ; I r
How using (4.2.8) with B= Bo and noting that MJJ <0 we
-
that
Rygo g, =l
T r
e |
i v
It is now easy to verify that y = . satisfies (i), (ii) ana
dJ
L &

(iii). This concludes the proof.

Lemma 4.2.7 @ Let M €KO-K. Consider the representation of M ag

in corollary 4.2.2. M€K if and only if there exists y » 0 €R®

such that

(i) My = o© (i1) yJ> 0.
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Proof : Follows immediately from the defipition 4.2.1.

Theorem 4.2.2 ¢  Let MGEKO-K and consider the representation

of M given by corollary 4.2.2. If LL N suck that ML is singular

then there is a 1 g k { r-1 such that Jk C L.

Proof : Let Iy = L Nd,,» 1¢kgr

Case (i) L= L FiJr = ¢.

-

Suppose Lk is a proper subset of Jk for each 1 € k { r-1.

The principal submatrix Mi has '0' bloeks at the off dimgonal

r-1
positions in the partition L = \J Lk ,~ the result of lemma
k=1

4.2.3. Since each det (MLk) is a proper principal minor of M, 1%

k
follows that det (MLk) > 0 for all 1< k ¢ r-1. Therefore

r-1
det (ML) = T1 det (MLk) > 0, which contragicts the hypothesis
=1

that ML is singular. This concludes the proof in this case.

Case (ii) L, # @. Ouce again suppose that J # L, for all

.1 { k< r-1. -

r-1
ey I k= ;ﬂ Los Dpyq= Jp - Ty Let L., £ .

Look at ML in the partitioned form

s . S

be
B M

Mi =
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We note that as shown in case (i) above My is a K-mtrix.

-

e * 1
Since M€ K -K, using lemmn 4.2.7, we get y 2 0€R" such
that

*
(1) my = o (ii) y; > 0 oand using lemma 4.2.1, we also
(111) M y;
have (iii) IMJJ ¥y = Q.
r b i

Therefore we have the following equalities for any B> Oc¢H.

. * * *
Bl ;y;-¥M, . ¥y, )= B y (4.2.9)
r rr+1 T+ -
B( Mi y* +MiL y; )-_— O * .. ¢ o (4-2-10)
IT I% r+1 T+1
Aiso, since ‘Mi L and Mi L are monposltive matrices,
T r+1

equation (4.2.10) implies, in fact, that

*

* .
BMiL 'VL = aIVI.f]L 'VL = 0 .- (402.11)
T T T+1 r+1
T IL | o .
Suppose now - > O€R satisfies the equations
] ' Lr
. i Y
Mi yi -+ MEL yL = O * e e s s (4‘02012}
T T
and
NJI‘ i y_L.. + % yL = O e .. * s (4.2-13)
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Choose 50 > 0 such that

*

Bo(“MLrJ yj;'MLL yp )& Mg ovg oo

T+ r+1 T

y * ] T = ,
Such a Bo > 0 exists because > 0, —D.JLTJ, NirL are nommegative

-

mtrices and if -M . yj_ = 0 it follows that -M 7 yy is also
I r

zero, ag L & J.

Miltiplying both sides of the above inequality by M; 2 0,

po
we get
] (4.2.14)
ﬁo yIl g yL L * v . * e 4—.&. 4
r T

(4. 2.14) ana (4.2.11) imply, because of the nonpositivity of

Mgr » that
iy
M= N = 0
L Ji #hy
Therefore yr = O, yp = O. Thus the only solution to (4.2.12)
r

and (4.2,13) is yg = 0y ¥y, = 0. This contradicts theorem 3.2.8
r

and concludes the proof. (The case L., = ¢ is similar).

1

Theorem 4.2.3 ¢  Suppose M€ Ko and L ‘< N. Then MLE Ko .

Proof : If MI.E K then clearly MLE Ko'

Suppose MLE KO- K.


http://www.cvisiontech.com

- 10§ -

By theorem 3.2.8 Mi is singular and by theorem 4.2.2. there

is a 1

s

k { r-1 such that J, & L. Without loss of generality
assume that J, €L for i =1,2, .... s andlet L, = Jifi L

for%1 i ¢r. ML has the representation

M M
J1 J1Lr
Mj MJ I
8 8 r
ML = Mi
s+1,

ML g eeE ML 3 ML 1 ..:Z. ML

r 1 r s r s+ T

r
" Tet L = W Li . Since {igt T, for any 1 <ir-1,
i=g+1 \ LR
from theorem 4.2.2 it follows that Mi is nonsingular and hence

Mfl is a K-matrix. Thus the above representation of ML is also
the representation given by lemmn 3.3.5 and corollary 4.2.2. with

r = e+1. It is therefore enough to show that given any 1 < k¥ {s

*
Iz such that y,. > 0 amd M y* = C.
I, T

This will conclude the proof of the theorem.

there exists y* 2 O €R

Incase L = @, since M- . =0 for 1t (k {r-1, the
r L_Jk = =

existence of such a y¥* is immediate from lemmn 4.2.5.


http://www.cvisiontech.com

- 110 -

Consider the case L, £ @. Let 1< k(s andlet

T = J - L . We shnll consider only the case L £ ¢,
r+1 r r r+1
. the proof for the case Lr+1 = ¢ Dbeing similer and easier.
%

% Since l&i(ﬁo— K applying lemma 4.2.6 we get a y > O GRn
such that

(i) Wy = 0, {(ii) y; >0 and (iii) y; =0, if 1{ mg r-1, m#£ k.
k il

We therefore obtain the following equality

S oy = y
&‘er Jk N&'r LI‘+1 L:f'+‘1 -MLI' Lr
Take y* y Since ML vy ML y > N&' y*
= » - b - 9
e T Yy N T Te I " S
mltiplying both sides by M;’ > 0 we get
Ir
-1 *
yp 2 My, (M goyp ) = oy
rk k T
Woting that M; . y; = 0, 1 ¢kg¢s, M . ¥y, = 0
Xr “r D Xr 1T
s+1 { k {r-1, we conclude that
M ¥ = 0, 1<k a
Ph 5, 93 S S lemgde = en
L KT r
M y* = 0, s+1{k {r-1
= 0, {k{r-
LkLr Lr

Define §€R‘L' by taking ‘yJ =y§ 3oV =."Y1£ ; 37J = @
T m

for 1¢m¢s, m#k and y =0, s+1 ¢i ¢r-1. This v
g S

is the required vector and this concludes the proof.
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Theorem 4.2.4 ¢ Tet MEK . Then MTEKO .

Proof : If M€K obviously M' €K and therefore M ¢ K .
% So let us assume that MEI_(O-K.
By lemme 4.2.7. there exists 7 > O €R" such that y;>0
. r-1
and My = 0, where J = \} Jk in the representation of M

k=1
as in corollary 4.2.2.

let I, = iiEJrlyizo:i; I,= J_ -1, Wenote that

T 1
if I, = g and I,=J, then MJJr = 0. On the otherhand if
I,= J_ and I,= @ then MJrJ = 0. We shall consider only

the more general case I1 £ @, I2 # @, the proof for the other

cases being similar.

We note that since the equations

MI1J yJ+MI ¥y +MI112 ¥1 = 0, Y1 = 0, Y1 >0

1 1 2 1 2

+
hold, we must have =0 and 1 = 0.,
1,9 1k

Also, from the equations M y = 0, M < 0 it follows
J1 I JI, =
2 2 2
that Mjlz = @i

Consider NF Since the determinants of any principal submatrix

(MLT) of M and M, of ¥ are the same for any L C N, T30y enesd,
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of the representation of M and of M$ as in corollary 4.2.2. can be

assumed to be the sdme.

We also note that M = (M )T.
J J Jd J
km mk
. NF T =
Congider M; = (Mﬁ) . By lemm 4.2.4., M €K ~K aond by

! *
lemmo 4.2.7. there exists y:;GRIJ‘ i y'; > 0 such that M?; yy = O

*
With this V1 consider the equations

MIT y*+M§x + M x, = 0 (4.2.15)
= . h e - -
o) R 7 B 1.1, “5,
L o
¥y + ¥, o X =B Wi (4.2.16)
MI2J i MIQI1 L S S
T T
We note that in the above I = (M..) = 0 and
1,9 JL,
T T
M = o= 0
LI, M1112

Therefore (4.2.16) reduces t0

&
T
MI x = s

2 I
Since M; is a K-matrix the only solution to (4.2.16) is
2

therefore %I = Q.
&

Now equation (4.2.15) reduces to

T *
MI,IJ ¥y * Mri: X11 = 0 (4.2.17)
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’
Since Mi ; ¢0 and MI is o K-matrix there is a solution
1 - -
3*
—%; 20 to (4.2 17D
;=
¥*
* g
Let Xy = ( 1 ). It is easy tO see that
F r 0
* T * T * T =
My xy o= G g oy o= Qi )T xp o+ O )T xp o= 0
T r r r 1 1 2 2
where xr = 0
I
2
*
. . * I3 ) T * *
Therefore ¥y = ( o ) satisfies M y =0, y;> O.
J
T

The conclusion of the theorem now follows from lemma 4.2.7.

Theorem 4.2.5 ¢ Let M€K be symmetric. Then MEKO.

Proof : If MEK then by definition M€K . So let MEX -K.

and consider the representation as in corollary 4.2.1. By symmetry
it follows that MJ is block disgonal having O's in the off dingonal
blocks.  Similarly result (ii) of theorem 4.2.1 and symmetry imply

r r

The conclusion of the theorem now follows from lemma 4245,

4.3, Existence of solution rays 3
In this section we characterise the set of ¢ for which (M,q)

possesses o ray of solutions when M belongs to some subclasses of Z.
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Theorem 4.3.1 3 Let M({Ko. If there exists a ray of solutions to

(M, q*) at some solution (ﬁ, zZ) to (M, q*) then g* is in the boundary

of D (i).

Proof : Let (W, Z) be a solution to (M, q*) and let there be a

solution ray for (M, q*) at z.

From lemma 4.1.2. it follows that there exists (4, v) 2 0,

¥ # 0 such that (4, ¥) is a nonzero solution to (M, 0) with
o - ﬂm

% = 0 anéd 3°MF = 0. From lemm 4.1.1, it follows that
u=0 and Mv = O.

Note that L (__: L and L. (L. .

Also, Mv = 0

Now Mi is a Ko-matrix with Mi as a principal submtrix whnose
2 1

determinont is zero. Therefore Mi € K - K and by theorem 3.2.8
Iz, | . "
there exists x 2 0 € R such that x M = O.
2

2 *
) 5 ) - . N
Define x by taking XL = & B xN—L O.
2 2
: ‘ T B T -
It is easy to verify that (i) x* M <0 {ii) x*¥ Mz = O

(1i1) x** 7 = 0 and (iv) x*° ¢* = O.
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Since x¥* > 0 there isa p €R" such that X*T p <0.

Therefore we have

x* 20, x*TM§O and  x* (q + ©p) <0 forall @ 0.

Therefore by * Farkas' lemma o* + 8 p ¢ D(M) for any © > O.
Since D(M) is n convex cone whose interior is nonempty, this implics

that g* is in the boundary of D(M). This completes the proof.

Lemmo 4.3.1 ¢+ Let M € (2 ~ KO)fT §, and suppose thot there
exists = Z()ERn such that Mx = 0. Then there exists a partition

N = olery Ne v - i i
N J1LJ Y Jr-@ ! Jr\ Jr+1 and o representation of ¥ in

the partitioned form such that

(1) r 22, Ji;é gy 1 <1 grely I, £ 4.

(ii) det (MJ ) = 0, but all proper principal minors of M,
i i
are positive.
(iii) J_ uay be empty. If J_ # ¢, M; isa K-matrix.
T

T
(iv) =~ M €s.
r+1

(v) There exists a s, 1

{74

s {r-1, such that for any k,

k {s, there is a x(k) _>_O€Rn with x; >0
k

1

[ ZaN

and Mk = 0. (s is the largest such)

(vi) My 5 =0 1 ¢k {r;Also My , =0 if k £ m,
r+1 k km

1 gk st and 1 __-<_m { s
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Proof i Under the hypothesis of the lommna, lemmn 3.3.7 applies

r > 2 such that

and we get & partition ¥ = J1\j seses LJJr+1 7

¥ has the representation

e i
| MJ N%J MjJ -_7
] r+1
M = Mj 7 Mj MJ J
r r r r+1
0 0 My
L r+?_"hﬂ
l e . s s . - . - L
The J,'s satisfy conditions (i) - (iv). Alsc M, 3 My @
r+1 r+ix

Now consider Mj. MJ€ Ko—-K. Therefore corollary 4.2.2. applies
and Mj has a representation, I1f necessary with a principal
rearrangement of rows and columns, as given by ecrollary 4.2.2.
This rearrangement of MJ does not upset the form of M as cbtained
above. We can now renumber the Ji's, 1¢1 < r~1, obtaining a

representation for M which satisfies all of (i) - (vi) of the

Jemmn. This concludes the proof of the lemmn.

Theorem 4.3.2 ¢ ILet M€ (Z—Kg)ﬂ S, ond let there be a x 0€R?

such that x = 0. Consider the representation of M as in lemmn

4.%3.1. Let ~MJ €8 and let
r+1

R(M) = f q fa€ D(M), there is a ray of solutions for (li,q)

at some solution ( %, 2 ) to (M, q) }.
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Then, _
RO(#) = R(M)(\ Interior of D(M) = £ only if
M = 0, for 1 {k {s, and M £Oo==2>MN ., =0
JkJ::'+ 1 J1'.Jr+ 1 Jth

for all 1 gi =<=s and for any s+1 <t gr.

-~

Proof t Case (A): Suppose there exists k, 1 {k ¢s, such that

4 #£ 0.
JkJr+1

Consider the system of inequalities

o ———

s

Iy

o, )
k r+1

LB

We note that M§ u 20, ugo = either u = 0, Or in view
k

of lemma 4.2.1 and lemma 3.3.8, M§ u = 0 and u >0,
k

u >0, u€R IR DL

" §ince u = O does not satisfy the system of inequalities (4.3.1)

we need consider only M:; u = 0 and u 20.
k
However since M, ; £0, sucha u 20 does not give’
kK r+d
T
(M )" u 2 o.
JkJr+1 =

Therefore there is no solution to the system {(4.3.1).
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Thus by Steimke's theorem of the altermative / 27, p.34 / there

Ty 19 ud_ [d. |
exist Jk € R Lo y YER k such that
N
Jr+1
(Mj M i =0, ¥; >0 ¥; > Oand §¥ > O,
k T+ k r+1

- M y ™ M y > O - e (4-3.2)
Jk Jk JkJr+1 Jr+1
Further, since —Mj € 5, there exists Xy £R such that
r+1 r+1
e 8 >0 and -M;  x; >0 (4.3.3)
r+1 r+1 r+1

Prom (4.3.2) and (4.3.3) it follows that there is o real number

AN > 0 such thot

-M;  (y; +2xx; ) >0 and
r+1 r+1 r+1 :
- M y. <M (y + Ax Y > o.
Jk Jk JkJr+1 Jr+1 Jr+1
r
Let J = U Ji' ‘Bince MJQLKO-K and since 1 ¢ k < s,
i=1 N

uging corollary 4.2.2. and proceeding as in the proof of lemmn 4.2.6,
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we obtain a ;JG-R I guch that

(1) 1_rJ >0 (ii) TrJ =0, m¥k, 1¢m¢r-1 and
k m
(iii) My vy = O.
i ;J = =
Dofine v E€R® by taking ¥ = | ,° |. Note that ¥ >0 and MV =0.

Vie consider two cases
Case (i) I. = @

Define o*€R® by taking

* e 10
% = =M (yJ * X )
r+1 r+1 r+1 T+1
q* = -M_y. -N (y + Ax )
Jk Jk Jk JkJr+T r+1 JI'+ 1
¥*
and q = e - M (y + AX .
Iy 191 7 94909 g I i1

for 1<1§r-1; i# k.

* »*
Note that g > O and (M, q ) bak the solution

wr'Ji ) eIJ:i.l E MJiJr+T (yJJH-‘E +}\er+1); 1 gi gr-h iy B
23. = 0 5 1gigr-i, i#k.
1
W* = 0 ; z* =y 5
g" T Tk
W; = 03 Z; = y; o+ A .
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It ig easy to verify now that Vv generates o ray of solutions

to (M, g*) at the solution (w", z™).
Case (ii) : Jr,«l.gf.'

Let I1={i]i€Jr, v, >OS; 12=Jr—l1°

If I,=¢ amd I, = J. we proceed as in case (1) above

1 2

= A :
J } MJ I (yJ + XJ } ; we note that
r r r+1 r+1 r+1

and define = e ‘

*
a5
r

J’-MJJ (v +)\xJ ),

d r T r+1 r+1 r+1

g¥ 2 0. If we define we = e‘
I

zj; = 0 and the other components of w¥ and z¥* as in case (1)
r

above, it is easy to see that (w¥*, z*) solves (M, g*) and ¥

generates o ray of solutions at (w*, z*).

In what follows the possibility thet I # is permitted,

2:

in which case the equations and inequalities we consider need only

be slightly chonged.

We note that v, > 0, ¥, = 0O and that
L, 1,
M GJ + My -TrI = 0. Also (GJ » V1 Y> 0 .. (4.3.4)
e 1 k 1
Further,
i Y. + M v, + M. ¥ = 0
EOURS Tl % i T, I
which implies M; ; = 0; My, = 0 eea (4.3.5)
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We also bave My, = 0, for 1 <m (r-1 ces (4.3.8)
m 1

equation (4.4.4) and Steinke's theorem of the alternative imply

T .
that u (HN&1Jk " _Mli) < 0 has no solution.

Also, uT (-MI ) = 0 > u = 0, since MI is a K-matrix.

1 1

Thus there is no solution to

T ’
u” (=M o =M g T) KB
IJ, I,

Therefore by Steimke's theorem of the alternative, there exists

2 such that

~Hi y. - y. 20
1,9, 1,71

Iy 1

Choose B, a positive real number, so that
M, (y, +By, ) - M (y + AX ) o B
Ie Ik Iy Tt Ire Irs

Also, we have

—'MI,.le (ka * ﬁiJk) - MI1 (ﬁylj) > 0.
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- Define g% Dby taking

q§i = e’Ji]- JaniJr+1(yJ.r+1 +~Aer+1), for 1¢igr-1, 1i# k.
qzk = MJk (ka +E§Jk) ) MJkJrH (er+1 T )\XJrH)
q; e m&1Jk(y5k+s §Jk)—MI1(ﬁyI1)_MI1Jr+1(y r+1+}\XJr+1)
q;2 = Ta - MIQJI'H (er+‘I +}\er+1)

. q;r-t-T W MJI'+1 (er-t-‘l +)\XJJ:'+‘!).

Using (4.3.5) and (4.3.6) it is easy to verify that, as in case (1),
we can obtain a solution (w¥, z*) to (M, q*) at which y generates

a ray of solutions.

We also note that since gq*> O it is in the interior of ().

This completes the proof for case (4).

Case (B) : Suppose now.there isa t, s+1 {1t {r and a Kk,

1 {k {8 such that

M £ 0 and M, A an
I 1 I9s

We proceed as in case (A) and consider the system of inequalities

3 B

l
w 1D O w€R °
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Using Steimke's theorem of the alternative and the arguments of

{9 (941!
@.3.3) we obtain y; > 0¢€ Rt o » Yr > 0 ¢R r+1 5
v Tr+t

19,4l

Xz > 0€R and N D> 0 ¢ R such that
r+1
*
M y. =M (v 4+ Ax HY > @ eee (40307
Jt Jt JtJr-H Jr-i—‘l Jr+1

| J

|
u 2 0, uERk

and proceeding as in case (A) wusing Steimke's theorem of the

alternative, we obtain y; > 0 , EJ > 0 S0 that
k t

-M y - M 5’ > O LI ) LI (4.3-8)
K Y% Iy "Iy

Using (4.3.7) and (4.3.8) we get a a > O€R and y; = y? ray,

t T t
such that
-M_ y., - M (y + Ax Y2 1@
J
Jt Jt JtJI'+1 Jr+1 r+1
- MJ yJ - MJ J yJ > @
k k k ¢ T

Now we proceed just as 1n case (A) above, with a few necessary
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changes to comstruct a q*> O and a solution (w*, z%*) to (M, g*)

=

at which v = { OJ ), where ¥, is obtained from corollary

4.2.2. satisfying §J > 0O, x’rJ = 0 1¢mgr-1, m# k,
' k i B

generates a ray of solutions.

This completes the proof of the theorem.

Remrk 4.3.1 ¢ ILet M€ (Z-KO) N 5, and let there exist a
x> 0€R" such that Mx = O. Consider the representation of M
given by lemma 4.3.1. In what follows we shall assume that there

isa t, s <t r such that M, 0 far s+1£ift and

Y%+
MJJ # 0 for t+1 i gr. If t=s then for all
i r+1
s+1¢igr, M ; #0;3 If t=r then for all s+1<igr,
- i r+1
MJ 7 = 0. This assumption can be made without loss of generality,
i r+1

hecause a principal rearrangement involving the blocks MJ J
ik

“s+1 £i¢r, s+t (k ¢y will satisfy the above assumption.

However in the rearranged representation MJ my not be a K-matrix.
T

Theorem 4,3,3 3 Let ME (z-Ko)ﬂsO and let there be a x 2 0€R"

such that Mx

li

0. Consider the representation of M given by lemmu

4.%5.1., and remrk 4.3.1. ILet RO(M) be defined as in theorem 4.3.2.

RO(m) = ¢, if u =0 forall 1¢k¢s and
J. dJ = =
k r+1
MJJ = 0 for all t+1_<_=i§r; 1§k§‘t.

ki
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Proof Suppose MJ J = 0 for all 1<{kg<s and M =0
k r+1 ki

for all t+1 i< 71, 1<k <t

Let q*€ D(M) and let Vv 2 CER™ generate a ray of solutions

to (M, g*) at some solution (w¥, z¥).

From lemme 4.1.1. and 4.1.2., we have,

= = Pl
(1) Mv =0 (ii) 7T w* = 0 and (1ii) =2 MYV = O.

Now, since Mv =0 and M =0 for all 1¢{i<r, it follows
i r+l .
that
MJ Vi =11k
r+1 r+1
Since - Msg € 8, this implies thoat ;J = 0.
+1 r+1
-b - -
Let J = A\_J} J, - We note that My =0 > M vy = O.
i=1 ‘
 Define QJ € RlJl- by taking
r+1
. * *
Gy = qJ+2 MJJ 23 for Tikgt.
k B i=t+1 ki i
Since by our hypothesis MJ 7= C for 1<kgt, t+1 {igr,
k™i
we have,
- *
qJ = QJ
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We note that §. = w. - M_z. and that o o 3
q'_I_ \rJ- JzJ an VJWJ = :

&= ‘ 2

Z3 MJ - 0. Thus q5 €D(MJ) and by lemmn 4.1.2 ;

?rJ generates a ray of solutions to (M-J-, EJ) at the solution

* *
(WJ ’ ZJ)'

From theorem 4.3.1., it follows that g 5 is in the boundary
of D(MJ).
134
The set A ={xjx_>_0, PR s = MJ __<_'O.lv[
i=1 .
is nonempty because M?I € KO—K , and by theorem 3.2.8, there is a

iJ‘ such that MTX = 0.

x > O€R 3

Thus A is a nonempty convex compact set and therefore there

is a x € A such that

T . T -
q; = mn X g -
0 J XEA J

Now, since q; € ZD(MJ), using Ferkas' lemma, we have

T

qy ¥ > 0 for all x€A., Hence dj 2 0. Infoct we must have

d
d = 0y for if d0> 0, for any Q;£pJGRI l, there is a

o}

e (PJ) > 0 such that

x* (3, +91p;) 2 0, forall x €A, £ ¢ G (F).
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This implies, by Farkas' lemma, that aJ+-epJeDU%),muah
because of the convexity of D(MJ), contradicts our eariier

conclusion that aJ is in the boundary of D(MJ).

Thug dO = Q%

) - . L = {f *
Since x q; = 0, it follows that X w, = 0 and x MJ 2, = 0.
= {J | -1 _
Choose pJER such that x Py ¢ 0.
Define 7 by taking y. =X ; ¥ = O,
J )
r+1
) -~T = * -T

We note that y M ¢ 0; Also since q; =qd5 0 ¥ q* = Q.

| n 5J
We define p€R by taking p = +» We have

€ |w-J]

iT(q*‘F@p) <0 forall © >0

Therefore, using Farkas' lemms and the convexity of D(M), we

conciude that g*¥ 1is in the boundary of D).

This concludes the proof of the theorem.

Remnrk 4.3.2 ¢ We note that we did not assume -MJ € S in the
r+1

above theorem. This was required in theorem 4.3.2.

Remark 4.,3.3 : Suppose M E(Z-Ko)ﬂ So and there is no x 2 C er”

such that Mx = O. Then, in view of remrk 3.3.2, in lemma 3.3.2
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case (iii) occurs with M; € K. M has the representation

4

M M
J1 J1J2
M =
2 0 M
J2

where MJ cX ond -—M§ €S. In this case (M,O) hng a unique
e B 2

solution and therefore, by lemma 4.1.2., R(M) = #.

Corollary 4.3.1 Consider the representation of M as in lemma

4.3.1, for some M€ (z-KO)n 8, with the assumption that there

i1
exists & x 2 0 €R’ such that Mx = 0. Let J = \J J .
' o

R(M) = § if for 3<ig T, My g = O
i r+1

Proof : Folliows from theorem 4.3.3.

gorpllary 4.3.2 3 lLet M€ (Z- Ko)r\ 8, and let there exist a

x> 0€RY such that Mx = 0. Congider the representation of M

:
as in lemm 4.3.1 and let J = {J J,. I MN;isa K- matrix

i=1 4
with —Mj € 8, then a necessary and sufficient condition for
r+
RO(M) = @ is that My = O for 1<ig<r-1 and
J £ =
1 r+1
MJJ £ 0 >MJ'J = O for 1¢1igr-i.
rr+t o (i

Proof : This follows from the definition 4.2.1. of Ko~matrices

and theorems 4.3.2 and 4.3.3.
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Corollary 4.3.3 : Iet M€Z be symetric. Then R°(M) = .

Froof ; According to lemma 3.3.2. and lemma 3.3.6. exnctly one
of the following cases holds (i) - €S (ii) MEK and

(i11) mie (g~ Ko) N 8y

If case (i) holds (M,0) bas o unique solution and by lemma

4.1.2, BR(M) =g ; rR°(W) = g.
If case (1i) holds theorem 4.3.1. shows that RO(M) = ¢.

Suppose, case (iii) holds and there is no nongzero solution to
(M, 0). Then obviously R°(M) = g. If (M,0) has a nonzero solution,
note that in the representation of M as in lemma 4.3.1, MJ iz a

r
K -mtrix, where J = \J J, » according to theorem 4.2.5. Also
i=1

because M = 0, by symmetry M = 0 and corollary
d dJd Jd
r+1] r+1

4.3.2. gpplies. The conclusion follows.

Expmple 4.3.1 ¢

The following exnmple shows that in theorem 4.3.2. it is

necessary to assume ;Mj € 3.

r+i
2 =2 -1 0
- -2 0
M = 3 3
0 0 0 0
0 0 -2 -1
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M has the representation given by lemm 4.3.1. with T = 2,

= &, J,={23s ¥5= 13 4y, s=1=1r-1.

’

We note that -IL. €S but -M_ ¢ S. Also N £ 0.
s 55 7,3

We observe that if qED(M) then q3 > 0. Also, if g€

interior D(M) then >0. If g €D(M), then in any solution

%5
(w, z) to (M, q), wy> 0 if 4z 0 ond therefore z; = 0.

Now let q €D(M) ard let V> O €R* generate a ray of
solutions to (M, q) ot the solution (w¥, z*). If a5 = O then
clearly q is in the boundary of D(M). If a4 > O then our
observations imply that the method of proof of theorem 4.3.3. can
be applied. This implies thot q is in the boundary of D(M).

Thus RO(M) = &.

Example 4.3.2 ¢ This example shows that in theorem 4.3.3. the

assunption that MJkJi = 0 forall t+1¢ ig r, and for all
1 gk gt is necessary.
2 2| w2, B D R
-3 3 o -1 0] 0 0 9
0 o -2 0 0 9]
W = 0 0o -1 2 ¢ =2 0 0
0 0 0 o 3 2 A4 0
0 o 9 o -6 0 0
O 0 0 0 ~8
o o o3 0] -3 2
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M has the representation given by lemma 4.3%.1. and remark 4.3.1.
with r=4; J, =g, J, = {1,2} ; 3y =13,4] 5 I 35,63

and JB:{'F,B‘} « Ve also have s = 1 {r-1 = 3, and t = 2,

We note that MJ g = O for 4i=1, but not zero for i = 2.
i3

Let q*T = (2,1,1,1,3,2,4,1) > 0€Re.
It is easy to verify that (w¥*, z*) solves (M, g*) if we take

w¥ = 0 and 2¥*¥ = e, . Also if we take

8
T

for all A ) O€R. Tms R () # 4.

Theorem 4.3.4 : Let MEIEO and let g¥* be in the boundary of

D(M). Then there exist (W, Z)> 0 and ¥ > 0€ B such that

(wy, 2 +A7) solves (i, g*) for each real number X 2 O,

vi= (1, 1, 0, 0, 0, 0, 0, 0) then (w*, 2% +Av) solves (M, g¥*)

Proof : Since q*€D(M) there exists (w*, z*) which solves (I,q*).

Also, since g¥ is in the boundary, there exists O # p€Rn such

that q* + 8 p ¢ D(M) for any &> 0.

Using Forkns' lemma we have, for any &> 0, a VQZ 6] ERn
such thait
e

n
n
viver, I w.
. i
=1

Ay
1}
—
<
AV
(@]
~
<

Congider the set A =

-

v.M £ 0, vT (g + e p} <0 (4.3.9)
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By (4.3.9). A is nonempty and it is also convex and compact.

Therefore there exists a v*€A such that

V*T q¥*¥ = min vT q¥*

vEA

Since q* ¢ D(M), by Farkes' lemma, ¥ g*¥ 2 0 for all vE€A.

From (4.3.9) it now follows that v* g% = O.

Since g% = w¥ ~ I z¥*, it follows that V*T w¥ = 0, V*TMz*= G
* P * o
Let L:fiiv_>0jf:,{ijw_:oj.
i = i
g < 0 =D VET M < 0 (4.3.10)

| By theorem 4.2.3, M € Ko‘ Moreover, if M. €K then (4.3.10) can
not nold. Therefore MLEKO— K, and by theorem 3.2.8. I is
singular. Hence appealing to theorem 4.2.2, we conclude that
in the representation of M as in co:-olla‘ry 4.2.2, there is a k,

1

A

k { r-1, such that JkC_?;. L.

Case (i) : In the representation of M given by corollary 4.2.2

either J_ = @ or My ;= O
rk

Using lemme 4.2.6, we get a y 2 0€ R" such that Y5 b 101
k

YN_Jk = 0 and My = O.

Take ¥ = y. This ¥ generates o solution ray at (w¥, z*).
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§Caseui): Jr;é g, LS # s

From lemme 4.2.6, we get a y > 0€R" such that y; >0,
k

y; = 0, if 1¢{mgr-t, mFk, y; # O and My =0 ..(4.3.11)
14} I

Let I, = {i€Jr}yi> o}; I,= 3, -1

In what follows we assume that 12 £ ¢. The modification in

the steps for the case I, = ¢ will be obvious.

(4.3.11) ===

§ : v + M_ Yy = W0 5 s @y Woa 20 ke (@5 2)
13 73, £ %% o oy
and
- Y. + N = 0, which implies that
MIeJk I M1211 T
M = 0, M = @ P S (T )
I,d, - LI,

(4.3.12) and Steimke's theorem of the altermative imply that

o (-1 y =M_ )} £0 has no solution.
I1.J I
ik 1
Also, uT {-M -M,. } = 0 >u=0 as M is a K-mtrix.
I.d,. 7 1 I
1Tk 1 1
13, |
Therefore, applying Farkos' lemn, we get X5 20€R and
. k
II
Xy 2 0.5 R 1 suech that
1
i M M
b R T
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-1, %
N&1 I, Mi1Jk 5%

We can choose B > 0, a real mumber, such that

-1

P M For € M b's and, since -M_ <0, we have
I_le Jk = I1Jk Jk I1

-1 * ’ -~ *
M (wo +BM. . oy ) > <M, (w., + M x. ) > 0.

1 I_] I_le Jk = 1 I'l I‘]Jk Jk =

1,1
- Therefore there exists Zy > DER such that
1
w§ = =By o oyy - Moz . ol (4.3.14)
1 1k k 1 1
Define (w, Z) by taking

_ * . = *
Zy = % , if m # k, T¢mg r-1, By = 2p + 3.,

m n 1 1 1
— * — ¥* ﬁ
Z =5 Z g Z = Z + Y 9

I2 I2 Jk d Jk
= > -

W, ’ W = Q.
N-—I1 I\T-—I1 I1

Using (4.3.11), (4.3.13) and (4.3.14) it is easy t0 verify that
= A * —
(W, 2) solves (M, ¢ ) and v = y generates a roy of solutions

-

at z.

This completes the proof of the theorem.
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Corollary 4.3.4 :+ Tet M€ K, be symmetric. If g* is in the

boundary of D(M), at every solution (%, Z) to (M, g*) there

existe a v > O€ R" which generates a solution ray.

Proof : From theorem 4.2.5. M€ I’{O. Start with any solution
(w, 2) to (M, g*) and proceed as in the proof of theorem 4.3.4.

Note that case (ii)’ of .‘the procf does not arise because of symmetry.
Therefore it follows that there is a v 20 €R" which generates

a ray of solutions to (M, g*) at (W, ).

This completes the proof.

Corollary 4.3.5 ¢ Let MEI—{O , and let gq € D(M). There exist

W >=O€Rn., z 20 €R”, ¥ 20€R" such that (w, z + AV ) solves
(M, q) for each real rumber A 20 if and only if g is in the

boundary of D(M).

Proof ¢ This follows immediately from theorem 4.3.1 and theorem

4.3.4.

Bxistence of infinitely many solutions to (M, g) when M €2 :
In this section we present some results relating the
existence of infinitely many solutions for (2, q) to the boundary

of D(M), when M€ 2.

Lowms 4.4.1 ¢ Let q €D(M) and let (M, q) have an infinite number of
solutions. Then q is contained in a complementary cone of (I, i),

. . . n .
whose interior in R is empty.
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Proof : If (M, q) has infinitely many solutions, since there are
only finitely many complementary cones, there is a set L& N

such that

=% 0 "1 r_;,, i ¢ Vs

q =
- 1 2
o T L LMN-L L = LWN-L I

oy

Where (ZL7 N_L ) (ZL b WN I.I) solve (N{’ Q) (ZL 3 );é (ZL’ “N I.I)

and L#£¢ . (L =N is permitted in which case the complemeutary

matrix considered is -M).

It follows immedintely that the matrix

¥ ij

i -ML O
11 I’J

is singular and therefore the interior of

the complementary cone generated by this complementary set of column

vectors is empty.

Remark 4.4.1 ¢ In the above proof if we toke vy = z£ - zi and
1 2 o 1
= - T H a v J a = E R
uN—L WN_L WN__L we see thot (u, v), where u ( uN_L)

and v = ( o )€ B, is a nonzero solution to the system
O

w-Mz = O, w,2z, = 0, 1 eor (4.4.1)

N
l_J.
78N
8]
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For 0 <& <1 consider (%, 2) defined by

= Bw _ 4 (G

-1 N-I NoL * =0
- y 1 g e
z = QZL + {(1-8) 2.5 By g =0,

It is easy to see that ﬁi;!O -__>ﬁi>0 and v, # C

n )
=~ 3, > 0. Also therefore, a, £ 0 > 2z, = 0
and?i¥0 >v-vi=0.
Thus :'Lf we choose,
~W, —Ea. - {
}\ozmin 1§1<n1_’ 1-J-Li<oj’ 1gin§n{-$;,vi<oj

then A > 0 and (W + Al, Z +AV) solves (M, q) for all

0L ACA, -

Thus it follows Yfrom lemms 4.4.1 that, in general, if (M, q)
has infinitely mony solutions, then an infinite number of them can
be written as (¥ +Au, Z + AV), where 0 ¢ A< A }\o >0
‘and (0, V) is a nonzero solution to {4.4.1) which satisfies

> Wy =0, u; =0, ui;éo > 2z, = 0, and

v, # 0 s

171 = 0. If in addition, w 20 and v 20, then (U, V) generates

a ray of solutions to (M, q) at (w, 2z). (i.e. A con be token as « ).
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We also note that in lemma 4.4.1. M is any square matrix.
The converse of lemma 4.4.1. is not in general true. However it

is true for Ko-matrices. We state it as our next lerma.

Lemmn 4.4.2 : Let M€K and let q €D(M) be contained in a
complementary cone whose interior is empty. Then (M, q) has

infinitely many solutions.

Proof : Let POS'(B) be a complementary cone of (I, -} whose
interior is empty and which contains q. For some LCN, L # ¢

we have,

M
M 0
B =
g & 5 ¢
e
Also, there exists ( ) 2 0€RY such that
-L
T“VL
B u = q aaa .. “a . (40402)
N-L

Now, we assume without loss of generality, that u > 0. Because,

N-L

if for some j€ N-L, uy = 0 then we cau replace I 3 from B by

-M g 3 redefine L by inecluding j in it and after a principal

rearrangement obtain the above form of B with j in L and vj = 0,

w

These steps can be repeated until we obtoina B, v NI,

L?
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satisfying (4.4.2 ) with u > 0. (If N-L = ¢, uy o is not defined,

N-L
B = -M).

Since B is simgular it follows that N&E KO-K. Appealing to

||

theorem 3.2.8 we get x 2 0€R such that

I\EX=O

x 2> 0 so that if we take y = MN-L 1 ¥ <0

For this x, —]}.%\I I L

X
the B = 84
1€11 (y )

¢ =
Let X = min f—:—l,y.<o}. (If y, = 0 for all jEN-I,
NG By e v

set }\o = ©), We note that A > O.

v

Define WwE€R', Z €KY, G€ER, and v €R" by taking ﬁL =0,
W'N—L :‘ uN-—L H ZL = VL . ZN—L = O ; uL = O’ uN_L - y and
VL = x ahd VN—L = (.

We note that (w + AW,, z + AV) solves (M, g) for all
0< A< A . Thus there are infinitely many solutions to (I, ¢).

This concludes the proof.

Example 4.4.1 3 The following example shows that lemmn 4.4.2 is

not in generzl true.
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= 0 Bl

2 1 -3

Let M = 1 y 0 H g = -4
3 0] - —5_J'

It is clear that if (M, q) has solutions then in-any solution

z, > o, z, > 0.

2 1 0 0ﬁ
-2 -1 0 0
Consider B = _3 . 0
-2 -3 0 1

We note that if we take y = then q = By. Therefore

q €Pos (B). Also det (B) = 0, and rank (B) = 3. Further the space

’ i

If g = By1 ; y1 #y 1is another solution then y - y1 is

fx |Bx = Oﬁ. is one dimensiotnal and contains all sealar miltiples
11

a scalar miltiple of x, so that y1 can not be nonnegative. This

shows that the only nonnegative solution te Bz = q is z = y.

Any complementary cone which contains g must contain =M ,

and -M 5 a8 generating coluans. But any such complementary cone
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of (I, -M) is just Pos (B). This shows that (¥, q) has four

solutions.\ We also note that the interior of Pos (B) is empty.

Theorem 4.4.1 ¢+ Iet M€K . (M, q) has infinitely many solutions
if and only if g is contained in some complementary cone of (I, ~M)

whose interior is empty.

Proof : Immedintely follows from lemms 4.4.1. and lemma 4.4.2.

The following theorem relates the eéxistence of infinite number

of solutions t0 the boundary of D{M) when M €K'O.

Theorem 4.4.2 ¢+ Tet M€K . (M, q) has infinitely many sclutions

if and only if q is in the boundary of D(M).

Proof : Suppose (M, q) has infinitely many solutions. As in the
proof of lemma 4.4.71 and remark 4.4.1 there is a (W, z) which solves

(M, ) and a @&, ¥) # O such that (1) & - M¥ =0 ,

(i1) G; # 0 >E; = 0, ¥,=0, (i) ¥, 40 > W, =0,
u, = D,
1
= I g = h A '
Let L1-— Lllvi;éO} ; L2 1iw OB iljzi> Oj.

We note that Iz & Ly ; L, € L,.
MI. is a Ko—mtrix with ML as a priheipal submtrix and Iv&.

is singular, since M, ;L < 0,
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~ Therefore M% GKO-K and using theorem 3.2.8. we get a
2

L ' :
Pl such that X;E.J ML = 0. Now proceeding from
2 2

x 2 0OER
L,

this peint as in the proof of theorem 4.3.1. We can show that q

is in the boundary of D(M).

Now suppose that g is in the boundary of D(M). Iet (w, %)
be a solution to (M, q). Proceeding as in the proof of theorem

4.3.4. we can show thnt there is a v* > 0€R" such that

T - =

Tet L_!ziilv; >o}; Lzzf_ilﬁri= 075; L3={ilﬁi >o%.

-
We note that I,L1I,, I, €.
T %L SR | =
V*Mg0=> VLMLS_-—O__—>I\[LL€KOK.
2 T2 2
) | T2
Therefore from theorem 3.2.8 we can get a v’L 2 O€R such
2
Y
|N-TL,
Thus there exists a O }_GN 8 R such that
- g
- u
IN—L2 MN-L2 L2 N-~L2
= O .
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-
T
Define U €R” and v €R by taking u = = y V= o .
NuLQ O
! .
We note that Uy <0 S5 i EN—L2 —_—D W >0
Take
oo:]_f aizo for 121,29 .oy n.
o=
min E = Uy < O} , Otherwise.
1¢i ¢n i _

. It follows that * > O and (W +AT, z +Av) solves (M, g,

for 0 ¢ A< AN. Thus there are an infinite rumber of solutions

to (M, q)e.

Theorem 4.4.3 ¢ Tet MEK . The boundary of (M) is equal to the
union of all complementary cones of (I, -M) each of whose interior

is empty.

Proof : This follows from theorem 4.4.1. and theorem 4.4.2. we
note that if MEK then the boundary of D(M) is empty since

D(M) = R® and 81l complementary cones have nonempty interiar.

Theorem 4.4.4 ¢ Iet MEK . If g is in the boundary of (1),
(M, q) hos infinitely many solutions. If g is in the interior of

D(M) then there is a unique solution to (M, q).

Proof : The first part of the assertion follows from theorem 4.4.2.

To prove the second part, we notice thai D2(M)§E interior D(M).
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To complete the proof therefore it is enough to show that if g ¢

interior D(M) - DQ(M) then (M, q) hos a unique solution.

Consider a q in the interior of D(M) but not in Dz(M). Such
a q belongs to only the cones which have nonempty interior. If
such & q were to have two distinct solutions then it must belong
to two different cones with nonempty interior but must not be in
the common boundary (if they have a common boundary) between them.
Bowever in this case it is possible to find a q1 in the @
neighbourhood of g which is in D2(M) and belongs to the interior
of two different complementary cones with nonempty interior. This

contradicts theorem 3.2.6.

The conclusicn of the theorem follows.

Example 4.4.2 ¢ The following example shows that even for strictly

copositive plus matrices, for some q in the interior of D(M), (M, g)

can have 1nfinitely many solutions.

2 2 1 2 4]
SR (- T -6
R N T L
12 1 2 |

We note that far x > O €RV

+ X X

i 2 2 2 2 2 2
x Mx = xi + 3x, + 3x; + 2x, + (x1—-x + (x3-x4) + 5% %, *

1 3 4 3)

+ 3x1x4 + 3x2x3 + x2x4 + x3x4 > 0 .
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Thierefore ME€S C P.

0 1
A solution to (M, g) is (W, Z) where w = g and z = é :
o ] 3 0
Setting u = ? and v = _S we note that (W + Au, & + Av)
3 0

e

solves (¥, q), forall 0 { A< 1. Thus (M, q) has infinitely mony
solutions. Also we note that since MESCP, D(M) = B and
therefore q is in the interior of ().

: ~
Excmple 4.4.3 ¢ This example shows that for Mg Ko"Ko a solution

ray need not exist for all q in the boundary of D(M).

2 -1 =3 ] 5

-2 Q 0 6

M= 1g " 2 T
0 -2 2 2

This is a Ko—ma‘trix and is in the form given by corollary 4.2.2.,

with r = 3, Jr:g 3 J1={1’2i H J22£394i-

We note that in any solution to (M, a), Zy > 0. Also, in

view of lemma 4.2.1 applied to MJ , we note that in any solution
1
>0, w, >0, Similarly, since M # 0, in any
2 J1J2
golution to Mx = 0, x >0, x. > 0. These facts imply that

I

there is no solution to (M, q) at which a solution ray exists.

to (M, q}, W,
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and

Mt
]

-3
However, taking w = 8
&

O oM
‘ 3
O =00

we see that (W + NI , Z +AV) solves (M, q) for

F

all 0 ¢ A ¢ 2/3. Thus (¥, q) bas infinitely many solutions.

Example 4.4.4 3 We noted that when M€ CP+ s then Cottle's

theorem (theorem ‘].6.1) asserted the existence of a ray of sclutions
. .

to {M, q) for any q in the boundary of D(M) at every solution to

(M, g)» The follov\;irlg example shows that if ME Ko and if q is in

the boundary of D(M) there my be solutions to (M, q) at which a

solution ray does not exist.

1 -1 0 -
M = {2 2 0 5 q = 2
=3 -4 T 11

M has the representation given by corollary 4.2.2. with

0 i
Jr=5321, J1=f1,27]; det(MJ)=O; MJgK. §=[

| VSRS Y
ws

O =Nl

1 2

C
w =10 is a solution to (M, q).
1

> Xz > 0y at this solution there
- 3
does not exist a ray of solutions to (M, q). However z* =| 2
6/7

and w* = 0 is another solution to (M, gq) and at this solution
1

v =11 generates a ray of solutions to (M, q).
1

Since Mx =0; x 2 O
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Example 4.4.5 : Suppose —MT€S ; McZ. The following example

shows that the set of q €D(M) for which (M, q) has infinitely many

solutions need not be contained in the boundary of D(M).

.—-—2 iy = o = @
-5 3 -1 =1 , 4
M= |4 2 2 -8 |+ &= |
-1 0 -4 3 : | 2

Note that q is in the interior of D(M). Also w =0, z =

. 17
is a solution to (M, q)_. et u=0; v= ;[ + Note that
' -1

(w #Au, =z +Av) solves (M, q) for all © {A¢ 1. Tms (M, q)

1
1
1
1

has infinitely moany solutions. We note also that since -MTE S,
(M, 0) has a unique solution and therefore, by lemma 4.1.2.,
(M, q) does not possess solution rays for any q ¢D{M). But the

boundary of D(M) is nonempty..

Exnmple 4.4.6 : The following oxample shows that when --MT €5 the

set of all q €D(M) for which infinitely many solutions to (M, q)

exist need not contain the boundary of D(i).

o .3 o | r 3
=2 3 0

M=l 2 2 = PO g
2 -3 i 5 4

—u—
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It is clear that in view of lemma 4.2.1., in'any solution to

(M, q), L > Oy W, >0 . Also in any solution z., > 0. This

3
means that we need consider only Pos(B1) and Pos(Bz) where

3% @ 18 v w0
Boms 0= A ; B, = |@ 1T 0 o
0O 0 -2 0 0 -2 o0
0 0 4 -3 o Kol 4 1
| T \ = . =

Either of this leads t0 the unique solution (%, Z) where
.

w = ; Z;

i
SO W
O —-0CO0O

« Now let us consider p = [

" We note once more that if Aw, 2) is any solution to q + eép for
some O > 0 then wy 20, w, >0 and 2 > 0. This means that
we need consider only Pos(BT) and Pos(Bz). It is now easy to
verify that

q+6p ¢ Pos(B1), Pos(Bz) for any 9 > 0.

Thus g is in the boundary of D/M).

Example 4.4.7 : The following example shows that for M¢ (z--z-io)s’ﬁso5

the set of q for which (M, 4) has infinitely many solutions need
not be contained in the boundary of D(M) even if M satisfies the

conditions imposed in theorem 4.3.2.
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5 2 o‘] e |4
~3 0 | 2
¥ = 22 =l S R A
-4 =2 6
M is in the form given by lemma 4.3.1., with r = 2, Jr-= ag ,

3= £1,27 and is= 3, a1 ; —M§3€S and M, €K -K with

1
no proper principal minor of MJ ag zero. We also note that q is
1
in the interior of D(M).

-

solves (M, a); Also if we take Vv =

-]

il
OO N
(SR
i}
e OO

0
0
21 &
2 ]
then (W, z + Av) solves (M, q) for a1l 0 ¢ A< 1. Thus (M, q)

has infinitely many solutions.

—

Bxample 4.4.8 : In this example we consider a NIE(Z-KO)[\SO
which satisfies the conditions stated in theorem 4.%.2. We show

that there is a g in the boundary of D(M) and (M, q) has a unique

solution.
s 2 o o | 5]
oz 0
=N 2 -5 L AT
0 0 -6 4 6
- ol bs o
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M is given in the form obtained by lemma’ész.1. with r = 2,
T ) -
J = §, -M. €8, -M_€8 and det (M_ )} =0 with no
T J3 J3 J1
proper principal minor of MJ ag 0 where J1 = {1,2} s and
1
J3 = f 3,4% . We also note that the conditions stated in theorem

4.3.2. hold.

Using lemma 4.2,1.,, we can conclude that in any solution
(w, 2) to (M, q); W > 0, Wy > 0, Zg » 0. We can then show,
proceeding as iu example 4.4.6. that (M, q) hos a unique solution

ond that q is in the boundary of D(M).

SRR

3s/11.1.78.
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fﬁg& Appendix - 1

Consider the linear fractional programming problem mentioned

in section 1.1. Let

6 =fxjaxgb, x3 0 ¢g"

178N

We ehall ossume that de + B Z 0O for all x€ C, whence it
m
T
follows that either a’x + B> 0 forall x€Cordx+f<O0
for all x€C. We ahall assume withcout loss of generality that

de\+f3> 0 for all =x€C.

This problem is extensively discussed in the literature. A
linear programming formilation with the addition of one more varizcble
is available for this problem. See /2 /. We shall show that it can

be directly cast as a linear complementarity problen.

Under our assumption about de + B, the fractional function
(ch ;(X)/(de +B) is both psoudo convex and pseudo concave
ZTET, p-149;7; Therefore the Kuhn - Tucker conditions for a point
x’¢€ ¢ to be optiml are necessary ﬁnd sufficient. 1?&7, p.152 and 15@7.
Using these conditions we see that x ) O¢ E® is 2 solution to the

linear fractional programming problem if and oply if there exist

y >0, u>»0¢eR, v »O0€R such that

(a'x +ﬁ)::1 & (ch a0l o gl
(dlx + B)
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N\
&

m
Since d'x + >0 it 1s equivalent to finding a solution to the

set of eguations

D —AT % v ad -pe
+ =
A 0 u N b
xv+uTy = 0

where D is 2 n x n mirix whose ijth element is Cidj = dic:j ..

This is a linear complementarity problem (M, gq) with

e 8

-D A | ad-Be
M = and q =
= S . b

We note that the diagonal elements of M are C's and M is
antisymmetric (i.e. M = - ). Such a M is positive seml—defnu::/
and therefore M¢ CPT . L (M, q, d) is applicable %o this problem

with any d >0 EE)
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