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INTRODUCTION

In one of h;s fundamenial papers LeCam (1960) introduced
what is now called locally asymptotically normal (LAN) families
of dlstributlons and obtained several basic resulta regarding the
| asymptotic theory of estxmatlon.and testings Roughly speaklng,
sequence of families is said to satisfy the LAN condition if the
corfesponding sequencé of aﬁbropriately normalised log~likelihood
function is locally approximated with probability tending to oné_
“Sy the sum of two expressions, the first one being a sequence of
random linear functions of the normalised parameter and the seédﬁd
one being a non-randem quadratic form of the normalised parameter,
and the sequence of random vectors involved in the linear term of
" the approximation converges weakly to the qormal.distributioﬁ with
mean vector zero and the covariance mat;ix being thé matrix inv01ved;i
in the quadratic form of the approximaf%on. Actually LeCam (1960)
considered & more general approximétion:in the sense that he
allowed the above mentioned second term of the approzlmatlon to be
any non-random function of the. normallsed parameter and the limit
of the random vectors of the first term toxbe any arbitrary distri-
bution and then he showed that if one further assumes the contiguityl‘
Condition, which is impossible to avoié in a large pait of statisti-
~cal theory, the given families satisfy‘the TAN condition. Mhis is
indeed a remarkable result siﬁée it implieé that if one could appr0~“
ximate by linearly indexed expential families ome could also appro-

ximate by normal families.
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An important thlng to observe regarding the basic and
" restricted" assumptlons of IeCam (1960) is that a large part of
asymptotic theory depends only on the approximating form of the
likelihood function, and any spe01f10 property such as i.i.d or:
any other special form of dependence is irrelevent. Thus, to
mentlon only a small fraction of the results of LeCam (1960),
LeCam presented, under the IAN condition, & far-reac a1ng geralisa-
tion of Wald's (1943) asymptotic theory af testing and showed that
this testing problem can be simply treated as if it were regarding
the normal distribution. ” | |

' Based on IeCam (1960), more importantlyybased on the above
mentioned observation, Hajek (1970, 1971 and 1972) further obtained

several basic results regarding the asymptotic theory of estimathn.

Though the IAN condition covers a. large part of statlstlcal
theory a33001ated with asymptotic normality, there are problems
1n whlch the assertions canno! be made in ter:s of aSJmptotlc '
normallty. Therefore, LeCam (1972 and 19748) further developed hlS
itheory and obtained quite general and more forceful results in a
more general framework which amount to the following. If one is
1nterested in the asymptotic properties such as 1ocu1 asymptotic
mlnlmaxlty and adnissibility for the given sequence of famllles,
it is just enough to obtain ithe results for the 1xn1t of the glven
sequence of families and then the correspondlng;llmltlng statements

for tne given sequence of Iaiilics Lain Wl SHonDEY 'cn;,ol 8D ERonpréste
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"results, even when the limits bf the familiesare remote from the
usual normal famiiies. Thus, for exémple the results of Hijek
(1972) regarding local asymptotlc minimaxity and admissibility
for the IAN families can be v1ewed as particular cascs of LeCan's

more- general results.

In recent times, there occur situations, e.g.:in Galton-
watson branching processces.and pure-birth process as has béén
dlscussed in e.g. Keiding (1974), Basawa and Scott (1976), Heyde
and Feigin (1975) Heyde (1978) and Bhat (1978), in which IAN
cordition is not satisfied, but it can be seen that dfquite
similar and more geheral condition, which may be called locally
asymptotically mixed normal (LAMN) condition, is satisfied.
Roughly_épeaking, a sequence of families may be said to satisfy
the LAMN condition if the corresponding sequence of appropriately
normalised log-likelihood function is 1ocally approximated, with
probability tending to one, by the sum of two‘exbressions, the
first one being a sequence of random linear'functioﬁs of the
normaliseq parameter and the second one being a sequcnce 6f random
quadratic forms of thé normalised parameter, the sequence of random
matrices involved in the quadratic forms béihg convergeﬁt weakly
to an alnost surely positive definite random matrix andvtﬁe randdm
vectérs involved in the linear terms being convergent weakly to an

appropriate mixed normal distribution.
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In the first six chapters, which may be called the local
part, of the present work, we present a detailed study of the
LAMN families of distributions, and obtain some basic results
which are the consequences of the ILAMN condition. Our aim in:
these chapters is to extend, and if possible to strengthen, sone
of the basic results of LeCam and Hijek. We have also presented
some fesults which have not been stated before even for the LAN
case, even though they arc implicit in the arguments of various

works of LeCam and Hijek, at least for the IAN case.

It may be further noted here that we obtain our results
directly without using the general results presented in IeCam

(1972 and 1974b).

Before going into the details of the global part (Chapters

7-and B8) of the present work, we first give a brief summary of the

first six chapters,

In Chapter 1, we introcuce the precise definitions of

IAMN families. 'we present several basic and preliﬁinary results
that will be frequently used in the chapters that followe All the
results of this chapter are élmost essentially eitﬁcr contained or

impiicit in LeCam (1960) and Chapter 12 of LeCam (19742) thdugh
| the arguments of LeCam are intended for the IAN caéo. Using the
results of Section 3 of this éhapter, alméthod of constructihg a
specific sequence of estimators is presented in Section 4 and it

+s uoled thal inis sequence cogether with a sequence of estimates

£
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of the random matrices of the LAMN condition form & séquence of
asymptotically sﬁfficientgstimators in the sense of IeCam (1960)
the specific method of construction given here is thc same as the
‘one given in LeCam (1960 and 1974a). The same method of construc-
tion for the IAMN case was earlier given by Dav1bd (1979) under a
further restriction on the sequence of rundom natrlCLS of the

LAMN condition. 1In Chupter 7 a detailed study of the traditional
estimation procedufés will Dbe made and sincebthése procedures yeild
_estimators that are also asymptotically sufficient in the sense of
this section, we preferred to‘include the discussions of this tiny

section 4.

In Chapter 2, a 'differentiability in quadratic mcan' type
Lregﬁlarity conditionbis introdﬁced and it is shown that under this
condition the LAMN condition is sqtisfied., Recent roesults on
martingale central iimit theorems are used in deriving ‘the asympto-
tic mixed hormaiity of fhe log-likelihood function. The results
of this chapter are ofiginally due to LeCam (1970) Tor the i.i.d.
case. IAN condition for dependent observations hugszgndled among
several others, by Roussas (1972 and 1979) and for the independent

but not necessarily 1dentlcﬂl case has been studied by Phillippou

and Roussas (1973) and braglmov and Xhasminskii (1975).

Chapter 3 presents two results concerning +the 1nvarlance of

the pOSSlble llmlts of dlstrlbutlons.' .The flrst one '1 a related,

IrodonditSenenin, wenspionationAsitn 6 Wetssoadehagiuption u048déuubﬂea Lorw of
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an invariance result given in LeCam (1979). These invoriance
results of LeCam are simple but their power can be scen from the
‘applications given in Chapters 4,5 and 6 of the prescent work.

o~

In Chapter 4, a certain kind of asymptotic di fferentiabi-
lity condition, analogous to the one assumed in LeCan (1960), is in
troduced and it is shown that under this conditiog, the 1limit dis-~
tribution, when it exists, of the log~likelihoéd function is a

mixed normal for almost 2ll points of the parametocr Spacé.k This

result extends the corresponding result of LeCam (1960, Theorem 4,1)

Secondly we show that, without 2ssuming the existence of the limit
distribufion, the log-likelihood function converges in a certain
weak topology (introduced in Ch.3) to a mixed normal distribution.”
Though’the convergence stated in this result is weaker than the

one stated in the first result, the first reSultr&ctually follows
from this result and it appears that this result;;ore impo;tant,

than the first result. Using a‘stateméht of this sccond result it

is further noted that in the special case con81dered by LeCam (19601

’

Theorem 4. 1) LeCam's conclusion holds even when the existence of
the 1imit distrlbutlon is not assumed. Thirdly we show that under
a speecific form of the asymptotic differentiability condition,
asymptotié mixed normality is equivalent to the contiguity condi-
tion and a certain kind of invariance condition on the sequence of
'random matrices involved in the approximation. This third result:

wuS dndepelaently ovviined by vavies (1979) also,

Bt .

A PR e T
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It is important tohnote that in this Chapter 4, asymptotic
nixed normality occur through an argument which has nothing to do
with " martingale differences'. . For a better explanation of why
thg Gaussian family is so pervasive, bne should consult LeCam

(19742, Ch.11 and 1979, Ch.8).

~In Chapter 5 we first show that when the given scquence of
estimators sntisfies a certein kind of invariance restriction, the
limit distribution of any convergent sub-sequence of cstimators can

be conditionally decdmposéd as a convolution. This resﬁlt extends

 and ‘strengthens the convolution result of Hajek (197C). We would
like to mention that the convolution result for ths TAN case wéé 
‘also essentially obtained by Inagaki (1970) undér rcstrictive :
assumptions. Secondly we shdﬁ thet, without assuning thc
invariance restriCtibn,the linmit distribufioﬁ'of any SQDSequenbé
that is convergent in the weak topology introduced in Ch.3 can be
decomposed conditionnlly as a convolution for almost all [:Lebegue]
points}of the parameter space
thé c;rresponding result for thé TAN case mentioned in LeCam. (1973).
Apylyinglour conditional convo}ution results we deduce gevéral :
results concerning the asymptofic lower bounds for risk>functions;

one of these results clarifies some of the statements made earlier

by Heyde (1978). | .
We continue the study of asymptotic properitics of risk

e niniracel : [ T Sl 5 T o e - 2. @y - o § S L = e IS X
froererpiesten S9CRptasmzgtioniesing JansiprpeéseabluatigermralClsELPDE
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concerning the asymptotic lower bound for risk functions and then
we characterise fhe éstimators which attain this lowcr bound. An
important thing to bevnotedhere is thaf these two results do not
~depend on the dimensionalitylreétriction of the paramcter space.

A more famlllar result under the usual invariance restriction is
presented as a simple corollary of our goneral resulte The next
two results extend the local asymptotic minimax and admissibility
‘results presented in Hijek (1972) and TeCam (1972 =nd 1974a) for
the TAN case. Next we present a general result'concerning a
certain kind of posterior approximation. Using'thié gonofal result‘
we deduce 2 result concerning the globalyasymptotic lower bound for5 
risk functions using}this same general result we then characterise
the estimators which attain the lower boﬁhd. The results concernin
the global asymptotic lower bound and the COrfesponding characﬁeri—~

sation occur explicitely for the IAN case in Strasser (1978) .
Chapters 7 and 8 form the global part of the present work.

The main purpose of Chapter 7 is, under suitablc global -
éssumptions, to see what are the minimum possible local regularity‘ 
conditions needed under which the sequences of maximum likelihood
, estimators, maximum probability estimators and a certain class of
"Bayes estimators can be locally approximated by. the sequence of
random vectors involved in the linear terms of the approximation
of the IAMN condition and satisfy the asymptotic sufficieny criteria

- ’ A o e 2 A S S TS T TS wrAn AR IAN PN E
B Lhnrbes YCRL @igbLoi CONCROTI0NS G ikeasiteyaliiatic ecppraCMARIONdRDECHMes
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true value of the parameter is also presented. Our arguments
depend only on the approximating form of the log-likelihood ratios,
and they do not in any way depend on any particular niturc of the
sample space.- For exun~1e’ ﬂiﬁeﬁ th“t a seguehce of ﬂaximum Pro-
bability estimators is constlst“nt at a certwln rate, the only
odditionmal condltlon we assume to show that tlhis sequencg~satisfy
the above mentioned requireménts is tﬁm LAVNYéonéition.‘ We would
1lk8 to ‘point out that 1t is nct the alm of this chapter to give
less stringent regularlty condltlonq thﬁn some of the possibly
stringent conditions usually found in the literature. Our aim is
just to clarify some of the local érguments uéuéliy found in. the
literature. :

In Chapter 8 we try to extenﬁ the results of Ibrogimov and
Khasminskii (1972 and;1975) concerning the convergence of moments
of statistical estimators that are éonsi&ered in Che7 of the
present’ work. Ibragimov dnd Khasminskii obt°ined fﬁeir results
when the observations are 1.l.d. and when the narqmeter space 1s_fg
a subset of the real 11ne and some of thelr argumonts depend in a
crucial manner on the dlmen81ona11ty restrlctlon of the parameter
‘~spdce; We prove the results for the LAMN’cuse wnd for the nulti-
dimensional parameter space. A result concerning the weak conver-
gence of the sequence of likelihood ratib randoﬁ processes to a
n mixed Gaussian shift process is aiéo bresented. For a better

introduction zoe the intradiusthicn nyegsntal fm Chantes 5,
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After the completion of the present work we recéived a
copy of Ph.D. thesis from Sweusen (1980, September), where he has
independently obtained results which are closely rclated to some |
of the rcsults of the present work. More specifically, the results;
of the first chapter of his thesis are"related to the results of
the chapter 2 of the present work. His theéis‘f@rthor contains
the local asymptotic minimax and admissibility rosults of Chapter 6
. of the present work, his proofs consist of first proving the
- ninimax and admissibility results for the iimit of the TAMN
fomilies and then using the general results of LeCanm (1972 and 19741
to get the corresponding limiting statements for the seqﬁénoe of
L%MN fanilies, whereas our proofs are directly based on certain

approximation results for the IAMN case.

It may be noted that we have not treated the asymptotic
testing problem. Swensen's thesis contains soﬁebimportanf results
‘regarding the asymptotic testing problem for the LAMN case. For

treatment ,
an earlier inmportant/on testing for the general case, under sone
specific assunptions, sce Baszwa and Scott (1977) and Foigin (1978).
Bagawa and Koul (1979) suggests,for the LAMN case, somc test statis—%

tics, similar to the ones used for the LAN case, for nultidimen-

sional case, but the asymptotic optimality is not discussed,
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CHAPTER 1

LOCALLY ASYMPTOTICALLY MIXED NORMAL EXPERIMENT

1, 1NTRODUCTION

In this chapter we introduce the notion of a locally

asynptotically mixed normal (IAMN) experiment and obtain como

wasie and prelininary results which will be frequently used ig -
the chnapters that follow; 211 the results of this chapier are
alnost esscentially contained in LeCam (1960) and Chapter 12

of TeCam (1974a), though the arguments of LeCam are intended

Nl

Tfoir a locclly asymptotically normal (IAN) experiment

Roughly speaking; an LAMN experiment neans a sequence
of appropriatcly normalised 1og;1ikelihood. ratios dis approxi-
naved with probability tending to one by the sum of two expres-
sions, the first onec being = sequence of random lincar functions
of tiic normalised parameter and the second one being =z secquence
of :andom quadratic forms of the normallsed parametcr the
sequence of matrices involved in the quadratic forms béing
convergent weakly to an a_s, positive definite (p.d,) randon
matrix and the sequence of random vectors involved in the linear

terms being convergent weakly to a mixed normal distribution ¢

I "{‘_- . i.lh.oﬂ ------------- \,/
72N 2
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in the special case when the matrices of the quadratic tcius
are identical to a constant matrix we say that the experinces

seiisfies the TAN condition,

A sequence of estimators will be callcd asymptotically

ceivering sequence (ACS) of estimators if it con be subsv tuted

in the sequence of linear terns of the approximation of the

log-likelihood ratios,

Tn Section 2 we intrcduce some notations and precisc

definitions of an LAMN experiment and ACS estinators,

in Section 5 we first present a result on contiguity
and then show that the sequence of random vectors and matrices
of the LAMN exberimentsatisfiesa.certain invariance candition,
e next show that one can seclect modified versions of the randon
vectors and matrices of the IAMIN experiment in such a way shat
thtse versions sétisfy certain regularity properties s thesc
regularity properties will play a crucial role in 3Section 4 of
whe present chépter and also in the chapters that follow, e
thon present an exponential approximation result (Lemma 6), This
resuld says'that, locally, one can approximate the IAMIT expori-
nent, in the 11-norm, by an another experiment which is a

slightly perturbed mixed normal shift experiment with a slightly
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deformed likelihood ratios, 1In particular this will inply that
tae sequence of random vectors and matrices of the IAMN experi-
rnent forms a sequence of locally asymptotically sufficicnt
statistics, As w111 be seéen in the subsequent chapters, this
Kég;;;;; will aloo scrve as a powerful tool in extending certain
results of HAjek and LeCam and also 1nuclgrify1ng certain local

frguments usually associated with Bayes_estimators,

In section 4, we oréseht two results which are due to
leCam in the IAN case, may be dbscrlbed as follows, If one is
)-vea an IAMN experiment, then take a preliminary estimate, i,c,,
an cstlmate which takes values in a " small vicinity® of the

~ true value, look at ‘the logarithms of likelihood ratios und fit
a guadratic to them, Take for estimate the point that maximises
Shis qua dratic, This sequence of estimators turns out to be a
Secusnce of ACS estlmators The second result says that any
Sequernce Qf ACS estlnators together wlth certain estinates of
the random matrices form a sebnence of St&tloulcs which

"1pnrox1mately" sufflclent

2, HNOTATIONS ANDMDEFINITIONS

et E =‘é§n,én,P9= ; 9€(ﬁj>-' n2.1, be a sequence of

experiments ; throughout what follows it will be assume@, without
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any further mentioning, that () is an open subset of Rk.

Ye use the following notations, If P and Q are
probibility measurss on a measurable space (X, 4), then
ar/dqQ denotes the Radon-Nykodym derivative of the Q-coniinuous

v

powt of P with respect to Q, If pand q are densitics of

T a

@nd Q@ with respect to some o-finite measure A, then

jlp~qldh

v
i
')

1

is the Lj-norm, 1f Y is a random vector its distribution will

Do denoted by (D or by _Qf(YIP) when Y: (%,4) — (9,39

1

a2 1,8 veing the o-field .of Borel subsets of RY, For o vecto
‘ 1 v ' o
thﬁ,h denotes the transpose of h and |h| denotes the cucliden:

noim ; for a square matrix D, || D || denotes the norm defined by
e the square root of the sum of squarcs- of its eclemenis. ==
| dP_ :
lenotes the convergence in distribution, ILog aﬁg;g y ©,8:0D,
: i o,n -

221, will be denoted by A (s,0),
We now introduce the following sct of definitions,

ng satisfics the

~

Porinition 1, The sequence of experinents [E
DALY condition at 9==@oe(EDfif“the following two conditions are

Ny e S
satisfied,

(4,1)  There cxists a sequence_{wn(eo)\'of 4 -measurable k-vector

and & sequence {?T(Go)¥ of énfmeasurable kX k symnetric matrice
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such that Py [T (6) is p,a,]=1 for every n21 and the
o _ T _ : -

diffurence
VAN CR 5h9)-[hT (G)W(e)-—-—-h’l‘(e)h]

. T - . 1»' .
cenverges to gero in Pe n -probability for every heR™, where

O’
;513 is 2 sequence of p, 4, mrtrices such that H5 | —> 0 as
N m—— oo

(A,2) There exists an almost surely (a,s.) p,d, randon natrixz

‘ T(Go) suciy that

) => Jw,m(e,))

LW (8 ), T (e )’Pe n

wviere W is a copy of the standard k-variate normal distribution
independent of T(8 ),

Definition 2, Iet W (QO), n(Qo),ﬁn,n> 1, be as in Definition 1,

Agsune that (A,2) of Definition 1 is satisfied, Then the sequence
‘{Q | satisfies the IAMN condition in the strict sense”at*9=eoe(§)

“
if the difference
| | V1200 1 ' ‘
fﬁ\n(eo+6nhn’e§)—'trﬁﬂ§1 (eo)wn(eo)“'§~hn?n(eo)hn.j

converges to zero in Py - probability for every bounded
o? '
sequence {h \ of sloments of RX
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Definition 3, Suppose that the sequence {E_n\, of experiments

En Y §
satisfies the IAMN - condition at o= Qoe(E, Then the sequence
v, e (gn"[én) —> (Rk,lgk), n>1, of estimators is said to be a

Sequence of  ACS  estimators at €=6_ (@ if the diffcrcuce
-1 -1/2
5n (v.-8,) - T (eo)wn(eo)
converges to zero in Pe n~ brobability,
[o}4

> SOME PRELIMINARY RESUITS

Lomma 1, Suppose that the sequence of experiments {E-n\] satisfics

the LAMN condition at ©=6,c(H), Then the scquences

{Eeo,n} and {PGO'*Gnh,n} are contiguous for every thk. In case

the sequence {En} satisfies the strictly LAMN condition at

=9 (1, the scquences (P }and P Y\ are contiguous;'
o, %o .0 { 9,*6,h, ,n' g o

for every bounded sequence {hh} of elements of Rk,

2roof , Using the independence of W and T(8,) it follows that

‘172

nCexp(h T (eo)w-% h'T(eo)h)j = 1

for every heRk. Hence the result follbws from the statement (5)
of Theoren 2,1 of TeCam (1960), since there exists a subseguence

h\ L , ko
{hﬁ} (< (khn} such that h —> h as m —> = for some haR .
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lemma 2, Supposc that the szquence of experiments (E }S'l'tl fics

the LAMN condition ot ©=6 ¢ (B, Then for ecvery heRE

> -1/2 “1/2,4 yur
c.,.éf(Tn(eo),TnV CRERCHE | LRENY p) = 2 (T(8),T / (8,)W+h)

froof,  For simplicity assunme 'that dim(H) =1, According to the
statement (6) of Theorem 2,1 of LeCam (1960) it follows that, for
~every u,v,heR,

-1/2

(=) \ i ‘
B expCaur, /2(8 )W, () + 1vm ()] Pa_+6 h,n)

: ~ C 2
—> E{exp[1u17' %6 U + 1v2(0)) + 1"/ 2(6 )W~ & 1(6)7}
= E{ cxp(av(8 ) + 1an)E" [ exp(1u(r™" /2 (0 )vin)
+ n11/2 (g >w_2- (6 )Z]\g,

where ET denotes the conditional expectation given T(G )

Using the independence of W and T(GO) it follows that
2

T . -1/2 1/2 h 1
E J\LeXp[lu(T (8_)W=h) +hT CRVEE R ICRE )
= B [exp(aur™""2(e )],
once we see that for every wu,v,heR

-1/2

E I: exp(iul "7 (6) Wy +avl (8.)) | PQO+ 5 h, n-

—> BLexp(iu(r/2(e )wsn) + 1va(e )7,

This gives the required rzsult,
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As a conseguence of the above lemme we obtain the followiz_

Corollary, Suppose that the sequence [E % satisfics the TAMIT

=1
condition at €=6_e(H, TLet ,;{'vn‘\,, be a sequ.ace of ACS cobinaior
mhin for ‘every heRE |
y(m (8.),671 (v, -6 -5 1) |2, ) => (1o ), %0 Hu)
- - ! 9 +5 h n . ‘\L,’V o’ ? fo) i

Yool , Since the sequenccb 4 8 p\, and PS +5 h n\(ure conciguons

Tor cvery heRk, the dlff rence

_1/2

-1
5, (Vn—eo):' (e )w (e )

v N -",-
conwverges to zero in Pe +5 h.on- probability for every heR™,
:lcnee the result follows from Ienma 2,

iE'n\’ of cxperiments satisfies
=n; ‘ ; ,

Lemua 3, Suppooc that the sequence

the ondltlon th"zt the quantlty

P, —> 0 as n—> e (¥

e - * yll
_9+5‘n§1n,r:1” G+§nhn,n

or cvery ©e(H) whenever the bounded sequences _;h j and . ‘) }‘Of

" are such that |h) ~h ol ™ 0 as n —> <, where Jﬁﬂ"} is a

secqaence of p,d, matrices such that || 6, | —> 0 as n—> =

L ]

Then there (,XlS'tS a construction of anoth. or sequvnce of cxperinent

E = {?—‘:n"!'\’;nf?e,,n 2 Be (’,‘E‘)) , n; 1, with the fal?.owing, propertics,

n

(i) The functions 6 —> Pg n(A) AeAn, n> 1, arc ZBorel measurable
Iy . i

-
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(1i)  the functions R
. : T I‘:‘ h : Pe+6 h 11 N
(X, X (B XR*) —> 1o0g- ——B n>1,
o AR
o,n

?

arc jointly rﬁéasurable,
(iii) for every a> 0 and 6e(D

. * ’ " .\ »
sup 1255 Qoo Fo+6 h,n =0

' énd
NEE -

1

(iv) when the scquence fE »furtha,r satisfies the condition that

the scquences JLPG 5 and | Pe+5 . e‘\. are contiguous for every

8 (M and for evcr;y bounded sequence %h \ of Rk the difference
P Px

o+5 _h h e+5_h. ,n
10g _-s(___zl_.g.’._. - log n n? ’
Po,n PG,n
convergeas to zero in Pe - probability_ for every ®e (d and for

ever y ‘oounded | sequence fh \l,of Rk

Proo:f‘" See TeCam (1 974a, Ch,12, pp, 153-155).

Remark, It is easy to seec that any scquence {E-n\( of experimentis
satisfying the strlctly LAMN-—condltlon at all Ge(ﬁ) satisfics

-

the condl‘blon (*) of-the above lemna 3

 Tenma 4. ~~Suppose that the sequence .{E‘ 1,‘ satisfies the TAMIT
conultlon at all ©c(H), then a sequence {T (@)} of random kXk
:ymetmc matrices can be construct«.d in such a way that

(1) the difference T (®) - '.I.‘ (®) .converges to zero in Pe,n—
| probublllty for every 6¢(D),

(i) the difference T, (8) - T_(8+6_h) converges to zero in
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Pg,n - Probability for overy 6c(® and heR", and
(1id) Pe,n[T:(Q) is p,d,J.=1 for ecvery n>1 and €c(D,

(iv) In case the scquence “nf satisfies the strlctly TAIN condi-
tion at all 6e(H), the sequence VT (6)& can be constructed in such
a xLy that it further satisfies the condition that the natrices
m (9) n>1, are A DKBk-mba surable and that the difference
m (9\ - MG " ) converges to zero in Pg n-probability for

9
every ©e(H) and for every bounded sequence,&hél of Rk.

J
froof, For simplicity assume that dim(H) =1, First note that
1
T,(®) =-4[ Hy(8,1) - 21 (8,5)]

where we set

' 2
_m1/2 h
H (8,h) =hT "“(e)w (6) -5 __TnFQ) .

llow set
7 1
(e)-_ 4C 7 (8+6,,8) =2 N (8455 ,8)7]
vheTre
N Po+s h,®
/N (8,h) = log —n .
n Pe n

in vicw of contiguity we can assume without loss of generality
that Poes _B,n = Pg n for every n21,95-(-_}f)_ and heRk, vherc
the symbol = denotes mutual absolute continuity, Since the
difference N/Xn(e+6nh,9) - H (8,h) converges to zero in Pe,n'
probability for every 6:(D) and heR* the statement (i) follows,

Heuymbmssiche QCEfwehrinialzaipsshgfa cudvlnuity, we nave
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/Ny (846, (n+s) 046 h) = /\ (8+6 (h+s),0) - N\ (6+5 h,®)
for every n>1,8e(M) and '8,heR, and so
* _ A ' R _
T, (8+6 h) =- 4 /N, (86 (h+1),8) -2 / v, (846 (h+s) , )
, YT
+ N\ Lo+ h,0],
Also observe thaf
1
7,(8) =-4[H (8,h+1) - 2H (8,h+5) + Hn(e,h)] .
*
Herce the statement (ii) follows, The Tn(Q)‘s construciecd above

nced not be positive but this can be easily rcmedied, c,g, if we

define
¥

T, (8)

T7(8) if Th(8)> 0
= 1 }othgrwise
then it is easy to see that the suqm,nce {T (Q)/}r satisfies the
statements (i) and (ii) using the facts that the sequence JT (6)}
satisfies the statements (i) and (ii) and that, for every Oe(D,
the 1imit .T(8) is positive ~lmost surely,
in case the sequence {k-‘:-nj‘/ satisfics the strictly | TAMIY

condition at all ©e(@, we sat

T,(8) = -4 [ A\ (645 ,8) -2 A (8+56 ,9) ]
Wncre
*

. dPe+5 _h,n
/\_(8+6 h,0) = 1og

n n 4P -

' G n
9

roo* N\

i PR raaals £ - g ANoR USIRA -8 I 2 BON\EVA! . [ i Yo~y Sy R
\flu_l\; - qu;...l}l 3\ .L’e n ; e '\:‘:)} RIS UL‘.\; DIMG COMS viial t\:d. Al MClUSL o 9 SEE
\ ’ .
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the remark following this lemna 3,) The ;}dint measurability of
T;:(e} follows from the joint meaburability of g’\;(emnh,e},

The remaining arguments neede . to complete t..e proof of the state-
vens (iv) are, in view of the statement (iv) of Iemma 3, idontical
to the arguments of the proof of the statements (1) - (iii) of the

precent lemma,

Lemsa 5, Supposc that the scque,ncc of experiments V’ "t satisfics
the TAMN condition at all 6e(H), Then a scquence 3z,.>n(e;; of

randon k-vectors can be constructed in such & wey that

..1 /2

(1) the difference £y, (8) - (8w (8) converges to zero in

Pg - TTobability for every Oc(E Q ,

]

(11) the difference A (8+6.h) - [ A\ (8) -h] converges to

zero in PQ —pro'bability for every O<() and thk

v(iii) In case the sequencc.) E } satlsfles the strictly LAM»;
condition at all ©e(H), the sequence f{l (9)} can be construc-
ted in such a way that it further satisfies the condition that the
vectors A (8),n>1, are 4 XB® measurable and that the dif-
Terence A\ (846 h ) - [ A [¢) -h, ] converges to zerc in

1

™

Yo, n" probability for \,ve,ry bounded sequence gh ny © B and for

cevery ©e(@),

2roof . Iet ju.l 3 Juyl< | be a basis of RE, Construct A (8)
d J : A

vy the relation

N LR 2 1 v _*
AN, (845 u,,0) = uj'rr_(e) A,(e) - 50T (O,
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ARI

he proof of the statement (i) is immediate from the statoncuis

i

(i) ond (iii) of ILemma 4, To prove the statement (ii) comsider
/! o
/Ny (846, (054n) 846 h)

= ‘/\R‘G+6n(uj+h)’e)" jﬂxﬂ(e+5nﬁ,@}

n ) A (8 )
T _(8+ \
U 1, (8 5.h A (8 +5 h)

= :,f"\.;n(e+5n(uj+h),e) - /5, (846 h,8)

+ ] 'T*(e &5 h)
+
5 uj h uj

and this is approximated by
. * 1 » * *

u; LT @A ) -]+ 3 o Lz, (6+5,h) - T,(8)] uy
enee in view of the statements (ii) and (iii) of Lemma 4, the
statenent (ii) of the present lemma follows, ”

In view of the statements (iii) and (iv) of"Lemma 4, the

sinterient (iii) of the presemt lemma is similarly proved by ccn-

structing [ﬁn(e) by the relation

. *® -V% 1'*.‘
,A\n(9+6nuj,9)-uan(e)éﬁin(e)-§ uan(G)uj ,

*
vhire  /\ (8+6 h,8) is as defined in the proof of ILemma 4,

Leima 6, Assume that the Sequcncenof-éxpuriments‘/En)?s&tisfies

the TAIN - condition at ©=6 (D, Then there exist

{(i)" an increasing sequence {k,} tending to infinity ag n —>«,

7535\ D T . T k
G fuactions Zétoisihg-a-watfimarked bvabimtid
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IET% qlCn(Go,h)-1J —> 0 as wn —>

7o every ad> 0, such that the measures (6,014 , n.(8,,1 <«

defined by

?eo,n ’
1 aq, (6_,n)
n:o? _ m1/2 ¥ 1 .. N
G = C,(6_,h) exp[n T O (8) -5 nT (8 )]
o1 '
vith W.(8) = W (8 )1(|T1/2(e YW (@ )|<k ), are probability
AR ¢ ) n oo n "o 'ntoll="ny ~ - v

acasuwres and satisfy
IEPGO+5qh,n - Qn(eo,h)||-> 0 as n—> =

for cvery heRk,

(iii) in case the scquence.{gﬁiv satisfics the strictly IAMY
" En;
condition at ©=6_ c(HE we have

P - ,h) || — 0
I 8,*6 h,,n U (8oehy) I
48 n =—> o for cvery bounded sequence {hnl of Rk,‘ L

zroof . Define, for a> O,

- . 1/2

1,(8) = W (e 1(|7/ CRURCRIREY
and *

w“(eo) = WI( {T1 /z(eo)wl“< a) |

There is a dense set of valués of a4 for which

L -.a P a
~° ¥ = 2
_&/.(Tn(eo),dn(eo) ]Peo,n)‘ > A7 (T(8) , W(B ),

For any such @, we have
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(117206 1oy -1 n'n oo
IhTu<pa |E[ exp(n T, B IW (8} -5 n Ln(eo)n)]

- E]:eXp(h T‘i /P(GO)WQ(QC'! _.%. h'gg(eo)h}] |
—> 0 as =n —> o,
since the family of functions, defined on the spice of mmvochors
fad Xk p.d, matrices,

[ 4

{x,D) — exp'd" % - ZhDm ¢ ngalt

L5 wiformly bounded and eq_uicontinuous whénever the domcin of x
i bounded, Hence by a standard diagonal argument onc con choosc

ain increasing scquence {kn’\,; tending to infinity such that
. /206 yu* ey -1 1"
..,up1 [E[exp(h T (eo)nn(eo) -3 h Tn,(.‘eo)h)]

1/2

k . _
- E[exp(h AN CINN ’E‘e-o) -15 h T(6 )n)7] |

~—> 0 as n —> «

l* N kn
sy A = T : : = ¢
e Wo(6 i, ee) and, hence

sup |E[ exp(h T1/2(T >w*(9 )-%_ h'?,,'(eo)h)]
Ih| < b

- E]:exp(a T1/2(6 )Y n(@ )--- n'r (60}31)3 |
—> 0 (1D

a5 n=—> = for every b> 0,

1.7

@

now show that, for every b> 0,

sup |E[ exp(h T1 /2

e)rne)——h'me') ' -1‘—-—>o 1.2
2% b ( ( (6,)n)] -;, (1.2)

'DF cothpressioft, oCR avebroptimizétont
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X
sup B[ exp(h' T /2(8 ) (8 ) - £ n'1(6 YW= 1]
RIES ° ° ?

k"‘ 1 ?
<EC IStllp 18T exp(n T1/2(eo\wn"'(e\o) ;i,- 7(8,)h]-1]]
hi<b ~

k
< exp(h T1 /?(903’:!—% ln'T(eoi>11',:; +1

and hence, using the indopendence of

for ¢very b>0 and n)1, Hence (1,2) will follow if we chow

thes, for cach fixed T(6)),

12 BT Cexn(n'2'/2(6 31 0 ) -3 n'2(e )W T- 1] —> o

Thic is quite easy to see, From (1.1) and (1 2) we rov lave for
. » ) H

every b> 0,

T2y 1P Lo sl 2 ) a0 gmT 11— 0 (1.

as n —> o  Set
= 1/% 'pl/2 i 1,7 .
C (8,0 = 1/E[ exp(n T, "BV () -%h T, (8 W] |
Pron {1,3) it follows that

O — ——— n‘ — 6o \
'btllgb!Cn(eo,h) 1] —> 0 as n— (1,48
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Tem cvery > 0, To complete the prosf of the statements (i) and

{11} it remzins to show that
ST P J—
N Pg w5 hn - 0 8, || —> 0 as n —> -
0O n°? ’

Tox cvery heRk. Without loss of gencrality we can assune that

':'-:8 *5 hyn PG ,n for cvery nd 1, haRk. In view of 1,4} and
siiace IE‘fn(Go) - ‘*"‘»’n(eo)l —> 0 in Peo,n~prob::.b;lli;y, ve see
"""" 't the difference '

n,e (h) - ZI1 8, (h) (1,5

cowwverges to zero in Pe n T Obublllt’y for cvery. hm wacTe

wr sct

dPeo+5nh,n . aq, (e, ,n
Z,,l, e (h) = dl) and Zn 9 (h) = '_d_P'_——_ .
%o T8, *70 O,

Purther, in view of contiguity,

-

lim  limsup - f Z, g (h)dPg
C T e iz o, M |> ah 1O °

219

lim  linsup P Lz, (n} [>e])=0,
@ ==Dco n —> 90+5nh,n 2,9,
(1,6)

bimilorly we sce that, since the scquences )’"Qn(go,h)} and
] oo . %

JP \ are contigu
o Y are contiguous,

o)
. . .
lin linsup n,s, (h)dPO
o= 00 1N —> = o?

lz é ) > a\
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fl

lin

('1--.> o0

T —

Combining (1,.5), and (1,7 we

(1,6

// [
‘1z (h) - 7 (n) |ar
)! n,@o n,QO 8
k .
W3 n > for cvery heRT, This
statenents (1) and (ii) Statenont

Henazl,
tie joirtly neasurable versions,

*n(@:’ ,Tn(@) ,1'1_>__ T '

the quentities

wasurable and the 11kollhood ratios

By
= neasurable,
4, LSYPTOTIC SUFFICIENCY

in this scction we first »res
of construction, using 2
405 estinators; the
Sty

{

Secondly we present a
of uny sequence of ACS éstimators}
here is that
cally sufficient, but it together

the randon

[Ty
P

in the statement (iii) of the above lemma,
constructed

c,(8,h), n>1,

ent an extrenely
prelininary estina te,
gpecific nethod of construction
the one presentcd in LeCan (1960)
r:sult concorning the
. an  imvortuint thing
sequence of ACS estim&tors‘glone is not
with 2
natrices of the IAMN condition form a

nsyuptotically sufficient es stinators,

t . .
Ral:IbE = (1 'F\'
11Auugm Qn(eo,h)[:lzn,eo(h)]><1) O, (1,7

2 that

—> 0

0’
completes the proof of the
iii) is sinilorly proved

if wc_cons;der

in Iemnmos 3 and 4,
will be
aqQ_(e,h) .

= will be 4 XITX

o,n

t

ginplc method

of & seaqucnce of
given here. is

and LcCan (1974a),

o
D

aptotic sufficiency

to be nobed
Tptoti-

uence of esitinatcs of

seq

sequenee of
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1 / - - B g
et 7, Let 2 N be o scguence of estinators such that, fon

Wi sk i semaaiirsren @

son 6e(D), the seancmos {57 %-93} ® Tolatively compict Lov

o . . w ) . ':F /' 2

tac scgueace {?8 n¥ . Then thore are fuactions gn of 8, suen
'~ 9 A

T, for each Qﬁ(ﬁ),

L L,

(i} <the seauence f%; (e,- *6)} is reiutively conp
N 4 i

s
ot
=

¢

'

Ty
%)
ot
-
¢
"
o

- : { B
suqence ¢ Pg Nt and

(i1} for each ba(O’w) there is 2 number K(b) such that the
nuwber of possible wklu;a of Gn contained in snpb’ WICIe

I, =Q@eRk t Inlgb , nover excseds K(b).

“roof, This lemra is the Lemma 4 of IeCan (1974, ¢h 123,

. . : : -1 AL
Proctically, this lemna says that one computes Sﬂ Gn
EX -

oilyy upto 2 to a certain nunber of decinsls,

A
s I -y p { \ PR a
Thgoren 1, Tet <8\ be a sequence of estinators such thot, for

<48

-~

. g - 1 AN A . . »
the equ“nce_iﬁn (énf 9)} is relatively conpact for

’
i aeane P * e ti oti )
612 scquence Py n? . Let O ,n21, be the functions of &
A A n

-

{;n} sttigfies the TAMY condition in the strict scnsc for all
8e{ID) ., Then thc sequence {Vﬁl,of estinators, constructed by
* #* C - .
T = : ) 1o £ = ) 2 \ e e R e F = T S &
Tp =8, 6n'ﬁgn(en-, n2.13 is a sequence of ACS ¢stinators for
¥
all 8e(I, where the Suﬁu”ﬂCC‘{”Jn(G)? of gn;<5 ~ncasurable

k-vectors ig the one constructed in the statorent (iii) of Lerno

Jrocf, In view of the statement (i) of Iemma 5, it is ¢nough %o

gshow that the differcnce ,5;1(VP-9) - ékp(e) convergcs Lo zoIo

ES
-

L gyt Broballlliiy for oviny dellii | Wow
.

a5lufying the requirenents of lerma 7, Supnose that the scqueic
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21 =1, ¥ , *
(v, -8 =157 (8,-0)+ N (8,

i vicw of the statement (iiid of lermma 5 ard since the ac CUQLICE

}e_. sotisfTics tha recouirernents of Iemra 7 it follows .0t &

An<%) - [ (e)_5 CIEEON

converges t0 zero in Fg p—Frobability for cvery €:<(H), This
b
corpletes the proof,
Lheoren 2, Suppose that the Se¢quence En% satisfies thc LAME
[ 23}

corcdition in the strict sensc for cvery 6e(B), Let‘{yh}?bc a
scquence of  ACS  estinators for cvery €¢(I, Lot 'ﬁ: w21,
be the funcetions of V, satisfying the requircnents of loma 7,
et E, be the 0-ficld gemerated by the stotistics (V,, Ta(V.))
mere the scequence {T;(ef} of én}ng -ncasurable p ¢, netricos

)

is the one comstructed in the statenent (iv) lerna 4, Thexn tacre

,n>1;
3o 3 0y F) o3 T‘ 3 c anehr thoot
i8 & sequence E X-n"Ln’ ?9 n’ Qe(HY}/of }p~rlhvntu such hi
SN * . . s :
(i, for each L~ the o-fiold F ~is sufficicnt,

and (i1) for every €@ and a> 0

*

sup ||P . -7 | — 0,
lh‘_(_“ 9+6n{1,n G+5nh,n
2x00f, In vicw of Lenmma 6, the proof is identical to the proof

of the corresponding result for the IAN case given in T¢Con (1960)

and (1974a)
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CHAPIER 2

DIFFERENTIABILITY IN QUADRATIC MEAN TYPE
REGUIARITY CONDITION AND THE LAMN EXPERIMENT

1 INTRODUCTION

LJ

In fhis chapter a differentiability in quadratic nean
type regularity condition is introduced and it is shown that the
sequence of experlgenis.{ﬂ satisfies the ILAMN condition wdex
this condltlon. Recent results on nartingale central 1linit
theorens due to McLeish (1974), Hall (1977) and Aldous and
Tagleson (1978) will be used to prove the weak convergence of

log-likelihood ratios to a nixed nornal distribution,

The results of the present chapter were originally obtained
for the i,i,d, case by LeCan (1970), LAN- condition for the
dependent observations has been recently studied by Roussas (1978)
and for.the independent but not necessarily identical case has
been studied by Phillippou and Roussas (1973) and Ibraginov and
Mhasninskii (1975)

The results of the present chapter constitute é-major part:
of sections 2 and 5 of Jeganathan (1979a)- during the final stage
of preparation of the present work we received a copy of Ph,D,
thesis (1980, September), the results of the first chapter of

which are related to the results of the present chapter,
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In Section 2 we introduce some notations uand e resulanitT
coxditions j the nain result of this cnapter ic also statad in this
seetion, In Section 3 the proof of the nair result iz peosserted
whrough a series of lemmas j the proof is based mestly on the ideas

of TeCar (1970), Roussas (1972 and 1979} and Ibraginov o..4

Fhosiinskii (1975),  In Section 3 we discuss, Tol

swents of Hajek (1972) and IeCan (1970), sone casi
regularity conditions inplying the more dircet differcutiability
in quadratic rican type condition of Section 2
2, I TATIONS, DEFIN.T10US AND THE MAIN RESULT

Let (Xq,%5,,,.,% 1) n21, be a sequence of randon vectors

defined on 2 provability space (I, 4, PO) where the k-dincna-

sional parameter 8:(H), an open subset of Rk, X>1, Iet

A= 0(X1,.,,,X ) be the o-field induced by the randon vector
(%,...,%,) and Pg,n b the restriction of k‘Pe'té A,. Tes
8 (@ be the "true' value of the paranet We further assunc

that, for j2_2, a regular conditional probdblll ty measure of lj

given (Xy,,.,,,X; ,) is absolutely continuous with respact %o o

J-1

o-finite neasure Mj with a corresponding density

i ( .[u1,...,Xj_1; 8), and the probability reasure of Xy is
bsolutely continuous with respect to a o~finite neasure 4 wish

a corresponding density f1(X1; 8), TFor the seke of ginplicits

we set I (X |X 1,,,,,}&'3;1 s 8) = fj(@) yd22, and £, 36} =1,(8),
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- n
T £,
_/\\_n(g,eo) = log 4= 5

Il

L TT fj(eo)

£.(8)
log #15v -
jto

Vic now introduce the following sct of assumptions, Nota-
tions of Ch,1 arc assuned in this chapter,

(£,1) Therc are p,d, natrices 6_,n>1

0 , depending neither on

8 noy on the observations, and randon vectors éj(eo),j}_T,'

such that for-every heRS
n  s.r7:° -
s el 1y ( 2 au b —
311E { J [gnj(é)o,h) -5 h 5ngj\eo)] dﬂjj > 0
&3 n —> «  where we set
_ o172 1/2
z,nj(eo,h) 3 (90+‘o‘nh) -fj 8,) .
Define 1o
nj(eO) = gj(@O)/fj (8) if fj(eo) #£0
= 0 otherwise,
()

(4,2) EEﬂj(GO‘7 |’;J_1] = 0 for every j>1

L4

(£,2) Therec exists a ncasurable function T(6)) mapping X to

vac svt k XXk symmetric natrices such that Py (T(6,) is p,d,) =1
o ’

and the difference
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n

6 x

n ! 4 A m
n E[ "3 (8)) "5 CR {1;3._.1_ 6, - (8.)

1
converges to zero in Pe . brobability,
o
1 ™ ]{
.4 For cvery e> 0 and heR

n .
© w < ! ‘ ] —_
J_1}3[ Ih 5, .(eo).t | I(|h 5nnj(eo)i >e) ] —> 0,

N k . i} o
(i,0)  PFor every heR, therc exists a constant K> 0 such that

-
4

Sup ET’[LhST; )" :](K
n>1 j=1

Pollowing is tm, nain theoren of this chapter,

Thcoren 1, Suppose that the assurptions (A 1) - (4,5) arc

ry

satisficd, Then the scqaence B

=\ )
n:f}:(,A Pen;Qs(u)j, a> 1,

=n ¢ —
of cxperinents satisfy the IAMN condition at €=6 ;(H) with

)
m - ™
T (8) j=1u[ nj(eo)nj 6,) ]1;3._1 s,
and
=172 {1 ,
wn(eo) T (9 )6 Dy T‘j (90) T

0

Donarks, (1) Suppose that the essunption (4,1) is strengthonsd a

_ e
follows o for every bounded sequence sequcnce {hy& of c¢lerecuts I
Y
n }, [
™l . —_—
%2_1%,\}.,[%3\@ h ) - 2 h 5 gJ(G )j du > 0
o~ J
0 n ~—> oo

Then this assunption together with the assunptions (A 2) -

-~

7o - . . % A . - -
{(A,5) inplics that the sequence 'E 1 of experinents satisTics the

En)

= A Yo PR € e ™ p ontm - | o ) balrelnie e
e~ Sonditaon in e stricy sease ut e =9o.eld),
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The proof of this statement is identical to the proof of

the above theoren,

(2) Assunption (A,2) is inposed in order to invoke the
central linit theorems for nartingales, It is possible 4o relax
che assumption (A,2) slightly if one uscs the central linit

theorems for 'near martingnles'as considered by Hall (1977),

(3) It is possible to deduce the éssunption (A,2) fronm
(%, in sone special cases § see ¢,g, LeCan (1970), Roussas (1972
and 1979), We were not able to deduce (A,2) fron (A,1) in the
general case,

(4) For each n>1, the quantitics 2‘. EET) (8 )n CIN

§=1

and 31EET1 . (e )T)J (e )|A 1:] are generally called respcctively
the %;sher information matrlx and the conditional Fishes inforra—

tion natrix,

3, TPROOF OF THE THROREM

The proof will be presented through a series of lennas,
e start with the following lerma, the proof of which ic essen-
1i21ly contained in McLeish (1974, 3,15) (see also lerrm (3.1) of
Dasawa and Scott (1977)),

Leriia 1, Suppose the assunptions (4,2) - (4,4) are satisficd,

Then, for every teRk, the difference
: |t ) |2
j=1|t5nnj(eo| -JZEE!'!:GT;(G)I 31]

converges to mero fm D, provatilite
©


http://www.cvisiontech.com

- 36 -

bermia 2, Suppose the assunptions (A,2) - (4,4 are satisfiad

vizIie

]

¢,

»i;(Tn(eo)’wn(@o)]PG

R = (e, (e, )
o’ )

0
vaere  To(6 ) and W8y, a1

y , 4rc as defined in the theoren,

cnd Vois a copy of  N(O,1) independent of T(6,).

oot Since, for cvery ¢> 0 and: teRk
Sl max |t (e )|
j<n
< 82-+~2:E[1t 0,15 (8 RISTIrS 5,05 (85) > e)]

i=1
we have by (4,4)

E[ naxz 1t 5 "3 (e )1 1 — o,
j<n

. ) i R .
How lerma 1 and (A_3) inplies that for cvery  teR™ the quentity

nooy v . \
ji1|t 5nnj(90)!2 converges in Pe probability to 't T(8 )%,

Iinee by Theoren 2 and the renarks prcceding this theorcr of

4£1dous and Fagleson (1978), we have

6 3 (s, 1/2 , 5

n s ==> T (e VA2 (stably) CUND
j=1 e

vicre W is a copy of (0,1, independent of T(eo). T

particular,
n

e : s G120
L ji1”j(eo)’T(Qo”Pe) = 05(* (8,)1,1

o

L vicw of (A.3) we then have
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n -
Yo Ton ( | s b/ 1/2 W 1
¥ (8 j¥1hj(90),Tnaeo),P90, ) = A CREYRICRD

This completes the proof by noting that

5 % n.(0) = RECRURTR
n j=1}j 0 o’ "n*To’ e

The following lemna is an chasy generalisation of Loma 5

of IeCam (1974v),

Lerya 3. Suppose the assunption (A,1) is satisficd, Thcu

4

letting Zs for the indicator of the se \)f (6 )-cﬂ>

n ( .

£ E fz.f.ews Wav. | —> 0 2,17

j=1 L J J( 0 m J‘J ' *
and

n : > |

2 E[: fz In' 6, (eo)[ dujj —> 0 (2,2)

1
as n —> o for every heRi.

croof | Fix haRk. Iet Z1j be the indicator of the set

. A\ A

+ = ; 1 ice uil 2%
_{¢j(90) O,h Sngj(90}< 0 and sz be the indicator of the sci

1
Y = C = Woe then hove
jf;(eol O,h 5n£j(90)2_0}.so that 23=295*2%p5. Yo then have

pS

3 it _
Jo1 L}Z EEnJ(e h) ) h's ntj (@ 0% au, g
n

{
2 7 BL 24250000 au] + ¢ J>_ B[ z1th 6,5 (8, [au, 5.

fy (4,10, the 1,h,s, of the above CXpres 31on tends to zero, Siace

-
woth the terms of the r h,s, of the above cxpression arc positive,

ve have
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n ; . 5
2 E[ {Zq.ln 6 E.(8)|7Au, ] — %y
2 L 15/ 0,858 [“an ] —> 0 (2.%)

Now let t<0O_ Then

Ty e
dat
o

3-1 k_;z Jl:z,nj\ ot =3 h an(,j(eo)] dluj),
n 7 '

> © B[ lz2,.T.(8 +6 t .
o [5233(0 nh)dﬂJj

2

. +
N+

2 B[ (7.. |0 6. ¢ I
2 Bl JZogih 0pty (850 17 ak,

j=1

{(L,1) this inplies that

n . ¢ 5 A
T B ‘jz Jh 6 8. (8 ) |Tan, ] — . , 2 A
z C)2og1n 65t 5(8) |72, ] —> o (2,4)

Combining (2,3) and (2,4) we have

, 2 :
JZ_E[) 1h5 (eo)|duj] —> 0,

This proves (2,2), To prove (2,1) consider the inequality

ner

The

S
VE8te

SE[{zl?‘(e h)"1 v y12
521 = 1%5 05 o = 7 lh ot (8,0 17 faky ]

< 2 ?E{ (7. T .(0.m - +n'st (e)j%u\
= j= L} J nj o™ 2 n>j o J i
1 D P 2 '
+ = % F . t . X . 5
7.2 C thl__u §naa(eo)| dﬂJ:] . (?,p)

¢ we¢ have used the incqualityv

2 2 o
lc“-a”| ¢ (1+a) [c=d|%+a®/a, o> 0 and o,deR (2,6

Tirst tern of the r h,s, of (2,5) tends to zero by (4,1) while

sccond tern tends to zewo by (2,2), This completcs the proof

of the lemma,
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To sinplify the notation we sct, in what follows,
N re1/2 1/2 . ‘
nnj(eo,n) = [:fj (8,+6,h) /t (6] -1 if £, (8, #0

= 0 otherwise,

senig 4. Supposc the assunptions (A1) and (4,5) are satisficd,

Then
2131‘/12(‘8 B - n's t.(8)]%|au, — 0 (2.7
j=1  n3 o - 7R oyt (8) [Tl as, . T
in Py probability, ond
o}
gEE In2.(8_,n) - XIn's n. (6 )21] — o (2.8)
j=1 nj" o? 4 n j. o . .

Droof, TUsing the inequality (2,6) we have
n
2 1.0, 2
j;a[ lt03 (Osh) = 7ln 6,8,(8 ) |“Jan, ]

va) 5 [ [ 1, 2 1,
< (1+a) jz_:__1E {JEgnj(Go,h) -35h 5ngj(eo)] dpj\

1 n v 5 ’
+ 2 28L [ oty (8 1%, ], w50, (2,9

3=1

Forr ¢nch fixed @ > 0, the first term of the r h,s of (2,9)

Tends to zero as n —> « by (2,1), Now consider

zI:lE[ ([b'a 1 (9)|2d/£ ] = z?E[lh'a (e )|2]
1 AT AT N T R n"j %o

J ’ j=1
+ gE[fz In'6_¢. (6 )IQGM ]

vhore Zj is thc indicator of the set ij(eo) =({} . Henee we
sce that the second tern of the r h,s, of (2,9) tends to zcro,

18mbreasion DK Aveb bptifdion (8ndd watehiarkidaiudshtcbigor CVISION PDFCo
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then 0 - w, Thus r h, s of (2,9) tends to zoro by first
Lotiing n —> « and then o —> o

] This proves (2,7), (2,0,
n2Ll30 Tollws fron this since
=2l 2 e m - Iin's 1 (e )17 ]
5=1 nj o or” 40 Tnlgttet !
S L2 () N
= B[ (1270 |¢? - +lns 2. “Jax,
2 L« 257 lep3(8,,m) - 7/n AR N
enee the proof of the lor

Wi 1s conplete,

orm 5. Suppose that the assunptions A, 1) - (4.9

2hen the differcnce

wa

_ (e b)) = 7 h T(e )h
J

converges to zero in Pe probability,
_ e,

.r00f By assunption (4,3)

and Lenra 1

we sce that the diffoerence
n

‘?,-- ? 1 )
DI Y - (
_i1lg annj(eo)] h T(8 )h
J—.
couverges to gerotin- Pg prCLability. Hence it is enough to
O
shor that the difference
n n .
S 2 1 NPT 2
‘321 nnj(eo,h) -7 j§1lh annj(eo)l
comvurges to zero in Py probability, This follows from (2,8)
o

applying Chebyshev' s incquality,

Lara 6, Suppose the assunntions (A,1) - (4,5) arc satisfica,
AL em o . h Rk K .
4.8, IO every € , ¢
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nax |n_.(8_,h) | —> 0 in P, probability (2,113
jin nj o’ 90
and
| = 3 . .
L n,5(8,,m |7 —> 0 in Py rrobebility (2,12}
= nj o o

~roof, For every e> O, consider

n .

P[jz:;a:lcl lﬂnj(Qo,h) 1>e7] < j‘i‘IP[ Innj(eo,h) 1> ¢ ]
: I n'e n, (6) 2

< 32=1P[ 1,3 (8s®) = 31 6,1m3(8) | > & /2]

n '
+ .2113[: ]% h 511”3 (e 1> e/27],
J:

ow (2,10) implics by Gpplying Chebychev's inequality,that
sl:l D 1. ) 2 | (2.13)
.;1*[:|nnj(90,h) -z h &) [>e/2] — 0 .

J

tt is easily secn that the assuiption (4,4) inplies
n 1
- —_ L1 A)
;11’[ Iz o8 ]>e/2] — 0, (2,14
Combining (2,13) and (2,14) we sce that (2,11) is proved, To -
prove (2,12) consider

S TRCIRSIE: Y2 2. (e

ZoIn . h)|7< nex (¢ _,h z .(8 ,h)

j=1 :nJ 0! l — jl‘-<—n lnnJ( 0? I j:‘] nnJ o .
Hence (2,12) follows by applying Ierra 5 and (2,11), This

conpletes the proof of the lerma,

Louma 7, Suppose the asswiptions (A1) - (A,5) are satisficd

Then the quantity
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l’l

n
2 . 1 Npj B - h' 5, 21nj(eo) + -1- (e )h
— J:

. . s e
coaverges to zero in Pe rrobability for every heR,
: 0

Fxzoof, Consider the identity

/1/2

”

it

, ( s 172
E]:nnj\eo,h) 451 i (6 +6 ‘1)1" (6 )dua

Lo o
-7 | gnj(eo,h)dpj .
oy (2,7, (2,2) and Lerra 1, we sce from this identify thnt the

diffcrence

- 1 .t
2 3?:1E.[n ,h) '1}—.3_1 ]+ 7 h Tn(eo)h
It

couverges to zero in Py p Probability for every heR
. . 0°? . :

Honee, since E[:nj ) 'éj-1 J =0,321, it is cnough to show

“hit the quantity

n
% Y. - BE(Y;

éa_;'l) ]

couverges to gero in P

g ' pn Probability, where we set -
o? ‘

vy o= E”n3<9 h>-2h5n(e)j

Since the sumrands are ma ting:.le differences, we h'we

5[5 Cvy-mrle, P, )
{J_‘] Jl J—'1 ].z?

n 2 - - 12

- 3 [Y-B(Y 45 430° ¢ = EL|v. "0

—> 0

*
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-
SL0CC

X ry ‘ 1. , 2
.11E ’LEnnj (®,,h) - 5 n Sﬂnj(eo) J }

d

1
n M

5 ( (¢ !
j 1L,<V{\1.zj)[gn 1) 8)7° duJ)

—> 0 by (4, 1),

This conmpletes the rroof of tuu lerma by applying Chebyshev's
incquality,

Procf of Theoren 1

In vicw of (2,11) and the Taylor's exransion

we huve, with P

eo’n brobability tend;ng to one, the equality_

Jf\n(eo+5nh,eo) =2 321 log (1+nnj(eo,p))

n ) n I 3
=2 ji1nnj(eo,h) - Jz1nn3(e ,h) + = lJ{,w(@ h) |

vhore lanjl$1' By (2.12) we then sce that the quantity

/\(e+5he)_2 zn (e h)+z

2
N, fe h)
j=1 ™ j

7 1J

coaverges to zeroe in PG ~-proba blllty for every th1
0

Henee ™ the
result follows fron Leﬁmas 2,5 and 7.
"o DISCUSSIONS ON THE ASSUMPTION (A 1) OF SRCTION 2

The argunents of this scction are bised on LeCan (1970)
and Hijek (1972)

Consider the following ‘set of as supptlonu
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(L,6) The functions f (X.I Greeer®sgs : ©) fj(e) + (M —> R

are ab solutely continucus in € for all (X, ’n-’Xj)’ ix1,

(., Por every ©e(H) the 6 derivative f j(e) =( e Ee)fj(e)

cxists for K, X #5 almost 2ll (X1,“.,Xj), ix1,
Define for every ©Qe(ID and j) 1

(8)

fj (G)f"1/2(9) if the derivative exists

s
and fj(9)> 0

= 0 ctherwise,

Suprose that we have selected the sequence 16 } ¢ one way of

selection is to define

Z Pgtjg (Q’)E, () aw, ]‘}"1 for sone fixed Qe(—)_
=1

(A,B) Por every neRF  and 8¢ (B
' \ 12 .
BL et @12, <o, 1¢5gnco,
(4,9) Por every heR® nnd for cvery e (B

sup = Efflh's Cé.(6+t6 n7) - £.(8)] lzdu.‘}'——> 0,
al<t<b j=1 n=-J n J J

iropocition, Supposc the assumptions (4,6) - (A,9) arc satisficd,

Then the assunption (A1) is satisfied for every ©c(B) |

Proof, An application of the inequality (2.6) and (4.8) shous

that (A,9) in particular entails, for every hc»:Rk and Py j-;1 X/Lj
. ,
clmost all (X1,“.,Xj) ,

b
f Ih5f,(9+t6h)|dt<qo <jisnqe
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ionce according to Iermn (A.1lkﬂéjek (1979, p,189), for cvery
6:(@ and heR® the functions +t — ” 2(e+t6 h), 1¢igage

are absolutely continuous in the interval (a,b) for Pe’j_1>(Mj

alnogt all (X1,,,,,Xj), Hence we can write for Pg,j_1 Xiﬂj

aliost all (G, %), for all heR® and 6:(®

t
1/2 ' 1/2 _ 1 L
fj (9+t25nh) - (e+t 5 h) =5 j h 5n§,j(e+wnh)dt
1
1

for every t, and 1.72 such th:::.t a<ty <t,<b, Honce

Do {e1/2 1/2
j:1h[[;fj (96, - £3/2(8) -  n't (o) [Pan, ]

fai

1 i 1 i N ? .
= - {f! { h z, (6+15 h) - .j(e)j'dt[ 'c;psj}
O .
< -} "f dtj}hé [a(e-rtﬁh)- (e)]gdu/};
r 321 O ’
< 7 . sup E{f{h an[ gj(e@anh) - gj(eo)]‘? dud\,

Lt¢1

—> 0 by (4,9),
The proof is complete,
Rencrk, In connection with the above result it should be nen-
tioned here that LeCan (1974b) has given sone results, based on
Lugin®s (N) - condition (cf, Hewitt and Stromberg (1965, »,288))
ingtead of absolute continuity, which are applicable to nore
general situvationsy LeCan's argunents are restricted to the i,i,ad
casc but the abeve discussion shows that his arguncnts are appli-

cable to the general case also,
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CHAPTER 3

SOME RESULTS coNCBRmNG THE INVARI'NCE
OF THE POSSIBLE LIMITS OF DISTRIBUTIONS

1, INTRODUCTION

The purpcsc of thﬁs chaptor is to present two reoulis

concerning certain types of invariance of 1linit distributions,

a very detailed and deep discussions on the invariance of +the
20os8ible linits of experiments and distributions can be found

in LeCan (1974, Ch,11 and 1979,Ch,8), The first result of the
present chapter is a related, but different,‘version, and the
sccond one is a strongthened forn, of an invariance résult given
in IeCan (1979, Ch,8), These invariance results of LeCan look

S0 sinple and innocent, but their power appears to be renarkably

surprising, as is seen from the applications given in Chapters

4,5 and 6, One can also sce that the basic ideas of these
invaviance results are implicit in the proof of Thecoren (4,1) of
TeCan (1960) . Another paper where appropriate rescaling nroccdure

h#s been enployed and then the idea of invariance in soric sense

vas used is Bahadur (1964)

‘In Section 2 we first introduce some basic“terﬁinologies
nceded to state the results and then state our results, DIProofs

of the results are presented in Section 3.
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2 STATEMENTS OF THE RESULTS

»

Iet G(Bq) be the space of all sub-stochastic neasures
on %, 8% being the Borel o-field on RYq>1, et (§,T,v)
s a o-Tinite neasure space, Consider the (sub-stochagiic}
kernels P o; § —> G(gq). Tet C,, be the space of continuous
furetions vanishing outside cormpacts, Define 00 BD & ‘J(V)
topology of the set of all kernels to be the snallest topology

such that all functions
P> (!f(x)?(t)(dx)g(t)v(dt}
3 _

feC gaL1(v), are continuous; this topology was introduced in
LeCan (1973), It is known that the ‘set of all kernels endowed
vith this topolo y is Deterlzable and cormpact 'a proof can be

found in IeCam (1979, Ch 8),

Y'e now state the results of this chapter, In what follous
LA ¢ '
/"3 denotes the Lebesgue neasure,

k

Theoren 1, Tet (I be a ncasurable Subsct of R Let {Fﬁ}

bc a sequence of kernels F (e,h) =F (D ><R“ —> G(gq),

6+35 n n-
where {én}'is a scquence of p,d, matrlces such that |[o, || —> O,
Men the following two staterents hold, |

(i) The sequence € —> Fn(G,h),heRk,nZ_T, is Céo(RQQ(EQIﬂ(ﬂk)
convergent to a kernel F(8,h) . if and only if fhe=sequ3nce-t

§ = 7,(6,0 ,n21, is O ®DRL (W)  convergent to tio
kernel F(e,0) = F(6),
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(ii) The kerncl F(6,h) satisfies the invariance condition

[ [ £r© @g@ e = [ [ £GP, n) () c(8) i (a
(D r¢ @ 9

} k
for cvery fsCoo,geIﬂ(ui) and heR",

theoren 2, Assume that (B and the sequences.(Fn} and {Ga}

are as in the above Theoren 1, Then the following two statenents

(1) The sequence (8,h) —> F_(8,h+u), n)1,ueRE, is
Coo(Rq)®L1 (Mk()@uk) convergent to a kernel F(8,h+u) if and
only if the sequence 6 —> F (6,00,n>1, is Coo(Rq)@lﬁ(ﬂk)

convergent to a kernel K(8),
(1i) ILet F(6,h*u) and K(6) be as above, Then

J [ [ £GP, new) (a0 g ) (anyn (o) (a6)

(B R* R4 |
= [ gukan [ £@R® (@0n(e) % (a0)
R (D 're

for cvery g,meL, ) y,feC o and wue Rk.

The following invariance result presented in ILeCan (1979,
Ch,8) and Strasser (1978) follows fron the above Theorcn 2,
Theoren 3, Assune that () and the sequences Y/Fn\’ and {6n}
- arc as in Theoren 1, Then the following two statenents hold,
(i} The sequence (e,h) — Fn(e,h+u),n_>_1,u;Rk, is
Coo (Rq)(??_z)l'.;.l (/Jk(_f_x)uzk) convergent to a kernel F(6,h+u) if and
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;- respectively,  For sinplicity .assume that (H) =R and q=k =1

- A9 _

only if the sequence (8,h) —> F (8,h),n)> 1, is COO(RQ}QEE
IW(H‘CX)Mx) convergent to the kernel F{e,h),

(ii) The kernel T(8,h+u) satisfies the invariance condition

[ £G)P6,h+w (a0 g () 25 (an)n (8) 45 (39)

./ J
M ¥ g%
=/ /“ [ £(x)P(Q,h) (ax) g(h) & (an)n(e) (ae)
(H) RE q
fox overy g,11¢e 141 (/-1;{) ,fe Coo and uce Rk.

Z, "TROOFS OF THE RESULTS

Proof of the Theoren 1, To prove the result it is cnougn e

coau+tgr‘ subscqugncu {rj.( [n? such that both the scquenees
8 —> F,(8,h),r3>1,hc R, and 6 —> F_(6,0),r3 1, arc -
OO(RQ)(EbIﬂ(UK)' convergent to.some kernels F(8,h) and F{e)

How note that-

+ . v 1t *6 h

7- N o -
JE@F_ (8, (a0)u(de) = f [ £(07F, (e, 0 (ax) ()
t, 'R | o
1 t1+5 h R
for cvery ty,%,heR, 8, < t, and fe Cyge Hemce the differcnce
t2 : ST t
{27 _(6,h) (ax)u(as) - / £(x)F,(8,0) (ax)4(as)

is absolutely bounded by
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Cu([ty,to] (L ty,1,] + 5.h)) (for some C> 0
£ €28 |h] = 0 as n—> o,

Mcnece we have

t t |

2 2

[ / £(x) F(8,h) (dx)14(a8) = [ / £ (x) F(8) (dx)4(de)
t1 R t1 R

for cvery t;,t,cR and fe Coo »

This inplies

[ £rce,m (@0 = [ 2@ @0 a5 [ Iebesgue]
R | R

for every heR and feC o This proves the result,

0.

Troof of the Theorem 2, To prove the result it is enough o

consider a subsequence {r} (; {n} such that the sequence

(8,n) —> F_(0,h+w ,r}_‘!',uaRk, is ¢ R RIL, RS conver~
gent to a kernel F(8,h+u), and the sequence 6 —> F (8,0),r21,
is C  (RD (R L, (“)  converg:ont to a kernel- K(8), For sinpli-
city assume that (H) = Bk, k=q=1, As in the proof of Theoren 1,
the proof will follow if we show the‘xt the difference

t

2
{ [/:f(x)Fr(9,h+u)_(dx)g(h)#(dh)#(d@)n
%, RR ' g

%

2
- fg(h)u(dh)[ [ £GP, (8,00 (ax)1(as)
R t1 ‘R e
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converges to zero for every ty,t,,ueR,t,;<t,,ge L, (¥} and
fe Coo s To show this it is enough to show that the diffcrence
i ' b2
' !

j ‘;'f(x)Fr(e,t)(dx)u(de) - /f‘f(x)Fr(e,o)(dx)u(de)

g )/

h1 R | t1 R
converges to gero for every t1,t2,ts:R,t1<'t2 and fe Coo-
This is proved in the proof of Theorem 1, Hence the proof is

conplete,
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CHAPTER 4

ASYMPTOTIC DI1FFERTUNTIABILITY OF T
10G-LIKEL1HOOD RATIOS AND THE IAMN EXPERIMENTS

1, INTRODUCTION

TeCan (1960) has shown that a certain kind 6f asynptotic
differentiability of the log-likelihood ratios together with the
contiguity condition implies that the linit distribution of the
suitably normalised log-likelihood function is nornal, A remark-
- able thing to be noted'here is that the asymptotic normality
occur through an argunent which has nothing to do with sums of
iﬁdependent randon variables or rartingale differences, It is
the purpose of this chapter to extend and strenéthen this and
other related results of ILeCam to a situation where the linit of

the experiments turns out to be a mixed normal experiment.

More specifically, in his definition of asymptotic dif-
Terentiability, LeCan assumed that the sequence of nornalised
log-likelihood ratios is approxirated, with probability tending
to one, by the sum of two expressions, the first one being a
seauence of randonm linear functions of the norrmalised parancter
and the second one being a non-randon function of the norralised

. Chapter .
paraneter, In this pewser we assune that this second expression

/4

is also a sequence of random functionsof the nornalised paraneter

and then we first establish (Theoren 1) that the limit distribu-


http://www.cvisiontech.com

- 53 _

tion, when it exists, is a nmixed normal for almost all points
of the paranmeter space, Secondly we establish (Theoren 2}, with-
out assuning the existence o. the linit disuribution, the log-

likelihood ratios converge in the weak topology introduced

in Ch, 3 to a mixed nornal distribution; though the convergence
stated here is very much weaker than the convergence stated in
Tacoren 1, Theoren 1 actually follows from this result and it

appears that this result is more inportant than Theorern 1, In®

3

f=e

the speccial case when the second expression mentioned‘abovc
assuned to be a non-random function of the normalised parancter,
it is possible to obtain the convergence stated in Theoren 1

wter the assumptions of Theorer 2 (see‘the renark following_ﬁhis
theoren 2) 5 thus the conciusion of Theorem‘4.% of LeCar (1960’
holds even when the existancé of the limit distribution is'noﬁ
agswied, Thirdly we establish (Theoren 3) that, when the éécond
cxpression nentioned above is a sequence of raﬁdom guadrasgic

forms of the normalised. para~eter and when the sequence of yandon
natrices of this quadratic forms-satisfies a certain invariance
condition; the limit distribution is a nixed normal for all points
of the parameter space, | It nay be mentioned here that the con-
tiguity condition plays a crucial role in establishing all these

results,
Our approximation of the 1og-likelih90q_rai19§,'stated in
section 2, is slightly weaker than the one assumed in ILeCan (1960),

and therefore we will have to further assurie fhat tha vandon
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cuantities involved in the approximation are jointly ncasurabl:

in the obscrvations and the paraneter, and that the given scguronce

of fanily of probability neasurcs are reasurable in a cerde n

¢nse, In Section 4 it is shown that thosc neasurability restric-

vions can be ronoved when the approxination of the log-Llilelihood

ratios is analogous'to‘the onc assumed in LeCan (1960)
Assumptions and the main results are state& in Section 2

and the proofs of the main results are presentcad in Section 3.

This chaptier is the revised version of Jeganathan
e
(19794d); after the completion of this'(m we cane to know of a

related work Davies (1979) which contains a version of the third

rcsult (Theorem 3) of the present paper,

2 ASSUMPTIONS AID THE MAIN RESUITS

Let E = /Lz_xn , A-:n Pe n e (H)} n>1, be a scquence of
experinents ; through out this chapter it will be assuned, without

Turther nentioning, that (I is an open subset of RY %> 1

Notations of Ch,1 arc assumed in this chapter,

s s . : : — ’ ) ‘_
Definition, A sequence of experiments B = ifn , én ’ Pe . 6: (I IfL
a2 1, will be called asymptotically diffcrentiable on (_}_1_, if the
following six assunptions arc satisfied,

£ n

{(A,1) The functions 6 — Py (A) AelA,n>1, are Borel

necasurable,

(A,2) Therc exis xsgnx

licd
~

-measurable functions W (- *) +3 £, X 630)

1r

Ty4N > A g - . T\ — o o SIS PDECOmMDEE
) s an. A‘Il‘,}: , \) & Zn ‘1 ATA_' "",\‘ =0 P ,ll;tl 9 'Lb.'v;.; LIsA & Ulre
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diffcrence
dP
9+5nh,n

37 - exp[h W (8) - & (m&) . |

o,n

converges to zero in Pg p— probability fer every hs;RI“ and
?
8:(I), where {én“}, is a sequence of positive definite (p,d,)

natrices such that H'Gn!l —> 0 a8 n=—>

‘ } are contiguous for
S

A 3) ; squences K 5 nd {7
(4,3) The sequenc {P6+°nh,n}' and {f@

cvery heRF and e (.

(4,4} For every ©e(@), there exist a randon function h —> A(h,®)

o
3
=

~

& randon vector W(®) defined on some probability space

o~
-

-

i)

", ?\9) such that for every finite {hi s i=1 ,2,“,,11}
£(h,n(e) ’An(hi’e) ’i = 1 ’27 s e ,m!Pe,n)

=> Z (8 ,A(h,,8),i=1,2, mirg),

LE N

(A,53 For cvery 6c(I), there exists a set NgeE of ‘?\e-zzeasure
zero such that the functions h —> A(h,é) are continuous for all

points outside the sct Ny .

(4,6) For every s,heR™ and 0e(®), the difference

A (h,8+6 8) - A (n,6)

convér'ges to zero in. Py - probability,
b4

Ihcorem 1, Suppose that the. sequence {E_‘_n\, . of eicperimen‘ts
4

satisfics the conditions .(A 1) - (4 ,6), Then therc are A X ;;lk—
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neasurable k-vectors )’n(G) and positive semi-definite (p.s.d))

k Xk mnatrices T (6), n>1, P X I__?_!l' -neasurable k-vector 7(6}

amd a p,s, 8, k Xk natrix T(6), and a Ieuvasgue null sci

¥ (C (M such that for every ©c(A) - N

(1) the differcnce
1 ‘I 1.
A _(n,0) —.I:,h Y,;(8) "z n T (8)h]
coaverges to zgro in Pgy - probability, and

i) DyJ'(wn'(e).,);l(e) Tn(® [P )

. = L'z +(e),7(8),2(8) [

vhere 7 is e copy of the standard k-variate nornal distridbution

independent. of both Y(@) and T(6),

Covollary  Suppose that the sequence {Enl satisfics the condi-
=

tions (4,1) - (A,6), Further assune that /(W(8),A(n,,e), 1=

1,2,...,0lxy) is & continuous function of & for every finitec

{hi ;i=1,2, ,.,m}_, Then thz staterents (i) and (ii) of Theoren 1

hold for every 6c(H),

Theoren 2, Suppose that the sigquence {En} of -experinenis

Setisfies, in addition to the conditions (A,1)-(k 3),(A 5} and
: (4.6), the condition

(A_4") for every finite {hi . i=1,2,___,;:1} and € () ¢
o O‘gf,’(ﬁn(hi,e) ol =1,2,___,m|Pg’n)

< i == okf(A(.hi,Q)_ gl e 1 i)

s mu?

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressc
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Lot the random functions ¥, (8),T (8),n21,Y(8) and T(8, %e

an in Theorem 1, Then

(i) there exists a Iebesguec mull set ¥ (L (B suckh what for

cvery e (), the difference
S 1 v
£,(8,8 - [hY (& +5n1 (On]

O.,n

covrerges to zero in T probability, and
b4 .

<

{(iiy +the scquence Czifwn(@),Y(Q),Tn(e)lPe,n) is

2%k K ‘ |
Coo(R ) (X L, (") convergent to the stochastic kernel
T2 ()74 Y(6),¥(6),1(8) )

Note that in Thearen 2, the cxistence of the linit distri-

bution of the sequence .{Wn(eﬁ}-is not assuned,

idenark, In the special case when A _(h,8) =A(h,8) for every

n>1 where the function h —> A(h,8) is non randon, it is

Cagy to see diréctly from (i) of Theorem 2 that there oxists

a Lebesgne null set N (C (' such that for every &e(@-N
“z?(wn(e)[PQ,n) converges weakly to the k-variate normal (is—

tribution with nean vector Y(8) and covariance matrix T(8) ,

Theoren 3, Assume that, for, Gos:(g),

(1) the assumption (A 1) of Def,1 of Ch,1 is statisfied,
(i) there exists an almost surcly D,S

that

d, matrix T(8)) such

d‘lj(mﬁ(eo:);[%,n) = A CICI
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= S

Thon the sequence of experiments { L;n} satisfies the IAMI

condition at =8 ¢ (B if and only if

(2ii) ‘the sequences {I’eo'n} and {'—'gxanh’n} 21, are

contiguous for evoery heRk, and

(iv) *"E-D‘(Tn(eo)we_'rah A== _f(’l‘(eo)). for every heR”
' 0 n 8

PROOFS OF THE RESULTS

Wote that the theorenm 1 actually follows from Thacoren 2_
However we will present the proof of Theorem 1 only for %he
following reasons, Firstly the proofs of both the theorens ave
cssentially identical, Secondly the argunents in the proof of

Tacoren 1 are nore transparent and notationally less cunbersone,

- We will assume in what follows, for the sake of sinplicaiy
only, that dim(E) =1, The proof of thc next lemma is based on

tic proposition 1 of IeCam (1974, Ch 11},

Iemnia 1, Suppose that the assumptions of T zorem 1 are satisficd,
Than there exist random veriadbles Y(9) and T(e), ‘and a Iebesgue

aull set N (C (B) such that

A(r,®) = V() +5 K°T(®)  as

for every heR and 8e(H) - N,
2roof, Denote, for s,heR and 8¢ (B,

%Fo45 h,h
I oflel W sppe— -
n G+5ns,n
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Further, the vector whose elenents are An(s,G),An(h,G),
G A (s%0,0),4 (h+1,0) and A (3B +u,0) will be

denoted by Vh(s,h,u,e), an. the vector whose elements are

1 (s,8),4(n,8) ,A(2 ) ,8) ,A(s*u,0) ,A(h+u,8) and A(h +u,8) will

be denoted by V(s,b,u,e), In view of the statenent (6) of
Theorem 2,1 of LeCam {1960), it follows from the given conditions

that

/XZ(V (s,h,u 9,7 %8, n (h+w|s* w)]P9+6 _(s+) n)

daG
=> Déﬁ(v(s h,u,®), dG—e&mlG

) (4.1)
8,s+w

o, s+w
 for every €c(H) and s,h,u,w:R, where
aGg = exp[ hW(8) - A(h,8)] dAg s heR ;

(llote that in view of the condiguity condition Gg y, isa
probability nmeasure for every ©ec(H) and “heR,) Further, the
" condition (A 6) and the invariance theoren 1 of Ch, 3 implies

that both the sequences

and

(g(vn(s,h,u,e) , Z_e’.n(h+w |s+w) |P )

78+6 (s+w) ,n

are 000(37)(29L1(9) convergent to a same kernel for every

8,h,u,weR, Hence, this fact together with (4,1) inplies that,
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for every s,h,u,weR, there exists a Lebesgue null set N(s,h,u,w)

possibly depending on (s,h,u,w) such that

< (v(s,h,u,8 ety g
' T gry | Or8tU
= 9 h A
C{;(V(w h,u G), EE_T; ]GG,S) (4,2)

vhencver ©e¢(d) -N(s,h,u,w), Iet D be the set of all points

A . ' o
in R" with rational co-ordinates, and let N= LTl (s, h,u,w
(s,h,m,w)eD

Then it follows that, whenever 8c(E) -N, the equality in the
cxpression (4,2) holds for every (s,h,u,w)eD, In particular it

easily follows that, for every (s,h,u,w)eD and 6e(® -1,

A dGG h+u G s+u d dG .S =z
E a.s (A3

dG

V< =1 a,s | (4,4)
G

wvhere E°  denotes the condi.ional expectat.on given V(s,h,u,®)
with the underlying probability Spacé being (g, E,2y). In what
follows assume that © ¢ (I -N is fixed, Since we have, as is

easiiy checked using (4,4),

log EV. [ 869 h+u 9%g s+u
g ahg

= - 5 [A(s+0,8) +A(n+0,0) - 22 (32 + 4,0)]
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rationals
for every/s,h,ueR, it follows from (4,3) that for every rationals

syh,u,eR

£{s+0,8) +A(h+u,8) - (BB «y 0

4
= A(s,8) +A(n,0) -2a(Z @) a_s,

Hence in view of the condition (4,5) there exists a set of

xe-méasure zero such that outside this null set

y

A(s+,9) +A(n+ru,8) - 24(8 + y,0)
= 4(s,0) +A(n,®) - 248 0

for every s,h,ueR, i,e,, the random function h - A(h 6) ‘has
constant second differences out31de a set of he-measure ZCIT0,
This inplies that there cxist randon varlables 7(6) and T (0)
such that, (note that. 4(0,8) =0 a.,s.), o

A(n,®) h)'(e) + %— n°1(8) a.s

for every Ge(H)- N, This’campletes the proaf of the lema,;

Proof of Theoren 1 Rirst 1ate that for aluo t all (h) T(G) is

the second difference of the random functlon h —~> A(h,8) at
h=0 and that Y(8) can be expressed in terms of the first and
secénd differences of the function h —> A(h,®) at h =

Hence it follows from the relation (4,4) and Lenma 1 together
with a simple continuity argumeni that thefé-exists é Lebesgue

nll set N (C () such that - D §

g ®,TO) = o yice)] = exp [hY(®) +_12_ n21(e)]  a.s,

[ 4 L 4
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for every heR and ®©e(H) -N_, Hence it follows that W(8) is

T1/2(O)Z + Y(®) where Z is a copy of the

distributed as
standarc nornal distributior independent of both Y(8) and T(8),
Now let T (6) be the second difference of h —> A (h,0) at
h=0, Gav(I_J—L_.) 0127, and Gefine ) (6) sinilarly, This T (8) need
not be non-negative, but this can be easily remedied sincc T(O)

is non-negative, This completes the proof of Thecoren 1,

frcof of Theorem 3, The proof of the necessary part follows from

Lermas 1 and 2 of Ch,:1, To prove the sufficiency part, first
note that, in view of the statement (4) of Theoren 2,1 of LeCan

1/2

(1960), the sequence {T (eo)wn(eo),Tn(eo)} is relatively

conpact for the sequence {Pe n? Hence for every sub-éequence
o,
there exists a further sub-sequence {m}( tn} and a randon

vector (T ,W) such that

SACHCRE V“(e W87 ) = 2@,

In view ~f the statement (6) of Theorem (2,1) of LeCam (1960) we

then have from the statement (iii), that
SACRIERNCIC TN | (4.5)

for every heR, where the probability measure Rh is defined by

R = exp(hW—% tHa &' ,w .

In particular (1,5) implies that

Cexp(nw)] = exp(% nor')
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and hence

]

B[ exp(itT + iu) 7] E[exp(iw'.. %— uET']

| . 1 2

E[ exp(itT(8) - 5 u T(GO)]
This proves the sufficicney part,

SECTION 4 |,

The purpose of this section‘is 4o show that, under a
condition which is slightly stronger than (4_2), the joint
neasurability of W _(8) andr A (h,®),n>1, can be removed in
both the theorems 1 and 2 and further that the condition (A,1)
can be removed in Theoren 1, Consider the following condition

(4,2") There exist L - measurable functions W (8),4 (h,8),n21,

heRX,6c (D such that the difference

Pg+5 p_,n ’ N
’ .

converges to zero in Py n Jrobability for every bounded
9 ’ .
sequence {FT:} of RX and that the difference
An(hn, e) -— An(hn, 9)
converges to gero for every sequence {?Hi} of Rk satisfying
* . .
ln, - h | —> 0, where the sequence g{GhE,.of p.d, matrices is

such that || s Il = o,

Lenra 2, Suppose that the conditions (A,2'):and (4,3) are
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safisfied, Thenthe quantity

Il P - P | —> o | (4.6

8+6 h ,n 6+6 nipeh

for every bounded sequences.{h ),and {h ),of Rk satisfying
lhq-—a | —> o0,

Proof, It is casy tc see thaf‘the given conditions entails that

the sequences (P ' (P s \ and {? % are conbi-
qu {anhn,n} » 3 Fovo_nx n} on’

guous, and hence we can assume without loss of generality that

P ~P ~P

o+5 ﬂ. n ~ g ,n — for every B¢ (ﬂ) and n21 , wvihcre

6+6 h*
the oymbol ~ denotes the mutual absolute continuity,

Sect, for every heRk, 6e(M and n) 1,

4Pg45_n,n
h) = _._n'__ .

Za
e,n dP
! o,n

Now note that the differcnce

e,n(hn) | 4,7

ZG,n(hn) -z
converges to zero in Py , Drobability for every 6e(H,
? .

lext note that

f Zg n(h )dPe 2= Poss oL 12g A 1> a’]
nn’" "

{’Ze A a}

and hence, in view of contiguity,

1in linsup } Zg (b )dPe =0, (4,8
T n'_>°°{lzen(h)}>fr}
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Sinilarly

-

7
lin llmsup J Zg n(hn)dPe =0 (4,9
@ =D pn —> {’Ze (h%),)a*

9
ffow corbining (4,7),(4.8) ang (4,9) we nave
,)(lze’n(h ) - 2o (0} )ldP n—> 0,

Hence the proof of the lermg is complete.

Proposition_ Suppose that the sequence{ B \ of experinents
satisfies the conditiong- (A,2'), (4,3), (A.5) and (A,6) and the
condition (A 4")of TheOrem 2, ' Then there exist A XIg = measur-
able functions W (9 ¢ X X(E — R ang 4 X B X B1 - Lieasur-

oble functions A n®9) 1 L X F*X® —> R,n> 1, such tmt

(i)  the condition (A,2%) is Satlsiled with the functions
i_(8) A ( W (8) and A¥(m.e) .
i and A h,Q) are replaced by W (8) an a8 res-

pectively,
(11)  for every heRF apg 8 (@, the dif erences

| k
*
A (h,0) - [An(h,e) - ii1.hiAn(ei,6)]

LIS L] k )
hw (8) - [n W, (8) - ii‘! hiA (e.,9)]

9

converges to zero in PQ n = Probability where ¥§i.:j'31’2’°°°’k}'
is a basis of RX am h;'s are such that h =
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v(iii) for every & > 0, h»st and ge L 04 )

, fx[ ;A (s 8+5 h) - A" (s 9> e] APy, s A, LB(8)as
@M x

- =n
—> 0 (4,10

and (iv) the condition (A,5) is satisficd for the corresponding

, . ok ,
1linit of the seqaence%.An(h,GX} .

Remerk, Wote that the above condition (4,10) is weaker than
the condition (A.6); but what we have really used in the proof
of Theorenm 1 is the above condition (4,10), It is possible %o
show, under the éondition (A,4) vhich is stronger than the
condition (4,4') of Theerem 2, that there exists a lebessue
ndll set N (C (D  such that the condition (A 6) is satisficd
for the sequence‘{%;(h,e)}~’whenevcr 8c(H) - N3 the proof of
this Statement will not be presented here though the argunents

of the proof seem to be somewhat non-trivial,

froof  Iet E -% - ﬁr’ 6 nt es(")lfbe a sgquence of experi-
nents saiisfying the stateme ts (1) - (iv) £ Ierma 3 of Ch,T:
& construction of such = sequence exists since, in viecw of

Lerma 2, the condition(*) of Lomma 3 of Ch,1 is satisfiecd,

Lot {e351=1,2,,,.,k%be a basis of R, Define W_(8) vy

(V]

k - _
LS *
hw (&) = 121 hy jﬁ\n(e+5n

)

o k
where h;"s are such that h = = hie l,llaRk and

i=1
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*
- os5 n,6 .
/\n(®+6nh,6) = log — — .« Yoy define A (h,8) by
dPe,n
AT (h,8) = n'vte) - Ao )
n'Bs =h dn - n( *6,h,9) |

1% is clear from the statements (i1) and (iv) of.Lomma 5 of Ch,1,
that the condition (4,2') is satisfied with the functions i, (8)
and A (h,8) are replaced by W;(e) and A;(h,@) respectively
and that the functions wi(@) and A;(h,é) are jointly neasur—

able, Now note that

* L *
A (h,8) = pn W (8) - ,/‘kn(emnh,e)
k
= % h, /‘\ (8+6 ¢, ,0) - AT (e+5h9)
i=1

and, in view of the statcment (iv) of Lemme 3 of Ch,1, this can

be approximated with Pe -probablllty tending to one by

k
A (h,8) - £ n, i*n(e4,9), Hence the statements (ii) and (iv)

follows, Now note that, sir. e for every s 3 and 8e (1D
*
_;ﬁgn(e+ans,e) - exp[:s'wn(e) - 4 (5,0)7]

coaverges to zero in Pq n~ Probability, the invariance thecoren 1
?

of Ch,3 and the condition (A,6) inmplies that, for every &> 0

9

h, Senk and geL (Uk)
/ fIE I n(9+6n(s+h) ,6+6 h) - [ S'W,(8+5 h) A (5,8)] |> ]

dPe+6nh,ng(9)dG —> 0 (4,11)
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How, writing s =

[T

*
A,(s,0+6 h) =

8 /N, (846 (e +h) ,8+5 _h)

*
1 R n
- |
- /“\n(e+an(s+h),efanh)

and hence the statement (iii) follows by using (4,11) and the

statoment (ii), This completes the proof of the proposition,
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CHAPTER 5

CONDITIONAL DECOMPCSITION OF THE IIMIT
DISTRIBUTION AND SOME APPLICATIONS

1 INTRODUCTION

When the sequense of experirents satisfies the IAN
condition, Hajek (1970) has established a basic result that the
linit distribution, when it is invariant in the linit in sone
sense, of a sequence of estlnators can be decomposed as a con-
volution for all points of the paraneter space, Independently,
this result was also essentialiy obtained by Inagaki (1970) under
restrictive assumptions. LeCam (1972) has extended Haéjek's con-
volution result to a much nore general sequence of experinents
than that of IAN experiments, Furthermore, IeCan (1973), while
discussing certain results concerning the possible invariance of
the linmits of exXperinents, pointed out that Héjek's convolution
result caxn be obtained,without assuning the cbove mentioned
invariance restriction for almost all points of the paraneter
space ¢ 1t 1s inmportant to note here that the usual exanples
(see, e, g, LeCan (1953)) show that the invariance restriction
cammot be relaxed if one tries to establish such a convolution

result for all points of the parameter: space,

In this chapter we first show that, when the sequence of

erperinents satisfies the IAMN condltlon a condltlonal convolution
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result holds for any convergent subsequence of estinators under
& certain type of invariance restriction; this result extonds
aad strengthens the convolut.on result of Hajek (1970), Sccondl
wc show that, without assuning the invariance restriction, the
1init distribution of any convergent subsequence of estinators
cun be conditionally deconmposed as a Bonvolution for alnmost 2ll

-points of the paraneter space,

The ideas of our proof are based on Bickel's sinple short
proof of HAajeKs convolution theoren (see Roussas (1972) for the

published version of Bickel's proof )

We would like to nention that it is possible to deduce
) fov the LAN cade,s
Hajek's convolution result, without the invariance restriction,

for alnost all points of tﬂi paraneter space from Corollary 2 of
Strasser (1978), However, Strasser requires, in addition to the
IAN condition, a strong restriction concerning the existence of
ACS estimators, (This restriction can be easily removed if one
uses Lerma 5 of Ch,1 in the arguments of his proof), Furthernore
Strasser (1978) uses the invariance theorem 3 of Ch,3 to get the

conclusion of his result, but it appears that one has to use the

stronger result, Theorem 2 of Ch,3,

Results are stated in Section 2, and the proofs of the
results are presented in Section 3. By applying our conditional
convolution results we deduce several results concerning the

asynptotic lower bounds for risk functions ; one of these results
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clarifies some of the statements made earlier by Heyde (1978).

This chapter is a revised version of Jeganathan (197%9cand Sec.3 of
| | 197%).
2 STATEMENTS OF THE MAIN RESULTS

*

In addition to the notations of Ch,1, « denotes the

Lebesgue measure and C_OO(Rq.),qz_T, denotes the set of all con-

tinuous functions vepishing outside conpacts,

Let {rx.(:,{p}, be a subsequence and Hg be a (sub-
Sl G 5

stochastic) rmeasure such that

2 =1 ===
o,\j(tﬂr(eo),ar (V,-8) IPGO,r) > Hy

o
Let OZ?S be the law of T(@O) and let RS be oneupoini:com,
ol

pactification of RX. Define

T{GOCBX{M}) = "%éo(B) - HGO<B><‘ R

and

HS (BX 4) = HG (Bx 1)
0 0
for cvery Borel sets B (C R® and A (_R", Then Hg is a
- - o

2 -~
probability measure defined on RX X BX induced by H Let

— %

@y?m(e ) be a regular conditional probability measure (on Rk)
o

N

such that

o (@ = [1(0) ) (ax) %eo(w

———"

| - % Tk
for every Borel set C (T R™ XR" .,
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Theoren 1. Suppose that the sequence.{ﬂnﬁy of experiments
Iheoren 1 B |
satisfies the IAMN-condition at © = 6_ = (B, Let { VI,} be a

sequence of estimators such wnat the difference

A2, -1
oG LT (8),6, (V -6 -5 h)) 'P90+5nh’nj

“ 5 ), 5] ,
- [f(Tn(eg),Gn (v,-8,.)) ’Peo,nj
_ °
converges to zero for cvery heRE ond fe COO(Rk +k).

—_—

Let the recgular conditional probability measure OE?T(GO)

" Ll ] J - i i ‘)
be as above and let &Z/T(eo) be the restriction of CQfT(GO)

to Rk. Then there exists a (sub-strochustic) kernel KT(G )
S0

such that
- T "1
b?im(ec) = Kp(e ) MO, T (8,0

The following familier version, in which the existonce of
he linit distribution is assumed, is irmediate from the above

theoren 1,

Corollary 1. Suppose that the sequenceé:gﬁ} satisfics the LAMN
condition at e=£eo. Let_{ﬁ&£}~be a sequence of estimators such

that, for every he:Rk,

o, (8,621 (v -8 _-5_n 2 0 n,m = ol ((8 ), 7(8 )

for some random k-vector V(6,). Let CX?T(GO) be a
regular conditional probability neasure of V(8)) given T(@O).
Merne

’l‘henA cxists a stochastic kernecl Ko (e ) such that

\ﬁx‘,{’,‘,(n y = Kepp o\ ¥ N(O,T—i(e‘)),
LS -O‘ \.o‘- 7
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Now assume that the zssumptions of Thecrem 2 below are satis-
fied and hence we can further assune, without loss of generaiity, Shiat

the funections .‘51711(9),’1‘11(9) are jointly measuravle(see Lemmas 4 and 3
of Chapter 1).

8]

- a\ — / ‘\ . .
Let Jry (_ In} Dbe a subsequence and Hy be

(sub~stochastic) kernel such that the segquence &?(Tn(g) ,
5 .
-1 s . ’Qk +k . k N PR 4
&5 (V,~8) lPe,n) is ¢, @ ) (R T conv;g.%bnt to H
. <

6 .
k

= Sk
Define, as above, the stochastic kernel Hy on R XR" induced

by Hg. Let %}T(e) be a stochastic kernel (on RE) such that
- _ E p 7
Hg(0) = | 1(0) g (ax) ofp(at)

2 -

% RE

L)

for every 8¢ () and for every Borel set ¢ (C RE

Theorem 2, Suppose that the. Sunence of experinents {gn} satis—
fics the IAMN-condition for AX-alrost all 6 (B), Purther
assune that the functions 6 — Pe,n(A) Ahed nd> 'z:r'e T_._:sk-
neasurable and that the randon functi‘ons_/\n(e-rsnh,e),h 2 R, are
4 X }ék-measurablef ‘Tet the kernel O%—ET(G) be as above and let
;«%T(@) be the resi_;rricticn : :%T (6) ‘.to- ,{k. Then there exists
& Iebesgue null set N (_ (B and & (sub-stochastic) kerncl K1 (g)

such that
(o)™ Kp(e)*M(O,T7 ()

for every Q¢ (I -1,

Corollery 2,  Suppose that the é.ssumptions of the above Theoren 2

are satisfied, Iet | vn} be & Sequence of estimators such that

for everv A () |
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| — O
<W(Tn(e),an (V,-9) {Pe,n) => o5(1(8),V(8))

tor some randon k-vector V(®), For every 9e (B), 1;31: PET(G)
be a regular conditional probability nmeasure of V(8) given
T(8), Then there exists o Tob besgue null set W (C (H) and o

stochastic ke rnel KT(e) such that

N 1) = Kp(ay™H(0,1(8))

for every €& () - N

>, PROOFS OF THE MAIN RESULTS

Before going into the details of the proof of Theoren 2
let us observe that when the neasurability condition of Theoren 2
*
is satisfied, the randon functions Tn(e),nl'l, constructed,

ander the LAMN condition, in Temra 4 will be 4 X B-moasuwrable,

Proof of Theoren 2, Tet. fr} - %n}, be a subsequence and H be
a ?rernc,l such that the sequence ,'“\J(T (8, 6" (v —G)!Pe rﬂf is
(Rk 'Ky (5-<)L ) convergent to Hg, Then according to the
ll’lVQl“l ?ge theoren 1 of Ch,3 and the statements (i) and (ii) of
Lonmn 4/Ch,1 together with the contiguity condition, the scquence
{ L@ (®,67" (v,-0-5_n) !Pe+5rh,r)}, is also Coo(Rk2+k)(Z)L1 (L)
cenvergent to the same kernel He . For simplicity assune that
(D =R, Let f(u,z,x,y) = (et™*_ 1) (e127 1)/ixiy,u,z,x,yeR, Note
thet £(u,z,%x,5) —> 0 as |(x,y)| —> = for every u,zeR, Hence

ve have, setting 6, =86+ 5,h,
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fff(u,z 1.(8), 6 (v -8,))dPy _z(6)de
r’

*_->‘éi£2 £(u,z,%,v)Hg(dt,dv) g(8)as (5,1

for every g(8) ¢ I,(4) and u.gzeR
1 ? .

Now, there exists a subsequence 51:1\7 (— {'r\L and a kernel

Og such that the sequence s((T (9, W (8), 6"1 (V -9) {P N }10

\ .L

C,\O(RB) (_-__>Z)L—1 (#)  convergent to Qg . Without loss of g_encrali‘cy
assune that {n} = {r} . In view of contiguity, we can further

assurie, without loss of generality, that Py n $<CPF for
m’

every n>1,heR and t-alnost all O (E). Hence the 1 h,s, of

S5,n

(5.1) can be written as

L
ff(u z,T () 5‘1(v -8 -—— ap
R X @,I‘ ?

and it is not difficult to see from the TAMN condition +that 'bhis'

converges to

b

2
j/j f(u,z,t (‘r—h))exp(ht1/2w %t )Q@(dt,dw,dv)g(g)de
R R3 . ~
Tor ecvery g(@) e I, () and u,z,heR_ - Hence we see that for
1 ? <y .

every  (u,z,h) e R’ there exists a Lebesgue null sct N(u,z,h),
Possibly depending on (u,z,h), such that

» , ) .
/Qf(u,z,t,v)He(dt,dv) = /Bf(u,z,t, (v-h))exp(nt' /%8 1) o (at, aw, av)
R R | . o (5,2)
for every 6¢ (B) - N(u,z,h) , |
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Define

- . _ | k

QAX BX {=}) = Fg(A X B) - Qg (A XBXR™)
and

Qg(AXBXC) = Q (AXEXO)

- ¥ :
for every Borel sets A (T gK , B(CRF anga ¢ (TgpE

, where Fe

is the law of (T(8),W)_ Then Qg is a probability measure on

Rk Tk

X R™ induced by Qg, ILet the probability measure Hy be

as defined in Section 2, Note that ﬁe and Fg are marginals

— —— ]
of Qg for s-almost all ¢ (B) ; let this exceptional set be N
Now the equality (5,2) can be written as

| S
[f(u,'z,t,v)ﬁe(dt,dv) = [f(u,z,t,(v_h))exp(htvgw_1211:) g (at, dw, av)
/2 3

R
(5.3)
for every 8¢ (H) - N(u,z,h) ,
Let D be the set of all rationals in R° and let
" v —
e U N(a,z,h). Let N =N L N, "hen whenever 8c(D - ¥

(2,2 ,h) D
the equality (5,3) holds for every (u,z,h) eD, liov for every
(u,z,h) € R’ there exists a ‘sequence (um’zm’h*q) e D such that
(%’Zm’hm) —> (u,z,h) as m —> w _ Clearly

[élf(um,zm,t,v)-ﬁe(dt,dv) — j2 f(u,z,t,v)ﬁe(dt,dw) i

R R '

We now show that
W ; 5

£3f(%,zm,t,(v—hm))exp(hm'b / w-%n- t)Qe(dt,dxv,dv)
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converges for every ee:(E)-N to

i
fsf(u,z,t,(v-h)exp(ht” w2 £)Tg(at, v, dv) |

Since
2
‘ 1/2 hm ;
flag,z,,t, (v-h )exp(h t " "w- 5 t) |

ny
< cexp(n_t'/%y- B +) (for some ¢> )

2
it is enough to show that, for every e (H)- , exp(hmt1/»w—-32t)

converges in the first mean to exp(ht 1724 t) ag m —> oo

This easily follows via Scheffe's theorem and from the facts that
2
h 2
exp(h £1/2, - —22 t) —> exp(h‘t1/2w - % t)

‘ag m —> o and

1/2 h; - ~
fzexp(hmt v - 2 DT at,aw,B) = 1
R -.
- 2 H
= ( exp(h‘l:dl /2y - % t)Qg(dt,dW,R)
‘2
R -

for every 8¢ () -N

Thus we see from (5.3) that whemever e (D -U

ff(u,z,t,v)ﬁe(dt,dv% 1im [f(um,z , b, v)H (at, dv)
2 : m =—=> oo
o
= lim f3f(u 22 b, (V-hp Nexp(h t /2w 2 )0 (dt,dw,dv)
m =—>o0

R R
= Js f(u,z,t,(v-h))exp(ht "“w-% t)Qé(dt,dw,dv)
2 .
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for every (u,z,h) eRB. Now this implies (cf, Loéve (1963),p,189)
that whenever 6¢ (H) - N

] exp(iut**izv)ﬁe(dt,dv)

2

‘ : /2 . =
=‘[; exp(iut+iz (v-h)exp(nt' /“w - § )7, (at, av, av)

R (5.4)
£ 3 (/ » condit
or every (u,z,h) ¢R . Let QfT(e) be the regular couditional
probability measure as defined in Section 2, Then (5,4) can be
written as, for every ©¢ () -N ang (u,z,h) ¢ 7,

{ exCiut) [f exp(izy) @] Lqat)

R R

= fexp(iu‘b) ]:)/2 e:\:p(iz_(v‘---h))exp(ht1 /zw—%} +) th(d’*’ dv):f .\

R R .
o5 (dt) (5.5)

P |

for some regular conditional probability measure Q,JT(G), where
o(ooe is the law of T(8), Now a simple continuity argument
shows that (5.5) entails N

J exptizn B 1 ) (aw) :
R

2 vid
=f exp(lz(v—h))exp(h’r /z(e)w—-— T(8) XT(efdw dv) :
R® - (5.6)
for every 6e(@) -N and u,heR, In what follows assume that
O () ~-N and T(8) are fixed, It can be shown that the i'.h.vs.

of (5,6) is analytic in h, Hence we have
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J eyp(lZV) f (av)

i
= ‘g; eXp(lzv+zh)exp(1hT1/-(g)W+ z T(G)) 7& (dw,dv)

for every z,heR, Setting h=5-Tf1ﬁ9)z in this cquality we have

‘[’exp(izv) ;EiT(G)(dV).-
R .

, | — |
= exp(- %T'1(6)22) fgexp[:iz(vaT’1/g(e)w)](ifg(e)(dw,dv)
R ¥ 7

for every z , This proves the result,

Proof of Theorem 1, ' The proof is essentially contained in the

above proof.of Theorem 2,

A SOME APPLICATIONS

[ 4

Iet L be the class of all loss functions £ ¢RX —> R

of the ferm A(0) =0, L(y) = L(|y]) -and A(y) < L(z) if Iy1< 12|

Iet A|BX be a o—finite measure such that A << uk

Let Ly (M)
be the class of all positive integrable functions ln CRk,ﬁ A,
The distribution of T~ '/2<e)w‘ will be deroted by QG-

Proposition 1, Assume that the assumptions of Theoren 2. are

satisfied, Let {?ﬁ} be a sequence of estimators. Then

. -1
liminf -8 8
Limin? { f »((6 (V, - &) ap, b(e)x(d )

> ff «((x)b(e)ﬁe(dx)x(de)
V) o
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for every be L;(h) and [fe L, provided the r ,h, s, of the above

inequality is finite,

Proof . The proof is an fﬂsJ conseqguence of _hv owenm 2

Proposition 2. Assume that the sequence ) EﬂLrof cxXperinents
. : B "'*-/'- :

satisfies the LAMN condition at 9==Goe(E), Let {V%f?be a sequexce
of estimators satisfying the invariance cecnditicn of Theorem 1 _Then

liminf Eg [/{(5"1 (v, -8 \>]> I‘EK(T'1/?(G ) )]

n —>o
for every [Le L, proviaed the‘roh.s‘ of this inequclity is finite,
Proof, The proof is an easy consequence of Theorem 1, ‘

\ The proof of the statement (1) of the following proposition -
is immediate from Corolldfy\1; the proof of the'statement (i1) is
also a éénéeéuence of Corollary 1{?@?% proof of which is»Quite
similar to the proof of the corresponding result under the ILAN-

condition, see, e, g, Roussas (1972, pp, 141-147)

Froposition 3 Assume that the sequence,{E 1 satisfics the TAMN
condltlon at @ o g(_) Let V }.be a seqaehcc cf cstinators

satisfying the 1nvar1ancr condition of COTOlldTV 1, Then'L'
(1) E]:/((-V,(‘e.o)):] > BEL L™ /48]
provided the r Jh,s, of this inequality is finite, and
(ii)  for every qeR¥ and t1,t, >0,
_1/2 o
P[_t<qv(e)<t2]<PL_t1<qT (es <ty ]
provided, for every qcIRk,

P[q'v(eo)gom(eo)j >% and PCaq'v(e ) g 0]TC6 )] 2 & .
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Remark 1. - A-result similar-to-Preposition 2-was earlier obtained
under some specific assumptions and with special reference to
maximum likelihood estimators by Heyde (1978). See also Basawa and
Scott (1979).

Note that in Proposition 1 we have imposed the invariance
: : ‘ -1 o » .
restriction on the sequence.{?n(eo),dn (vn-eoi} , it is enough to
impose the restriction on the sequence<{§;1(jn-eo)}-, see Corollary 1

of the next chapter (Ch.6).

Remark 2. Proposition 1 occur explicitely in the form given here
in Strasser (1978) for the IAN case ; this result seems to be impli-
cit for the IAN case in, for example, LeCam (1973) also since

Theorem 2 was essentially mentioned in this paper for the IAN case.,

Remark 3. Note that the familiar result (IeCam (1953) and Bahadur
(1964)) concerning Fisher's bound for asymptotic variances for
almost all points of the parameter space can be easily deduced from
Corollary 2. A more general rosult 6f Pfanzagl (1970, Theorem 2)
can also be deduced from the Corollary 2 when it is specialised to

~ the IAN case, an analogous_fgsult for the LAMN case canZ%gbdeduced

under appropriate conditions. Extension of Theorem 1 of Pfanzagl

(1970) to the IAMN case can be found in Bhat and Prasad (1978).
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CHAPTER 6

SOME ASYMPTOTIC PROPELTIES OF RISK FUJCTIONS

1. INTRODUCTION

In a fundamental paper LeCam (1953) has obtained some basic
results concerning the asymptotic properties of risk functions,
Txtending and improving the results of IeCam, Hijek (1972) obtaine
when din(H) = 1,"certain asymptotic lower bound (local asymptotic
_ minimaxbresﬁlt) for é certain class of risk functions of estimator:
.ﬁnder.the LAN cdndition; under the same IAN condition Strasser

(1978) has recently obtained certain global asyuptotic properties
of risk functions of estimators, Furthermore, Hijek (1972) and
'Straésef (1978) characterise those estimators whﬁch a;téin these
lower boﬁnds. In two important papersleCam (1972;;Qgiaincd certain
. in a general framework,

extremely general results/concerning local asymptotic minimaxity
and admis»ibility and showed that the aboved ientioned results of
ilAjck may be viewed as special cases of these general resulté;
another important feature ol Iwlow (1)72) i1s that the results were
stated in an approximation framework, i_e,, in terms of certain
distances, The main purpose of this chapter is to obtain analogou
lower bounds,to»characterise those estimators which éttain these
lower bounds and to present some further results concerning the
asymptotic properties of risk functions and posterior approximatio

for the more general ILAMN case,


http://www.cvisiontech.com

- 83 -~

More specifically, in Theorem 1 we present a general
result corcerning the asymptotic lower bound fér risk functions g
4 more familiar result, Corollary 1, follows from this result
undoi the usuwal invariance restriction, Sequences of estinators
which attain the lower bound of Theorem 1 are characterised in
Theorem 2, An important feature of thesé'two}resuits is that
they do not depend on the‘dimensionality restriéfion of the para-

neter space,

In Theorem 3 we present a result; for the IAMN case, which
is an extension of the local asymptotic minimax results of Hijek
(1972) and LeCam (1972 and 1974b) ; this result turns out to be an
irmediate consequence of Theorem 1, In Theoren 4 we prescnt, when

dim(E) = 1, an extension of the uniqueness result of Hijek (1972):
it may be noted here that this unqueness result does not hold when

din(H) > 2 for the reasons explained in IeCam (1972), It may be
further noted here that the uniqueness result of Theorem 2 is
fairly weaker than the uniqueness result of Theorem 4, as is easily

Scen by considering Jémes-steih type estimators,

In Theorems 5 and 6 we present analogous global asynptotic
sroperties of risk functions g actually, we deduce these results
from a general result (Proposition 1) concerning a certain kind of

posterior approximation,

In comnection with Theorems 3 and 4 of this chapter, .the

fdllowing remarks should be made; As we have already renmarked,
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LeCam (1972, 1974b) has obtained some Véry deep and gcnera
results which amount to say the following, It oné is interccted
in proving asymptotic proyerties such as local asynptotic mini-
naxity and admiséibility of experiments, it is just enough to
move the statements for the limit of jhe'experiments and then
thobcorresponding‘limiting staternents fér the sequence of experi-
rents can be concluded from his results, .Thus once  we have proved
nininax and adnissibility vresults for the linit of the LAMN experi.
nent, the conclusions of Theorems 3 and 4 are the consequences of
LeCan's results, since LeCam's results are not restricted to any m
particular form of the limit of the experiments.‘ In the prcsent
chapter, as we have remarked, the proof of Theorem 3 turns out %o

nain
be an immediate consequence of Theoren 1 The/ reason for present

ing a rather complete proof of Theorem 4 is the following, Ounce
the powerful Lemma 6 of Ch,1 is given, it turns out that the proof
of the unique admissibility result for the limit of the TAMN
experiments and the proof of lae local asymptotic adnissibility

result for the TAMN expériments are almost identical,

In connection with Theoren 6;'we would like to remark thot
Strasser (1978), in proving this result for the IAN casc, has

ssuned a strong restriction concerning the existence of ACS

I I B = Ty, ¢ J " L R . ey ey 2 - ’ §0 - P
wapkéssioh @SR, wéimiptimizatobnbieg Aovatdnmamked evedubtidmedplyof OVISIOMPDEDSBHOS:

-~
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This chapter is -a revised version of Jeganathan (1980) ;
2 referee of this paper has rgmarked that some of the resulis of
this ﬁaper ﬁight be already known to some of the workers working
in this field, e, g, R,B, Davies, During the final stage of pre-
poaration of the'present work we received & copy of Ph.D; thesis
frou Swensen (1980, Seﬁtember), where he has independently obtained
ou Theorems 3 and 4.. His prdof consist of first rroving ninimax
and ddmissibility results fof the linit of‘the TAMN experinent and
then using the above mentioned resultgiLeCam to get the desired
conclusion, whereas our proofs are based directly on Lemnma 6 of
Ch,1, |

In section 2 we present the results and in Section 3 we
present some prelininary lermas, In Section 4 we present the

proofs of the results, It may be noted that Theorem 5of this

chapter already occurs in Ch,5_, See the remarks at the cnd of Ch.5.

2, STATTMENTS OF THE RESULTS

In addition to the notations of Ch,1, Mklgk ‘denotes the

Lebesgue neasure

Let’ L be the class of all loss functions K:Iﬁk —> [[0,17]
of the forn £(0), L(y) =AL(y]) and L(y = L(y]) if .|y| < lz].
We point out that for the purpose of sinplicity only we consider
bounded loss functions, and the results can be shown to hold true

for a certain more general class of unbounded loss functions,
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In what follows. E9+6 h denotes the expectation with

respect to the measure Py, ,n ool pI R haRk We set D, =
JheRk-|h|<u} ® oM

- -+

Theoren 1 Assune that the sequence .;,Ezp} of experinents
satisfies the IAMN condition at @ = @ ¢(H), Further asswe that
the functions h —> Py h,n(-ﬂ-),Asgn,n?_‘l, are Borel neasurable,

Then for cvery ®quence {V 1 of esticators and for every Lel

1
r!
3
|

lin  lininf [ vo_nL A (V-6 -6 )] an
6 —>w 1 —do Nk(D) Ty ¥ Ghl: .

a

> ECLr %6 )] , (6.1)

Corollary 1, Suppose that the sequence 1f E_nl, satisfics the LAMN
_=n

condition at 8 = 6 _e (B, 1let V,} be a sequence of estimators

such that the difference

/ = N | ) =
oz_{,(f(ﬁn (vn_go_anhMPeownh,n) N é(fcan'wn—go)}wec,nj

converges to zero for every heRk and for every continuous func-

tions T RC — R vanishing outside compacts, Then
lininf Eg I:,((cs"1 (V.- ]2 E[;((T'1/2(9 w7,

n —»c o

Thcoren 2, Suppose that the assunptions of Theoren 1 are satisfied

rurther suppose that for a sequence {Vn} of estimators and for ai

non~constant feL
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. . 1 -1
lin. . lin /E A7 (V-6 -6.1n))7] an
4 —> n—>o s (D,) D, eo+5nh[ 1°1n o -

=E[ A2 )T, (6,2)

Then for every .e>0

- lin lin
e L uk(D)

. oo Py : 12 |
Pg +5 1 n[ian (v,-8,) - T (eo)wn(eo)l
D, 7o "n
>eJan = 0 (6,3)
Theoren 3 - Suppose that the sequence {E oatisfies the LAMN
condition at 6 = 08 (I_{)_ Then for every scaoucice {Vn} of

estinatcrs and for wrery Le L

k] -1 N
lim  lininf sup B LAG (V-6 -6 n))7]
G—>o ne—>ow |p] <a eo+5nh n "'n o0 n

172,
> BELL(r™ 057 .

The‘orem 4. Suppose that din(E) =1 and that the assunption of
Theoren 3 is satisfied, Further assume that L(T"1/2(6 ))(oa .

Lei {V } be a sequ.ence of es‘tlmators such that for a non-constant

Lel and for every he rE

: | 1, Ry -1/2
il{l_ﬁ;l}:o Eeo+5nh C £(5 (vn_eo_anp))j < EEK:(T . (ep)w)],v

| | (6.5)
Then the g4if ference -

-1 -1/2
5, (V-8 - Ty 78w (6 )

| converges to gero in P - probab’ilit
; s . eo,n yo
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Proposition 1. Let ?\l@k be a measure such that A< < &5 and

»((H)) <~  Assume that the sequence rE_m} of experinents satisfies
the IAMN condition for A5_ almost all ©e(E), Further assume that

the functions (&,k) - 7 @h), = e A, n2 1, are Bk—me'asurable

0+5_h,n
and that the funotioas _/\n(9+5 h,¢),b & T%,n ) 1, and v _(8),T (8),

ny i, are 4 X B‘* neasurzble, Set

i (8
S’ (8,h) —ﬁ—,@—ldeﬂn(e”m E L 1/212 g/)) RO TVz(e)w(e))]
Jh) = — 5 AN CYON h-T7
. (27%) RSy

Ict § be a class of uniformly bounded Borel measurable fumctions

G Rk Then the difference

f Eq [f(6;11 (v_-6))] a(ae)

@ -
-1 " 3
(H) ){ / f(ﬁn (Vn—e) —h)}Gn(e,h)dhj dPe’nh(de) |
converges to zero uniforuly for all fe H and for all soaucnce .:

{'u’n} of estimators,

Theoren 3, let the measure A be as in Proposition 1, Assune

cvery seguence { nJ of estinators and for every feD

liming f Eq[ (57 (v -] r(ae) > [ BTt 2007 A,

1

i

:
that the assumptions of Proposition 1 are satisfied, Then for ‘
e ®

(6.6)
Thegren 6, Tet the neasure A be as in Proppsition 1, Assune

thot the assumptions of Proposition 1 are satisfied, Further aasumi
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L“qt for a sequence {V }. of estimators and for a non-counstaut
Lel

. { -1 . _ =1/2, v .
Vin ] BgLACGL (Vo) n(a®) = | B[4 (@) 7] 1 (as) |

N =—> oo '
(-) (53 S (6‘7)
Then for every > 0
lin / P oL 157" (v_-6) - T‘1/2(Q)w (® 1> (a8 =0,
4! "“">°° (H) y

5, SOME PRELIMINARY RESULTS

Throughout what follows we set

_ ' 1/2 * 1 *
5,(8,h) = exp[h Ty T(®w (8) - 7 h T _(&)n],

|detT (e)|1/2

Sp(e,n) = G exe(- 3L (ner -1/2<e>w () '1_(8)
(n-17 12 () (8)) ]
and
5(8,0) = exp[ (n'1' ()W - L n'1(0)n 7]

vhere the sequence {w*(e)}, is/%he one constructed in Ierma 6 of
Ch,1, Further let C be the class of all sequences of A -
mneasuradble k-vectors and let H bc a class of uniformly bounded
Borel measurable functions of Rk Without further mentioning,

we will also use the sequence }Q (Go,h)}'of;probability measures

that was constructed in Ienma 6 of Ch, 1,

Lemma 1, Suppose that the assumptions of Theorem 1 are satisfied,

Then for every a> 0, the difference
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S j B, £ (7 ~-n)Jan
,.A.(:D ) :D\'1 9 6 h[ | ]
[ * |
1 f’ { J iaf(zn"u)sn<eo’u)du \\
- o > dq. (8 _,h)dh
&Ko) ox | noo’
a a & \ J s> (9 ,wWdu j

i (6,8)

Cl

converges to zero uniformly for all fe¢H and Zn e €

-

Zroof, Tirst note that the difference between the r h,s, of the

above difference (6,8) and the quantity

f f(Z —u)S (8 wdu ~

o,

i
. rS_(e_,h)ar dh
Mk(Da) o =nﬁ{ ffSZ(eo,u)du Ji n o e ,n

= uk(Da) % én f(Zn-h)Sn(Go,h)dPeo,n

a

dh

converges to zero uniformly for all ff:g and z, ¢ ¢
by the statment (i) of Lemma > of Ch,1, Hen e the result follows

2gain from Iemma 6 of Ch, 1,

Ierma 2, Suppose that the assumptions of Theorem 1 are satisfied,

Then the difference

‘{(D ) gEe .5 h[f(z -h) ] dn

a

! ;
N N £(z, -wS, (8 ,w)du +dQ (8_,h)dl
Mk(D)Di\[ : u‘u nor

a a =n

(6.9
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converges to zero uniformly for all fe H and 2, & G by

Tirst letting n —> « and then letting @ —> o«

+x0cf  In view of Lemma 1 it is ¢nough to show that the difference
between the r h s, of (6,8) and the r h.s, of (6,9) converges to

zere uniformly for all f ¢ H and Zn e C by first letting

n—> = and then & —> o It is easily checked that this

difference is absolutely bounded by .

k2 {’ (J/]/ S;(eo’u)dui}‘dQn(eo9h)dh ’ - (6,10)

£ (D,) D X\DC
n —a

where Dg denotes the complement of the sct D, Let, for cach

Tixea 1T(8)), NT(GO) denotes the k-variate normal distribution
with mean vector O ¢ RX and co-variance matrix T‘1(60). Then
first letting n — « and using the statement (6) of Theoren 2,1
of LeCam (1960) it is easily scen that (6,10) converges to

2 ’ (1 C -1/2 V7
o ),g fNT(eO) @, - T (6,0M8(8 ,ma 75 (W,1(6,))dh

Mk

1l

Byl — ;f(NT(@)<D§—T"W(eo)w)s(eo,h)dd%(w>dh}
47 (D,) D 0 |

(using the independence of T(GO) and W)

- 2 | c -
= E N *N (D” -~ h)dn
T‘& uk(DG) i T(eo) T(eo) a ;l

a
where BEp  denotes the expectation w,r,t, the law of T(8 ),

The lemma now follows from the following lemma whose ideas arc
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contained in Hijek (1970), and stated and proved separately in

Strasser (1978, ILemra 5),

~—

Jerma 3, Let P!Bk be a probability measure, Then
1 ’l’ . ~
lin X ; j P(D -h)dh = 0
a =—> oo (D )

CI
The following simple lerma will be usced in the proof of
Theorenr 4 ¢ in the present context it serves the purposc of
Lermas 3,1, 3,2 and 3,3 of Hjek (1972),
)

L ( —hk) >0 A that
exp(—=—), o . Assume tha
0(27?)1/9 2

O'
: dim(ﬁ) =1 and that the assunptions of Theorem 1 grc satisfied,

Lemma 4, Let  (h) =

Tihen the diffcerence

fEeo+5nh[X(zn-h)j 7% (h)dh
R

/ (f £z~ (%, w )T )dtd}?e v h, nmh)m
RX R
(6,11)

tends to zero as n —> o for every sequence {Zn} of A_n-measur—

able k-vectors and for fe L, where

+02 1/2 +G ‘| ;0
Vo yut) = % XPE-” ) - B T
1+t

Lfrcof, First note that the diffecrence between the [, h,s of the

above difference (6.11) and the quantity

f Eg +5 pLA(Z,~m)J7(n)dh,a> O, (6,12)
lnj ¢ O %
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is absolutely bounded by

jr "Y(h)dh _

(6,13)
h|> a

Purther, since

J( ,/ £(z,~n)S (6 h)dP n /' (h)dh
LYRSCID

j/ £(z, t)S (6, t)m (t)at

= J( d{t/ltl< - )*s (6, ,1) 7 (Wan
hjga X t_ 5,(8,,) 17 (t) at j n
]tl(a

the difference between (6,12) and the quantity

o L

~daP . T(h)dh
lhij<a X S (@ , ) 7T (%) at j 90+6nh,ﬂ
=n L't, La

A(Z -t)S (e ,0) 1 (B)at
jllt]< a

(6,14)
for every a> 0 by Lermma 6 of
Now the difference between (6 14) and the quantlty

converges to zero as n —> w

' Ch,1,

'},)(, ’ ,f’ Az ~t)s” (8t T (B at

tlge aP 73 (h) ch
{ 5,(8_,) 7T () at 95*0phy 11
[t <a ) (6.15)

is absolutely bounded by (6, 13) Moreover it is easy to sce that

the difference bctween (6,15) and the r,h s, of the difference

(6,11). is absolutely bounded by
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f 5. (8,,1) TT(¥at -

/ s 'tl S a l '
2 ] j ~ AP 7{(h)ah .
2y VT 5_(8,,t) T (t)at J So*oph,n
=n R ' (6,16
(ITote that
" (8 _, Wi (h)
5,(8,,n)7i(h

=y, (5, )
js;(eo,h)ﬂ'(h)dh Vot

Obvicusly (6,13) tends to zero as a —> o  Using thec statenent

’ for

(6) of Thecren 2_1 of LeCan (1960) it is easy tc see that
every o> 0, (6_16) converges to 2 linit as n —> w  and it is
clear thet this limit tends to zero as a —» o  Hence the joxifele

of the lemma is complete,

4, PROOFS OF THE RESULTS

Proof of Theoren 1. We have

. [ -1
lin  lininf Ee .5 h[x(an (V,-8,)-n)] dn

* e n e «U(D)D
j{/“ﬁ”w —6)-ws_ (8, u)du}
—n

dQ (6, ,Mah  (by Leuma 2)

= lin lininf
@ =D o —d>e X (D) D
CL

> lin  lininf (X(T‘1/ (81, (8,)-w)S] (8 u)uu)
J

k
A= n—>= u(D, agn k

dQ,(e_,h)dh  (by Anderson (1955))
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1

. . [ 1/2, ¥ _
lin  lininf E, [X(T (8 dw (8 )-h)] an
@ = 1 —>e K(D ) % 8*0ph o mo

(by ILenmg 2)

i . 12 * e
lim  linminf —~—— k(D ) f K o *"th’n[ T 76w (8 )-n| > a]ak (a)an

i

& —=doo ) —dco

v

lin fz(m”/z(e YH=R)S(8,n)d o7, (W, 1 (8 )an |
O ~——>oc0
D, |

Using independence of W and ’}'.‘(GO) it is easily scen that
)1 /2 w 172 S .
[z(m / (eo)w-h)s(eo,h)c@j(w,m(eo));fz(m 2o ymas CRICRIN

Henece the proof is conplete,

froof of Theorem 2  Iet I TR S« My be the eigen values
of T,(8)), An application of a result of Andersom (1955) shows
3 -1 -1/2 * '

that whenever lsn (vn-eo) - T (eo)wn(eo) [>e>0,0<5¢ Mo

Mg &M and LeL is non-constant there exists a continuous function
(e, Miisesostry) of s eeas) ); such that n(a,xm,“,,xm) >0
and that the difference

J/ z(a-1 (1,-6,) - 1312 (e )y (o )-u)exp(~ 7 w'T (8 )wdu
QK

- ); f(Wexp(- § 't (8 )wau | 1

n‘I ’voo;!;}\‘rﬂ{)o Le-t T}'(E,S,M)

M) 2B & <L L Dy <M} In view of continuity
(e)w<e);>sa<>\1,

is greater than or equal to e, A
i'n'f {n(&"!?\n'l Seoe?
1,0, 0, Tet A= {]577 (v e )-r=1/?

< M} Now it followq from the above arguments that
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~

‘1(v _eg-u)s (8, u)dujL 4qQ, (8 ,h)an

N

D,) D x LRk
a =n

> M/) 1(4,)4Q (8 _,h)an

M(D) D, X

1 (S f((T-Vz(e YW (8 )-u)S (8 u><1tl
Mk(Da) jA} ?_ék n o’ "'nvVo n o? |

aq, (8 _,h)dh (6,17

In view of the given condition (6,2) and Lemma 2 we have

lin  linm

f,/;‘(x(6'1(v -8 ) WS 0 (8,0 du aqQ (8_,n)ak

D X ¥k

T =

=l )w], (6,18

Purthermore, in view of the arguments of the proof of Theoren 1 we

see that

/2 * * \
linn  linminf { X(T (8 )W _(8 )-u)S (6 ,uw)du aq (e ,71) 7k
@ e 71 oo uk(D y ! J B o’ 'n*"o n'- o 10

<

X \
d.:np
> B[4 %6 w7, (6,19

Fron (6,17), (6,18) and (6,19) it now follows that

lin  1linm

I(A )ao (8,,h)dh = 0 | (6,20)
@ =0 1 —>oo Mk(Da) )

X

a=n

Further, in view of the invariance relation (sece Lemma 2 of Ch,1)
g&i(Tn(eo)'P60+5nh,n) => o()(T(eo)

and since T(8)) is p,s, almost surely we see that for every >0

there exist positive constants 5 and M such that
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. 1 ( ;
lin  linsup J ) C1cs> A1) * IO > M ] ag (8, ,hang e
& =Doo n—doo 1K (D,) D, X
¢ = (6,21)
Pron (6,20) and (6,21) it follows that for every e¢> 0

lin  lin - j”_j R LAY AT RTINS

0 ==Hco 1) =—Doo uk(D ) D ¥
a4 =n

aQ (e ,dh = 0
Hence the proof follows from Lemma 6 of Ch 1,

Proof of Theoren 3. Note that when the measurability  condition

of Theorem 1 jis assuned, the proof is immediate from Theoren 1,
To prove the general case, first note that the sequence fQ (e, h)l
sttisfies the measurablllty condition of Theoren 1 and th’lt
Theoren 1 is V'illd when the sequence fPe +5 h nl is replaced by
_{O (6 h)} Partition D, into bloclrf* C1n1""’cmm sveh

that sup Mk(C. ) —2 0 as n—> ». Int
1<j<m Jn ‘

h. be a fixed i i C. j=1
13 e iXed point in Jm*]

continuous [fe L. Then it is easy to see that the difference

n, It is cnough tc consider

Yoeece?

[f 1(6‘1 (v -6 )-h )an (8 _,h. ;] uk(c »
‘C(D ) 3—1 X

_1
u(D)/

[X(aJ (v, -6 )-h)dQn(e yh)dh (6,22)
Dy £y
converges to zero by first letting n — © and then n —> « .
Further, it is clear that the difference betwcen the 1,h,s, of

(6,22) and the quantity
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1 o -1 k
—~—— I F LALGZ (V-6 )-h )] #¥(c. )
Mk(Da) 5=1 60+~5nhj n n o J in

converges to zero as n —> « for every n and a> 0, Hencc
.. ' ~1,. Yy =, K

lin  liminf sup E nl A (8757~ e )-n) Tnf(c. )

a4 —Doo N—>o ’h’ﬁ n go"'&nl’-l n n o Jil

2 lin  1lin lininf *k1 g By +5 1 [:[(5;1(V;-60)—hJEWk(Cj )
@D m—>e n—>w 4 (D )j=1 o "nj = J o

1 APy :
¢ X6 (V-8 )~h)aqQ (6 ,h)dh .
(Da)gq?_—(n n n o n o .

= 1lin lininf
@ —Doo 1 —dm K

lcnce the proof,

Proof of Theorem 4, First note that the cohdition (6,5) and the:

conclusion of Theorerm 4 hold for the secquence JP .}.,hest,
. L 60+ ’SYlh,[l)

if and only if they hold for the sequence {Qn(éo,h)( . TPurther

) kY Al* is
eo+5nh,.tlj

note that Lermma 4 is v21lid when the sequence {P
replaced by gqn(eo,h{} . Hence it is enough to prove the thooren
s 1% stands with the additionnl assunption that the functions

no—> P60+5nh,n<A)’Afsﬁn’ n>» i, are Borel neasurable, since this
Licasurability assumption is satisficd for the sequence {Qn(éo,hiL.

‘e then have, (in what follows we suppress 8, and write vo,T, and

-

T instead of wn(eo),Tn(eo) and T(e)),

3[((93‘1/2w )1 > limsup fEe s h[)((s;l1 (V,-8,~5,1)) ] A(n) an
n—> R ©° n
(by (6,5))

- vinean $7 [ pos=1 :
= Linsup £/ [ £(s7 (Vn-eo-snt))\ko(t,hlxl,’Pn)dtheo+5nh’n7T(h)c,gh
RX R

n =~—=>oo

Aiconv et S\ASIO
NSOPN SsrIcSIE))


http://www.cvisiontech.com

- 99 -

. ; ; o)
e ! 1 n . ~J <
> Linint [ [ ] f( 5 - 1) Yc(t,wn,Tn)dtheo+5nh’nﬂ(h)dh

v

X(j—w - VY, (4,9,1d5(6_,h)a ) (T,W) 7T(w) da
) P{Zh 1+To

= [ [ Q20D T ey exn( - -ﬁl-ﬂl $ )dtS(G ) Ao (T, 1) 7(h) dh
/ Reg o(2y1/2 TR T TR 5

1
3}
o~
-
+
H
Q
v
-
~N
N

;(27)172 j[(t)e}cp( (17:2)— t )dt_]

Csince o/(T) = E(n Ry ’h) where dP, = s(8_,n)asd (1,n)]
' [e]

T j (1+o T) 2
> EE(QT’)1/2 L(t)exp (- '702— t )dtj
2 E[f(T"1/2W)] - E{ T /21/2J Eexp(- ) - exp(- -<—1—-9——-)—t2:]d't-
- (27T) (O'

i

E[/((T"1/2w)] - E(g(T,0))
’ ~=1
wvhere we set g(T,0) = {(1 +T02)1/2|:(1+T02)1/2+T1/2o]}

Iet, for some ¢> 0,M>8>0,
1/2 2

o)

=1 n B h
J|5 (v, -9 ),W > e, 5<Tn<M,|wn;_<_M}.

ov whenever o> a> 0 and the event A is true the inequality
1+T 02

5¢ () < M+a™® nolds, ‘Hemce it is easily seen that there
g
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cxists a positive constant X depending only on e,6,2 and M

such that
oam] ,
(o -8 -
J R (G G AR DA W, T n)dthe +6h, n?T(h)dh
R X R
>x ) [ 1(a)ap TT(h)dn
- }{ n 90+6nh,n ‘
=
- opl/2y 52
f/ jl(—g—g- - ) (t,W T )dth (h)da

RY R 1+T 5 6 +6 h n
for cvery n2>1. whenever o>a Hence it follows from the series

of inequalities presented in the begimming of the proof; that

. *_1
linsu I(A [(n)d E(e (T, 6. .23
nl._I.l.fth fj ( n @ *6 " / ( nLE (& ’g)) ;'( ) )

whenever o) a . Now note that the difference

f f I(s)8 (8 ,n)dPy  TT(Wdh
Ih| < a X o’
- f j I(A ARy 5 h,n /(W ah
h|<a X °n

tends to zero for every o> 0 by Lerma 6 of Ch,1, ' Further

I J 1a)s (e, mar,  fT(wyan
Ih|> a X e or?

in

j ]1(6<Tn< M, W | M8 (8 ,DaPy _ Ti(h)dh
> a X v n o 0? .

=10
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vhich clearly tends to gzero by first letting n — = and then

O ——> © Also

f J 1a )dPe +6_n,n /T (Wan < f M (h)dh —> 0 as &>

’hba}:{-n lh,>a

Therefore from (6,23) we have

linsup [’}/‘I(An)sn(eo,h)dPe o /T(h)dh ¢ K'1E(g(T,0)) (6,24)

n —>o0 4 o’
R):(n

whenever o> a , Now note that

/f I(A)5, (8 ,h)aPy  TT(n)dh
R X 0
2n
= f 1Gh Yexp (-2 o
(1+5°T )1/2 o 2(1+T 02 Oosm2
=1

> exp(- oMo 5) (1+2)=1/2 ; 1 AP,
1+M0 X n o,

=n

since 6<T <M and lwnl <M vwhenever the event A~ occurs,

Hence fron (6,24) we have

11msup Cls] (V. -6) -1 "1/2w [>2e,6¢n, <M, Ju_|<u]

n—-—>

-1/2
< linsup P e ) + limsup P L |T'1 2y -j—Tn e [> e ]
T n—>e 95en n—>w 9osB-''m  'n 141 o
' 6M20
< ¥ lom exp(——,) E(g(T,0))

1+Mc .
o g T2y o2
*+ limsup Py [ T, W - | > s]

n—> o o* 1+T a

(6.25)

R T T R AT SR V.S
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wvhenever o>a_ Now note that g(T,0) is bounded by both

=1 -2 -1/20-1.

o and T Hence applying the dominated convargence

theoren we see that the last term of the incquality (6,25) %euds to

~1/2

ZeT0 as o'—> « whenever E(T™ /) <= Hehce the proof of the

theoren is complete by oh0051ng 6§ and M in such 2 way that

'fﬂfuﬁ [Peo,n(Tn< 5)*Peo,n(Tn> M)+Peo’n( W 1> < e

Before going into the details of the proof of the proposi=
tion 1, let us first observe that, when the measurability condition
of Proposition 1 is satisficd, the the randon functions 1. (8),

Z‘An(e),ng 1, constructed, under the LAMN condition, in Lemmas 4
and 5 will be 4 X gk-measurable; furtherﬁore, it is casy to sce
that it is enough to prove the statement of Proposition 1 with the
sequences {N (6)1 and,[T (9)} replaced by .5 (6)-1 and 5 (Gi%
Therefore in what follows we will assume, w1thout loss of gencrality,
ot the random functions wn(e), Tn(e),nzhj, satisfy the regularity

propertics of ILemmas 4 and 5 aud that they arc jointly neasurable,

Lét ds &lso observe that Lemma 2 of the present chapter is
valid when the sequence .{w (e )1— is replaced by ,{W (e 2}» since
the difference W (e ) - W CH ) converges to zero in Pe pro-
bability, and that the functions Cn(G,h) will be jointIJ measurable

whenever wn(e) and Tn(e) are»jointly nmeasurable,

The following well-known result of Zebesgue will be used
repeatedly in the proof, for the sake of convenience we stote it

-

RRfH complredsior
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Lerma 5. For any function € e Lp(ukj,p2_1, the function

. /[lf(x+h) -~ £12) |Pax
is wniformly continuous in h

troof , See, e,g,, Corollary 59,2 of Parthasarathy (1977,

Proof of Proposition 1.

For simplicity assume that (§) = &Y,
Now consider

ka9+6 h[ 1(5;11 (Vn_e_anh))] g(e)as
R n

= fk%[}((ar‘l1 (V~®))] g(o- 5,h)ae
R

wvhere g(@)  is the density of 2 with respect to Mk_ Hence

it follows fronm Lemma 5 that the difference

1 [ -1, -'
f { E A(87 (V. ~6-5 h))T] dn (e)de
k “k(Da) 5 9+6nhE n 'y a1 dng

a

- 4 EQEK(5;11 (V,-8))] g(®)ae

(6,26)
R
cdnverges to zero for évery a> 0, Now note that, for uaiRk,
. ,/v/‘ * .
J 87 (v —8) —w)s¥ (6, m) an
Xk n "'n n
R

. -1 * |
= ék L (s (Vn-e)—h-fu)sn(e,hﬁ?u).dh.

of Ch.,1

5/it is easily seen that the differe
ence
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]’ ICe -e)_h)s*ce n) dh

j/ x<5-1<v ~0)~h-w)S_(6+5_u,h)dn

converges to zero in Pe n probabllltv and hehce, by contiguity,
9

in PQ +5 y.n Probability also for every Uﬂst‘n In particular
the difference

[ [ 266717 ~) 5™ (6. ) anae

- ) n - "n T n Y 6+6

k
L, ®

n'?

a0

[ ] )((5‘1 QY -e)_h..u)s (9+6 u h)dthe +5
X R . ‘
converges to zero as n ;->4w‘ Hence by an application‘of Lenma 5
it follows that the difference

1(6“1 (V -8)-h)S> R h)dth (8)ae
g; éf.gk o+5_u,né

- / / f ,((5“1(v _e)..h)s (6 h)dthe g(e)de
converges to zero for every UJSRk. This in turn implies, in view
of Lemma 6 of Ch,1, that the difference between the r h s, of this

expression and the quantity

w"‘(D ) / / f X(a‘1 (V,-6)-h )s” (8 h)dthn(G w) g(8) dsdu
D, R¥ X, R 6 27

converges to zero for every o) 0, Hence the result follows since,
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by Lemma 2, the difference between the 1, h,s, of (6,626) and
(6,27) converges to zero by first letting n —> = and then

A ——> o
L J

2roof of Theorems 5 and 6. Using the arguments sinmilor to the

proof of Theorems 1 and 2, the proof easily follows from Proposi-

tion 1.
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CHAPTER 7

ASYMPTOTICALLY CFNTﬂRLIG YATURE OF THE STQUENCES OF
MAXIMUM LIKCLINOOD ESTIMATORS, MAXIMUM PROBABILITY
ESTIMATORS AND BAYES ESTIMATORS

1, INTRODUCTION

In order that the seguences of maxinmum likelihood estina-
tors (MIE), nmaximum probability estinators (MPE), and Bayes
estinators to be the sequences of ACS estinators, it is finrst of
211 necessary that they should take values in a small vicinity
of the true value of the parareter, It is the main purpose of
this chapter to see what are the nininum possible local regularity
conditions needed under which the sequences of MLEs, MPEs and
Bayes estimators turn out to be the sequences of ACS estinators,

siven that these estimators take values in 2 small vicinity of
the true value of the parameter, A result concerning the post-

.
L1 S0

o]

erior approximation at the true value of the vrarameter ig

precoented, We would like to point out that it is not the ain

of this chapter to give certain regularity conditions which are

less stringent than some of the possibly stringent conditions
usually found in the literature dealing with the dependent obscer-
ations, Our ain is just to clarify somc of the local arguments
usually found in the literature and to show that a lot of local

conditions can be removed, Particularly our arguments depcnd only
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on the approximating form of the log~likelihood ratios, and they
do not in any way depend on the nature of the sample space such
s thet "he observations are i,i,d or any o“her specific from of

ependent na ture, For cxanple, given that a uequence of MPEs is

ey

consistent at a certain rate, the only additional condition we
assurie to show that this Sequence is a sgequence of ACS cgtina-

tors is the TAMN condition,

Results are stated in Section 2 and the proofs of the

results are given in Section 3,
This chapter constitute the section 4 of Jeganathan (1§79a).

2 STATEMENTS OF THE RTLSULTS

In this chapter we assune the set-up and notations of

Ch,2, We define -

Ln(X.],,“,Xn; 8) = L (6) = J'l'-'l'1 f.(8)
and
L (& +5 h)
N80 1,8 ) = 1log 29 1
L (®)

In the discussions ‘of MPE and Bayes estimators it will
be assuned, without further nentioning; thet the functions
L, (X OV n ®),n>1, ‘are jointly neasurable in
(X1,X2,,,,,X ), We further assume that we have chosen a parti-

cular sequence {6 1 of normallulng rnatrices of the IAMN condition ,
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Definition 1, A maxinun probability estimator 51,1(51) vith

rcopect to the set D,1 ={haRk; Ih] Sa} , &> 0, is defined cs
that value of d for which the integral
JREMOLT

over the set J da-521D.% ,
L n e

We assune that a measurable maximurm probatility estinmator

is maxinun,

exists, A detailed discussion of MPE can be found in Weiss

and Wolfowitz (1974),

Theoren 1, Suppose that (i) the sequence of experiments E_nl
™

satisfy the LAMN condition at 6 = eo , and (ii) the sequence

O B A . . .
455 (Gﬂ(a) - 8_) % is relatively compact for Peo . Then the

(- : .
the sequence t@n(a)‘; , 2> 0, is a sequence of ACS estinators

at 0 =46

Definition 2, A measurable function 8 = 6 (X,...,X)) is

called a naximun likelihood éstimator if
/\
L () 2 L (8
for all ©c(H), We assunme that a neasurable MIE exists,
heoren 2, Suppose that (i) the Sequence{l;'__n} of cxperinents
satisfy the LAMN - condition at o =8 _, (ii) for cvery e> 0O and
*>0, setting D, = [heR*: |n| < o},

1in linsup P, [ sup | /A~ (8 +6. n,,8) -
5§ —>0 n —>ew 9 lh,-h,l¢6 ~ 7 0° n2?"o

p . 1
129 ag.exaly A “voa \ il o
oy - \‘vo*\J Ll1 ’Jo,‘ ! ey 111 ’J,_L2aaIGJ ’
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and (iii) the sequence{;5£1fgﬁ—eo)}7 is relatively conpact for Pg

Then the sequence f@;ﬂg'is a sequence of ACS estinmators at 6 =6

We next consider Bayes estinctors with respeet to the loso
functions [n(e,%) = [5;1(8-¢)]a,52_1,n2_1. e assune, without
Turther nentioning, that we are given a prior density 77(e)
such that  7I(8) is continuous, sup/F(8) < = and (T(8) >0 for
all ®e(H), The above restrictions on £,(8,8) ,n>1, and Fi(e)
are assumed for sinplicity only and can be relaxed to a great

cxtent,

Important works decaling with the asymptotic dehaviour of

Bayes estinators are, among others LeCan (1953, 1958), Bickel
Borwaniter, et el (1971 ), _

and Yahav (1969)v/lbragimov and Khasminskii (1971), Levit (1974)
and Prakasa Rao (1974)3 it may be mentioned herc that the results
of these papers and the pfesent chapter are not entirely in the
¥ Boyesian" spirit since the results are obtained at the srue
value of the'pafémeter; sone deep results in the * Bayesian
framework can be found in IeCan (19742, Ch_13), and some further
rcsults can be found in Ch,6 of the present work, Recently,
Ghosh, Sinha and Joshi (1980) have obtained the asynptotic
cxpansions associated with posterior distributions in the

Payesian - francwork,

Definition 3, We define a regular Bayes estimator ¢ =

tﬁ(X1’X2’°°°’Xn) as an estimator which mininises

0]

*
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‘ g
B, (@ = [L (8,0F (8]X,, . ,,%X )d®

LI n
where

/;(e)L (X X_ ¢ 8)

1’0.-, 1’1’

1’...,Xn) = e)L ( - e)de v
' /‘( n X -"“'119

1’..

r (e]x

Vo ncoune that o regular seasurable Payes estinator cxig s,

Theoren 3, Suppose that (1) the sequence of experiments {_}

sotisfics the LAMN condition ot 6 = Qo and (ii) for cvery e>0

. . ({ a
lin linsup P4 C |h|%exp ]:f\n(90+5nh,90)] dh> e ] =0
O >0 7 =D (o] lhl S a

(7,1
Then for every sequence {Tfnlf' of ACS estinators at © = 60 we
nave that, for every 0<£a'<a, the quantity

a', ¥ P
_fihl |£,(V *6, h) ~ J exp(- 5 h T(6_)h) |éh

converges to zerc in Py trobability, where we set
0

(v #6,) exp AN (V +% h,8)

/((Vh+6nh) exp /> _(V_+6 0,8 )ah
and
| lactr(e,) |1/?
- (2H)1C/2

Theoren 4, Suppose that (i) the sequence of experinents ‘.{Eq}
4
atisfies the LAMN conditicn at © = 60 and further suppose

thnt (7,1) is satisfied for some a1 and for cvery e> O,
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Then the sequence {tn> of Bayes estinators with respect to tihc

- -1 a . .
loss functions 16, (0-@) % is a sequence of ACS estinators

at 6 = 90 and

a 100
B (t) —> J] Ih| exp (- 5 h T(8_)h)dh

in Py provability,
o} -

PROOFS OF THE RESULTS

Froof of the theoren 1. First note that the aifference
*
W (8) = W (8))

- %
converges to gero in Py vrobability, where.{wnﬁeo):}is as
6 i
defined in Ierna 6 of Ch 1, Hence it is enough to show that,

for every. 6> 0,

-1, -1/2 *
PeO[ |6, (8, (2) - 8.)) - T / (®PW, (8 ) |>6]—> 0, (7.2

Sclect «a sufficiently large such that, for a giVen e>0,

Ijﬂllt-l—?;ll:o Peo[ |5n(en(a; -9 )[>a-8] < g2

and

*
Linsup 2 [ 27" /g(eo)wn(eo) |>a-a]<es2,
n =) (0]

Hence (7,2) will follow if we show that for every given e> 0

and 8> 0, there cxists an n, such that.
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for all n> n, where we set

A =,{|5;?(§n(a)-eo) - T;1/2(eo)w;(eo)[> 5,]5;1(6n(a?-90)l

~1/2 * .
< e-a, |T] (eo)wn(eo)|$<1_ai},

How in view of Iemra 6 of Ch,1 we have

ao (€ _,h)
- . ﬁ,yn O /{
?é jzlvxy,/\-n(eo+6nh,eo) g i a— labg ab —> 0 (7,4

since J]exp j\n(90+6nh,90) - R o lapg < 2,

where the sequence {Qnﬁeo,h)} of probability neasures is as

defined in Lerma 6 of Ch.1. Further, since Tu\ lcn(eo’h)_1 |—> 0
. , hi< a

in Lemma 6 of Ch,1 for every a> 0, (7,4) inplies that

:Eeo[: iileXp_/“»n(eo+6nh,eo) - S (6, |ah] — 0 (7,5
a

where

5(80,m) = exp(n' )23 )W (8) = F n'r_(6)m)

Now 15;11 (5n(a) -8 < o~a inplies that, setting

— a

=.{5;1(én(a) - éo) - D;}-, Hy (_ D, . Hence (7,5) inplies
what
—> 0 (7,6)

9 .

[ L em A
A J lexp n(8,*6, 0,8 ) - 5 (8,,h) |dnap ]

R . P I S ‘
Sinilarly, setting H, [T e,y - Da}-,
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am - —_— o . >
.f/‘é lexb_/\&n(60+5nh,80) Sn(eo,h)ldtheo > 0 (7,7
J_\.Zl 2

Tow suppose that (7.3) is nos true, Then fur every no there

exists a 6> 0 such that

Py (An) > & for some n)n

o} °*

It can be easily checked when the event An is true, that

n o+ f{ 5,(8,,h)dhn < }{ Sn(@o,h)dt}
1 2

for some r,v, n>0a_s, Since P(A)> 8> 0 this inplies thot

ne [ | s (e, ,mamp, <) J s (o ,h) dndP,
A H- BO o A.H, B OV o
n 1 2
for some- n'>0, In view of (7,6) and (7,7 this inpliecs that
for all sufficiently large n, there exists a constant n*'> 0

such that

¢ f 1 o : : . ' N
n o+ J ’ﬁ exp/\'n(90+6nh,eo)dhdl3‘eo< { }H ex;/\n(90+6nh)dhd}?eo
n 1 - 2

Tor sone n>:no. On the othcr hand the definitiOn,pf MPE c¢ntails

that
/ f'exp L\ (8 +6.n,6 )anar. > f exr /> (6 +5 1.6 )dndp
AnH‘l n" o n* o 60-£an n 0o n?*o 90

for every n, Thus we have arrived at a contradiction, This
completes the proof,
Before presenting the proof of Theoren 2 we first prove

the following lenna.
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werma 1. Suppose that the sequence of experimentsifEr:> satisfies

the LAMN condition at 9==Go_ Then

) —_ —— { s P Cnp .'..Cl- 2 .-"'i
]_zxxn(eo+5nh,eo) Rn(h)l > 0 in Fo_ probubility

njgn

for every a> 0, where we sct

=15 mi/2 . L
R () =hr (6w (8)) - 5 h T(6)n) ,
if and only if for every e> 0

1lin linsup P sun |/ (8 +56 h..8 )
5= 0n—>= %7 |p Ty j¢s 0 0 n2 0

- _/\h(@oﬂsnh1 81> e5h,h,eD ] =0,
(7,8)
Proof, Using the fact the sequence,{wn(eo),T(eo{} is relatively

conpact for Py it is casily seen that for every > 0 and
o :
a>0

lin linsup Py [ sup |R.(h,) -R(n )[>e shy,hyeD T = 0,
=30 11 —> o0 90 ]h2—h1 I¢<s n 2 1 11925 g
‘ (7.9

Set Y, (h) =</“xn(eo+5nh,eo) - R, (), Then fron (7,8) and (7,9)

it casily follows that for cvery >0 and a> 0

o o limswp Py [ osup Y () =Y () |>esh hyeD ] = 0,
5§ —>0 n—w 9 |ho-hy <56 1 2\ o PoTreTe

(7.10)
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It can be now casily concluded that (7,10) together with the

LAMN condition at 6 = ®, dinplies that for every >0 and

50

o]

P sup |Y (h)|> —> 0,
eotlhuﬂl n | >e]

The other part of the proof follows easily by noting thot
jﬁ\n(éo+snh,eo) =Y (h) + R (h),
This compies fhe proof of the lenma,

Proof of the Theorem 2, Let A be the smallest eigen'value of

T(eo), Since T(eo) is positive definite with Py  probability
(6]

one, for any given &> O, there exists & Y> 0. such that

P A>T 2 1-c .
[e]

Hence, without loss of generality we can assune in what follows
that A>Y> 0 always, TPurther, for any given &> 0 and &> O,
there exists an @¢> 0 such thot |
«:;-o. : N - _1/2 T
11“_12;1‘2 .PeOE Myl > e + P‘%E. It (8 W, (8) > o - °J ,s )

/\- — —-1 /)\ T | 3 . § B =g ‘. a
h =6 "(8, -8, Hence it is enough to show that

viaere we set
for every a>0, 6>0 and e> 0, therec exists an n  snch that

-1/2

A _ 2
P Ly -7 (e (8 | > 5,_|’ﬁn1 <a, |7/ () (8) | <@ 0]

£ e

for every n)> n ., ‘Equivalentiy we shall ?L:;I"'ove that
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Pg [sup exp_/\.n(e +6,h,8 ) < sup expj\, (6,*6,h,8) ,
0 heD hekE

“1/2(eo)wn(~qo) I<a-a]<e

(7,11

for cvery n> n, , where we sct
_ “1/2,,
={ned, ¢ n-1 26 v (e )| > a},
Denote the event inside the bracket of (7,11) by B, . ILet

A - Y, (7 12)
A { lﬁlllga lexp An(go+§nh,eol expR_(h) l_<_7,>, | (7.12)

n> 0, whcre R (h) is as defined in Tenma 1. By lemnma 1 there

cxists an n_  such that
PeO[Afl:l L e for every nyn,
where A; denotes the complenent of the set An-_ Now
PGOE‘B J< Peo[Bnﬁ AT+ PQOE*‘{;}I]..

We shall show that Peo[An(“xBn) =0 for all n)n_ vhich will

prove P [B ] Le for all n_>_no . Suppose thai; the cveint

A B is true, Then by (7_12)

sup exp/\ (9 *6_h,® ) sup exp R_(h) -7 (7,13
In[ga " |nlga 1
and
sup exp /\ (9 *6 h,® )< sup exp R (h) N, (7,14)
heE heE

Also note that (since I’J?"1 (eo)wn(eo) | <a-6 when the event B,

is true)
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sup eprn(h)= exXp (% W_(8 )w (u N (7,15
g " |

and

sup expR_(h) ¢ exp[ - Zz-"i + 5 W (e W8, (7,16)
hb.u

Sinee Y> O, there exists an n, such that

' 2
U , 287, 1 . ’
Sl ,»Jn(eo)wn(eo) ~"n,>exp[ - 5 * 5 wn(eo)wn(eo)] *on, .

(7,17
fron '
Thus we see/(7,13) - (7,17), that whenever mn¢ Ny and the cvent
A ] | )

ALY B, is true

sup exp/\ (9 +6h6 )> sup exff\.(@ +5 hG)
lhig @ helb

for all n)> n, , But this is a contradiction since on B, we Lave,

for every n>1,

sup exp/\ (e 0t 8 & sup ex“/\, (6,+5.h,8) ,
fhl-s.a hgu

Hence Pa [Anﬁ Bn] =0 for all n> n,, This proves tqo -"osult_
J = .

We qext cons.lder the proofs of the theorems 3 and 4+ since
the proofs are long we split the proofs into several lermas, To

sinplify the notations we set (60) = T1/?(6 )5 (vn_eo) and

1/2 1 S oY s
(®)n,(8) - 5 h T(8 )h), where{ % is a

n}

Jf\.n(h) eXn (h T

Scquence of ACS ¢ stinators,at 8=6 .

Lemma 2, For every e> 0 and a>o0

lin  linsup P, J/ Ih)%R_(W)ah> ¢ ] =
A =—> o N ——> oo lhl>a n
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froof, Coensider
/7

{ a+1 *
ST Ry an = oG, (6,), 708 )

viicre Q(a,_,.) 1is a continuous funetion, Since thc sequence

"o
0

any given e> O, therc exists a constant A> O such thot

1 (8 ),7(6 )} is relatively ceripact for P we see thot, for
ra o ? 0 J ’

Peo[ma,nn(eo),m(eon <A > 1-¢

for every n . Let @, = A/e . Since

,{ BIPR M dn< o=t | [n1** TR (W an
lhlmH n(Rang e j” n

we then have

Pe [ j In|®R (h) dn SA/a ¢ e]d>1e
o |h|>a no

for cvery @2a_ and for all n) 1, This proves the result,

Lerma 3, Suppose the assunptions of Theorew 3 are satisfied,

Then for every 0<a*ga, the quantity
wal -1 : | ~ *
[lhl [71(8, %01 B) cxp /\ | (8+5 h,8) ~ 71(8 )R_(h) |dh

tends to zero in Pg probability,

0
froof, (7,5) implies that, for every a> 0

’

/

Uj!s_a lexp /\n(eomnh,eo) -8,(6,n)| —> 0 (7,18)

in Py probability, Since the scquence%;vn}, is a sequence of
o
ACS estimators at 6 = @

fe)
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7'/ e ) (o) - W(e M (8)) | —> 0

in l‘e probability, Hence it is not difficult to see from

(7.18) that

}( 8 L \: — ) ) )
;hkawlexp j.\n(@cs“ 5,8 R (B |eh > 0

L

Pg probability for every a> 0,
o

since 7V (8) is continuous at © = O

o !
] e

|h]<(1!hl [7Y(Go+6nh)exp'/Aan90+5nh,eo)

Hence it follows that,

* o
-!?(eo)Rn(h);dh —> 0 (7.19)

in Py probability for every a’> 0 and a> O‘. Now (7,1
0
implies that, since . su%__j‘"f"‘? (8) <o, for everyﬁ e>0 and 0<a'ga
- Be(H

lim 11msup Pg f n|a’ (8 _+5 h)ex /\(e +5_h,8 ) > 1=0
6 =D 7 —D oo O[hbql,/{on_ P4 9" 0nR %, il .

(7,207
Yow (7,19) and (7,20) together with the Iemma 2 give the
required result,

I4

lerma 4, Supp

Then for every 0¢ at La
L b a’_,* .
e, (9,,a") -j 0] |2, (8, *5 n) -

- J exp[ - %(h-T'1/2(90)nn§eo))'T(ed)(h«T“1/2(€O)nn(eo)E]!

'y
"t Y

dh —> 0 (7,21)
i Fg probability, where we set
N
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77 (6 +5 1) = 7?(90+5nh)9Xp‘;\ln(eo+5nh’eo) .
n o0 n ’ ~
[]Tteo+5nh)exp (8, +6.h,8 )dh

Proof, Tet ’

Y =,f]:(go+5nh)exP-/N‘n(eo+5nh’eo}dh'

L

Setviing a'=0 in Iemma 3, we see that
- -1 1. :
1Y, -77(8)3™ exp(5 nn(eo)qn(eo))| > 0 (7,22)

in Pe probability, In particular we can assume that the
o
sequence {Yg1},is well defined with Py probability tending to
: 0

one, Now consider the inequality
. 1 a o R, *
e (8,,88) £ Y ’flhl |7§(eo+5nh)expjﬁxn(60+6nh,80)-wﬂ(eo)Rn(h?ldh
y — 1 ] . 'al%\"’\‘
+ Y, 1) -J exp [~ nn(eo)nn(eo)]|dfih| R, (hidh
= I1+I2,Say.

Firgt note that I, —> 0 in Py probability by (7,22) since
0]

' t _* ~
the proof of the lemma 2 shows that the sequenceij}h[a Rn(h)dh>r

is bounded in Py probability, Secondly I, —> 0 in Py
o 0
probability by Lemma 3 since (7,22) implies that the sequence

.{¥;1\L is bounded in Py probability, This completes the proof
- f

o
of the lemma,

Froof of the theorem 3.' Let

S -1
g, =h -6 (V -8),
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Then

1 ? __1 a'
‘gn‘a 5. ‘ca' ]h|a + ca| '6n (Vn—eo)‘

at'-1 ! 1

whcre ¢, =1 or 2 - according as & £ or a'> 1,

e s . , . 1/2 =1 /s -
inivig this inequality we have, noting nn(Oo) =T / (GO)Gn (ﬁd-ec),

)

/
é

/ et 1 1
/; le| 1anan+5ng) -~ J exp(- -g-gT(eo)g) ldg

| a | ] X
= | lg, 1% 1£,(V +6 g ) - J exp(- 738, T(8 )g)) |ds,

-1 a'
£ Ca'en(eo'a') veg o |6 (V- eol‘* en(eo,o) —> 0

in Py probabllity by Lemma 4 where the quentities en(eo,a‘),
0

n> 1, are as defined in (7,21), This completes the proof of the

‘theorem

Proof of Theorem 4. . Since T(Go) is positive definite a s, we

-

will assume without loss of generality that both the smallest
of T(8g)
ond largest eigen values/are bounded both below and above by

somc positive constants, Ncr define
g(x) = ‘X‘a yazxzl,

and, for a given a¢> C,

x| oif x| < a

g, (%)

- U

a otherwise,
Then select « so large such that, for a given ¢> C,

0]
’ ' : f ' v
Jjgao(h) exp(- § b'T(@IMan2 T [() cxp(- 5 h'T(EIW A~ /2,
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According to Theorem > we have, setting v "6 T"1/2(e )w (6 )+6 ,

[ * “ 1
J g(h) lfn(Vn+6.nh) ~-J exp(- -2-h”1‘(60)h) |dh '._~——> 0

in Py -probability and, since g (x) is bounded by LR
0

I * 1 ]
fgao(h”ln”fn(vn”nh) - J exp(~ 5 h (6 )h) [dh —> O
in Ty probability, where we set a, = 6;1(tn-Vh). Hence ,
Tor any given &> O, there exists an n, such that
| (D 2
Peo[AnE (AL 1>1-¢ \ : | (7,22)
for all n2n,, where we set

Agl) =4/§/g(h)f;(vn+5nh)dh_<_J fg(h)exp(- % h'T(eo)h)dh+ EL

—
~

2 {2 {Jg (h+a )f. (V. +5 h)dh) Jjg (h+a Jexp(- $h'T(8 )‘9-8}-

Pirst we shall prove that the sequence {* l, is a sequence of
ACS estinators at 6 = 8,,i,e,, we want to prove thaﬁ for every

5> 0 PGO[:{un|> §]—> 0, In view of (7.22) it is enough to

prove that for?sui iclenuly sma2ll e, the event Bne =
il);, (2) I {]u | > e ‘}“ is impossible for all nyn , In what

follows suppose that the event _BnE is true, Using thc defifi-

tion of Bayes estimators we then have on.the set Aﬁl), for every

n2n,,
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4 ¥* *
f 8y (h*u )f (V, +6 h)dhg fg(mun)fn(vnwnh)dh

(0]
= Bn(tn)

< B(V)

it
H

J g fn( " vnh, dn

I~

Jv(h)e o (- --h T(8 ) h)dh+e, (7,23)

liow note that g, (h) is a non-constant function and satisfies

8y (D=0, g, (InP =g, (0 and g, (hy) <g, (hy) T |hy < 1hs].
0 o o o o
Hence we have, for some 7> 0,

J/ga (h+y )exp(— h'”ﬂ(eo)h‘)dh

nof -

> J/ga (h) exp(- & h'T(8 )R)dh +1

(2., ¢ .
whenever ]unl >8>0, Thus on the set Ane M {_,unl > 6} we have

£
N

o every nZno

s *
jgao(h+un)fn(vn+6nh)dth[ o(h+u )exp(- h T(e Yh) dh - 5/2

> Jjgfa (h)ey“(— h'T .9 ) dh - 6/2+T
0

> Jjg(h)exp(— h T(e dh) +¢ (7,24)

for all O0<egmn, From (7,23) and (7,24) we thus see that the
evert B,e 1S impossible for all n) n, and e<n, This proves

that the sequence Jtnl is a sequence of ACS estimators,
(]

Now it follows from the previous arguments that


http://www.cvisiontech.com

- 124 -~

nOj

, ' v
Jjgao(h+um)exp&— h T(8_)h)dh - /2

N

:/" *
) g, ) (h+u )f (7 +6 hidh

j~

; . S
j g(h+ "n) £, ( vt rth) ah

< I, glexpl~ % th(907h)dh'+s (7.25)

.
N

with Pg -probability tending to one, Since Pg [ |u |>]—>0
(o) : 0

for cvery > O, it emsily follows that the gquantity
. 1 ' :
Jfg (h+u Yexp(~ 5 h T(8 )h)dh
flo uYL 2 o]
converges in Py probability to
0
. .
sf 8, (Mexp(- § 116w an
¢~ 1 v | o -
> Jj g(h)exp(~ 5 h T(e)h)dh-e/2, (7,26)
Combining (7,23) and (7,26) we see that
By(ty) = [glhru ) (V +6 n)an
converge: in Pé' probabilit - to
(0]

:I}(g(h)exp(- % h'T(ep)h)dh.

This proves the theorem completely,
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CHAPTER 8

CONVERGENCE OF MOMENTS OF
STAT1STICAL ESTIMATORS

1. INTRODUCTION

In an inportant paper Ibragimov aﬁd‘Khasminskii (1972 and
1973) (henceforth this paper will be feferred in short by I,K.)
considered the asymptotic behaviour of maximum likelihood estine-
tors (MIE) and a certain class of Bayes estimators when the obser-
vations are 1i,i,d and when the parameter space is a subset of
the real line, Among other things, they proved that the moments
of any order of the above mentioned esfimators converge to the
corresponding moments of a normal distribution, Their invéstiga_
tions are based on a general method which amounts to treat the
likelihood function as a random fﬁnctioh of the parameter ; we
would like to mention here that this general method of investiga-
ting MIE was first develope¢ by Prakasa Rao (1968), A similar
method of investigating MLE was also developed by LeCam (1970),
This approach offered some fresh insights into the problems and
as a result I K, were able to prove powerful results under quite
general assumptions, However, so far as the practical purposes
are considered, the situation considered by I, K, was not quite
general in the sense that the barameter space was assumcd to be

a subset of the real line, Though the mcthods of analysis of 1K,
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vere simple, some of the arguments depend in a very crucial
naner on the dimension of the paramcter space, For example, they
invoke Kolmogorov's sufficie. t conditior for the continuity of a
»indom process to get some estimates of the continuity modulus of
the realisations of the likelihood function (see Prokhorov (1956,
- 2,180)), However, it does not seem to be possible to extend this
idea to multidimension, In fact LeCam (1970) mentions that some
of the arguments about continuity of sample paths for random
processes do not cxtend directly to more than Qne-dimenéion. At
the same time there is no reason to suppose fhét the results on
the convergence of moments of statistical estimétofs would depend
o the dimensionality restriction of the parameter space, This
suggests that one can obtain the same type of estiﬁates of the
continuity modulus by some other methods whose arguments woﬁld
not depend on the dimension of the parameter space, Itvis also
Amportant Po know how far the results on the convergence of
noments can be extended to the. situation where the observations
are not necessarily i,i.d. Thus our aim in this chapter is to
prove that the moments of any order of MLE, maximum probability
eoctinators (MPE) and a certain class of Bayeé éstimators converge
mixed .
to the corresponding moments of a/normal distribution when the
observations are not nccessarily i i_d, including the LAMN case,
and the parameter space is a subset of ,Rk, k> 13as a by product
we also present a weak convergencc result for the likelihood ratio

rondom vrocasses

'i

:
;
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Mejority of the ideas of this chapter are either inspired
by or adapted from I K, 'though we have substantially simplificd
thce proor's, Also we have avoided using weakh convergence results
for random processes, which I K, use freely in their paper, We
would like to point out that the weak convergence resuits fér the
“1likelihood ratio process have been extended by Inagaki am@_Ogata
(1975 and 1977) to the situations where the parameters space iS
of multidimension and the.observations are from a strictly sta-
tiohary markov process, with a number of interesting applicaiion
When the parameter space is a subset of the real line, the results
ofVI.K. on the convergence of moments have been extended to the
idependent not necessarily identically distributed case by -
Ibragimov and Xhasminskii (1975) and to =2 certain class of markov

chains by Levit (1974),

In Section 2 we introduce the assumptions, One of the
assmptions((A,10)) of this section is very direct, The reasdn
is that we aré not able to i pose satisfact:ry conditions aﬁ the
densities implying this assumption in the general case, However,
it is possiblé to verify this assumption directely in some problems
(for example, for a certain class of mixed Gaussian processes),
In the situations where the observations have a‘certain~‘mild‘
form of dependence it is pOSSlble to impose condltlons on the
donolties implying thls aosumptlon :These things are done in

Section 5, In section 3 we obtain some preliminary results on
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the behaviour of the likelihood function which are used in
Sectioﬁ 4 where the results on the -converyence of momenﬁs pf

MLE; MPE and a certuin clasc of Bayes estimutors arc obtained,
InvSection 3> we also show, as a by - product of our assumptions,
tliat the likelihood functions belong to a certain comple separable
netric space for all sufficiently large sample sigze With virobabi-
1ity one and the corresponding sequence of induced probability
meaéﬁros on this metric space converge weakly to the probability

neasure induced by & mixcd Gaussian shift process,
This chapter is a revised version of Jeganathan (1979Db).
2, ASSUMPTIONS

Notations and the set up of Ch,2 are assumed in this
chapter, In what follows, unless otherwise specified, all the
probability concepts and cxpectations are with respect to PQ

vhere eoa(ﬁ) denotes the " true " value of the parameter,

(A,1) Por all (X1,...,Xj) and for every j>1 the functions
8 —> f%(e),j2;1, are absolrtely contindous in 6
3 . .

(&,2) For HX L X #y almost all (X1,.‘;;Xj)_ and for every
i21, the functions & —> log £,(8) are differentiable in €,
Bemark, Note that implicit in (A, 2) is the assumption that, for

J. LN 4 J

is finite for all e,

X, XK, almost all (Xy,...,%y) and for every j21, log £,(e)

Set ny(8) = (O/D6) log £,(8) if the derivative exists,

0 : otherwise
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Suppose that we ha Ve . selectod a suitable SOQULGPOAﬂ 'j

of normalising matrices; one way of selection is to set
] n ] ~-1
= ™
5,8, [jiq By Lny@ny (0] 7

for some fixed @e (H), where E, denotes the CX“‘Ctuthu with
=’ 9 @

respect to Pg, Further we set

zj(e) = 1 (e‘ 1/2(@)

(A,3) For every heBRX

L N2 .
B[ fIn's,p 500 170,] ¢, 1< 3 <<

(A,4) For every hsﬁ{,fm*wme a<0 and b>1

S zEjhs (8+8h)— (e) au. % —> 0,
a(%%b;J {5! EZ E jf }

(A.5) E[nj(eo) ‘Aj.n 1= O for every j>1,
(A,6) For every e¢>0 and heRF

E[ ]h'annj(eo) 121’ i@ 1> )] —> o,

8.5.
(4,7} There exists an/positive definite random matrix T(@O) such

that the difference

5, 21[77 (e )n (G)IA 1'] 5, ~ T(8)

J

converges to zero’in probability,

(4,8) su};; 2113]:5 . (e )n (e )6 jn < K for some K>O,
n > j=
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(&4,9) E{

I My

[nj(eofanh) - 73 (GO)] l}_(_ caP

up | 6
< |nl 5=

gatl P
Tor some constants  C> O arm? p> 0 and for all sufficiently

lorge n

(4,10} To any positive KN there exists an n and a constant

CI\I depending only on N such that for every n>___nO

C
»T T]’ [ 28 %0, /2,6 )] > lthj$ IhNIN

ﬁ 10

fenark, Sce Section 5 for a discussion of this condition (4,10),

The next assumptlon will be used only in proving the results

for MPE and Bayes estimators,

-

(4,71) There exists an eo> 0 such that for all O<ege =~ and
for all sufficiently large n

™
)

§ sup |6 = n(e+6h)—n(6) <Ce
Unles m j=[ j'} )

wvacre C dis some constant,
3, STUDY OF THE LIKELIHOOD FUNCTION.
Throughout what follows we set

z,(h) = Tr1 (£, (0 *5, YA CRN S
“j=

Theorem 1, Suppose the assunptions (A,1) - (A,8) are satisfied,

Then for every he Rk the dlf*erence

Z,(h) - exp[ h TV2(© )w (8.)) - 2 h T(G )hT
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converges to zero in proba 1bility and

- . — w R )
o\%(‘“’n(@o)’“%)) = (z,1(8))
wiere '

W () . 172 (@{:)") B,

and  Z is a copy of the stindard x—vam“tx. nerral distribution

independent of T(eo) .

Proof, The proof follows from Theoren 1 and propesition 1 of

Ch. 2

L ] [ )
The next lemma gives an estimate of the continuity modulus

of the processes h —> log Z_(h), n)> 1,

Lemma 1, Suprose the assunpt tions (4, 2) (A,5), (A,8) and (4, 9)

arc satisfied, Then for sone constunt c>0

, 175 |
L lhouﬁ <a |log Zn<h2’eo) -log %, (14,8)|>a / s hy,hy e Ba]
1 | < caP d‘]/2

where the set B {heRk;ag_'lhlbg a+1}and P 1s the positive

constant occurlng in the condition (4, 9)

froof Cons:.d«,r for N»1 X N»2>< ces X u almo st all (X1, 2,...,An)
log 7_(h,) - Log : Zy(hy) = (hy-h) 6 >:1n (8.
) J=
' n *
ny(8.) * (hy-hy) 5, 2 [nj.y(e,n)"nj(eo)]

. o
= (h,-h,) & E
2 1 n (=1 _ j=1

J
where

180~ (8,*0,n1) | < J6_(hy ~1,) |
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Now
n
P sup l(hz-h1)'5n z n.(eo)lz_d1/2/2]
lhp-hyl<d j=1"
) (8,1
<4280 g, 20812 s gt 127
= n j;1 j o n’n -
e n -1
vhere @ ¢ = 2 Z[m (8 )ﬂ (8 )] . It can be easily sccn,

j=1
uzing the fact that

E[nj<eo) |§j_1 ] =0 for all j>1
and
E{p [r)(e )n (6.)] @ L I (unit matrix)

Tor all n, that | )

L 12, E1ﬂ [C )! J =k, | (8,2)

Hence from.(8,1), (8,2) and (A,8) we see that for some constant

c> 0
o8 1/2
P sup |(hy-hy) 6 T n(8)|xa /2] ¢ a4c
Iny-hy < d j=1 J \
_ (8,3
for all sufficierntly large n,. Next by (4,9) we have
su“’ !(h-h>6 z [n(@)- NC J132a%/2; hyyhp <3,
2~ o 1252
¢ 24"/2ga? (5, 4)

for some constants C> O and p> O, Hencc the result follows

from (8,%) and (8,4),
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The results of the next theorem will be instruncntal in

the next section,

shicorem 2. Suppose that the assumptions of Lemma 1 2ad (4,10}

are satisfied Then to any positive ¥ there exist an n and
L J (2 L O

o constant Cy derending only on N such that for n>n

0
P[ sup ”(h))-:]—:]<9-N-— a2 (5.5
i Ihl.llg o BTSSR W T T
and
P sup z._{h) > —1—]< o (8,6)
p bl — N — s 4 . .
2 < |h] £ a+l a a
£roof, By virtue of the inequality
P[ sup z,(W)>2 = —1——1\7"
[h] > a k=0 (a+h)
«© 1
< = p[ sup (h) > ——— ]
k=0 a+k< |h| < a+tk+ “n (a0

rclation (8,5) is a conmsequence of (8,5), whose derivation we

shall nor consider, We partition the sct {]ﬂ cag |h _g_aﬂ} into

cubes of sides of length a™", Then totally we will have a

5kN

mumber of cubes, Denote the i th cube and its center by Di

and ti respectively, Then, for axe,

Pl sup (h)>—_] < PLsup sup Z_(h)> Nj
ag || ga+1 B 2 i heD; "

4 1
£ PLoup 7, (t)) > '“B“kN_m]
i :
1
+ P[ sup sup [Z (h) -2 (+.)]|> —==
i hsD n1 O-SN j
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1/2
Now using the fact that, for every x> 0 and y>0, < 2 :

2
1/2

and |log x-1log y| ¢ 51/2 implies |[x~y| <8 whenever & <

log 2, we have, for a2,

P[u sup |2 (h)-Z(t)l 5-{:]‘
i hsD

< P[ sup 7 NG )>—:] + P[ sup sup |log Z, (h)-lov 2,550 |

i N i h&:D
oe 2
> == 7,
21
Forther, for a2,
1 1 |
PLoge 2,6 2 —5= 3 < 2lomp 7,(4) 2~y ]
1 5 1 a
' 2a
'< ?5kN[z (t;) > L—] < ?-Ti (by (4.10))
= = g KN+ < = 7N F ARV,

lence using Lemma 1 we have, for a>2,

2C C C e,
r[ sup - Zn(h) > 1N]-<- NN + 5N < % whenever n > %p
axg Ihl L a+1 ‘ a sN-p a . ’
a

(for some 11> 0),
Hence the result follows since if (8,6) holds for some W, then

it will hold for NN

.

Let C, Dbe the space of functions which are continuous

.

orn RE  the one point compactification of Rk, and for vhich

! I,L:Lm f(x) = 0 endowed with the usuval uniform metric,
X| —>m

Suppose that -Cl-n' = {'h; Go+6nhe (E)} = R¥ for all sufficiently
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large n. "Then the above theorem in particular implies that
h —> Zn(h) e ¢, a,s, for all sufficiently large n , Vhen

¥ PR P .
ﬁ_lwa R* for all sufficien ly large n w make the foilowing

rodification, First define

]

7. (n) [2,(0) if 8 _+5 ne (D)

N 0 otherwise

nd then define
— Y =/ ,) . : L —
z.(h) Z,(h) if 8, +6 he (H)

. = ]
if (8 *5 h, (B2 -

continuous in such

a way that 7 (n) <z_(h) , otherwise

’

vhere  (H)  is the closure of (@) and a(x,A) means the
distance between x and the set A in the usual sense, Clcarly,
the conclusions of Theorems 1 and 2 are valid for the sequcrice of

processes h —> 7 (h), n21, Also it is seen that, by Theorem 2

and Temfa 1, the sequence of processes Zh(h) is uniformly equi-~
continuous in probability, under the assumptions of Theorem 2, In
other words, for every &> O
lim limsup P[  sup 1Z_(h,) = Z (h,)|>e:h hnaf’:-k:]=0.
6 —>0 n—>= ,hp—h1 n n 1 ’ 194
We thus have the following theorem by invoking appropriate

theorems in Prakasz Rao (1975) or Straf (1972) |
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1
Theorem 3 Suppose the assumptions (A, 1) - (A 10) ‘are satisficd,
Then the distribution in Co gencrated by the process En(h)
converge as - n —> ~ to the distribution g nerated by the process

R(h) = exp(h'T1/2(Go) 7 - %— h'T(eC)h)

vhere 7 is 2 copy of the standard normal distributien 11(0,I)
independent of T(GO). In particular, if f 1is a continwvous

funetional on Cyo then for all x ¢ R

lin PLfl2 (W] < x] =PLelRM]<x],

n —> o
4, CONVERGENCE OF MOMENTS

(a) moximum likelihood estimators,

Theorem 4, Suppose the assumptions (A, 1) - (A_10) are satisficd,
Then for any m> O

Lin B J67 (8- 6™ = 5[ 27"/2(8 )2 1™ ]
n —-— o

where @g is an MIE as dcfined in Definition 2 of Ch,7, and Z
is & copy of the standard k-variate normal distributioﬁ indepen~
dent of T(8),

Before giving the proof of this thcorem we first prove the
following
Lemma 2, Supposec the asumptions of Theorem 2 are satisfied, Then
for any given N> O +there exists an ng and a constant CN

depending only on N such that
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P[ |67 (6-e)f>x_J < —= N

for all n) né and for all sufficiently large x> 0 .

Lroof, Consider,, for x>0,

1 I (e -9 )1>x_] ¢ P[ sup z,(h) < sup z,(0)]
h Inf>x

. 1 -
< PLsup 7 (n) £ sup 2z (W) s sup 7z (h) < = ]
o B In[>x B lnf>x .

+ P[[ sup Z,,(h)
lh]> x

\Y4

1 -
.
<N

How note that sup z,(h) > 2,(0) =1, Hence for all x . such
N :

that x~ V¢ 1 we have by Theorem 2

PEIG"T(fa\n- 80 1>x] < P[ sup Z,(h) > ——j —-?
lh]>x

Hence the proof of the lemma is complete,

2roof of Theorem 4, Iemma 2 in particular entails thub the

Scguence J (e -9 )j is rclatively COI"lpuCt Hence in view of

Lenma 1, and Theorem 2 of CL,7 - it follows ‘irst that
Y2790 N — N
@(% (8, -8, => nco,17" (e )) |
Secondly, it is casily seen from Lemma 2 that the sequence
{E]: |6;11 (én-eo) lm”} » 22> 0, is uniformly bounded for all
- 17y
sufficiently large n and hence the sequence{_ 16n1 (é\m-—éo)]mj—

is uwnifornly integrable, Now the proof can be easily concluded

from these two facts,


http://www.cvisiontech.com

138 ~

(b)_maximum probability estimators,

Dacorcm 5, Suppose the assumptions A1) - (4,11 are satisficd,

Then for any nd> O,

. -1 = i m=1/2 NIy
1inm E[[Sn (en{‘a)meowm] = B[ |7 / (e )z| ]

vhere € (2)  is an MPE as defined in Definition 1 of Ch,7 .

>fore giving the proof of this theorem we shall first

presert some prelininary lemmas,

Letma 3,  Suppose the assumptions (A1), (A,2) and (A, 11) are
satisfied, Then there are positive constants C and g, such
that for all 0¢ s_(_eo

oL [ 7w du<el] <0 &%,
) ’u[_g&, '

&

%

2roof, Bezause of the assummed continuity there exists ean u
’ *
which may depend on the observations, |u | <e, such that
i Vo= =
P[ inf z,(u Z (u)]=1

lal < e

— . —— — T * ‘1
Pl J z (Wdugej< P37 (u) <5 ]
hllﬂ_a I n ‘ 2

P[,;log zn(u*)lz |log »(32-)[] '
< P[ 'SL!1p< .llo'g Zn(xzs 1> Iloé (-;—) V.
ul e '

Ta view of the condition (4,11), the last term of the above

. - 2
expression can be shown to be less than or equel to Ce by
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following the arguments similar to the proof of Lenma 1, Heuce

the proof of the lemma is conplete,

Lerma 4, Suppose that the assumptions of Theorem 2 are satisficd,

Then for any given N> 0 and a2 0 therc exists an n, and a

constant Cy depending only on N such that for all n2 1,

Pl f Inl%z_ (W an> W] E oy,

Ih]>M M

Proof, It is enough to prove the result for N> No for sone
15> 0, since if it is true for N, then it will be true for

LW, Consider, for M) 1,

P
Pl j, Ih|%z (h)dh>——j < P[ [ Ih|%z (h)dh>-—+,,+1]
[h|> M | > M
[ Jf 1 ] N
<Pl lh[‘“z (h)dh> 53 - (for 1> 2)
h|> M k=0 (M+x) 1 1B*2
= a 1
L = Pl Ih%z_(h)dn> —— ]
k=0 Mk g [h| < Meget n (M) T2 *2
< 3 p[ Z,(h) > ——m—ex ]
k=0 ~ M+k< lhl CMwiger P (i) T*2
5 —ﬁCN ( )
< z by Theorem 2
k=0 (M+x) Ve

for all nz2n_, where n, and Cy are as in Theoren 2, This

conpletes the proof of the le.mma
Lerma 5. Suppose the assunptions of Theorem 2 are satisfied,

Then there exist an n, and a constant CN depending only on

I such that for all n> n,
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Cyy
P[|5‘1(e (2) = e )NI>x]¢ w , a>0,

for a1l ufficiently lorge > 0

Proof, Consider, setting D, ={rhaRk; [n| _<_aj7
C L /

Ry —
Pl ]on (en(a) - QO) | > x|

< P sup f z_(h)dh) sup { 7.
]ul)x u-D, © ju] <x u-D

f ’ / -
< Pl 7. (W)ah > / 7 _(hYdh _|
!h! S (X-—O.\ n D n

< pl f z_(h)dh > /z (h)ah g
lh|> (x-a) * N

[ 7 (L)dh { ———

Ih] > (x-a) n (X—a)N ’

3/2
2
/z (h)ak > %7

‘ 1
v F / Z_(h)dh > ———
C ity e T -

Sli/2
+D[{A (h)dh<—7‘*

= It v 15 SQY .

ﬂ

Assunie in what follows that x > max(2a,2), Then we have
— < and so I, =0,
(X-CL)N XN N 2A 1

By Iennma 4
N

2,
N W

I,¢¢C (for some Cy > 0)
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cnd by Lenma 3

o1
I. <= -
3 N
ience :
I & _ oyt
PL Jo, (6 (a) - e 1>x] ¢ m (for some Cyy> 0)

This completes the proof of the lemma

£x00f of Theorem 5. Iemma 5 in particular implies that the

sequence‘£§;1(5n(a) - GO)E» is relatively compact, Hence in view
of Theorem 1 of the preseht chapter and Theorem 1 of Ch,7 it follows
that _

JEGTN @ () - 60) = w0, 1] (8)) .
ow proceeding as in the proof of Theorem 4, the prodf of the
theoren is“compléted_ |

(C)__Bayes estimators. , e -

theorem 6, Suppose that the assumptions (A1) - (4,11) are

catisfied, PFurther assune that

the -

(4,12) / largest eigen value of T

(90) has finite moments of

all orders,

Then for every m> 0

lim B[ !5;11 (t,-6)|"] = [ lm“d’/g(eo)zlmj

n =——> o

wiere {?&{} is a sequence of Bayes estimators as defined in
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Pefinition 3 of Ch,7, with respect to the loss functions
=1 a
|6, (e-D [T,a>1
Before giving the procf of this thooren we prescnt sore
preliminary lemmas, We shall suppose for brevity that 71(0) = 1

since the passage to the general case causes no difficultics,

Lerma 6, ILet a1, Set

7 (k) detr(o )11/2
D, () = B aetn (o)}

1.m1/2 )
- - I3} - =T Fa) ) et :,
fzn(h)dh (2 1) k/? xp[ 2'_ (8 ) (h 1 | :]

* ) ;
vhere h. = 6‘1(@‘-9 ) Suppose that the assunptions of
n n "n- o’
Theoren 6 are satisfied, Then for any N> O there exists an

N, and a constant Cy depending only on N such that Tor all

nlno
- f a -N P
Pl b ™D (B) [an> M~ 7] ¢ Cl™, M2 1,
[h]>M
7, (h) ] f -5N
Proof, P[ sup >—x J< P 2,()>¥ ° ]
|nf>M fzn(h)dh ' BIDYY

-
4

| 1.
'd _EI‘
* ?[ J2,(m)ah < 2M

N

N
< Oyt

by Theorem 2 and Lerma 3, for all sufficiently large n, Hence
fron the arguments of Lemma 4 it follows that for all sufficiently

large n
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J/ C h
s 1
WWJ J IhlaZ (n)an> .. £ g (for some Cy? 0) .

Ll BT ol =T
,%u

,

fenote the eigen values of T(@o) by A< . <A

>

and <M inplies that
1

/
|aetr(e ) |1/2

J n|%exp[ - 12- 1/2(90)(h-__h:l)|2:]dh

™2 |nlsu
1/2 :
K|detT(8 ) . %, .2
(IZT )k/g i l f *' y |h~h;|aexp(_ %|T1/2(90)(h—hn) [“Jan
v h-h |>=
n 2
(for some k> 0)
1/2
k{n ) k
- 1-" n 2ya /2 1 2
= 3+ (En?) exp(- 5 £ A.h$)an
(2TTHK/2 mis k2 2q=m 11
2
1/2 a
(A %) A k + 2N k
100. 1{2 2 ? . 1
PR — { (£ 1) exp(~ = z A.hS )Gh

viiere h;'8 are the components of the vector h , In what follows
we assune without 1oss of generality that a is an integer, Now

using the fact that

(... k)1/2 TT ( 5, )’(1 - k 2y
—5— A ex“--ZXh Ch € o
(21)K/2 T2 5

for cvery Xi > 0,1i=1,2, .k, we see that tho above integral

is brounded by
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4N k a + 2N L
K_—iN (2 % ) (for some K> 0)
M Ci=1 Py

o4 2t
Toam-gow TV

M 2

Tor some K> O and for all W> 2, since

_ 1
every N> O

1/2

1/2
ldctT(Qo)l / ] a 1

NI K2 J ’h' exp (- §|T
(2] Ih|>u

C

(8,) (h=hD) [D)an> ——

1 ) -
N <M Thoerefeore fop

2I"

X M N
< PE'hn’>§] + PEX1 > M < —% (for some CN)

M

for all sufficiently large n s by Theoren 4 and the given assup-

tion (A, 12)

wvhcre

TT f. (e:a h)

*
J= 1 .
fn(9n+6nh) 7
"T £, (8,+6, n)dh
,ja =1

~

puppose the assumptions of Theorenm 6 arec satisfie

given N> O, there exist an n, and constants CIS,”

and C,
I

d, - Then for any

(2)

depcnding only on N such that for all n2n, and M>1
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/
PCJ  nl*D () |an > c(” == ! < Cé?) Y
]h]>M
Troof 1 =h+h m
froof, Let g, =h hn" Then
a % 5
In| < a,lg,1® + a_|n]|
where da = 2&-1 Using this incquility we have
[ o n* { a
J ml®p (jan ¢ a, | 817 1P, (2) lag
lh|> M : leen’ > 1 B
=" "n
*a (
sa ) e,
lg-h, | > M

where D (g) is as defined in Ienma 6, Consider

P / l&1? 1, (&) |ag> 2™ ]
!g-h [> M
< PL /; g1 10, (e) lag > 2% s | ¢ ¥+ 2L n >8]
le-h | > M ~
<?[ /Mlglaan<g) lag > 2NV 4 el In_ 1> %7
gl > 5 |
< CIETZ) M (for some c}(f)} 0) (8,7

by the previous lerma 6 and Theorem 4, Similarly it can be shown

that, for sone C§1) > 0 and Cég) > 0,

. .
PCin |* ) D, (1) lan > oV M‘N]g_clff) ¥ (3.8)

s N
lg-h | >M

—\

y e b T Y arleey /5 |
Renee, the resnliefodlnusofron \ atepmared valughon
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8, Suppose that the assumptions of Theorem 6 arc satisfied

Then for every N> O, there exist an n, and a constant Gy

depending only on N such that

-1 - -N
PLJ6, (3 -8 ) [>M_] < Oy M

for all n> 0 and M2 1,

Proof,

Tunction |6;11 (6 - ®|%, a>1

Since t, is a Buyes estimator with respect to the loss

9

we have, putting w, = 5,:;1 (tn"/e\h)’

/" .
ax A a ¥ ./
J Inl £ (8 +5 h)dn Z[lhmni £ (6_+5 _h)dh

Henee ’

[h| +

> + T (B +5. n)a
2. lh,_ %l fi’l n nh h

b
/
i<

&=

since |h| < M/4 and lun|>M inplies that |h+u\q|_>__
M2

[ |5le1 (+,-6) > m]]

I~

I

I~

(. a.%n [ Mya * .~ '
P{J‘Ihl fn(en+5nh)d.h > 4 M( |h[+5) fn(en+5nh)dh\[}
bl <7 i
f a¥* ' a ¥ A
P.{j; (h| fn(9n+f3nh)dh > M}h]_fn(@n»rﬁnh)dh
bl <7

* A b
+ ¥ / £7 (8. +5 h)dhj
‘hl<.M_ n n n
=7

(for some K> 0)

* .
£ (6 +5 h) dh} .

(8,9

P,;( f In|%£) (B, +5_h)an » K Ji

Inf> ¥ In| <

S jc
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Mow note that

|detz(e)| /2

* = = o .1_ 'f I
ffn(en*'(snh)dh =1 = W— ] bXpE— > h D(GO)*]dh "

Hence by the arguments of the proof of the lemma -6 and b the

previous lemma 7, for any given N> O, there exist constants

(2) s ot e
y  and Cy * and an n, depending only on N such that for

[ \ .
/ ap* | (1) N (2) =N
P ’hI;MMlhr £,0(8,*6,m)dn > 't MU o

and

172
detT (6 ) J
PII £ (6 +5 myan - LD | ex

1,1 ‘
. p[~ sh T(8 Ih]dh|
Ul gg mn @MY nlcwa =2 °

(1) N (2) ,-N
> Cp M b ot

Hence it is easily secen that the last term of the above inequality

(8,9) is less than or equel to QCIETQ) M"N for all nz_no, hat is,
1 A~ (2) N |
Pl 6 (t -%)>M]¢ 2cy™’ M- | | (8,10)
for all nzn,, Now

-1 S
P |6, (4, -8 1>M] < p[ |6 (6,280 [ >M/27]
« L1621 (8 -6 )| > M/2]
A S I L IR L

by (8,10), By Theorem 4, the proof of the lemma is complete,
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froof of Thecorem 6, First note that the lemme 4 implies what for

every €2> 0 and a1l

lim  limsup P[ / In)%z, (h)dn > ¢ J =0
0 =D 00 Y] = 0 lh{)a b

L4

Iience by Theorem 1 of the present chapter and Theorem 4 of Ch,7

L J

it follows that
(L a=1 —_— r\“1 b
0<i(5n (t,-8)) = N(0,17'(8,)) ,

How proceeding as in the proof of Theorem 4, the proof of the

vheoren is completed,

5, DISCUSSIONS ON THE ASSUMPT1ON (A_,10) AND SOME EXAMPIES

Consider a class of mixed Gaussian processes having the
Tollowing form

_ ] 1 1] » '»
z,(h) = exp(h U (8)) - 5 h Tn(eo)h) | (8,11)

vhere, for every n21, U, is a random k-vector and T (8 is
a p,d, random kXk matrix, We further assume that the moments
of any order of the largest eigen value of the matrices T£1(eo)
arc uniformly bounded for all large n, Let A, be the smallest
cigen value of T (8, In order to verify (4,10) it is enough to

show that for every N> O there.exists an nj and Cy dependend-

ing only on N such that

pC2) /% > m1™ 522" < w13 <oy ™"
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=

R

Since we have assumed that for every m> 0, sup E(OAI™) <= fo

n
n no

sone n . Now

PL22m > ™ 02" < jag g

<P OS¢ npal 2w

< 1T {103" <nDa, (/2 exp(2m )y

< Inft E{I(,x;f < lh])zn(h/g)KN)\g2Nlh ,-4z-q~1/
(for sone K > 0)

< 21”Mm)M g B s (n/2) ]

S KN’hI-N (since »E[zn(h“/z) 7=

Thus we seec that the assumption (A,10) is satisfied -in this case,

In some casesit is possible to verify that

n
I inf f[jf1/2(e o h) - £1/%(6 )72 ass 2 clhl® (s,12)
J: ) .

I

for some C>0 and for all sufficiently large n, where %

(X1,X2,‘..,X.), Then putting

_ /2,4 . £1/2,5 y72
ay = 1nf1_jf:f (8,+6, h) - CI s,
=J

8..
522 m 7 ¢ 'T (1 -
5=
Note that }ai] £ 1, since

0< sup | 21726 +5 me1%(6 Yau. ¢ 1
> 3 o Tty (9 s LT

_-i_‘]
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E[Z;/Z(h)] < exp[—-;- L1 33] < expl - Clh|2]
J= '

Tor all sufficiently large n, when (8,12) holds,

A situation where (8,12) can be easily verified, with

5,6 =n I, is the following example,

fxanple, TLet Loy £994..5 Dbe @ sequence of Markov choin Tor

which the state space consist of the numbers O and 1 3 the

transition matrix is

1
] 0
X
0 (1-p)+ 7ip - (1-mrp
1 (-MA-p) T+ (1-Mp

and the initial distribution is f£(1,p, W) = 1-£(0,p, W) =
where  (p ) e (@ = (0,DX (0,1) |
We finally point out that the assumptions (4,1) - (4,11)

ccnl be considerably simplified when the observations are i i d,
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