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NOTALI ONS™

N The set of natural numbers.

r The set of primes.

z The set of integers.,

0 The get of rational numbers,

A The set of positive rationals.

Ir The set of real numbers.

R* The set of positive reals.

¢ The set of complex numbers.

¢ The Riemann sphere.

JER The unit circle.

g‘_,h: The strip x+iy ! a<x<b, ye R .

W The set of completely multiplicative
functions from IN 4o TT.

C(Ir) The set of continuous functions from
Ry bo s

C*(Bi) The set of continuous functions from
R to mm.

H(C)) The set of analytic functions on the

planar region (7).

MCC ) The set of mercrorphic functions on
the planar region. (7) .

% The Riemann Zeta function,

B 55,00 The Dirichlet L.series with character .

¥ Some of the symbols have been used in more senses than one.
1n each case, the intended meaning of such an ambiguous
Symbol should be clear from the context,.
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Is asymptotically distributed as,

Decreases to.

Iebesgue measure.
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CHAPTER ©

INTRCDUCTION AND SWMIMARY

O0s1 A brief review of the literature ¢ The Riemarm Zeta function

t(z) 1is defined for complex =z with Re(z)> 1 by the series

~3

(z) = 5 n
n=1
and thence by analytic continuation it is defined as a meromorphic
functien on the entire complex plane with & simple polec at z=1.
In his famous paper ([ 44]) of 1859, Bernhard Riemamn inaugurated
the study of ¢ as a function of a complex variable (Fuler had
already considered it for specific real vulues) by obtaining this
analytic continvation. He also exhibited the intimate connection
that obtains between the position of the complex geros of the Zeta
function and the distribution of the prime numbers. He also
establishcd the functicnal eqation satisfied by this Zeta func-
tion, In view of this functional equation {(in conjunctien with
the Buler product formala £(z) = TT(1-p"®)"1 for Re(z)> 1,
P

where the product is over all primes p ), Zeta venishes at the

’
points z=-2,-4,... (these being the so called trivial geros)
and all the other zeros are complex numbers lying in the " criti-
cal strip®™ OfLRe(z) {1 , and they are symmetrically situated
about the critical line Re(z)==% . This observation led
Riemann to conjecture that 21l the naontrivial zeros are indeed

on the critical lime (for a beautiful discussion of what exactly
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might have motivated this conjecture, ses [ 23, vp.164-1661.

This is the ceclebrated Riemann hypothesis.

Due to its paramount significance for the thecry of the
distribution of the primes, the Riemann hypothesis occupies a
central position in pure mathematics., In 1896, J. Hadamard and
de la Vallee Poussin independently established that the boundary
of the critical strip is free From Zeta zeros. At the very onset
of further investigeition it was noticed that there is a close
commectian between the distribuiion of the Zeta geros and the
growth rate of the Zeta function with increcasing imaginery pari
of the argument. Accordingly the main stream of research in
analytic number theory has proceeded towards obtaining nore and
more rcfined growth estimates (of the Zeta function) and zero-
density estimates (of the proportion of Zeta zeros lying to the
right of the critical line). For a representative sample of the
results obtained in this direction, see {427]. Though many Dro-
minent mathematicians continue to contribute to this line of
enquiry, and though it has had vrofound implicatiens for number
theory, it must be admitited that this piccemeal apvproach has
failed to make any qualitatively significant dent in the preblem
of the truth or falsity of the Riemann hypothesis itself. Today
things remzin more or less where Riemann, Hadamard and de la
Vallee Poussin left them. For instance, it is not yet known 1f
any proper substrip of the critical strip can be free of Zeta

ZeroSe
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4 second line of enguiry into the Riemarm Zeta function
was opened up in a4 series of brilliant pavers by Harald Bohr.
The egsence of this approach is to takes a globgl view of the Zota
function end study its general value distribution in place of
rrematurely resitricting oneself to o consideration of its zeros
alone. In his paper 6] of 1912, Bohr initiated the study of
the set { L(x*iy) tye R: for arbitrary z> 1. This study was
completed by Bohr and Jessen in [ 14 ] where they showed that
there exists an XO>1 such that for 3<:>:»c:O the closurce of this
set 1s a ring - shaped region boanded by twe convex gurves ohe
lying in the interior of the other [ and For 1<x Lx,, this
closure is a convex region bounded by a single convex closed
curve. Indecd, x_=71.764... Iis the unigue real root x=>1
of the equation

sin~! T = = Sin"1(13—x) :
1 n=2 o

(Fere {p_ tn2 1% is the secquence of primes in natural order)

n
Further detalls regarding the geometry of the bounding closed
curves were obtained by Kershner and Wintner in [ 35] and by
Kershmer in [347]. In his paper [ 7] of 1912, Bohr showed that
a similar situation occcurs in the value distribution of the

E{
=
corresponding regilons are discs and circular rings respectively,

function on vertical lines DRe(z) =xz> 1, in this case the

The problem of general value distributicn of Zeta on

vertical lines contained in the critical strip was considered
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by H. Bohr in {8 . There he established that the set

. ) x ! | )
. {x*iy) iye R is dense in the compler planc for cach x ¥

1 : . - . . .
5<x <1 (certain function thevretic generalisaticns of this

remarkable result of Behr will constitute the focwl point of

thig thesis.).

Once again it was Bohr who introduced the statistical

approach in the study of the value distribution of the Zeto

function. In (101, Bohr amnounced that for each x> % j the

asymptotic behaviour of Zeta on the line °Re(z) =x is regulater
by & probabiY¥ity law, this was proved in/series of three papers,

(the last and most definitive of them being [14]) by Bohr and
Jegsen. In the language of weak cohlvergence {convergence in
distribution) of probability measures, this rosult nay be

deseribed as follows. For any Y> 0, let /g

denots the pro-
bability measurc defined on the complex plane by

Mi(ﬁ.) = 21_—{- Migi~TLyLY and r{x*iy) € 4%)

for Borel subsets A of the plane. Then for sach x>-1§ y bhere
exists a Borel probability #4, on the plane such that i«g
converges weakly ta K, as Y—>w , Further, Bohr and Jessen
showed that #  1is absolutely continucus with respect to the
Tebesgue measure on the plane, and that if “Dﬁx denote the
density of & with respect to ILebesgue measure, then fx(w) #0

for all w# 0, provided %(xf_?. This last result clearly

implies that for 5<x<1, the support of 4 is the enmtire
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plone. In other words, for every nonenpty open subset U  of

et U, and

]
[}

the plane, & () > 0. In conseguence, for such ,

for %<x§ 1, the seit %L_t e IR? Z(x+*it) e U: has positive lower
density (The notion of upper and lower density of & linear set,
and more particularly their discrete versions, are well known
in the applications of probability methods to the theory of
velue distribution of arithmetic functiens ! seec, for exanmple,
the monograph [ 37| by Kubilius. The definitions are given in
section 1.4 of this thesis), and a fortiori this set is nonempty.
Thus, the knowledge of the support of 4 inplics the aforcemen—
tioned densengss result of Bohr in a stronger forme. Details
regarding the behavicur of the density of K, were obtained by
Wintner, Jessen and E.R., Van Kampen in the papers [31], [32]}
ard [547]. Probability laws regulating the asymptotic behaviour
of -E-l on lines 5‘_Re(z) =x} were discussed by Van Kumpen and
Wintuwer in [33] for &> 1 ard by Kershner and Wintner in [ 36 ]
for ;—<x_§ 1. In the latter paver, Kershner and Wintner had to
‘ give an involved argument to make allowance for possible Zeta
zeros in the gtrip 'T;L_IE,&Re (z) <“I?-; In the aper [15], Borchsenius
and Jessen related the aforcmentioned probability loaws to the
asynptotic relative frequency of 3-points of the Zeta function
in strips (59 & < Re(z) <b ({+=) (4n c_point of Zeta is a
complex number =z such that ¢(z) =ad). They also considered
the asymptotic behaviour of the argument of Zeta. Their paper

contains a succint account of the works briefly outlined above.
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The statictical regularity in the asymptotic behaviour
of a Dirichlet series ray ve traced back to the fact that &
Dirichlet series is an infinite gun ¢f reriedic terms, and the
sum inherits some of the characteristic features of periodicity.
In the three vepers [117), [127] and [13], H. Bohr introduced
the notion of almost periediecity. In the third paper he defined
an analytic almoest periodic functions. 1t turls out that any
Dirichlet scries defines an anmalytic alnost veriodic fumction in
its half-plane of absolute convergence. In rarticular, Zeta is
analytic almesi pericdic in_%Be(z)> f; However, the half-plang
of almost periodicity of a function given by a Dirichlet series
can be shown to coincide with its half-pline of boundedness.
Since the Zeta furnction is unbounded in every strip contained in
the critical strip, it is not almost periodic in any region to
the left of Relz) = 1. Varicus generalisations of the notion
of almost pericdicity may be found in chapter 11 of [51]. oOne

such generalisaticn isg that of Bg—almost perigdic functicns.
. S
£(1+it)

B _almost periodic. However, such generalisations do not appear

In 53], wintner showed that the function t ~—>

4o be very fruitful for the study of the Zeta function in the
critical strip. Alsc, we are anaware of any rrior work which
relates the Riemann hypothesis itself t¢ any such extension of
almost pericdicity. Yet it is of interest to note that the
statistical theory of the Zeta function has been extended to

arvitrary analytic almost periodic functionse. For a detalled
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account of-this extension, sec the paper [30] by Jessen and

Tornehave .

Bohr's line of enguiry appears to have been alnost totally
abandoned during the sixties. ~ Then in 1972 8,M. Voronin obtainad
Sone significant generalisations ([517]) of Bohr's densenecss
result, He proved that it ZygeeeyZy Aare digtincet points in

the strip -25< Re(z) <1 +then the set
1
L0z *i8) yees, 2(z *it) S te Ry

is dense in the n-dimensional unitary space q:n . (Actually,
Voronin's result is samewhat stronger in that he allows t o
vary only over integral multiples of an arvitrarily fixed h> 0,
further, he allows %<Re(z;j)5 1.)e He also proved that for any

fixed z in %£<Re(z) <1, the set .

W), AV wan, 0, 0D Guan) 1 e m)
is dense in ¢n,

In 1975, Voronin introduced ([527]) Hilbert space
techniques in the study of the Zeta function to prove the following
remarkable theorem. ILet 0¢ n(%, and let K= Kr be the closed

g < % 3 Y , .
disc K =4zef I IZ"'Z, Lr? . Let f be a continuous non-vanishing
function on K which is amalytic in the interior of K. Iet

e> 0+ Then there exists te¢ R such that

(1) Sup | L(z+it) - £(z)| <e .

rel”
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This result has been dubbed the wniversalitv theorem for the

Zeta function. In [427], Reich extended this theoren by showing

that the set of all solutions t of (i) has positive lower den-
sity. To see that the universality thecorem does indeed constitu
& gereralisation of* the densencss result mentiacned previously,
let's note that it may be reformulated as follows. Iet X =X(X)
be the space of all functions on X which are continuous on X
and analytic in the interior of K. Tet us equip X with the
topology of wniform convergence. Iet S(K) denote the set of
all feX(X) such that f 20 or (z) #C for all zecX.

For te IR let St(C) denote the functiocn given by
sY(0)(z) =tz +it);

then each S°(¢) may be regerded as a point in X(K). Then
the universality theoren éays that the closure of the set
‘T%M St(C) e te 312\} contains S(X)., Notice that under Riemamm

hypothesis the said closure equals S(X).

Oe2 Summary of the results in chapters 2-57 In chapter 3 of

this thesis we extend the statistical theory of the Zeta function
and other Dirichlet series to a function space setting., For real
t, Iet St(C) be as in the preceding praragraph, but now regarded
as a point in the space of all meromorphic functions on the halrf-
plane %L% < Re(z}<<b%'. For 1> 0, let Up  be the probability
measure on this gpace given ag the distribution of the rendonm

function STe(i) wvhere 6 1s a randonm variable uniformly
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gistribubed on [-1,1F. It is shown that there is a probability
measureé v on the sald gpace such that as T —> o U

gonverges in dis‘tribufiall to ve In tﬁe notaticn introduced in
sections 1,5 and 2,2 below, we have CK; v on the half-planc
E%.‘Re (z) > 12- l;, o This clearly implies all the probabilistic results

on the Zeta function mentioned above. But, unlike the method
employed by Bohr et al, this result does not depend on the
existence of an Euler product. On the contrary, it is cbtained
Trom general results on the class of anmalytic functiwns of finmite
order in a half-plane, represented by Dirichlet serics and having
finite mean-square valuc in the half-plane. It is show that cach

| function in this class has an asymptotic distribution in the

sense- considered here. Further, the probability measure asscelaicd
with its asymptotic behaviour is explicitly described. Iet W
denote t e set of all comple t21y multiplicative arithnetic func-
tions (see 7[:37, p. Xi]) taking valucs in the unit circle, W

can naturally be made into & compact tepological greup, and

hence there is a Haar probatility measure m on its Borel

o-fielde In (9], Bohr introduced a noticn of equivalence
o

between Dirichlet sericse. Namely, twou seriss & ann-z and
o0 1

81 b a"? are said tc be Bohr-equivalent in case there is a we W

such that b, = wlnla, for n21. For a fixed rcal number a,

-

let }a denote the class of all functiens T given by o

‘Dirichlet series £(z) == a,n - for sufficiently large Re(s),

such that £ is amalytic and of finite order for Ref(z) > a
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10 -

and ;lf(b+ t)lzdt = 0(7) as T —> « for cach b>a. For

—

fe ?a, consider the class of all Dirlchlef serles which are
Bohr-equivalent t¢ f . The probability = ou W induces a
probability measure on the latter cliss relative to which almost
211 mewbers of the clags converges undiformaly bn acompact, subgeis
of fiBe(z)>~5% , and hence defines an analytiC‘function—valued
randon elecment. If o denvtes the disiribution of this randonm
function (so that uf is a probability on the space of analytic
functions on Re{z)>a ) +then we show that ¥ —~§ Mo oD
%MRe(z)>'a}'. (In [ﬁS:], Wintner consiructed a sinilar random
function out of * 1-velued conpletely multiplicative arithmetic
functions and studied some of its almost sure properties. But,
of course, this random functicn of Wintner does not correspond
to the asymptotic behaviour of any given Dirichlet series.).
EQ], Bohr showed that the two sets of values,agsuned by two
Bohr-equivalent Dirichlet series on a vertical line contained in
thelr common half-~plune of absclute convergence, have identical
closures The result mentioned above inplics that in their half-
plane of finite mean~squarc value two Bohr eguivalent Dirichlet
series have a cormmon asymptotic distribution. This may be

regarded as a qualitative extension of Bohr's cguivalcnce theoren.

The above mentioned result of chapter 3 is shown to imply

that any finite subelags of r} have a Joint asymptotic distri-

[-J.

buticn on § Re(z)>élf + Since Zeta is not amalytic in ‘Re(z)> 2;,

these results do not directly apply to the Zeta Tunction. However,

TR
a
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we use thoem to deduce that t, regarded as & Toint in the space
of meromorphic functions ou iLRe(z)><%»§, dces have an asymptotic
distribution. Indeed, if F* is the random analytic function on

3Rb(z)>'2’§ defined by

(=]

(i1) Mz,w) =2 w@In™2 Re(z)>-%, wel,
1
then it is shown that {ZXF on  Re(2)>31 . Since differentia-

tion is a continuous operator on cur function space, the asymptotic
behaviour of the higher derivatives of Zota may readily be dsduced
irom here., For example, we have ¢ /¢ ““% F'/F on Re(z)> 1 5 .
1t may also be of some interest to note %hat the randon functiocn

F has the Buler product representation

111 ) = TTO-w@r™® ™| Re()>],
p

where the product, which is over all primes P, is almost surelr
£ 173 a
>1- >"""". 1
Lx{e(z) 5 n

tonsequence, F is almost surely nonvanishing.

convergert, wniformdy on cormact subscts of

In chapter 4 we obtain discrete analogues of the results
- 2 whos A3
of chapter 3, For any fixed real number h> 0, let’ XIE, P N2

agsumes the

oy

be the scquence of randem clements such *hat X
2N+ values th(ll), n=0,%1,ee0y *N, cach wvith Probability

1 L3 2 ~ 3 -
T . It is shown that there is a randen function F taking

h?

its values in the space of all amalytic functions on S}RG(Z)3>% E

such that X%- converges in distribution to P as N ——>'M.

h
In owr notation, we have 2:::> P, mod h on % Re(z)>- e. Further,

4 ~r{yﬁ;;\“\f X
LV
< F® T Fen 108a 2l
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it is shom that for all but cuntably many values of h,? =F,
vhere F  1s the randonm functicn of the previous paragraph, Por
the countably mauy exceptional values of h, +he dependence of
¥y, on h, which will be fully deseribed, is quite intricate.

AS in chapter 3, these results on the Zeta funetion will be
deduced from analogous results on the asymptotic distributicn

moduvlc b of members of ﬁ}a "

We also emplcy the techniques of chapter 4 tc cbtuin a
result on the sequence of Dirichlet I-functions with increasing
Prime moduli. For any Dirichlet character X, let L{.,X)
denote the associated Dirichlet Lefunctiun given by

Lz, X) = T X nZ,
n=1

We regard L(.,X) as a nmeroncrphic functicn on the half-planc
?39(2)>'%E" For each prine p, let X, denote the randon

element taking the p-1 values L(.,X), corresponding to the
p-1 Dirichlet characters X modulo p, each with probability
E%T « Then it is shown that as 7 —> o +through prines, Xp
converges in distribution to the randon function P  defined by
equation (ii) above. Thie nmay be paraphrased as § +the sequence
of L-functions with prime nmoduli mindes the asynptotic behaviour
of the Zeta function. This result has its precursors in the

raver [[17] by Chowla and Erdos, and in [[247F and {257 by Ellict

In chapter 5 wo generalise the wiversality thecren of

Yoronin in several directiopg. Fxackly 2s the denmoncss resnlt
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=5 M5

of Bohr can be proved in a strengthened form by determining the
support of an asscveiated probability neasure on the plane, we
proceed to strengthen the universality thecren by deternining
the support of a probability measure on the syace H(()) of all
analytic functions cn the strip () =§"% < Re(z) < 1??. It
follows fron the results of chapter 3, that the restriction of
Zeta to (), regarded as a point in H(()), is asymptotically
distributed like the restriction P|(), off the randon function
F to (). Ve show that the suppert of F[() is the set

S =§if€ B({))! £ =0 or % £ H(_(__}_)ii + Fron this we deduce

that if X is any cinply connactea and locally path connectoed

compact subsct of () (and not necessarily a disc as in the

generalisations of Voronin's theoren by Reich [437) and

laurincikas [(38]), and f is any continuous non-venishing

function on K, analytic in he interior (if any) of K, then
the inequality (i) above has a solution teR. In fact, the sct

of a1l such solutions 1 has & positive lower density.

We also apply the results of chapter 4 to obtain discrete

versions of the above result. Iet h> 0 dbe an arbitrary but

fixed real nunbere. Iet X, £ be as in the preceding paragraph,

and e> 0. Then it is shown that the inequality

(iv) Sup [Z{z+*inh) - £(z)} C¢
zeK

has solutions in integers n. Indeed, the set of all such

integer solutions n has positive lower density (discrete
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version). All three theorems of Voronmin's paper [5171, in theixr
original discrete form, may be deduced from this result - althovgh
they can not be so deduced from Voronin's version of the univer-

sality theorem.

In 527, Voronin mentions that his methoeds can be used
to derive an analogous universality theorem for an arbitrary but
fixed I-function. The above-nentioned universality results of

this thesis are particular cases of a pore general undversality

theorem of chapter 5 on the joint approximation properties ol

finite sets of I-functiorigs This theorem, which is as follows,
also lmplies the universaiity theorem fo: each firxed L-function.
Let k21 be an integer, and let n = @(k)” be the number of
integers in [[1,k ] which are relatively prime to k. Iet

X3 X5, 000, X, Dbe the n distinet Dirichlet charscters modulc X .

Iet KT""'Kﬁ be sinply co iected and locally path-comneched

m

compact Bubsets of (). For eadch j,1Ljln, let fj be
nonvanishing continuous function on Kj which is analytic in
the interior (if any) of L Tet e> 0. Then the inequality

(v) Sup Sup |T(z*it, X ) ~ £.{z)| <e
18¢3&n zek; J J

hes a solution te IR, Indeed, the set of &ll such solutions 1

has positive lower density.

We also vrove a discrete version of this joint universa—

1litv theorenm for an arbitrary increment h> 0. lMoreover, fron
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the asymptotic result of chapter 4 on the secquence of I-functicns,
we deduce a novel zsort of universality theorem. Namely, we show
that if X 1is a sinply connected, locally path—cormected subsat
of (), £ is a non-vanishing contimous function on X which
is analytic in the interibr (if any) of X, and &> 0, then for

each sufficiently large prime p, there coxists a Dirichlét

character X modulo p such that
(vi) Sup |I(z,X) = £(z)| <e .,
zeK

Indeed, there exists a constant c¢> 0 (depending on K,f,e)

such that (vi) holds for at least c.r ocharacters modulo D .

The joint universality theorem quoted above clearly

implies there exists no non-trivial algebraic-differential

identity relating the various I-functions. Many cther consequeinces

of these ~esults have been di scussed in chapter 5. In particular,

it is shown that if 0<a<1, a« # %, a ig a ratienal number,

then the Hurwitz Zeta function £4{z,a) satisfies the following

unconstrained universality property. Iet X be a simply

comnected, locally path comnected compact subset of () , let

? be any (not nccessarily non-vanishing) continuous functian

on K which is anmalytic in the interior (if any) of K. Iet
e>0. Then $he set of all te R for which

(vii) Sup| ¢(z+it,a) - £(z)] <e
zeK

has positive lower densify.
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This result is truc, and indeed is easier to prove, in

case o is transcendental. It is defunitely false for ¢ =-%

or 1. Truth or falsity of this theorem for irrational algebraic

a remains openl. For rational of l in (0,1) and for trans-

cendental ae (0,1), we deduce that the set of real parts of the

zeros of ¢(.,2) is dense in 1*_-2-, 173. Supplementary informa-

tion on the zero-set of £(.,¢) may be found in the works of
. o

Davenport and Heilbromn, [201, [21],of Cassel, [16f, and of

spira, [46]. The unconstrained universality theorem also holds

for the nth derivative ¢ (n) of the Zeta function (n2 1).
(n)

In consequence, the set of real parts of ‘the zeros of ¢ is

I4
dense in [:32-, 1. For related work on the zero-sct of ?:“n),

sce _Berndt, 2]

i A partial converse of fﬁe‘ﬁnivgrsality theorems of
chapter © is easy to establiin. For example, if K C ) is
as before, and f is any function on X such that the sct of
all teIR Sa'tlsfying the lnequal:.:ty (J.) above:has positive
lower density for each &2 0, then f is continucus on K and
non-vanishing analytic in the interior of X. This obscrvaticr
together with the universality theorens themsclves, imply an
inportant criterion for -zero-free sffiﬁéo Iet us say that an
analyt%c function £ on a strip SLa < Re(z) < b% is gtrangly
recurrent on that strip in case for every compact set K con-

tained in the strip, and for every &> 0, the set of all tel
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for which Sup|f(z+*it) - f(z)[ < e has posiiive lower density.

zeX
Then a strip $a < Re(z)<b %, where 32-5_ a {b <1, is free of

zete zeros if and only if Zeta is stronely recurrent on that

gtrip. In varticular, the Riemonn hvpothesis huolds if and only

if Zeta is strongly recurrent on the strip () . The amalogous

statements for the L-functions dre also valid. The examplas
: C(n) (m21) and (., @) (yith 0<a< 1, @ ratiamal or trans-
cendental, a # 32-) show that for gencral Dirichlet series,

strong recurrence on the strip () ie consistent with the set

of real parts of the zeros of the function beins dense in [jé 5 Toedlls
In chapter 5, we alsc give an example of an entire Tunctien P
represented by & convergent Dirichlet serics on  Re(z) > 0

wﬁich has a functional cguaticn véry similar to that of the Zeta
functian, such thaf ¥ is strongly recurrent om () , and the
set of Texl parts of the zerc: of § is dense in [0,1]. The
relationship between stroh‘g recurrence and zero-free strips for
the Zeta function is a result of the Fuler product formula (iii)
for the associated random function F. This in turn is a con-

sequence of the Euler product forrmula for the Zeta function.,.

The universality theorems themselves are proved by exploite
ing the fact that in the product formule (iii), the facturs are
.gtochastically independent random elemants, and that similar
formulee exist for other I-~functions. Following Voronin, [527],
we base the proof on the introduction of switable Hilbert SPACES .

But unlike Voronin, we do not use the result of Pecerskii on
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rearrangement of series in Hilbert svaces. The said result
of Pecerskii is & real Hilbert space theorem which does not

suffice for the proof of the Joint universality theorem for

.. I-functions. Instead,,we base our proof on @ new result (propo-

el o

, 31tlon 5,2.8) on condltionally convergent series in complex

- Thus strong recurrence appears as a close relat1VQ of almost

‘recurrenc e In particular, jtae notion of strong recurrence of

bperiodicity. We also empha81se the 1nhcr1tance theorem of

Hllbert spaces whlch we statb and prove iz chaptcr 5. This pro-
position may be of some lnterest of its own. The other ma jor
tool that we use is a theorem 6f V. Bernstein on entire Ffunctions |

of exponential type,.

In chapter 1 we summarise gome relevant notions and resultg

from the theory of Topological transformation groups. This tthf%

whose historical origin lies in the study of dynamical systems of |
'NéWtonian'physics, is seen to provide the proper Axliomatic basis

for a unified study of both asymptotic distributions and strong ©

points in an abstract flow (i.e., @ torological transformation
group with the addiiive group of reals or of integers as the
phase group) is introduced following Gottschalk and Hedlund in

[26]+ Thus strong recurrence appesars as a particular example

p—— T e Ca PESIRTEES

of the more general concepl of recursion. It may be noted that
the classical definition of analytic almost periedicity due to
Bohr has alsc been extended to a recursion notion on arbitrary

topological transformation groups (Sée .g. E27 Pp.31-487]).
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Gb%¥50héxk‘agg Hedlund which relates the continuous and discrete

versicns of strong recurrence.

In chapter 2, we speoialiséche definitions of chapter 1
to floﬁs én function spaces with shift ag flow projection. It
is shown that if fyg are analytic functions on & strip, such
that™ £ "is strongly recurrent and g isg given by an absolutely

convergent Dirichlet series, then f+g "is strongly recurrent.

The argunent there may easily be generalised to show that if f

is strongly recurrent and g is almeost veriodic in the sense of

Bohr, then f+g is strongly recurrent. (In particular, ever

almost periodic Ffunction is strengly recurrent.). This raises

the gggstionras to whether the sum of twe strongly recurrent

Camalytic functions on a strip is again strongly recurrent., In

chapter 5 we represent the Zeta function (as alsc the cther
Lefuncti(ns) as a finite sum of stromgly recarrent functions on

the strip () . Thus, an affirmetive answer to this question

X

“would imply the Ricua.n hypothesis, and indeed the generalised

"Riemenn hypothesis for I~functions. It may be mentioned that the

sum of two amalytic almost periodic functions is agoin almost
periodic (theorem 5 of [ 3,p.143]).
(n the other hand, it is shown in chapter 2 that subject
to an extra condition of a technical nature on the asymptotic
if an fe 3, is
. 3 e
strongly recurrent on a strip fa<Re(z) < b} +hen it is strongly

behaviour of f  on the line %Be(z)==a: ,

recurrent on the entire half-plane §Re(z)3>aE « This leads us to
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conjecture that this implication remains valid without the

technical condition. We have called it the recurrence conjectqu

(2,4,10)¢ In chapter 5 we show that the recurrence coniechire
that ;
implies/the set of real parts of the Zeta zevos is dense in EO,ﬂL

- the strongest possible negation of the Riemann hypothesis that |

is consistent with present kmowledge. The coniecture also imﬁléﬁ

that the set of real parts of the geros of L(.,X) "is dense in

the interval [ 1-a(X), a())], where a{X) ig the-supremum of |

this set.

It follows from the results of chapter 2 thdt the property
of, strong recurrence of a Dirichlet series remsins unaffected if %
finitely many terms are added to or deleted from the series.
Further, if P 1is a rationul function of n wvariables (n> 1)

and f 1is strongly recurrent on a strip then 9o is

P(f,f61),...,f(n’1)). Thus strong recurrence is a highly stable

3
!
¢
properfx. On the other!hand,'%he Riemann hypothesis, even if g

true, is a highly unstable property of the Zeta function. Thus,

{n)

f
8
for example, it is falsified if (z) is replaccd by &{z) -« |
|
1

for any o #0 or by ¢

Tor n2 1. Therefore further research

on strong recurrence of analyﬁic functicns on & strip may be more |

fruitful than the attempts at dircet study of the gero-frec reglon

of the Zeta functicn have so far beene The main objective of this
thesis (apart from the more mundane one of procuring a degree for
the authar !) is to meke a strong plea Ffor the study of strong

TCOMPIESSION;: ©C
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CHAPTER 1

STRONG RECURRENCE AND ASYMPTOQTIC
DISTRIBUTION IN FLOWS

Te1 Introduction and summary ¢ In this chapter we present the

basic definitions and results from Topologhcal dynamics which
will be used in the later chapters. Bxcevpting for minor modifi-
cations to suit our purpose, the results and definitions in
sections 1.2 and 1.3 are from Gottschalk and Hedlund [27]. In
contradistinetion to [[27], we consider only Abelian phase groups,
and accordingly use an additive notation., The inheritance
theorem as well as the general notion of recursion in section 1.3
below first appeared in the pépef [[267] by Gottschalk and Hedlund,
and were presented in a more refined form in [[27]. Various
recursion notlons - particularly recurrence and almost periodicity,
have been studied in great details. But the notion of strong
recurrence that is presented in section 1.4 below appears to be
relatively neglectede The definition of strong recurrence, as
also the specialisatien of the inheritance theorem ta strong
recurrence, is briefly mentioned in [[267]., We claborate on this
theme in 1,4 since strong recurrence turns out to be of utmost
importance to the theory of Dirichlet series in general and of

the Zeta function in particular., -

In section 1,5 we introduce the notion of asymptotic
distribution of points in a flow. The intention is to apply
probability theory to the study of recurrence. Although analogous

notions have been used in Probabilistic number theory and the
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inspiration from Ergodic theory should be obvious (after all,
abstract topological dynamics emcrged in an atiempt to free
Ergodic theory from probabilistic considerations), this concept
appears to be new in this setting. Its relationship with sirong
recurrence ig explained in subsection 1.5.4. Inn 1.5.6 we glve &
sufficient condition for the existence of asymptotic distribution.
This proposition has a well known analogue in Probability theory

from which it has been deduced.

1.2 Topological transformation groups and flows .

142,17 Definitions : A topological transformatian group is an

ordered triple (X,G,n) . consisting of @ topological space X,
an abelian topological group G, and a map 7i XX G —> & sucn
that .

(&) (Identity axiom) n(x,0) =x, (xeX), vherc © dis the

identity element of G ;

(p)  (Homomorphism axiom) 7 (%(x,%),s) = T (x,s+%),
(s,teG,xeX);
(¢}  (Continuity axiom) © is continuous.
If (X,G,m™ is a topological transformatien group then X,G and

T are called the phase spacg, the phase group, and the phase

Projection respectively.

1.2.2 Notation ¢ If (X,G,7) is & topological transformation

group then for each teG we define the map TL G by

w(x) = n{x,t) {xeX).
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in this notation, the homomorphism axiom may be rewritten as

4,44 £, 4 ‘
D S R Eten Y
= 0 , (tyyt58 G

1.2.3 More definitions (Homomorphism, invariancc, vestrictions,

‘ i . -~ . .
Cartesean product) ! If (X,G,m) and (1,8,7) arc two topological
transformation groups having a common phase group G, then a map

¢ X—>7Y is called a homomorphism in case

(a) # iz continuous,

and (1) Po =%o § (bea).

In particular, if (X,¢,7n) is a topo-logic‘cil transformation group,
each 7 is a homomowphisn of (X,G,m) into itself.
If (X,G,m) 4s a topological transfprﬁatioﬁ group and Y is a

subspace of X, then Y is said to be inyariant in case
2 C Y (ten).

If # is a Borel probability measure on X, then & is sald tc

be invariant in case o W' = 4 (te Q) .

If Y is an invariant subspace of Xy then tne restriction of =
to YX G maps ¥YX G into Y. This restricticn (which we
denote by 7 itself) satisfies a2ll the axioms of T1.2.1. Thus

(Y,&,m) is a topological transformation group in its own right.

In this case we say that (Y,G,7) is a subspace—restriction of
X,6,m).
If H is a subgroup of G, then the restriction of = to XX H

again satisfies the axioms of 1.2.1 for +teH, Thus, (L.E71) is
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again a topological transformation group. In this case,

(X,H,m) ic called a gubgroup-restriction of (X,G,7).

Iet I DYe an index set. For each oe I, let X , G, ﬂa)

4

be & topological transformaticn group. Thc cartesean product

Tr(“/;a!“ (TTX Gs.ﬂrn)

aegl ag I - ag I

is the topological transformation group with the cartesean pro-

duct TTi X, (with product topology) as its phase space, G
ae

as 1ts prhase gromp, and with the phase projection

=PATT ﬁ;l: TT X, X G e— TT X given by

ag X 7 ae I
n({x, s 2el),t) ={quwt):aaz),(tae).

In case I = 1,2,5..,n , we also denote the cartesean

pI'OdU.Ct b:y' (XT X X2 X . o-x qu; " G, TE..[ X ooo.ﬂ:n) . Marther if

Xy =X, % e0e=X =X and Ty F % ees=T =T then the product
is denoted by (XD3G,H), or (if the phase projection is under-

stood as given by the context) more simply by X

1.2.4 Continuous and discrete flow ¢ A continuous flow is a

topological transformatian group having the groupy IR of reals
(with usual aédition) for its phase group. We shall speak of
"the continuous flow (X,7) ¢ the phase group being implied to
be IR. | g .

A discrete flow is a topological transformation group

; 2 R el N - . - Lo I s - -_ R
hoviag tae group 2 of integers (with nsucl add Gicny For 458
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&

phase groupe. Ve shall speak of ¥ the discrcte flow (X, )™ I

the phase group beiry; implicd to be 7.

If h is a

s

ositive real nuuber, hZ% 1is a closed subgroap
of IR. In fact, these arc the only proper closed subgroups of
R, they are necessarily syndetic, (Recall that a subgroup H of
a topological group G is said to be syndetic in case G=H+*K
for some compact K (T G.).

If (,m) is a continuous flow, its subgroup restriction

(X,hZ,n) is called ¥ the discrete subflow of (X,%) modulo k™.

Te¢5 Recursion in topological transformation sroups .

1341 Definition (recursion) I Iet (X,G,n) be a topological

e

transformation group. Let there be & distinguished clags A of
subsets of G . (Intuitively, A consists of subsets of G which
are "large " 1in sane suitable sense). A point xeX is said

to be f*urecursive under G  in casc for each neighbourhood U

of x,there is an Ae A such thet n(x,4) C U.

14342 ZFPropogition ¢ Iet (X,¢,n) and (Y¥,G,7) be two topclo-

gical transformation groups and @ ¢ X —> ¥ & homomorphisn
between them. If xeX is ‘ﬁi—recursive then #(x) is also

)garecursive.
Procf : Trivial.

Te3e3 Definitions ! ILet (X,G,n) be a topolugical transforme-

tion grovp, H a subgroup of G and A a family of subsets of G.
b ’ <
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Then we shall say that x:X is féf—recursive under H in casge

x is .ﬁ(},-recursive when regarded as a point in the subgroup-
N M - e
=32 Ae oo A (_ Hl in parti-

restriction (X,H,7). Here A ¥

H
cular, if (X,") is a continuous Tlow and h> 0, then we shall
sey that xe¢X is Prorecursive modulo h in cuse x is

ﬁ-recursive under h7 .

1e5+.4 Inheritance theorem {(Gottshalic ard Hodlund) ¢ ITet (LG, 7)

Ty

be a topological transformation group such that G is locally
compact, and let }% be a family of subsets of G such that

whenever 4A,B,0 (C ¢ satisfy (i) & ¢ B+, (3i) Ae N and

(iil) ¢ is compact, we also have Be 7ﬁ » Then for each closed

syndetic subgroup H of G, and each xeX, x is A—recursive

uder G if and only if x is A—recursive under H.

1«4 TUpper and lower densities ] stronmg recurrence of points i 5,

e

e 5

Tedel Definitiocns (Tower and upper density | centinuous and

discrete versions) I If A (C R is Borel, the upper - and
lower density of A {continuous version), denoted respectively

by d(4) and 4(4), are defined by &

a = i 1 -.-.1_. 3 m om
aa) = Limsup 77 Al - 2,70 ,
4 = liminf 2= AGf][-7,77) .

T—> e 2T

Further, if g(4) = d(4) then we write da(4) for this common

|
|
|
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value and say that A has density (continous version) da(a).
If A is a subset of 7, the upper and lower density (discrete
version) of A, denoted respectively by 6(A) and 8(a), are

defined by o

= s & 1 ' Sl
5(4) = %ﬂlfug swrr ¥ (af) - N,II‘]) :
s(a) = I]\.I_imi.nf gﬁﬁ—# (af) [-w,8D) .

Farther, if 8(A) = 5(A) then we write 6(A) for the common
value and say that A has density (discrete version) 6(4),
Here, as also later, A is lebesgue measure on the real line,

¥ (.) denotes the number of elements in (.).

Tede2 Definition ¢ ILet (X,7) be a continuous flow. Then

Xxed 1s said to be gstrongly recurrent if it is A--recursivo,

where ﬁgr is the family of all Borel subsets A of IR for which
dA+I)> 0 for each neighbourhood I of Oe IR .

1.4.> Proposition : Iet (X,%) be a continuous flow, and
xeXs Then x is straongly recurrent if and only if for every

neighbourhood U of X,

E(EJEJR: nt(x)aU}‘}) > O

Proof + The ‘'if' part is trivial since for every Borel seit

B (_ R and every nonempty I =, aB+I) > d®) .

To prove the 'only if' part, let x be strongly recurrent, and

let's fix a neighbourhood U of x. let Bﬁgta R (x) e U} .
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We have “o show d¢(B)> 0.

Since m(x,0) =x and 7 is coatinuous, there exists
neighbourhoods V of x and I of Qe such that
MUXD) CU. Let A =3te@R:T(x)eV}. Then for ted and
hel, 70B(G) = T‘L(Tf_t(x),h) e T(VXI) (C U. Hence A+1 (. B.
Also, by assumption of strong recurrence of x, there ig C (; A
such that d(C*I)> 0. Hence &(B) Y A(A+I) » 3(C+I) > 0, so that
a(B)> 0 and the proof is complete,

1.444 Proposition : If (X,n} is a continuous flow and x&X

then x 1is strongly recurrens mod h if and only if
Gne W 7 () et > 0
for every neighbourhoodr U of x.

froof : This may be proved exactly as the proposition in 1.4.3
once we notice that for subsets A of 7, B8(A)> 0 if aud only

if d(A*I)> 0 for every neighbourhood I of 0.

T.4.5 Iemma ! 1f 4,B,C are Borel subsets of It such that
A (B, Ac A and © is compact, then Be A . (fere A ie
as in definition 1.4,2).

froof : Let I be any neighbourhood of (. We have to show
that d(B*I)> 0. Take a neighbourhood J of 0O such that
J+J (_I. since C is compact, there is a finite subset ¢,

—

of € such that ¢ (T C,*Jde Hemce C+J (T ¢, *I, and
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therefore A*J (CB+C+J ([ B*C_+1 = B+I+C_ . But sy
and hence d(A*J)> ¢. Thercfore &((B+I) +-CO) > 0. Since O
is finite, this implies E(B*fl) >0 (In fact, for any Borel set
D C R, we have a()) qut—c?a(lﬁ“fco)). This completes the

proof as 1 was an arbitj:-ary neighbourhood of Q.

Tede6 Propositien (Inheritance theorem for strong recurrence) !

Ir (X,m) is a continuous flow, x¢X and h> 0 is real, then
x 18 strongly recurrent if and only irf"~ x is strongly recurrent

modulo h .

Proof : In view of definition 1.4.2 and lemma 1.4.5, this is a

special case of theorem 1.3.4.

1e4e7 Definition {! Iet (,n) be a continuous Cespectively

discrete) flow. An xeX is said to be periodic under zm (or

simply * periodic ' if the phase projection is given by the
‘context) in case there is he IR (respectively hez), h#o0,
such that m2(x) =x . Equivalently, the regquirement is

) = 2t for a1 teIR (respectively all teZ).

- hny h satisfying this condition is said to be a period of x.
The next proposition shows that strong recurrence (as also other
recursion concepts found in the literature) is a generalisation

of the notion of periodicity.

14448 Proposition & If (X,n) is a2 flow and xeX is periocdic

then x 1is strongly recurrent.
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Proof - We prove the proposition for continucus flows, the prod?

for discrete flows being entirely znalogous.

Tet h#0 be a period of xz. Then x is Tixed under fhe
subgroup hZ of ] (i.e., Tc-t(x) = x for tehZ). Hence,
trivially, =x is strongly recurrent modulc h« Now proposition

Tede6 dimplies that =x is strongly recurrent.

15 Asymptotic distribution of points in a flow .

1.5.1 Definition ¢ Iet (X,™ be a continuous flow, xeX.

Iet # be a Borel probability measure on X. We shall say that

x has asymptotic distribution # (or x is asymbtotically

distributed &g M) in case we have

dCGte RS it (x) e U= > 4(0)
for every apen set U (C X. In this case we shall write x :_ilﬂ .

Similarly if (X,n) is a discrete flow, xeX, and # & Borcl
probability measure on X, then we shall say that x  has

asymptotic distribution # (or x is agymptotically distributed

as M) 1in case we have

8Gne? @ ANx) e UL > (W)
for every open set U (C X.In this case also we write = :; o
If (X,n) is a flow, xeX, 4 a Borel probability measure on

X, and # is an X-valued random element whose distribution is

#, then we shall also write x —X £ in place of X :; K.
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If (X,m, is a continuous fiow, xeX, h> 0, and # is a Borel
probability measure on X, then we shall write x =% # nodulc &
in case x ___""‘_;M relative to the discrete subflow modulc h of

&,m). If in this situation, # is an ZX-valued random olement

vhose distribution is # then we shall also write x ~=¢ @ mod h.

15.2 ERemarks ¢ Iet (X,m) be a continuous (respectively
discrete) flow. Tet xe¢X and let # be a Borel probability
measure on X. For cach T> 0, TeIR (respectively N> 0, Ne?Z)
let 8 Dbe a random variable which is uniformly distributed on
[~2,77] (respectively, let 6y be a random variable such that
&; =k with probability = for each ke [-N,¥7](}2), and
let Xm (respectively xN) be the X~-valued random clement
defined by x5 = n(x, €y) (respectively xzy = n(x, €7)). Then
the definition in 1.5.1 m2y be rewritten as @

X :§ o 1f and only if Xm 2==>p, ag T —> « through R
(respectively xy -“-I—l-->ﬂ as N -—> = through 2).

(See E4:[ for the definition of -P=> , convergence in distribu-
tion). Since a net of probability measures may have at most one
limit in distribution, this also shows that the asymptotic dis-
tribution of an x in X, when it cxists, is uwalquely deter-

nined by X.

Lastly, 1t is e@sy to see that the asymptotic distribution

of 2 point in a flow is necessarily inveriant in the sense of 1.2.3.
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T.543 Definitions (Support of & probability measure ; orbit,

orbit closure, and spcckrum of & peint in a flow) ! If X is a
seperable topological space and # & Borel probability measure
on X then there exists a unicue minimal closed set f\(; i

such that 4({\) = 1. /\ is called the gupport of 4, and may be
obtained as thé get of 211 yeX such that for every neighbour-

hood U of 7y, we have #(U)> 0.

If (X,®) is a seperable flow (i.c., the phasc space X
is seperable) and xeX 4s agymptotically distributed as «,
then the spectrum of x is defined to be the support of 4.

Ir (X,G,7) is a topological transformation group, and
xe X, then the orbit of x 4is defined to be the set ﬁu{f‘ )t eGi.

The orbit closure of x 1is, by definition, the closure of the

orbit of X .

TeS5ed Proposition ! ITet (X,7) be a seperable flow. Suppos:

an xe¢X has asvmptotic distribution. Iet N\ and [ be the

spectrum and orbit closure, respectively, of x. Then :
() [\ and [ are closed invariant subspoces of X,
® A CT,

and (¢) If xef\ then x is strongly recurrent.

Proof ¢ These are trivial consequences of the definitions.

1.5.5 Remarks ! If (X,7) is a flow, and [ is the orbit

closure of an xe¢ X, then by (a) of 1.5.4, [ is an invariant
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closed set containing x (i fact, it is the © smallest ™ suca
set relative to set inclusion) and hence we may speak of the
subspace vestricilon {{ ,m} of (X,m). Clsarly an xeX is
strongly recurrvent / has asymptetic distribution relative to

(X,n) if and only if it has this property relative to (], T) .

1.5.6 Proposition ¢ ILet (X,m}) be a caontinuous flow on a
seperable metric space X . Let ¢ bhe a metric compatible witn
the topology of X. Iet ixn e Ne INB be & sequence in X and
let i#n s ne H\I} be a sequence of Borel probablilty measures on
e let xeX . We also assume s
; 1 I 1 % .
(a) limsup S Fe(n®(x), m'(x_))dt = o{1) as n —> «_
T—> o 2T i n g

']

—_ o -<
() X, =% #4, for each ned,

and (c) The sequencea )fz‘ﬂn} is relatively compact in the topc..ogy
of convergenpe in distributicn.
Then there 1s a Borel probability measure 4 on X such that |
g ——
(D =3 ».
D
and (e) H =X 4 as n—> =,

Proof ¢ For each T> 0 let Op be a random variable which is

uniformly distributed on [-2,77]. Suppose the £'s are

——c

S’

defined on a common probability space (( ), ,P). TFor cach

1

ne N, let Yn be an X-valued random element whose distribution
is K « Ve may (and do) assume that the Y, 's are also defined

on the same space (( ), ', P). Por cach ne I and each T> O,
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let's define ZX-valued random elements s and Xn T by =
9

Xn = " l{x,9

T T)’

Xn,T - H(Xn’eﬂ?) *

For each ¢> 0, we have, by Chebychev's inequality [ 39,».11],

P@(Xn#PXT)>s).5 B(P (X, po¥p)

T
= %.é% r_L p(nt(xn) ; n(x))dt .

Hence, . by assumptien (a), we have

(f) lim Limsup P(O(X, T’XT)>8) = 0 for each &> O.

n—>o T3 o
Also, for each n,x =X #_ , and hence, in view of 1.5.2 above,
we have .

D
{g) Xn,T => Y ag T —> (neli).
Also, if ¢ n’\,} is a convergent subsequence of S # 73, (let's say
&
D
K ==> (1) then we also have
By

D
(h) Y =>4 as n,_—> =,
nk k

In view of theorem 4.2 of Billingslay [ 4, 3.;5] (£}, (g) and

(h) imply :

o W
(1) X_T——>M.

In view of the remarks in 1.5.2, this means x ¢ #. Also, (1)
shows that & 1is independent of the cholcece of the subsequence
D

'\TMnkB . Hence, due to assumptien (¢), we have # = 4 ag
L -

n —> ©, This completes the proofe.
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1657 Proposition : Iet (¥,m) and (Y,%7 be two flovs

be «

(both continuous or both discrete). Iet pH ¢ X —> Y
homomorvhism beitween them. ITet xeX satisly x :; i,
Then #(x) - wog= 1,

Proof «+ We take the flows to be continuows (the discrete case
is entirely analogous). Tet U be an open subset of Y.

Ten £ 1(Y) is an open subset of X, and we have ¢
(teR: F(@NeUT={te Rt #(TF) e U}
={teR: () e g (WS

3 “  and ,@"1 (M is open, it follows that 3

aite RS nt(}:) £ ﬁ_1 (U)} )
> 21 o))
Ceogm D (m

dEte RS (PG U )

i

Since this holds for all aopen U (; Y, it follows that

p0 = zog™! . This completes the proof .
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CHAPTER 2
FLOWS IN FUNCTICN SPACES

2,7 Introduction and summary : In this chapier we allow shift

 transformations to act on spaces of analytic functions and of
meromorphic functions as well as on the space of continuous
functions on the line in order to study the flow structures that

result. The emphasis is on the strongly recurrent points in them.

Section 2,2 contains the basic definitions and a short lis
of flow-homomorphisms hetween various function-space flows intro-
duced there. In section 2,3 we concentrate on the set of strongly
recurrent points in the flow H(( ) ). By repeated use of the
inheritance theorem of chapter 1; we are able to show that this
set is clbsed under addition and multiplication by cértain members
of H((")), among them ars the functions giﬁen by absclutely
con#ergenﬁ Dirichlet series. In particular,'the abgolutely G On-

vergent Dirichlet serics are themselves strongly recurrent. These

31
observations lead us to ask (2.3.7) if the set cof all strongly
recurrent points form a subalgebra of H{{ J). In subsection
5¢411 of chapter 5, we show that an affirmative answer to this
guestion would imply the gensraliged Riemann hypothesis for

Dirichlet IL-functions.

One of the results of section 2,2 is that if an e H(())
is strongly recurrent then so are all its vertical sections. In
2.4 we prove an elementary result (proposition 2.4.2) to demon-

strate the exact relationship that obtains here.  We also Drove a
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o

result (theorem 2.,4.8) to the effect that if an analytic function
represented by a Dirichlet series satisfies certain auxiliary
conditions then strong recurrence of one vertical section of the
functien implics strong recurrence of the function in the entire
half-pléne to the right. This suggests that subject to suitable
auxiliary conditions, a Dirichlet series will have a half-plane of
of strong recurrecnce. This is the content of the recurrence con-
jecture of 2,4,70. In subsectian 5.4;6 of chapter 5 it will be
shown that this conjecture implies the strongest conceivable

negation of the Riemann hypothesis.

In order to prepare for the proof of theorem 2.4.8, we
decompose an analytic function given by a Dirichlet series into
the sum of an absolutely convergent Dirichlet series and a
residwl tern {lemma 2.4.6). This is the well known * Kernel

method"”™ of analytic number theory stated in its utmost generality.:

Regarded as a study of the flow H((")), the results of
this chapter are far from complete. However, they suffice as an
ad-hoc basis for chapter 5, where the relationship betwcen strong
recurrence andzero-free strips of the Zeta function and other

I-series will be estabvlished,

2.2 Shift transformation as phase rrojection on function spaces.

2.2,1 Standing notations ¢ Throughout this thesis () will

stand for a vertical half-plane or a vertical strip. Thus

fl"f1b=%ﬁ€¢ :a<Re@)<b¥,wae-w§a<b§+w.
8- -
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By a proper substrip of _(_“2_:1 , we shall understand a subregilan

of the form i—_)_d vhere a<c<d<b.
¢

Further, if {f is a function on _(_—2_b , and a<c<b, then Y
a

will denote the function on I defined by

fc<t) = flc+it) (teIR).

2.2,2 The function spaces M((7)), H({)) and C(R) ; Iet

£, = ¢1%>" be the Riemann sphere (i.e. the one point compactifi-
2 - + s
cation of (). The map Aal¢_X ¢ —> R given by

2lzy - a,l

d(z1’22) = ’ d(z’oo) = 2

(141241 VB +pz, 1212 (141} D12

and dfe, =) = Q (z,z1,zga¢) is a metric an ¢ compatible
vith the usual topology of ¢_. If ()} is as in 2.2.,1, the
space C((7), ¢.) of continuous functions from (") into the
metric space (f_, d) may be equipped with the topology of uni-
form co'm?ergence on compacta. In this topology, a sequence fn
in ¢((), ¢.) converges to the point f in +the same space in
case d(f (z), £(z)) —> 0 as n-—> = for each ze (), the
convergence being uniform for z in compact subsets of () .
This mkes C(("), ¢.) into a complete metric space (for this and
other unproved assertions of this subsection, sec Conway [18]).
The set of all meromorphic functions on () (di.e., the'analytic!
functions from (7) into ¢_) form a closed subset of C((),{.),
and hence is a complete metric space in its own right. This iz

dencted by M((7)) . Notice that the comstan®t Finetian = ic trken
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to be a wember of M((T)) (i. this regard, our noteadion differc
from that of [ 181). The space of all amalytic functions on (),
form a subspace of M({")). Thie we denote by H({)). Finally,
C(R) will stand for the space of all complex-valued continuous
functions on IR, equipped with the topology of uniform convergence

on compacta e

2.2.% The shift transformations on M(()), H({)) ard C(IR) :

et S ¢ M) X —~> M(()) be defined by + S(f,t) = g

vhere g(z) = f(z+it) (ze (), teIr, £e M), It is easy to

verify that (M((7)), R, S) satisfies the axioms (a), (b) and
(¢) of 1.2.1, and hence (M(()),S) is a continuous’flow (see
1.2.48). H(()) is an invariant subspace of M((7)), and hence
the subspace restriction (H(()),s) is a continuous flow in its
own right (see 1.2.3). We shall ordinarily be concerned with
(H(()),3) ; but cceasionall - the embedding of H((T)) in M({ D)

will be found useful.

Tet S ¢ C(IR) XIR —> €(IR) be defined by : s(r,1) =g where

glx) = £(x*t) (x, teR, feC(R)). Tacn (C(IR),S) is again

a continuous flow. The use of the same letter S to denote two
types of shifts in two different function spaces should not lead
to any confusion.

From now on, our sole interest will be in the continuous flows

introduced here. Thus, we shall speak of Y"the continuous flows

— — "
M(()), H((T)) and C(IR) , the underlying phase projection in


http://www.cvisiontech.com

- 40 -

each casc being understood t. be as above.

24244 Some useful flow-homomorphisms on function spaces o

(a) For each n2, Dn, the nth derivative operator, is clearly
continuous on M((T)) and comnutes with all the S°'s. Therefore
the D™'s are flow homomorphisms of M({7)) imto itself. H((T)
is imveriant under DP‘, and therefore D is also a flow homo-

morphism of H({)) into itsclf.

(b) The metric 4 of 2,2.2 1is easily seen to satisfy the

identity d(z1,22) £ d(%1,%2) Azg,z e ¢ ). In consequence, the
mp f —> % is continuous on M((}). Since it clearly commutes

+
with the S''s, it follows that £ -—>

F iyt

is a flow homomorphism

(in fact a flow isomorphism) of M((T)) into itself.

(¢) The inclusion mapping from H((T)) into M) is clearly

a8 flow homomorphisme.

(a) Iet ~©La<c<d<b<», Then the restriction map from
_.b
() ) into M((mlﬁ3 (i.¢., the map sending £ e M(( ')"a) into

the restr.gctlon i KO )d of, £ o _(___)_d)
c c -
likewise, the restriction map from H(( _)_b into H(M%) isa
&

is a flow homomorphisme.

flow homomorphisnme.

(e)  Iet ~olal{bLl>, For a<c<b, the map ¥ —> T (in the

e
notation of 2,2.7) is a flow homomorvhism of H{{)) into ¢(R).

() Iet 4 be a complex Borel measure on IR with compact

support. Por fe C(IR), the convolution f*u of £ and # is

wJ
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the func.ion on R given by E+4)(x) = I (x~t)au(t) (zeR).

The map f —> £x&4 is a flow homomorphisn of C(IR)  into itself.

2s2¢5 Remarks on strong recurrence in function gpaczs v In view

of the proposition in 1.3.2, cach of the ravs in 2,2.4 allow us
to obtain new strongly recurrent ™ points "™ in the function
spaces from given ones. (i) Thus, if FeH(()) (or feM((TI)
is strongly recurrent then so is f(n) = D™(r) for each nzt.
(ii) If a,b,c,d are ag in (d) of 22,4, and fe H(&f}; is
strongly recurrent then so is the restriction of £ to Q_id ;
regarded as a point in H(L*liz), Notice that since we use éie
topology of unifornm convergence on compacta, if the restriction
of f to &fld is strongly recurrent for all pairs c,d with
a<ec<d<h, thgn so is feH(_g_"_)_i). (i11) 1If faH(__(___)_z) is
strongly recurrent and a<c<b, then, in viecw of (e) in 2e244,
£,eC(R) 1is strongly recurrent. Iater (in 2.4.8) we shall
prove & sort of converse to this statement. (iv) It follows
from (¢) of 2,2.4 +that if an £ in H(()) is strongly
recurrent when viewed as a point in H((T)) then it is strongly
recurrent as a point in M({7)) ; since H((M)) is an invariant
subspace of M(()) with the relutivized topology, the converse
is also true - as may be scen from definitions. (v) If feH(T))
is non-vanishing throughout () and if f is strongly
recurrent, then so is %. This dsbecause T, and therefore also

» 18 @ strongly recurrent point of M((7)), and as by hypothesis

Hif-a Hhjf—

e H({)) +the latter must 2lso be a strongly recurrent point of

|
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H(())Y. (vi) TFinally, if ¢+ is & conplex Borel measure on Ik

with compact suprort, fe C(IR) i= s%rmglv recurrent, then so

iz x4 .

2.5 Structure of the strongly recurrent points in H({)) i

2341 Propesition ¢ Tet () =) . IT £, ., is & sequence
i_‘i e 4

in H(()), £ H(()), and £ -—> ¥ uniformly on each prober

n
substrip of () , then f is strongly recurreant.

Proof ¢ This ig a trivial consequence of the definitionse.

2e342 Remarks : Wotice that fe H({)) is periodic with periad
t e B (in %he sense of definition Tehe7) as a voint in the flow
H(()) if and only if it has pursly imaginary period it =~ (in

the uwsual sense) when regarded as a function on () « Conforn-

ing to definition T1.4.7, we shall contirue to speak of 1, {rathor
than itoﬁ as a period of f . Thus, for example, we shall say
that the exponential rap =z —> e? (z e (E)) is a periodic point of

H($) with »eriod 2.

2,3,3 Proposition ¢ Iet fe H(()) be strongly recurrent, ond

let ge H((J) be & finite sum of periocdic pointse. Then f*g

and fe.g are strongly recurrent.

Proof ¢ let g = h1+h2+“‘+hn’ where h, 1s periodic with

< J
periad t; (1£3&n). Iet g5 = hy*hy T ehy (1€ H K g @ 1= 0O
We shall prove, by induction on j, that €+ 85 is strongly

recurrent for 0£jfn, It will then follow that in particular
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f+g= =i, is strongly recurrent. et ugs put °. = f'*gj

(0£j&n). By assumption, P, =T 1s strongly recurrent. Lov

suppose Pj is strongly recurrent for some Jj , 0£j<n-1.

Then, by the inheritance theorem 1.,4.6, Pj is strongly recurreni

modulo t.+1, Therefore =P, *th. is strongly recurrent

] Pier = 03 Byey
modulo tj+1 . Another appeal to the inheritance theoren 1.4.6
yields that pj+1 is strongly recurrent, thus completing the
inductive leap. The proof that f.gzg is also strongly recurrent

goes analogously.

20344 Corollary ¢+ If geH(()) is a finite sum of periodic

points thern g 1s strongly recurrernt. |

!

Proof ¢ TFollows from 2.,3.3 on putting £ = 0.

24345 Corollary s If feH(( ) is strongly recurrent and
g e H(()) is given by a Dirichlet series which is absolutely

convergent throughout () =wnen f*g and f.g are strongly

recurrente In particular g is sitrongly recurrent.
Proof : Let g, be the mnth partial sum of the Dirichlet series
for g (> 1), BFach g, is a finite sum of pericdic points

: ; -Z B BT et N 21 .
(the typical term &y ok is periodic with period TS if
k22 and 1 if %k=1). Hence by proposition 2.3.3, f+g

n
is strongly recurrent (n> 1). Since the Dirichlet serics for g

is absolutely oonvergeht throughout () g, — g uniformly

I

on proper substrips of (") . Hence ft+g, —> £*g uriformly

on proper substrips of () . Thereforc, by DPropositicn 2.3.1,

—



http://www.cvisiontech.com

- 44 -

f+g is strongly recurrent. Similarly for 7T.g. The particulax

cagse follows on taking =0,

2346 Froposition ¢ The strongly recurrent voints of H((T))

are dense in H((7)).

Proof 1 Tet D((T)) denote the s=t of a1l finite Dirichlet
series, regarded as points in H(( }). In view of 2,3.5, each
point in D(()) is strongly recurrent. Thorefore it suffices
to show that D(( )} is dense in H(()). Now, #H(()) is a
locally convexz topological vector space over ¢ (in fact it is
& Frechet space), and D((7)) is 2 linear subspace of H(()).
Therefore, by Hahn-Banach theorem (see Rudin [46, p.59 1), it
suffices to show that each continuous linsar functiorel I on
H((")) whick vanishes on D((T)) vanishes identically, So let
L) = 0 for £eD{()). since (7)) is a closed linear
subspace of C((7)), the spa 2 of complex-velued continuous
functions on _g“_)_ with the compact open torology, ancthe
application of Hahu~sunach thcorem shows L admits an extention

to C(()). Therefore (Rudin [ 46,p.8473) i

W
H
o
t.-d
4]

a complex

Borel measure # with compact support X (C () , such that

= s
L(f) =/far (for feC(()) and in particular for £eH((T))).
Since L wanishes on D(()), we have [ n~Zau(z) = 0 (n> 1).
If we put #(w) =Te™?¥am(z) (we() then this show ¢ vanishes
on 1Llog n . nZ?B‘ s But clearly ¢ is an entire Ffunction of

finite order. Therefore (Theorem 2.5.12 of Boas [ 5, pe15}),
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= Al =

r —=WZ

p = 0. uhat is, J e "%au(z) = 0 (we (). Differentiating =

times and setting w=0

i

, we get [ z%uz) = ¢ (a>0). That is,
L wvanishes on polynomials. Since the polynomials are dense in

H(()), this implies T = 0, thus completing the proof.

2.7¢7 Quesiion ¢ In view of proposition 2.3.3, we may ask <

Is the set of strongly recurrent points in H(Lfl) a subalgebra

of H{()) ¢ In other words, if f,geH{()) are strongly

recurrent, then does it follow that f+g and f.g are also
strongly recurrent | Notice that £ —> £° and £ —> of (for
fixed «e () are flow homomorphisms of H((™)) into itself,

so that if fe H(()) 1is strongly recurrent then so are I"2 and
of o+ Since fg = % ((f'Fg)Q - (f-—g)g), the question above

might be equivalently formulated as | Is the set of strongly re-

current points of H((T)) closed under addition

2+4 The relationship between strong recurrence of & point in

H((")) and of its vertical sections :

- - . - . v .
2.4417 Definition ¢ Tet I be an index set and let ;f . deld

-
I’

be a family of functions in C(IR). We shall say that

¢ G T . . "
2f 5 ael  is wniformly sirongly recurrent in case for every

neighboushood U of 0sC(R), we have
dGteR: ST - £% ¢ U for 221 ceI)>0.

Notice that when I is singleton, the notion of uniformly strong

recurrence refluces to the ordinary notion of strong recurrence.

R N T T p— Y —
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2e4e2 Proposion ¢ Let () = __(___)_b (a<b), and teH(()).

a
Then £ is strongly recurrent if and only if fc calc<b
(C c(m?) is strongly recurrent, uniformly for ¢ in compact

subsets of (a,b).

Proof ¢ Iet f be strongly recurrent. ILet ac< ¢, Lcy,<hb, and

let U be a neighbourhood of 0e C(IR). We have 4c show that
there is a Borel set A (C IR with d(4)> 0 such that whenever
teh and ce Ec,] ' 02:[, SJ‘::E‘O - ¥, ¢ U, There is compact

K( ® and €>0 such that when suplgx) ! <e, ge U, Iet
xeK
K, = [c1 y Co J*iK . Then K, is a compact subset of )

and hence the set V of all heH(()) Tor which sup Jh(z)] <

1s a ueighbourhood of 0eH(()). Since £ is strongly recurvent,
+ ) -
the set of all te R for which S°(f) - feV satisfies a(a)> o.

Clearly, whenever S (f) - Te V, we have .

ob Y e il p T
Js{g%]S (£, - £ (X} <e fur ce L cy,e, ] and hence

s%2) ~ £, e U whemever ce [e,,c, ] and tcf, Thus this

& works,

To prove the conversc, we notice that every neighbourhocd

V of 0eH(()) containg a set of the Tform

t j}“th(_(_—_)_) . Sll}}é!'hc(}{}y e Tor o= EC—] . CQ"_['I! J
: xe

where &< c, < c2<b and &2 0. Therefore the steps of the above

oroof can be reversed.

2,403 Definitions I (&) If & is a complex Borel measure on

R, the taid of # 1is defined to be the map T : [0,») ~> [0, =}
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s Ei 5

vhere T(x) = {#]((~=, -x) |}x,=)). Here [#] is the total
variation measure of # (sece [47 ,p.125_] for defirition).

Clearly T is decreasing.

(b) If feC(R), the recurrence measure of f Iis defined to

be the function ° & (0, =) —> [ 0,1} given by .

p(x) = dGteR: sup |£ly+t) - £(y) <

1"& )
|y&x ’

X

-

(learly P is a decreasing function,; f is strongly recurrant

if and only if ¢(x) > 0 for all x > 0.

2.4.4 Proposition ¢ Iet feC(IR) and let # be & complex

Borel measure on 1. Iet P bhe the recurrence measure of f
2nd T be the tail of #. Suppose we have .

Y
(1) I (sup [Ex+r)Pat = oY) as ¥ —> o,

-1 |x|<e
=g for cach € > 0O,

(ii) linmsup = for cach € > 0O,

(1) [ yiejs@ < =,
and (iv) | |f&x-y)|dj#|(y) ¢ =, uniformly for X in

compact subsets of IR .

Then Tx# e C(IR) 1is strongly recurrent.

oof t By (iv) fxteC(R). Iet U be a neighbourhood of

0e C{IR). We have o exhibit a Borel set ¢ (C IR such thatd
3(C)> 0 and for tel, S'(Tx4) - fxie U, let K be a compuct

subset of IR and € > O such that



http://www.cvisiontech.com

xeK -
Then it suffices to show that for +e G and xeX, we have
[(E%) (x + £) - (£%) @) | <e . Without loss o generality we nay

teke 0<e¢<6,
For xeXK, telR,

[ (2% 1) (x + %) = (Fx0) () < J} [T{x* 5 =5) «F(x~y) falaj(y)
e

oD ety a) el ()
| 2 X

+*

Foofe(z-pdjajul

lyl2X

I

ST(ﬁ) ¥ 5,0t ¢ 85 (say) .

Here X isa "large'™ real number that remains to be specificd.

In the first place, in view of assumptian (iv), there is X1 b2 g
8 e

such that for X > X1 ! 83 £ % for all xe K,

Iet A be the set of all te IR such that
E( 1y - (%) s-s%z- for |x| % 4

Since by choice €< 6 » there is X, > 0 such that for X 2 X

vhenever xe X and [y} £X, fx-;}! <=,

Hence, if X > X, 4 XeK and ted, the integrand in 5, (%)
ds £ 3%-{- and hence  |S, (t)) _<_r§- (we assume, without loss of
gererality, that Heli < 1) .
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L 19 iéa

gl + ¥
J Xd{ﬂ;(y)-gf ] (suplF{x+t))at

&
= | 82(t)dt
Y tyl2 [vi-Y  xeK

ZY

A

f

'
cx oo +_|_3§f_ Yal4l(y) for a1l large Y.

Iyl 2%
(This is béceuse of assumption {i). Here c¢_ 2 O depends only
on K.
Due to assumption (iii), the integrand in the oxtreme right hand
side is dominated by (1+ |yl) for Y > 1, 2nd the lattfer is
integrable with respect to [#]. Hence as ¥ ~—> o legbesgue's

dominated convergence theorem ([ 47,p.27 1) yielas

Y
limsup i ] s.(t)at £ ¢ Ioatul(y) = ¢ (X .
Y3 = 2Y V& o LAY o

-Y Iyt 2X

Hence, by a Chebychev type argument [ 39,p.11 1, if B is the
set of all te IR for which 82(13) <% then we have .
BN
_@(B) 2 3 - > T(X) .
Also notice that by definition of ¢, a(a) = P(%K- .
Due to assumption (ii), there is X > X;,X, such that
bie
p(8X) > =2 () .
g [

Hence for this X, a(a) + @(® > 1, so thut if we put C = AllB
then a(C) > 0. Alsc, for xe¢X and teC, we have

S¢(t)§%,82(t) <% and 535_-;—. Hence for xe K, teC,

| (Ex) (x + 1) - (Ex)(x)| < e. This completes the proof.
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2,445 Proposition : Tet feC(IR) and let M be a family of

complex Borel meacvures on IR. Iet P be the recurrence measure

of f and,for #“eM, let T, be the tail of #. BSuppose we have «

4
(L) J (eup [£&x*t)Plat = 0 (¥) as Y —>e,
=) xl <8 :
TS Tor cach 82> O,
(ii) limsup b (&) = o yniformly Tor H#&d, for each €30,
Dy T;U'(X)

(iil) J !lywadlsl (y7 < e, uwniformly for #eM,

e s )
(iv) [ if(x-y)]a|#{(y) < e, uniformly for HeM and

for X in compact subsets of IR,

and  (¥) i‘ el o #e M¥ is bounded .
=

Then the family St fxit 2 eM3(C C(R) is uniformly strongly

recurrent ..

Proof ¢ Totice that in view of the uniform cstimates in the

hypothesis, the cholces of Z,,X5,X as in the proof of 2.4.4 moy

be made tc depend only on K and ¢ and not on #elM.

20446 Iemma ¢ Iet b,c be veal, b < c. Suppose T is a

(=}
anelytic in the half-plane _(_"_}_b , and is given by an absolutely
comvergent Dirichlet serics in ()7 . Iet A4 > c=b, and let 7

c
be analytic in the closure of _Q")A « Suppose we are given.

o

il
1) (o) =1, |
[v!

(i) n(u+iv) = o(e ') as v —=> t o

wniformly for u in {=i,A70,
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and (iii) f(x+iy) = O(iyie), uniformly for x in compact

subsets of (b,OO), for some e> O (i.e., f is of finlite order
G Al
b

Then in L_}_b+A f has the decomposition f = g+h, where
b
b-x+1 ,_
I flzednG) &y

gilz) S ;
bX—d oo d

’%‘1_&

and h is giveén by an absolutely convergent Dirichlet series

in _g_—_)_oo *
b

Aviee
Proof ¢ Define h(z) = -2-%5: I flz+wnlw %i, z ) o
Ao b

Due to hypothesis (ii), the integral exists,

Since Re(z)>1b and 4> c~b, Re(z+w) > c. Hemce f£(z+w) is

given by its absolutely convergent Dirichlet series .

f(z+w) = kfiq a n" %"V (say). Substituting this in the integrai
defining h, and interchanging sum and integral, we get <

" -5 ] - =W, o vdw
hiz) = ni1 a @ n™”, Re(z)>b, where ¢ = »pr A_if_m nTrn )T .
Hence fo_| & constant. Cragall | [n{a+iv) |dv < coustant. ad by ik
-G
Therefore |a_a_n"%| ¢ la |n'"A"X and ;O fa {n"A"X { o for x>h
nn = S ! 1 n' i 3

7 n=1
These estimates justify the interchange of sum and integral, and
also show that h is given by an absolutely convergent Dirichlet

series in () .
b
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Now the cstimates (ii) and (.ii) permit us to shift the conbour

of the integral defining h to the lire Re(z) = b-x. The only
singularity of the integrand that 1s crossed ig ot w=0 and the
corresponding residue is ¢(0if{z) = f(z) by {i}. Hence, by the

residue theorem,

DX+l oo

h(z) - '?%i- b-—xf‘ioo f(za-w)'ﬂ(w)%}“i = f(z), which is the required

decomposition of f .

2447 Lemme 2 TLet f be analytic in the closure of (% . and
e

of finite order therc. Suppose f is given by an absolutely

3

convergent Dirichlet series in ()7 . Ve also assume that
2 - T

1]

[£(a+it) [dt = 0(¥) a8 Y —> o,
=T

Then for any b>a and any € > O .

-
[(89 R Gt DAt = 0 (V) as ¥ —> =,
v Ixige  F

froof i Since f is bounded on Re(z) =b  in case b> ¢, there

is no loss of generality in assuming that a< bl c. Tix an

A>c-a and take an 7ne H(( )A) satisfying the conditions of
~A
lempe 2,4,6. Then lemma 2.4.6 (with a in place of b) ensure

(5]

a+h )

that we have a decomposition f = g+h, g,he H{( ) where h

is given by an absclutely convergent Dirichlet series in ._(_"h)_°°

and g(z) = - g—j—t ff (y+v) 9:%‘(-':3;__?*]‘_.1_?')_ dv , z =x+iy (a<{ x<a+s) ,

lence, if adx_<a+hi then we have,uniformly for xin (x ,a+4),
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§ oo i
[ |glx+it) 1at ¢ constant, | |nla-x+iv) [dv [lo, (t+v) [db
...Y' —00 ..Y
o _ Y v
{ constant. | [n(a-x+iv}|dv I (1) fat
—o3 Y- |v|

< constant. | [n(a-x+iv) | {(¥+{v])dv

0

< constant. Y for large Y.

: . - : — Bt fy ~ s 3.
Since h is uniformly bounded in ( 1, we have a similar
X
arh °
estimate for h, As f = g+h on () , we therefore gect .

=N

o

(v J lfx(t)|dt = oY) as Y —> o , wmiformly for x in
-Y

compact subsets of (a,a+d).

Now let &> 0. Iet Y be a simple cleosed curve iying in iflé+ﬁ

and enclosing the line segment [:buig,b+i9:]. Such a ) mnay be
chosen since by our assumption a< b<a+id. Then, for X L -6,6,
we have . |

f {w+it)
- w—(b+ix)

7

Hence it 6> 0 is the distance of Y from the seguent

fb(x+'t) = £ {b+it+ix) = dw / 2ni .

. , 1 .
[ b-i®, b+i&_] then Is?%: !fb(x+t)| < 575 J| i) {law]
x1 £ 9 ¥

Y Y
Hence, [( sup [T, (x+%) )t o flaw| T |2Caedt) (8%
v 1xj<Le ) ~Y

P 2y
{ omee flaw] [ |£Cusrit) {dt,
= 2ﬂ5y~ _oy
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wiere u = Re(w), provided - is sufficiently large. Now, if

u  is the infimum of ° u curive Yo for some veal v then

o ¥

u_>a,and
0
Y 2Y
|
I ( sup ]1 (x+t) [Dat ¢ ELLG sup i) {2 (urit) jat
- |xfi<e 1

2% _ov
vhere |/| is the length of Y.

flence in view of the estimate (i), the proof is completa.

2s4.8 Theorem ¢ Iet f be analytic in the closure of the half-
plane L‘}_Z » @nd of finite order there. For some c>a, let f
be represcnted by an absolutely convergent Dirichlet series in
_C)_Z’ - Let a<db<de, and let ¢ Do the recurrcnce measure of

fb + We also assume ?

b4
(1) If(a+it) [dt = (V) as Y —> co |

.
and (ii: limsup P(x)es(6X, == for every &> 0.
X > oo

(Here e, (x) = exp exp x).

Then T is strongly recurrent in LH)_OZ ;

Proof ¢ Clearly it suffices to show that 7 is strongly

recurrent in {_}_b*A for all large A, Accordingly we fix an
b o
Avce-t. Let n e H{(} *) be defined by
sl
2
" &) ; R
niz) = = s iRe(z)| € A,

62 (f:.ﬂz} 62 ("'i U’Z) .

Here ¢> 0 is chosen so small that for some 8> ¢ the estimate
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1 :

n{x+iy) = O(W) 4 y D x

holds uniformly in xe [ -4, 4 _].

Clearly this function 7 satisfies the requirements of lemma 2,4.5

Hence, by that lemma, we have the decemposition T = g+h on

-g._-)-b'i'A
b

gseries and

, where h 1is given by an absclutcly convergent Dirichlet

1 b-x+i= a
glz) = 5ri J f(z+w)ﬂ(1~.’)‘1?w .
" beX-ow '

For b x<{b+i, let MX be the complex Borel measure on IR given

N 1 n{b-x-iv) ) S e .
by dﬂx(‘,) =~ o= g dv. Then the integral representation

b{x<{ brh ,

of g may be rewritten as o g, = Iy,

b

It T, 1s the tail of K, then we have ! for any By in (0,B),

(3 =0 (m) as y —> o, uniformly for x in compact
subsets ol (b,b+A). Let X be any compact subset of (b,b+a).
Then, in view of hypothesis (ii) above, the family (M= 4 ixcK:
satisfies the condition (ii) of proposition 2,4.,5. It trivially
satisfies conditions (iii). (iv),{v)of that proposition (with £y
in place of f)., Finally, in view of hypothesis (i) above,

lerme 2.4,7 shows that £, satisfics the conditien (1) of

proposition 2,445. Hence that proposition yields .

g L i .

‘?:fb%MX exeK 3 1s wniformly strongly recurrent far each compact
- .

K (C (b,b+4d). That is, ng txe (b,b+A)? is strongly recurrent -

uniformly for x in compact subsets of (b,b+A). Thercfore, by
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=B
: - - A 2 ; :
4.2 is strongly recurrent on () « Since h is giv.
L ] [} J - ,..._,,b &
N . . ) — Tk A .
by a Dirichlet series which comverges absolutely on l? 5 b

y
b
Tollowe from 2.,3.5 +hat £ = g+h  is strongly recurrent oz

("') b'l'A
Sy, e This completes the proof.

2.4.9 Remarks ! In the proof of theoren 2e4eB, the choice of 7

18 the best possible, In Tact, by z Phragmen~Iindelot type argu-

ment it may be shown that if 1 is analytic and bounded in () &

—-4

and satisfies liminf ]n(iy)!eg(ﬁfy!)<cw for every B> 0, %hen
y—>zxe

Nz 0e However, the introducticn of an auxiliiary analytic func-
tion 7 in order to obtain a suitabvle representation of f is a
mere technicality; and therefore the above observation does not
help to make the hypothesis (ii) of 2.4.2 loock any less unnaturcl.
This hypothesis clearly implies P (x)> 0 for all x> 0, hence it
is stronger than the assumption (iif"fh is strongly recuwrrent™.
This might lead one to conjecture that substituting (1) for (i)
in 2,4,8 ylelds a correct theorem. Bub we shall sec later (5.4.70)
that this conjecture is false., Sc we formulate the following
weaker conjecture (notice that it is a partial comverse to (ii)

of 22,5, just as theorcm 2.4.8 is a partial conversc to (iii) of

29245)

2,4,10 The recurrence conjecture . Let £ be an analytic fanc-

tion of finite order on the closure of the half-plane ()% .
a

let us assume +hat @
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L
I'fr(a+it) |at
-

o(Y) as ¥V —> o

and that for some 4 > a T is represented on (7)) by an
absolutely convergent Dirichlet serics. et adbdle<d,

Under these assumptions, if f is strongly recurrent on

(M) then f is strongly recuwrrent on ()7 .
b b



http://www.cvisiontech.com

CHAPTER >

ASYMPT O ¢ DISTRIBUTION OF POINTS
I} "HE FLOW H(())

" (con® nuous version)

3.1 Introduction and summary s

In this chapter we specialise
the notions of the previous two chapters to the flow o).

In section 342, we show that analytic functions which are uni-
formly bounded in the mean along vertical lines and which have
Dirichlet series representation in some half-plane can be suitably
approximated by absolutely convergent Dirichlet series. In later
sections this device is repeatedly used to deduce results regard-
ing the asymptotic behaviour of functions in this larger class
from analogous results for absolutely convergent Dirichlet series.
In particular, at the end of section 3.2 we show that every func—
tion in this class has an asymptotic distribution. In section 3.3
we show that if two functions of our class are representable by
Bohr-equivalent Dirichlet series then they hafre identical
asymptotic distribution. This result (theorem 3.3.2) may be
regarded as an extention of Bohr's equivalence theorem, which, in
its original form, pertains to the value distributien of two
Bohr-equivalent Dirichlet series in their common half-plane of

absolute convergence. In the first part of section 3.4 we

introduce & probability space (W B,m) which is to play a crucial

role in the rest of the thesise. In the later half-of section 3.4,
ve show that each function in our class is asymptotically distri-

buted 1ike a randor function defined on (WJB,m) and canonically
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associated with its Dirvichlet series. This result (theorem 3.4
immediately implies the rem 3,3.2 ; however, the proof of the
former depends on the latter. Theorem 3.4.10 gencralises
theorem 3.4,5 by consideration of the joint asymptotic behaviour

of members of our class, These results are applied to the func-

t(2z)
O]

tic distribution P in the half—plane..gilj/z (theorem 344411),

tions ¢(z) and to show that they have a common asympho-
tie conclude the chapter by making some remarks and raising some
guestiens regarding applications and generalisations of these

results.

342 Asymptotic distribution of points in H({ )) 7 In this

section we specialize the results of section 1.5 to the flow
H(()), with special emphasis on points of H(()) represented

by Dirichlet series.

5.2.1 Proposition ! Let -=<adblew , (D) = I )P 4 Lot

. a
%fn‘cc;;q be a sequence in H(()) and f be in H()), Iet
J
O be a sequence of Borel provability measures on H(L—l)

4 nins=1
such that £ —% & for sach n)1. We also assume that

- T
(@)  J [f(x+i8) (@t = 0(T) as T —> o, yniformly for x

> in compact subsets of (a,b),

T
(b) limsup gT I, i) - £(x+it) |dt = 0(1) as n —> o
T > oo o

uniformly for x in compact subsets of (a,b) .

Jay)
,’.‘é}
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Then there exists a Borel probability measure # on H(())

D
such that i, =>4 ar n—> = and f 3 4

Eroof ¢ Arguing as in the later part of the proof of lemma 244.7,
we can deduce from assumptions (a) and (b) that for cach compact
X q;_gil, we have &

T

(e) [ (supjf(z+it) Dat = o(T) as T —>w,
"\ zekK
1 T
and (d) limsup o [ (sup]fn(z+it)-f(z+it)!)dt = ¢(1) as n—> =,
T""""} oo —T ‘ZSK d

Let X, Ybe a sequence of compact subsets of ()

increasing to () such that each K, 1is contained in the

interiar of K _, 4+ For each geH((T)), let a (g) = suplega)|,

zaKn

a_(g)
and |lg|l, = T%EfTED .+ Fimally, for gy,8,H(()), let
l+a, (g)

9(81,52) = 81 2-n||g1-g2lln « Then, as is well known and easily
1=

established, ¢ is a metric on H((™)) which induces the usual

topology. 4lso, (a) impiies e

T
(&) limsup == | o(sYr . sYf)at = o(1) as n —> .
P> o 2T e
S
Thus ¢ f,: 4 £ satisfy the condition (a) of propositioen 1e546,
while (b) of 1.5.,6 is now part of our hypothesis. Hence in
order to complete the proof by an appecal to that propositian,

we need only show that Euh; is relatively compact.
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et e > 0. Let K, Dbe as above. For n2 1 and

T>0 let X be the H(()) -valued random clement defined

n,T

4

vy X, qp(2) = £ (2+iT@), z e (7) , vhere the randon variable &
y

’

is wniformly @istributed on [~1,1]. Zet X_ be a H(())-

n
valued random variable such that the distribution of le is “n'
Since fq __; y the remarks in 1.5.2 imply that

D
XH’T =X as T —> e (n) 1),

For each n > 1, let M;l be given by :

L]
Mns
# gup linsup —
2% my1 T=> w @

f (sup |f (z+lt)|)d‘t
_T ZSK

t
and let M, = max (Mp, 1). Due to (c) and (d), OCHM <,

An application of Chebychev's inequality ([ 39,p.117]) yields:

4 i
P(sup ]Xm T(z) [ > Mn) < F;_ -;—- I (sup |:E‘ (z+it) Dat.
zeKn ? n _m Z&.K

Hence, letting T —> =,

M_ e
limsup P(sup |[X_ (2)] > M 2 £ S ¢ =
T—> o zeK DT w 2" = 2B

Since the map from H((7)) to R serding ge H(T)) o

! : . X D .
sup lg(z)}! 1is continuous, and since X =X, as T —>
zeK | d n, T n

the theorem 5¢1 in [ 4,p0.30-317] gives $

¥

’ D
sup |X - n(z)l => sup I}’Cm(z)] ag T ~=> e,
zaK = ZEX

Hence, letting T —> « in the above incoualitv,we ot
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- [
P(;gfén]}{m(z)j > M) < = (n> 1),

Therefore, if we put o) =%gs H))  sup |elz) l_gMn for all n) 15§
zeX '
n

then P(XfII e C) 2 1-¢,i.e., #(C)21-e for all m>1. Since
by Mon‘tel's theorem (theorem 2.9 in [_18,1:.149]) Ca is
compact, and as ¢ > 0 was arbitrary, this shows that iLMn en> 1 }
is tight and hence by Prohorov's theorem (theoren €.1 in
[4,13.37]), it is relatively compact in the topology of weak

convergence. So we are done,

50242 Proposition : Iet —w<adb<ow « Let T be analytic

and of finite order in the elosure of B , and suppose f is

ey

a

represented by an absolutely convergent Dirichlet series in _(__.)_we
- b
T
We also assume that [ |f(a+it)[dt = O(T) as T —> o .
T T
Then (i) [ |f(x+it) |dt = 0(T), wniformly for x in compact

T
subsets of (a,=),

and (ii) There is a sequence 1,5 in H(T)YD)  such that each

fn is represented by an absolutely convergent Dirichlet serieg

00 ) iy
on (", and limsup s I | (x+i%) - £(xvit) [0t = o(1)
a P> oo 2T L n

a8 n —> o, uniformly for x in compact subscts of (a,) ,

Iroof ¢ The proof of (i) is containcd in the first part of the

proof of lemma 2,4.7.
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To prove (ii) Let's fix an 4 > b-a, and consider the Sequence

j L A : .
; T)n ‘n=1 of cnclytic funetions on () given by
i A

G0 = I“ (w o

vhere “[" " is Euler's Gemma-function. Well known propertics of |

the Gamma-function imply that we have .
(&) n_(0) =

(v) N, (uriv) = o(e‘alvl) uniformly for |w|>1, |ujga

for some @ > O,

(e} lim f ]ﬂn(miv')l(hfvl:)dv = 0, wniformly for u in
n—> oo :
compact subsets of (-4, Q)
o d Iy A
and (@) iy J k—wﬂn(W)g}E =exp(-(FT) k21, n3 D,
A=l

Hence as in lemma 2.4.6_, we obtain a decomposition F = fn+ .
oQ
where fn(z) = I a exp(—(l-r{-l}A)k"Z e
k= a
g o nn(a._x+iV) .
and gn(z) 5 o- ﬁ § fa(y-i-v RS dv i (= sX+iy, a x< a+i) ,
-0

[=le]

lere the a 's are determined by f(z) = = akk"z (ze ™)
T k=1

so that the Dirichlet series for fn is absolutely convergent

in ()™ (in fact throughout ¢) .
a

let's fix 0 < e < a-(p=-2a). Since the series for f
converges uniformly in () y clearly we have linm 7 (z)=f(a)

A+A-g N — oo
aniformly for z e () « Hence we have,

AR LU
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g 'm
llm;ug . [fn(x+i't) - F(x+it) At = o(1) as n —> o,
co _T'

mifermly for x > a+h-e,

fence it sufflices to show that with arbitrarily small e> 0, the
sane holds uniformly for =xe [ are, ari-e ]. From the integral
representation of g = f - T,» we get,

miformly for xe [ are, ath-e ],

£ (Re i) =T Cxeit) | & o T £, Che) | [0 Ca-xedv) Jav

Hence, Y

1 . . = g1 lvleT

i é[fn(x”’ﬂ - f(x+it) jat & cg I] T]n(a-x+1v) |-2--T- ‘ {1 ija('t) ldtdv
—o ~-|v]- '

gop I Ingaxesn) [(1elghay
(by assumptlo 1on £)e

Hence for T > 1, we have,

i [ . oo
I lfn(x'riﬁ) - T{x+it) |dt € cq sup In (uriv) [ (1+ v Dav .
ue (-A+e, ma)

&=

—~i
(¢) shows that the right hand side above goes to zerc as n —> o« .

50 we are done.

3023 Lemma ! Let -~=¢adw, Let feH({T)™) be represented
a

by a Dirichlet series which converges absclutely in _C_—fo « Then
S a

there is @ Borel probability measure # on H(()”) such that
a

B ow
=4 - ) >

—>


http://www.cvisiontech.com

- 65 -

Proct ¢ Iet f,, be the nth partial sum of the series for

b

(n>1). Then f = im f
YL == O

on proper substrips of (7)™ , Hence F
a 3 K

ny and the convergence is unifomg
i b

f satisfy the

?
hypathesis (a) and (b) of proposition 3.2.1. Hence, if we kuew
that for each n> 1 +there is a Borel probability measure e
c I{- &2 =] % a _""'>

on L(ﬁ_la) such that f) T x4,
from proposition 3.2.1. But each fn is & Dirichlet polymomial,

then the result would follow

fience it suffices to prove the special case of our lemma in
which f is a Dirichlet polynomial.
4 g W
So let f(z) = = ann"z el D5 g iiet Dyyeseydy be
n=1 | (G
N
the distinct primes which divide T| n. Clearly there is a
n=1
an;fo
continuous function . § from the k-~dimensienzl toras |_|'k into
i‘t)

H(ff;) such that SP(f) = oot ... ol Hence, if 6 is

& random variable which is uniformly distrivuted on [“1,1 j,

and if the H((7)") -valued random elemenmts X, and the TTE-
a b

valued rendom clements Yp (T>0) are defined by
s 11 s
Xy = S(£,18), Y, = (p%‘i‘@,...,p}tig} , then X, = Q(Y’E)‘ Theref ore,
if we can exhibit a Borel probability measurs v on TTk such
that Yy B>y as T —> o, then it will follow that
-1

5
Xp = = v0Q as T —> =, That is, f:i“-

The dual of the compact topological grouﬁ TTk is Zk .
where n = (n,],...,nk) ¢ z¥ acts on Tk by
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n k ¢
E = (Z1,.-.,Zk) me— z = --ﬂ1 z.J (see’ for example, We Rudin,
i=

3
[ 45,p0413,37 Vs Therefore the Fourier transforn bp of Yp
is the map ?)’T . Zk ~> ¢ given by
o n 7 I k injt
ﬁT(_:q) = a(%) = mw | (3U1Pj

Ydt .

Since > log pqyess,log plg‘*; is linearly independent over Z by

virtue of the unique factorisatien theorem, we have, after a

trivial computation, lim ﬁT = @ where ¢ ¢ 7K —~> ¢ is given
T—> oo

by #() =0 if n#0, and =1 if n=0. But # is the

Fourier transform of the Haar measure v on T . Hence it

follows from the theory of Fourier analysis on compact groups

: D
(see Rudin [ 457]) that Y, => v. So we arc done,

30244 Theorem ¢ Let —x<adb<e. Let £ be an analytic
function of finite order on the closure of () , such that ¢
. a

ig represented by an absolutely convergent Dirichlet scries in
1y

i}

)T . We also assume that [ [£(a+it) |dt = 0(T) as T —> =,

2 -1
Then there is & Borel probability measure # on H(()”) such

o
that £ ""_::g .

-

Proof ! Tet's get hold of a sequence | f ' as guranteed by
rroposSition 3.2.2., Since each : 8 is given by an absolutely

convergent Dirichlet series on (7)7 , by lemma 3,2,3 there is
a
& Borel probability measure 4. on H(()™ ) such that
a

e il #o (21). Since by proposition 3.2.2 {f i, £, 4%
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satisfy all the hypothesss of proposition 3.2,1, it follcws thaf
there exists a Barel probability measure 4 on H(()™) such
a

D
that #n-ﬁ)ﬂ as n ==> « and f:;g;,

3.3 Bohr eguivalence and asymptotic distribution

2s3¢1 Definitions

(1) £ SIW —> ¢ is said to be pmultiplicative in case

fmn) = £(mf(n) whenever mynel arc mutually prime.

(i) £ W ~> ¢ is said to be completely multiplicative in

case flmm) = f(mw)f(n) for all m,nell.

(diid) £ ¢ IN~> ¢ is said to be unimodular in casec |f(n)|=1

for all njie.e., if we actually have f I IN —> T,
o oo

(iv) Two Dirichlet series ® an"? and = bnn‘z are said

el n=1
to be Boar-cguivalent in casc therc exists &« completely multi-

plicative unimodular function w such that By anw(n) for

3,342 Theorem I Let -~w<adble,., Lt £ and £*¥ be two

analytic functions of finite order on the closure of ()~ such
a

that they are represented by two Bohr-equivalent and absolutely

convergent Dirichlet serics on (7)) . We also assume that
S — —’b

i T
[ fCa+it) jat = o™y, T |£7 (axit) |dt = 0(T), as T ==> «,
=hl . ]

Then f and f£* have the same asymptotic distributien on ().
a,

Fhat ja, if 4 and U* arpe *the RPorel prohebilits morsuras
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(vhose existence is guranteed by theorem 3.2.4) on H(()”) such
a

that £ TR 4 apd £* %4 on (7)7 then 4 = u*,
a

Proof : In the first place, let £ be given by a Dirichlet
[

. - . *
polynomial ! £(z) = = a n Z. Thon so is £°, and wo have
n=1 *
* - * o
' (z) = = a;n Z . where By, w(n)an, and w is a completely

n=1
mltiplicative unimodular function (the definition (iv) , 3e3.1).1et

A =£p1,e..,pk"_ be the set of primes p such that pln for
some ne [ 1,8 ]. Iet Uygeeay® & [ De given by g 1= w(pj).
et Q,0° be the maps from 15 to ()™ ) such that
%) = o(pdt peeeaby ity ste* = ¢t (e, ? it ), Then it is
casily seen that @ = Qo T where T3 T—lk-—’} TT¥ is given by
Ng) =3.3 = (2, zT,...,?ikzk). Iet v be the Haar probability
measure o1 -[Tk « Then we stw7, in the course of proving

lema 34243, that f :;{:/-L and £¥ :; #° where M= vo Q"1,
T Q%”Ji = Vo (QoT)"T = (vo T—T) o Q""il . Since v is Haar
neasure and T is multiplication by a fixeﬁ elerent of TTk s

v=voT !, Hence W =qu-i =, 48 was to be shown.

Next, let f, and hence also T , be given by absolutely

o

convergent Dirichlet serics on ()7 : f(z) = = ann'z ;
a n=}
() = £ a*n~%, Let £.(z) STJJ a n™?  £3(z) g arn™?  (W>1)
= . -_— [N . -
n=l O e Sl e n=l o =

By theoren 3.2.4, for each N>1 there exist Borel probability

neagures 'U'N!M;I on H(()”) such that fN TXHy and f 2 N'
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As N —> e o fN ~—> £ and f — f unidformly on proper

substrips of (7)° . Hence by propositicn 3e241, therc exist
a

Borel probability measures #,4 on H((™ ) such that
o
_;D;_ * ¥ '8 — O

MN-«->M,MNQ:>M as N —> « and f:g,u,f" :;,u*on g

oo o " &
Since 2 & n™® and 3 a,n”? arc assumed to be Bohr-equival

n=1 ‘ n=1 N N

* wh———

it follows that for each N1, 2 aun™® and T an™? are als
. n=1 & n=1

Bohr-equivalent, Hence by the preceding paragraph, we have

* : *
Mg = Hy Tor each W21, Letting N —> =, we obtain &4 =4,

N
Pinally, let f,f satisfy the hypotheses of this

theorem. Tet's say f(z) = £ an™@ £(z) = 213. % me ()0
n=f o b

For each W21, let's put fy(z) = ni‘l &, exp (—(%‘) )n™%, and

* s = TIn Ay | . ! )

Tz} = 3 a oxp(-(E 0™, where A>b-a is fixed. Since
e

Ty f;} are absolutely convergent Dirichlet series, we again
* A * — OO
have fy =2 My, £.o T2 #y on ()7 . As in the proof of 1
— TN TN > TN == : !

theoren 3,24.4, we have 'U'N -Q~..> ©, L&fq P"*:> @ as N ~> o and

£ =3 ~, £ =% 2 | on g‘zz.. Since the Dirichlet series of 2
and £ are asswed to be Bohr-equivalent, sc are those of Ty
and f*I;T for each N> 1. Since the latter arc absolutely
convergent, it follows from the preceding paragraph that

N% = Hy Tor cach N2 1, Hence letting N ~=> = we obtain

*
& = L
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3¢3.3 Remarks ¢ Harald Bohr's equivalerce theoren asserts that
it f and f are Bohr-equivalent Dirichlet series, then the
inages under f arnd £ of vertical lines lying inside the
common half-plane of absolule convergence have the sane . closure
(see Apostol [ 1,pp.174-184"]). Although often formelly correct,
this theorem usually loscs its significance when pushed beyond
the half-plane of absolute convergence. This is becausc in the
typical situaticen, the inage of?vertical line outside this half-
plane is dense in the entire planee. Howoever, theorem 34342 shows
that in the subtler scnse of asymptotic distribution, functions
given by Bohr-equivalent Dirichlet series continue to bechave
sinilarly even beyond the region of absolute convergence. Thus,
this theorem may be looked upon as an oxtension of Bohr!s. equi.~-

valence thecren.

344 The structure of the asymptotic distribution of a Dirichlet

series .

34441 Some definitions and nctaticns « W will starnd for the

infinite-dinensional torus. We shall index its co-ordinate
svaces by the set IP of primes. Thut is, we write: W = T?&TTE
when each TT§ = T], the unit circle. With the product topsaogy
and pointwise multiplication, W is a compact abelian topological
grouvp. Let IB stand for its Borel d-fieldQ Let n stand fer
the normalized Haar measure on (W, IB). That is = is the
wique Borel probability measure on W such that n(ad) = n(4)

for a1l aeW, AT, The rrohahility srace (W, B will nlay
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a crucial role in the sequel.

Each we W may be regarded as a functicn from TP inte

Wotice that w has a wunique extension to I as a completely

nultiplicative unimodular function, Manmely, for weW, we put

wn) = TT (W(P))Q(P'n), nell, Here we have put
pelf : .
a(y,n) = nax {*hk}_'l 2pkln L » On the other hend, the restriction

of each conpletely multiplicative unimodular function to IP is
a nember of W. Thus we nay (and do) identify W with the set
of all unimodular conpletely nultiplicative functicns. We shall
say that a property I;olds for almost 211 completely nultiplica~
tive uninmodular functions in case the set A of all such func~

tions having the property in question is Borel, with n(4) =1,

Indeed, & weW may be extended to the set Q° of all

positive rationals, DNamely, if re Q+, r = %‘ (m,nell) then

we put w(r) = %E%%— o Notice that this does not depend on the

particular representaticn % of | r J Hom each Tre Q+, let
X, W—> TT be defined by X, =w(r) (weW. For cach
Te Q+, Xr is a character (i.e. a continuous honanorphisn

into the circle group T[ ) of W. On the other hand, each
character of W corresponds to a‘uniquely delerminied re 0.
All these claims may easily be verified. )

For teR, let o eW be defined by o, = ™t ipe ).
Clearly Yo, : te R! is a one-paraneter subgroup of W. That is,
U =i O, is a continuous honoriorphisn of the additive group

R inte W,
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Tet us define Uy I W—>W by U,(w =amw (wel.
Then L Uy $te R is a one-parareter grour of measurable trans-
forpations on We. Further, since n is invariant under transla-
tion by points in W, U, ¢ te IR 1s neasure prescrving. That

is, for teR, Ae B, n(U () =n.

3.442 Lerma ¢ The cne-pararcter group A..Ut o b aIR'E of ncasure
preserving transformaticns of (W, IB,m) is ergodic. That is,
if AcIB satisfies n(A /. TUPA) = 0 fur all t«R then

() = 0 or 1.

Proof ¢ Lot AeIB be as in the statement and let £ o W—> IR

be the indicator of A. That is, f(w) =1 if weA and = O

otherwise. By assunption on A, we have f£(a,w) = £(w) for

almost all (m) weW (LelR).

Let X be any nontrivial character of W and let £ be
the Fourier transfornm of f. By 3.4.1, X = X_ for some Te Q"
Hence X (ay) = =%, Therefore we can cheose telR such that

X (0,) #1. Tet's fix such a 1t . Then wc have
t s

FOO = T X fGany)  (by definition of f)
I

i

Ix (atw)f(ﬂtw)dm(w) (since m is Haar measure)

o

X(ﬁt)f X dn{w) (since X(a,w) = )((fl_t))‘;(w) and
f(egw) =£(w) almost surely)

H

-y
X(ep) £4X).
But by choice of t, X(a.) #1. Hence (X =0 for all non-

trivial characters X. Hence if c¢ = £(X 0) (XO being the
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trivial character) then f(X) =c¢ 1 =c¢ (where 1 is the

constant function identically cqual to 1,and c is the

function identically equal to ¢}. Since an integrable function
Yy g g

iz wmigualy determined (upto a set of probability zero) by its
Fourier transform, it follows that £(w) = ¢ for almost all
(m) welW. Since f takes just two values ¢ and 1, we must
have ¢ = 0 or c =1, That is f = ¢ almost surely or f =1

almost surely, Hence m(4) = 0 or 1 as was to be shown.

30443 Iemma I TLet o> 0, and let ‘a ' be a sequence of comple

n '

2 2a
numbers such that = ]apl = 0(N"7) as N -—=> o, Then for
nS_N i oo P
almost all we W, the scriss = anw(n)n" converges uniformiy
n=1 |

for z in compact subsets of () . In comsequence, the map
a
w —> X(.,w), where X(z,w)=Z a(ny,r(n)n"‘z (ze () ) defines an
n=1 C«

H((T)”) -valued randem element on the probability space (W, B,m .
a

Proof ¢ Zet's fix x_ > a. For n 2 1, let's put

-
Xn(w) = aﬂw(n)n €, Then ©X - is a sequence of complex-valued

random varigbles, One sasily checks that [ wllw(ddm(w) =1
if h=k and = 0 otkerwise. Therefore X ! is a sequence of

pairwise orthogonal random variablesg{i.e., E(X, %, ) =1X X dn=0
~ —cX
<)

Tor h#k) with E(IXn, B fanign . Also, by assumption

on the a 's, we hive I

2 (log M° B([X,|%) = = (log wla]
n=1 * n=1 :

o =2X
n

Therefore, by Rademacher's Theorem ([ 39,p.458_]), the sories
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X, converges almost surely. That is, for aimost all welW,

n=1

00 ' _XO

Z1anW(n)n comverges. Bub from the general theory of
n=

Dirichlet series ([ 28,p.3_]) we know thut if a Dirichlet series
converges at a point z = X then it converges, unifornly on

cempacta, in the hglf-plane ()® . Hence for almost all w,

X
9]
5 anw(n)n“'z converges, uniformly on compacta, in the half-plane
flojc . But X, >a was arbitrary. Hence, taking x():cu%
C

@

(e 2 1), we see that if A is the set of all welW ZLor which

the series I anw(n)n"z canverges uniformly on compact subsels

n=1 g oo
4 al i ) ; g1 m
of © Re(z) > a+wthen m(4) =1T. Tet 4= k[ji A, + Then

n(d) =1, and for we A, the series converges uniformly on

compact subsets of () .
a

Pinally, since the sequence of portial sums of the series
defining X(.,w) converges uniformly on compact subscis of
_Q_)_DZ for weh, aud since cach term in this sequence is
H(_Q:) —valued, it follows that the random element X thus
defined is H(()™) ~valued on the set A of probability one.

: o

3,44 Lemma s Let ©> 0, a ), & sequence of complex numbers

] 2 2a :
such that 2 Qan[ = o(N°) as N —=> o, Let X Dbe the’
n=1

correspording H(()”) -valued random clement as in the state-
o
ment of lerma 3.443. Then for each P > ¢, we have, for almost

T
211 weW, § [X(B+it,w) |2d'b = 0(T) as T —> o,

ii
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Froof ¢ Let Y be the (real-valued) random variable defined on |
O,B,m by Y = [X(B,w)|°. We have X(B,e) = 81 X, , where
n:"n

X, = ann"ﬁw(n). 4s noticed in the proof of lemma 3.4.3, the

Xn's are pairwise orthogonal random variables with

2 2 .

E([ang) = Ianl n B. And by assumpiion on the a 's,
3 2 2B . -
B1lani n < » . Hence, by Perseval's relation we have

n=

E(]XB, ) D) = 2 E(|X,[®) ¢ . That is, ve have ¥ » 0 almost
" n=

surely end E(Y) =!vam ¢ . Since by lerma 3.4+2 the onc-paia_

neter gup U of measure-preservi transformaticns is
it

ergodic, it follows from the individual ergodic thoorem of

m

ok

Birkhoff ([[19,p.1517) that almost surely lin mm | YoU,dt =E(2),
. p R
, |

Since clearly YoU, = lX(ﬁ+it,w){2, we are done,

2¢445 Theoremy + Ict aelR and let f be analytic and of

finite order in the closure of (1) . We also assume that
a
l
;lEGarit) 3t = o(D) as T —> » and that for some b>a, f
-7
is given on (7)™ by an absolutely convergent Dirichlet series
b

o9

i an™. Tet X be the H({D™ )-valued random element
= a

oo

defined on W by X(z,w) = £ aw@n® (ze ()™, weW.,
' n=f ° a

Then £ =R X on (7,
251

Proof ¢ Iet a > a and let ada'<a, Since by assumpticn we

T ; .
have [ If(a+it)|2dt = 0(T), it follows from the mean-value
) T
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oo t
thecren of Carlson ([ 49,p.304]) +that = lan!2n_2a I
=1
N n
Hence = larlg = OCNQG) 58 N —> «, Therefore the randcm Series

n=1

2 a win) n~? defines (lemw 3.4.3) an H(_Q"lma)-*fal ucd random
n=1

i

element X such that for any B> a, | |X(B+it,.) |2dt = o(T)
=T

almost surely (lemnma 3.4.4), Since o> a was arbitrary it

Tollows that X, as defined above, is indced an H(( )™ )=valued
T a
randon element such that for any a>a, [ |X(a+rit,w) {Ed't = 0(T)

=T
for almost all we W.

By theorem 3.2.4, there exists a Borel probability measure
# on H((T)™) such that f —XH4 on )7 (the assumptien
a a
T - T
I lfCarit) |7at = 0(T)  clearly implies [ |f(a+it) {at = o(m,

T =T
and therefore all the hypotheses of thooren 3.2.4 are satisfied).

So we have only to show that # = My o the distridbution of X.

For any o> a,let ¢, sH(()) ) —> H(f)_:) be the mep
which sends any he H(_(__lo;) to its restriction to D_D:I . Iet
B, be the Borel o-ficld of H(_Q__)_DZ) o Since g, is a flow
honororphism fron H(_QC";) to H(_(_‘_)_f’;) ((A) of 2.2,4) and
£ :g “  on [)_°; y 1t follows that ¢ (L) _—-_—_; e %1 . That is,
f =3 Mo@f‘;'} on _Q_Q_wa.

If w e W 1is such that

T
(1) X(.,w)) is analytic on L_)_c’: and j]X(a-rit,wo)ldt:O(T)

Rr—
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then, as X(.,wo) 1s clearly Bohr-cquivalent to f, it Follows

from thecren 3.%.2 that

(ii) X(.,wo) o S @';1 on _(__f; >

Hence for any AelIB. which is a #g @;1-c@n”t-inuity sct (Lee.,
such that “g¢ 2’;1 (b@A) = ¢ where bd4 ig the tepological

boundary of A), we have

(131) dte R SPH(a,u))enl = nogl ().
(This may be scen by combining remarks 1.5.2 with the portmanteay
theoren of [[47]). So let us fix an AelB, which isa 4o @;1—
continuity set. Iet us dofine a (real-valued) random variable
T on (W,B,m) by : YW =1 if X(.,wdeh ard = 0 otherwise,
learly E(Y) = /¥dm = n( X(.,w) e ) = Hhsr © @;1(:1) { =, Hence

s

by the Individual Ergodic theoren ([ 19,p.151 7)) and lomma 3,4,2
T
we get: lim L [ YoU,dt = E(Y) alnost surely. Since the right

T-m)oo T

hand side equals Ky o @‘;1 (4) and the left hand side cquals

3 .t . < . o
éC ¥R 5"(X(.,wiiea), we find that for alnost all woel,

() dCteBm: s*x(,w))eh) = p 0t ).
Since the set of all w,e W satisfying (i) @lso has probability
one, and as the intersection of two sets of probability cne
again has prebability onc, the set of all w,eW satdefying both
(1) and (iv) (and hencc also (iii)) has probability one. Since
a set of probability one is a fortiori nonenipty, we may choosc
woelW satisfying both (iii) and (iv). For such 2 choice of

- Ty Lane s Sanddae e 1Y n ,':.?" 80 z1l2 *
VU" jssion; QTR wak dptimizgtion Osing g AV U QU baLll
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(v) ro @;1 (4 = by o %1 (Ay, whenever AelB, is a Ho ﬁj -
continuity set in 1B, .
Since such sets A generatc the o-field IB, (for any Borel
probability measure v on a netric space, the v-continuity scts
may casily be seen to gencrate the entire Borel o-ficld), it
follows that (v) holds for all AelIB, . But o> a was arbitrary.
Hence, if we put S5 = |[] ﬁ;T(IBG), then 4 and Ky agree on S.
a>a
Since the family S clearly generates the Borel o-field IB, of

H((7).), it follows that K = /iy, as was %o be shown.

3.4,6 Corollary ¢ Iet # be a nultiplicative function such

that | | <1 (med). Iet £(z) = : FeE % o (BEg
1=

and we also assume that T has an anclytic continuation of
finite order to the closurc of _{_—_)_‘z for somg @ ?.1? and it

T

satisfics J |£(a+it)|%at = o(T) as T —> =, Tet X be the
T

H(Q-Di) ~valucd randon clenent defined on (W, B,m) by

K(z,w) = 8 gv@n? = TT (3 gD w@mrHD .
n=1 pelP n=0

Then f —2 X = s
hen e on 'C)"a

Procf ¢ This is a special case of theorem 3.4.5. We nced only
check that the product defining X is alnest surely convergent,
wmifornly on compact subsets of _(_—)_f‘o /2 and it cquals the
intinite sum representetion of X. Since on _C_): both the

series and the product converge absolutely (for any we W), the
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equality on _Q]f; can easily be established by rearrangencnt of
the producty hince, once we show that the product converges

Sdlmest surely, the equality will extend +o _{_—2_001 /2 by analytic
continuation (recall that the sum does converge almost surely on

M ' in view of lemma 3.4.3).
T T2

Por pelP let's put Xp(z,w) ] 21 de™ (P~ ang
n=

Yp(z,w) = #(pw(p)p™ , Clearly the sum converges uni.fcrmly on

..(.-..)_T : and hence Xp is an H(_(___)_w/g)—valued random element.
1

prt p

on compact subsets of L-z_': « Hence, in order to establish
/2

almost sure convergence of the product W(1+Xp(.,t{.\.),_ it suffices
D

Also !Xp(z)! < . , So that EIXp(z) I2 converge uniformly

to show that = X converges almost surely. But

p P
* 5 1 A = 5 "y O3
!Xp(z,w) - Yp(z,w)l < ;’5‘__? s So that %IXL‘_ fpl cConverges
unifornly on compact subsets of () for each weW. Henee

g2
we need only show that EYP converges almost surely. But this
18 a series of independent summands, and since for z a_(_"z_"‘; o
E(Yp(z,.)) = 0 and E(]Yp(z,.) l.2) < 13-2x sa that

EE(?YP(Z,.) 1% < «, the almost sure convergence of EYp(z,.) for
p 3
each fixed gz sij__m/g follows from Kolmogorov's three series

1

criterion (see [ 39,p.237 ]). The almost sure convergence of the

series ZY, of H(()™ /g—-valued randon elements may now be
1

deduced as in the proof of lemnma 3.4.3,
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F,4.7 Notation : The H(L_Q_T 2)-valued random ¢lement F 1is

defined on (W, B,m) by :

oo

Flz,w) = & win)n™2 = TT (‘l--w.mr(p}pl-'z)"1 , Re(z) >=15.
n=1 peIP -

By lemma 3.4,3, the serics converges on _Q")_:O/O for almost all

weW and hence defines an H({T)” )J-valued random element., As
1/2

in corollary 3.4.6, the product. also counverges almost surely and

equals the sume.

3,448 Corollary ! Iet w_ cW be such that P(.,w ) has an
analytic continvatien of finite order to the clesure of _(__)_w
for some a.?_% and satisfics 1} fF(a+i“b,wD) fzdt = o(D) as 3
T—>. Then F(.,w) Z3T :fl _Q_)_:.

Proof { By corollary 3e.4.6 (with w_ in place of #) we have
Ployw) % X where X is .he H(_(_-_)_:)—valued random element
defined on (W, IB,m) by X(.,w) = ¥(,,ww ). But since m is
invariant under multiplication by w_, F(.,\évro) nas the same

distribution as F(.,w). BSo we are done.

30449 Remarks ¢ Tet e,5e¢W be defined dby e(p) =1, 6(p) =-1
(pe IP). Thus e is the identity of W and &8 is Liocuville's
functions In the notation of 3.4.7, we have F(z,e) = 1(z),
P(z,5) = %E%Zl . Since ¢ has a pole at z=1, w_=¢ does not
satisfy the hypothesis of corollary 3.4.8 for s}g_ag_u Since

it is not Xnmown whether Zeta has any zerc in __(__)_1 p or not, a
1/2
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priocri we only know that F(.,6) is meromorphic in _(_-_}_?/2 , ani
S0 corollary 3.4.8 can not be used for w_ =0 either. Howevey

beth z => ?Z(z)l and z ~-> %)— are in 14(_(_-_}_0;/2), and since
the notion of asymptotic distribution has been introduced for an
flow, it is meaningful to ask if these two functioné., regerded &
points in the continuous flow M( “(-100 2), have as:m‘étoﬁic distri-
buticnse The next two theaorems answla; this question in the

affirmative and shows that they too are asymptotically distribe

ted like the random element F of 3.4.7 (since H(f}_:o/z) is a

subspace of M((M)” ), P may be regarded as a M((MD” )-valued
1 2

random element ; so this statement makes sense)s But before that

we need a proposition on joint asymptotic distribution.

3.4—.1 0 Theorem : Tet acs ]R, and let f—] g ,fn be and.lytic

and of finite order in the closure of ()™ . We alsc assume that
m a

] ]fj(a+it) Iedt = o(T) as T —> o, ard for some b>a, f,j is
given by an absolutely convergent Dirichlet series (1< j¢n).

let X; be the random element such that .3 X, on ( 2
i =1

> d
ﬂl_gl_l (f1,o-o,fn) :; (X1’...’Xn).
(The conclusion is to be interpreted to mean that (£y,.. EImI
regarded as a point in the product flow H(L__)_)n, is asymptoti-
cally distributed like the H(() )Pvalued random element
(X-] ’ OOO,Xn) o)'a

Proof ¢ Let 6 be a random variable unifermly distributed on

[~1.17]. For anv T>0, let (X m ees,X ) be the HCNT

y ey ¥
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valued random element glven oy Xy g5 = S(fj , T8). Ve have to
D ’
show that (X1 ,T’ . .,Xn’ T) => (X1 g o O’Xn) ags T m=> oo,
. . ~ f, s "L Y . 1
Since fj =g Xj , the net ‘LXj,T ¢ T> 0% converges ;i.na
distribution (to Xj) as T —> =, & fortiocri, x;XJ. peD>0;
Al

is pelatively compact and hence (as H((™)) is ccmpletc Scpara-
ble) tight. Hence for any &> 0 therc is & compact set

Ay (C 8
45 (C HQ))  such that P(Xy o # 4 < . Iet us put

A= X a0 X An. Then A (“ H((_))n is compact and

n
P(Ey myoeeeyX, m) &4) = P( Xy p#ag) & P P(X, A < e
1,1 n, T jl_.__.l1 3,7 T p ¥4y
for all T> 0. Since e> 0 was arbitrary, it follows that the
e Ty ) iy
net ; (X4 10 eoe,X @) $T>0; is tight. Therefore we have :

?

-~

1L - (X1’T,‘...,Xn’T) TT> 0! is relatively compact.

~4

et § T,ere I > be any sequence of positive reals such that

I, —> = and (X1,Tr,...,Xn’,j3r) converges weakly as r —> o,

Let us say \
D

(ii) (1 T gorey, nT) """"> (Y-I,-OQ,Y) as ZE—"'">0°.
Iet Zq,eee,2;  Dbe arbitrary points in () = (M)~ L - Iet us put
d = min Re(zk). Then d>a. Let ¢ =a-a<0. Then

1<{kim
g: HOD® —> HTY™) defined by

a
(« Mz = 2 ) )
oY b3
ﬂg1, 18,00 (z “1k13kg(zkz,ze_§_c

is elearly a continuous function (Here Gy are arbitrary
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complex imbers). Hence (ii implies

D ) T .
g((XhTr""’Xn,T“)) = #((Tq, 000,10} a8 T —> o, That is,
if we put g = g((f'l""'fn)) then
(i11) S(g,1,8) &> #(¥;,.0.,7) a5 v —> .

By asswmption, on (T)° we have the representaticn
b

£.{(g) = 3 a, ™% (1¢j<m. Therefore, on () (where
J r=1  Ted e
e = c+b~adc) we have the repressntation '
@)= 2 & ot laez) = & ard
glz) = I Zoa,f.(z+2z = L apr
i=1 k=1 Jk3 k r=1 T ’
n m "Zk
where a = 3 2 a.,.a .1 .
j=1 k=1 Jkr]

Also g is clearly amalytic on the closure of (7)° , and in view
C
¢f assumptions on f1,...,fn, it is of finite ordcr and satisfies
T
[ lgle+it) [%at = o(T) as T —> © . Therefore, by thecrem 3.4.5,

~T

we have g :; 531 a.x,r»«.r(r)r"'z = Xy, 000X ) (after substituting
=

the expressions fur a,'s and neting that by theorem 3.4.5,

o
Xj(Z,W) = ri1 ar,jW(I')r-Z).'Tha‘t is SCg,TS) "2‘7‘> g(X1,-.-o,Xn)

g5 T w=d o, In particular, we have .

(iv) S(g,1,8) & #X;,ee,X) as T => .
Combinirg (iii) and (iv) we obtain : #(X;,.es,X)) 2= g(¥, 000, L)
Since the map from H( fﬁ_"") to ¢ which sends h Yo h(0) is
rmeasurable, it follows thc’.?»‘b BXyyeee, X)) (0) 2 Q(Y‘],..-,YH)V(O) .

That is, snbstituting for €. we have .
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W =z T X)D 8§ % Y. ()
v a. (2 = T a, (g
I A A S 1= It B i

for GRS Y uku_fl: (1gign, 14kgmd.
Since the hyperplanes in (™ foyr a distributien determining
class (see [ 4, p.15_], and alsc the proof of theorem 7.7 in
C4,p.49°]) and since {v) holds for arbiirary eomplex coeffi-

cients ij, it follows that <
. D -

(vi) <X (zk) 143 4mn, 15_1‘:31:1‘;_.123(‘2-]-{)31'5_;}'311, 1_<;1¢‘g1m1;.

(Here both sides are regarded as (" evalued random elements).

Now let X be any compact subset of ()7 , e¥0, and let
8

BlyeessBy & H(Q:). Let us put o

(vii) U =ilhy,.ee,n ) e BEECDD supin;(2) « (=Y I$2 1< d<n

zneK

Let |z, fm) 17 be a dense scquenice in Ks For n) T; let

From (vi} it cleariy follows that

(viii) o Xy, eee,X) e U ) = PO (Tqgena ¥ e Uy )y @2ty

Since ;t z, ° n» 1y dis chosen to be delise in K, Uﬁ\[; Uasn =dw
Heniee, letting n => » in (v1if), we obtain §

(1x) m€ Xy, e00,X ) eU ) = PO Ly 000,7) o U )y

for any set U of the farm (vii).

Since the class of all sets U of the form (vii) is easily seen

to be a distributien deterniming class, it follows frou (ix) that
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) (Tyyeon X)) B (g, 00.,T)

(11) and (x) together show that

. D =S Too
Gei) (XT;TT,XE,TI-,...’XH,TI') == (X1 ’Xz"“’Xl’l) HSLIE >

. T ) converges weakly

whenever T —> o and (X, & .eee X
y 1,Tr' *’n, T,

A8 I e—=> oo,

: . . D
(1) and (xi) +together inply that (X1’T,...,Xn’-T) = (X4, congX)

as T => =. That is, (f;,...,f) :_';;(X,,,...,Xn), as was to be

shown.
304011 Thearen ! (1) R F an ()°
1/2

£(2z) , then

and (i1} if 7 is defined by n(z) = )

n -2 F _706 .
= e T1/2

Proof ! Iet £,,fp,fs e H(_(__}_T/Q) be defined by ©

£elr) = 1.21-2 t,(z) = (1-2"%) .¢(2) ana fz(z) = £(22) .

Bach of f1,f2,f3 have a representation by an absolutely con-

—m

vergent Dirichlet sories in (7)) nanely,
1

f1 (Z) =1l 01-2"" (—2) .2—-2’ f2(Z) - 81 (—1)11—11'1-2, fB(Z) = 81ann
n= =

where a, =1 if n is a perfect square and = 0 otherwise .
‘ m
T
Also, for amy a>w, J £ (asit) [%dt = 0(2) as T —> w. This

™

is trivial for j =1,3, and follows fron theoren 7.2 of
[50,0.117] for j = 2. Hence by theoren 3.4.5, we have

. —> X, W
ty = XJ on g‘)_1/2, where


http://www.cvisiontech.com

- 86 -

X (z,w) = D N@a? =5 wnZo2 z 2En)

T
n=1 n=1 n=1 (2n)*%

= (1=w(2)2""B)F(z,w) ,

Tz, = 3 aw@n? = £ wn) (@DHF
n=1 n=1
s T w2(n)n..22 = F(22,W2).
n=1

By theoren 3.4.10, it follows that (£,,f,,£:)73 S (X,X%5, 3) .

It gy, % ¢ HCYW )’ - MY . ) are defined by
1/2 1 /2

| 52 8183 -
g’? (81,8'2,83)) = 'é-':]—, gg((g—!,gg,gB)) = ‘—g—z— s then clearly ﬁ.;,ﬂz ,‘

are flow-honcnorphisns. Therefore, (£ ."E2,:E’3r) :;‘ (X‘I’X2’X3)

inplies that @ (£q,85,f5) = 2 2. (x1, %,X5)  (3=1,2). That is,
Y2 X X
?::; T, & M= T" But, fron the canputaticns above,
X2 -
=F,s0that z—>F on ()™ . Also
X'J{' ’ 2= = /2 ]
L4y 2
(-XE—) (Z,W) = F(QZ,W )/F(Z,W) )
= Ti ('i-wzip)p"zz)"1 ,fi T '(‘1-w'(p)p""';"')':l
ve lP ; be r
. p'rrIP (T (™5~ = 7(z,u) ,
A

where GSeW is Liouville's function (sec 3.4.9). Since 6&eW,

and © is invariant mder I:ul‘tlpllca‘tlon by points in W, we

have F(,,wd) -=F(.,w). That is, -%—é F . Therefore

1/2
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3.4,12 Some applications and comments °

(a) Theorem 3.4.17 may be used to deduce the asymptotic behavi-
our of almost any property of the Riemann Zetéd function according
to the following scheme. let ¥ be a measurable function of
M(_(_—)_O: 2) into some metric space S we also assume that if D
is the set of discontinuity points of @ then n(Fel) = 0.
Then for any open set U (; 5, (the “convergence in distribution"
interpretation of the notion of asymptotic distribution bogether

with theorem 5,1 of [ 4,p.30] implies that) we have !
8CteR 2 gSP ) T 3 n(@® M.
Also, if U (C'S isa Borel set such that m(#(® e bdl) = 0
(pbdU Dbeing the boundary of U) then i
A(fte B 2 ST eUD = m(d(® V.
For example if @ is any rai.onal funection of n variables
(n>1) +then this method yields | |
ate, &1, (@ L 0Dy = qmp® 5@ a1y
| on )1 &
; 1/2
We give some more examples of this method in (b) and (c) below.
(») Taking & 3 M(f]:/g) 5 B tobe #£) = £(x)  where
X>-j2- is fixed, we get ! if I (C ¢ 4is a Borel set such that
m( F(x,s) ~ebdl) = 0 then
(1) aCte B 2 £Gxeit) £IY) =m( PG eI).

In [ 317) Jessen and Wintner established (in our terminology)
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that the distribution of  F(x) is absolutely continuvous with
respect to Iehesgue measure (in that paper they &lso study the
density of this distribution with respect to Lebesgue measure) .
Therafore (i) holds whenever A(baI) = O.

(¢) Tet arg : ¢ —> (-n,7n_| be the function that sends any
point in ¢ to the unique value of its argument that lies in

(- 5, m)e From the product representation of the random function
P, we obtain, for x>%— ,

arg(F(x)) =2 arg(‘l...w(p)p-x)-? (addition modulo 2m).
P ' .

Iet 4, be the probability distribution of argf(x), Then the

: . - = i , ; . 2
Fourier series é#&(n) ineZ « of 4 is given by s

ﬁg(n) = E(e2“in‘argF(x3) = [ G2min argF(x,w)dm(w)
W
= 1] | exp(2nin arg((1-w(p)p'x)"1})dm(w)

pe IF Y

n A
TT g% f exp(?rnin arg(1-elgp'n)"1)de
pelp -7

since w(p) is uniformly distributed on ||

»

in involved computation vields that

n . i _~x+\~1 e
1 2uin arg(']-e P ) " ~-11/2 n/2 -2k
o —T{‘ e de = kio i T .

Therefore we obtain 3

el T % [-n/2™/n/2Y, ~2kx %
(11) #_ () = T| 50 A P (neZ,x>= )
X pel k=o =~ K /MK =t

Since a probability measure on (- n,7n_] i3 uniguely determined

by the sequence of its Fourier coefficients, the formula (ii)
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uniguely Yetermines Ky o Cotaring this foruawla wulth the formula
in the main theorem of Flliott's paper [247], we see that 4 is
precisely the probability measure that Elliott obtains in connec-
tion with his study of the asymptotic behaviour of the argumeni
of T(x+iy,X) as X wvaries over the Dirichlet characters modulg
& prime v with p —> <, The nystery of <the reappearance of
this probability distribution will be clarified in 4.6.2. In
[247] Elliott shows that #, is a continuous distribution for
each x > %-. Hence # ({7n%) = 0 so that the map " arg" is
almost surely continuous. Hence we obtain I if I (: (-7, 1]

is a Borel set such that #, (dl) = 0 (in particular if I is

an interval) then

Nl -+
L J

(111) a€teR $ arg( S(x+it)) 1Y) =4, (D), x >

va function

(see for sxample [ 23,p,147]) we obtain that for each =X < %

(d) Prom the functional equation for the Riemann Z

o

¥ F—1 YV {\ ) oo —a— o0
z (1) (e, () where £, (8} | = as t —> + =,
Since for x < % “j.x 95 & non-degenerate asymptotic distribu~

tion, it follows that 3

(iv) aliteR: |t (1] > MY =1 for any x < %- and ‘M > O«
Thus, for x < % y £y doez not have an asymptotic distribution.
Or, we mlight say that ty is asymptotically degenerate at
infinity. The question of existence of asymptotic distribution

o]

ox. €1/2 is loft open by this discussion.
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If # is normslised Lebesgue measure on [ -1, % | , then
B(n) =1 if n=0, =0 if n £ 0 (neZ). The formula (ii)
above, coupled with &n elementary estimate of the expressien in
its right hand side, shows that ﬁzxin) —> u(n) as xf-} for
each ne’Z. Therefore M Ly v oas x l—% « This suggests, but
does not establish, that arg iL, /2 is asymptotically uniformly

distributed.

(¢) The situation described in (iv) above is reflected in the

¢asily proved fact that almost surely (m) the random function

F (of 344.7) has the line i;'_Re(z) = -12 v as its natural boundary.

Indeed, in view of the product representation of I, we can write

log F = G1+G2+G3 where the random functions Gy,G, are given by

Gq(z,w) a2 ¢ wiplp™?, G, (z,w) r-% 2 w(p)p"zz Rel(z) > 1)
pelP pelP

and G is given by a Diricliet series which converges absolutely
3 Y ;

(for every w) in () , and herce defines an anslytic function
= e
there. An application of Kolmogorov's threc serics test (see

[39,p.237 _|) shows that almost surely, the scries for G, con-

verges, uniformly on compact, on f)_c:/ . Hence Go+Gy admits,

4 -

almost surely, an analytic continvation to () 5
1

to prove our assertion regarding F, it suffices to show that

, and in order
{Re(z) = %— ﬁ is the almost sure natural bowidary of G,. Now let
5 . N
7, be an arbitrary point on <Relz) = 1? ( » Ancther application
-7
of the three series criterion shows £ w(p)p ° dces not " con-

verge almost surely®™ and hence it * diverges almost surely"
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Also the law of iterated logurithm ([ 39,p.260_]) in conjunotien

with the prime number theorem ([ 50,p.49_J) show that

limsup (] = w(p)|[(2x(log x)"110g log 2" 7%) =1 for almost
n—>w p¢x -

= s sl Al - 1/2
all w. A fortiori, 2 w(p) = o(x'’)
pLX

41l w. Hence, by 2 Tauberian theorem due to Landau ([ 28,p.47))

as X —> o for almost

1
Z, is a singular point of ¢,, and hence of log ¥, for almost
all w. ©Since the family of sots of probability cne is elosed

under countable union, it follows that if D is any dense count-
able subset of %.Re(z) = %E , then almost surely, all the points
of D are singular points of log F. Since the set of singular
points is cloged, %Re(z) = %- is the almost sure natural doundary
of log I, and hence of I,

This result, together with theorem 3.4.11 zbove, suggests
that &, /2 dees not have asy ptotic distribution. 4 resolution
of this question will presumably depend on & closer study of the
behaviour of I' ncuxr the aatural boundary,

(£)  The proof of thecorem 3.4,5 depends critically on the fact
that ilog n . naIHE is & module over 1M and f‘{l.log ") eIE’}_"_ is
a baslis for its For generuliged Dirichlet series of the form
5 8y 7\;12 O‘n
tie module over IU generated by ;_ZLog }‘n S ‘IJ « The situi~

Teo), the znalogue ill involve fixing a basis for

tion is particularly simple when :log Ay v By W 1 is lincarly
independent over Z. In this case, if I a A7® is absclutely

convergent in a half-plans () , then it is asymptotically
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distridbuted like the H({"))-valued random element Y(.,u) given

o0

by Y(z,u) = = aqun};Z , where u =‘u' is a sequence of
4 . i

independent rgﬁgom variables sach uniformly distributed on 1.
dut even in this case the transition to mean bounded analytic
functions givendby a series of the form & anhgz may not be feasi-
ble because of absence of a suitable integral representation
arx:logous to that of proposition 3.2.2. But in case S
vhere 0< a< 1, such a representation is casily obtained by a
irivial modification of the formula in 3.2.2. Also, if a 1is
transcendental then-ilog (n+a) :nxsﬂf% ds lincarly indepondcnt
over Z. Thus, suitable modification of the arguments of this
chapter yields the following result ¢

Let o e (0,1) be transcendental. ILet ¢(.,a) be the Hurwity
Zeta function with parameter o (di.e., t(z,2) is given by the
series 5 ()" on (O , and then by analytic continuation
to the gglire complex plan; except for a simple polec at z=1).

Iet Y, be tne H(()” J-valued random clement given by

1/2
oo
YG(Z,QP - nE1 un(n+a)'z , Where u = %ung is a scquence of

indepcndent random variables cach uniformly distributed on TJ.
Then

w tle,2) = Y X -
v @) TR Y, on ( 2

(The difficulty caused by the pole of £(.,a) is easily circum-

vented) s When o is raticnal, #(.,0) is given by the ratio of
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two ordinary Dirichlet series, and in this case the asymptotic
distribution of ¢{.,®) is deducible from theorem Sedel0s It
18 the random clement defined on (W,1B, n) by = w(n+a) (nea)=2
(in the notation of 3.4.1). In case o jis irrational algebraic,
the structure of the assotiated random clement is much more

complicated.

3¢4413 Two guestions 2

(&) Does the function G2 @ C(IR) (given by £y /2(}:) = C(—+ ix),

X ¢ R) possess an asymptotic distribution 7

(b) Is it true that argl, /2 is asymptotically uniformly dis-
tributed in the sense that whenever a Borel set A (_ (wm,7]
satisfies A(bd2) = 0, does it follow that ¢

AC t=R : arga(F+it) e 4 ) = A
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CHAPTER 4

ASYMPTOTIC DISTS [BUTION OF PCIKNTS
IN THE FLOW E(())

(Discrete version) .

4.1 Iutroduction and symmary ! The principal topic of this

chapter is the asymptotic distribuition modulo h> 0 of the
analytié functions considered in the previous chapter. A curious
find is that in general the asympiotic behaviour depends on the
"unit of time™ h> 0 chosen. In fact, there is a cocountable
class of values of h {those of type I in the terminology of
4.2,1 below) for which the asyuptotic behaviour modulo h is

the same as the continuous asymptotic behaviocur described in
chapter 3, But, for the countably many exceptional values of h
{(those of type II), the asymptotic behaviour depends on the
algebraic nature of h . The dependence, however, is very slight

in the sense that in the description of the corresponding random

affected by the value ¢f h, All this is contained in

theoren 4547,

From theorem 4.5.,1 we deduce that in case h is of type I,
the asymptotic distributions modulo h of two Bohr-equivalent
Dirichlet series are again identical. However, when h 1is of
type 11, the Bohr-eqguivalence classes get partitioned into smaller
equivalence classes (which we may call the Bohr-ccuivalence classes
modulo h) such that the asymptotic distribution module h of

fonctions in the same class are identical, but those in distinct
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classes rave different asymplotic behaviour modulo h even if

they are Bohr-eguivalent. The Bohr-eguivalence classes modulo h
correspond to thc cusects of the closed subgroups wh (of the
group W) introduced in 4.2.1. This phenamenon, which should be

contrasted with the result of theorem 3.3.2, is described in 4.5.

The distlnction between type I and type II occurs, in a
velled form, in Voronin's paper [51_] (h is of type Il if and
only if the equation (14) of [517] is solvable.). However, bthere
the distinction appears as & technical detail, and its fundaments
impact on the discrete versiaon asymptotics of the Zeta functicn

does not seem to have been realized,.

From theorem 4,5,1, it is easy to deduce a discrete
analogue of theorem 5,4,10 on joint asymptotic distridution. We
have cmitted the deduction since it would be entirely parallel i
that of chapter 2. From this result (theorem 4.5.7) we have
deduced the asymptotic behaviour modulo h of the funciions

£(2z) i

r(z) and O m his is theorem 4.5.8.

We héve obtained the principal theorem of this chapter
(theorem 4,5.1) from a very general result, of a somewhat techni-
czl nature, on uniformly distributed sequences of finite subsets
of~ iy (proposition 4.4.,1). We also use this result to prove
the theorem 4.6.,1 on the asymptotic behaviour of Dirichlet
L-functions with large prime moduli. Herc it is shown that as

the prime modulus p +tends to infinity, the p-1 {function

e N
h's oy ATl 1 » .

- . . - 4 - -
e JPUINNZEGOoN. o by PLllal Glle LSOILLINLLCUL Vel od)
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‘asynptotic behaviour of the Riemann Zeta [unction. This theorem

my be uced to decuce and even generclize a result of Elliott on

the asymptotic behaviour of the arguments of the L-functions at a
point in  (T)7 as the prims modulus tends to infinity (see

1/2

remarks in 4.6.2 (b)Y and (c}).

42 The subgroups W, ¢ In this scction we introduce, correspond-

ing to cach heIR', a closed subgroup W, of the topological
group W of 3.,4.1. We study canonictl representations and the
structure of the dual group of each of these subgroups. The

groups W, will play a central role in the study of asymptotic

distribution module h of Dirichlet serics,

4,2,1 Standing notations ¢ In this chapter h> 0 will denote a

fixed but arbitrary positive real., It is to serve as the " unit
of time" . Ve shall say that h is of type I in case

(1) exy(g%) is irrgtional for each ne .

W shall say that h is of type I1I in case (i) is not satisfied.
Notice that 2ll but countably many values of h are of type L.

If h is of type 11 then n will stand Tor the smallest

2 My,
T )
the positive integers r,s and integers #(p) (pe ) will

integer n> 1 such that exp( is rational. In this case,

te given by o
E 271:210
(i) exp( o

) = *E = WIP pg(p) (r,s are relatively prime).
Pe

P vwill denote the finite subset of TP given by -

J
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(iii) .TPO: pelP : 9(p)#0 .

In either e oo 2 L) demote (as in 3.4.1) the member of W
i

given by ah(p) = p*lh {pelP). wh will be the closed subgro

of W generated by 4 s B, the Borel o-fieid of Wy My the

Haar provability measure of wh_’&h will often be regarded as s

probability on (W,IB) supported in Wy, -

4.2.2 Iemma 5 If h is of type I then Wy = W. If h 1is of
¢ ?

type II then W, = welW ! w(r) =w(s)J .

(Here r,s are as in 4.2,1),

@ ¥ ) - . ¥* o
Proof + Let W bpe the dual of W. That is, W is the grouw
of characters of W (i.e,.,, continuous homomorphisms of W into 7))

with pointwise multiplication. As remarked in 3¢441, a typical
el e i a +
element of W dis of the form X, , x = T ¢

i
X, () = wix) = gé%% (a,b positive integers). Look at the

whoere

e
arminhilator wh of
Al

& ¥ N
iXe W ¢ X(w) =1 Zor we W, 3.

> o =
W, That is, W = is the subgroup

Wk

Clearly X, e W, if and only if Xy (@) =1, 1.e., if and only

if X 2 1) 5o that x exp(ggg) for some integor n. If h

H

i

¢ and hénce x =%, If h is

I

is of type I, this implies n

of type 11, we may put n = tn_+ P where 0sB<n_ , a,P are
2un
integers. By definition of n,, exp(=

is ration&l, and

gt ] (_T[Cl_[’l . i . "
aence  exp(-20) is also rational. Since

b 2r<1v1 2Ef3

ﬂyp( ) = exp( )exp(

is ratisral, on divicion e Find
L4
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that exp(gE—) is also rational. Since 0£PF<n , by virtus of

the minimality of =n , we must have B = 0, 'and hence

a e T O
n=an , X = (%J s ® e Zo (n the other hand, if x = g& fer

some integer ¢ then clearly X, (ah) = 1. Thus we have shown &

_.'3... ) .
If h is of type I then W = ?X1% s if &k is of type Il then

‘V
‘1 = ‘?Xr/s i e

- N
Now let's look at the amnihilator Wy of W . Thst is,

s e - , . )
Wy > s ywe W XGw) =1 for all X e W, In view of the

h L
A
structure of wh Seen above, we clearly have

If h is of type I then W, “ = W.

i\l 5
If h is of type II then wﬁ‘ =W e WS Xr/s(W)

=twe W I wl =w?t.,

Y
!

X
Since each W, 1s & closed subgroup of W, we have W, =W,
(see lemma 2,13 of [ 45,p.36 V). This observation completes the

proof .

L ]
4,53 Some randou clemenis on (W, By, #4,) and the structure of

—— B

their distributions .

4
?

4.3 Iemma ¢+ 'Let 2 e R and let fzall be & segquence of

complex numbers such that = Ianl2 = 0™ as N—> w.
n{N ° o
Then for almost all (4,) w & W,, the series E1a1w(n)n Z =X (z,w)
h na
converges uniformly for =z in compact subseits of gf}? . In

a
consequence, the map w ~—> X(,,w) defines an H(()™)-valued
a
random element on the »nrohbubilitv space (whrﬂir'”u)'
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Froof ¢ If h 1is of type 1 then by proposition 4.2.2, we hap
(W ,B,, 4) = (W, ,m), so that the statement reduces to that

of lemma 3.4.3. BSo let's suppose h is of type II. A4S in the
proof of lemma 3.4.3, it Sufficcs to show that for an arbitrar

-X
fixed x> ¢, the series E a w(inn ©

f=]
defined on (W ,B, ,#4 ) converges almost surely. sccordingly

, of randem variables

let X, = be the random variable defined on (W, I8, ,4) by
- o

Xn(w) = anw(n)n‘ °. We have to show that = X, converges
n=1 “
almost Surely.
Let's define the random variable X on (W, IB,m) by
—-X
X (w) =a_w(n)n °. As in lemma 3.4.3, we see that X is a

ocquence of pairwise orthogonal random variables such that

E (log n) b(IX | 2y e, Hence by a minor modification in the
n=1

proof of Rademach er's theorem (as given in [39 ,pp.457-458 "))

shows th..t 21E(X |I)  conve.ges almost surely for any subofield
e J
I of I. But if we take I=I_ +to be the subo-field of IB

h |
- D !\_—‘ -r.‘

5 3 E'a H
generated by W, then clearly . X in>1 ;=B 1) ind 1!,

h?
o0
Hence Z Xn converges almost surely and we are donc.
n=1

4e3.2 Notations I We define a sequence In) 1% of

1, Iph

-.

TT-valued random variables (upto its joint distribution) as

follows .
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p.h s peP¥ is a sequence of
,-L

inrdepandent random variebles each uniformly distributed on TT.

If h is of type I, then 5z

If n is of type II, we fix pel?  ond let: %5 1 3 *)alf?-‘_:pc’)-\f
: Zp,h o

be & sequence of independent random voriables each widformly
distributed o T]. Turther, given the scquence

’; . 2 \_ £ M T e - ald ) o 1 110R
Zpn * pel-ip, -, &, assues the | ¢{p )| vulnes

i)
1 : v
exp [ - ngE;)(Qﬁlki- % 9{p) log zp,h}:], 0 k< |el)|
pelf - D
Q Q
1

each with probability Here @(pl)'s are as in 4.2.7.

i8(p ) | ﬂ

Notice that if‘gzp tpe P’ is a sequence of independent
reandom variables each uniformly distributed on ], then in the
latter case the distribution of ¢ Zp Mo I IPi‘; specifizd above

is precisely the conditlonal distribution of Yz ¢ D e IPi; given

%

A
the event T zg(p" = 1, Thug it is independent of the particu-
pe IPO

lar choice of P . Tirally if the prine factorigzation of nellk Ls

n = TT Da(p) we put 2z = T]- 52 () »

pa:IP“ ’ 1, h e r,h

4.343 Iemma ¢ Let o > O, and @ scquence of complex nlmbersﬁania.

N -
such that = |a 12 = 0(1\!2‘1) ag N —> =,

n=1 o
If X(.,.} is the H{(M))-valued rardom element defined on

% oo

Ghy 3 By L4 by X(z,w) = ni1anw(n)n"z , und X, is the random
clement given by % (z) = % az .n? then X 2 X
= g y ..A.-h 7 ‘f‘f n nvh Lo LN m— }2 »
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Proof « Here :Zn h : n_>__'¥fﬂ. is the seguence of [[-valued
—_— 7 P

random variable celintd in 4.3.2 above. By 4.3.1, the scries

defining X converges almost surely (#)  and honce defines
H(CY® )-valued randon cloucnt. Hence iLf

a ;
Ju(n) nE]I‘.T%, regardced s & sequence of randon variables on
(W B, 44 ), is shown to have the samc distribution as
Zn p ¢ naIN% then it will irmediately follow that the ;eries

defining X, @&lso converges almost surely and that X =X

h.
RIMce=Cor [N & TTPG(P)p w(@ = T ana o | =-|'TZS;(§) ,
=y

4‘-,.':1
4. Diye -
T — R A 1 o T
P = {%pn p #iP: when the

left hand side is regucded as a sequence of random variables of

(W, I8y ,44 ) .

it suffices %o show that {w(p) P pelP

If h is of type I, this is sclf-evident in view of
lerma 4,2,2. So let's assume h is of type 1I.

et Ky = T[ Tl, , where TTp g [, Thut is, K; is the
pelf-pg;

infinite-dimensional torus with its co-ordinate spuces indexed
by -fpl « Ict X, be the nultiplicative group of size
ie(po)] consisting of the 9(po)~_1_;_1;1_ roots of unity. To cach
sequence i Z, D EIP-EPOEE* in XK; and each ¢ in K, there
corresSponds @ unique w in W, &lven by w(p) =2, for
ps]P-E;;pd’-s and w(po) =p exp(- = g&-’g—)) log zp). This sets wl
pelf - pz
an isomorphism (algebraic @nd topological) ¢ between Ky XK,

and W,. The Haar probability measure on X. is the nrnduct of
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. the uniform distributions on its co~ordinate circle groups, the
Haar probability measure on K, assigns 1/|e(p0)1 to each of
its ﬁoints, and the Haar probability measuare on Kq XK, is the
product of these two probabilities. We éan use ihe map ¢ to

transform this description of the Haar probabiliiy measure of

Ky XK, into a description of the Haar probability measure #, of
Wy, - This gives the requisite description of the joint distributior
of w(p) : pe under the probability measure #, — thus completiz

the proof.

4.4 Proposition on uniformly distribuied sequences of finite

subsets .of Wh 5

4,41 Proposition ¢ ILet G§IR+, and let (fi a, - i gﬂ'@:’,\‘ be a sequence

; il : - :
of complex numbers such that 81 lan].2= O(Nga) as N—> o, For
n=1 . : &
weW, me ()7 , let
a+t /2
(1) X(z,w) = arw(n)n"z "
n=1T =

Lr o)

Let X, be the H(()™V-valued random element defined by

a
=]

(i) X (2) = Saz 0% 2.7,
1

n=1 % o,h

T . I .
where ¢z, , ¢ nellyis as in 4.3.2.
.

b
Iet {4, I neIN? be a sequence of finite subscts of W, such that
for each we || & ,X(.,w) has an analytic continuation to

n=1
()% 'satisfying :° .
a :
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e i A
(iii) TGy | E 1 X(xeiy,w 12 = o ly]™ as y —> +
# An We l-!. ’
uniformly for n» 1 and x in compact subsets of (a,) (here

A 1s some positive real).

and (iv) E_lX(z,w)f2=o(:i:t-(An)) a8 0= &
WgAn

uniformly for 2z in compact subsets of M. We also assume that

a
for any open set U (T w

h
(v} liminf j*(U”A )

n—> oo W)M(U)

Then it follows that for any open set M (T HTY™Y,
. a

(vi) liminf —

o W:Fs Gw e ay TXCGuw e M) > PO, 1.

Proof I For m21, n>1, let us define the H(()™)=valued randm :
a

elements X , Y , Xm,n P X (z, w) E &, w(k™ LIS P W, (regarded
as & randoa element on (W, oy o 1407, Yn is the random element
taking the x (An) values X(.,w) (w . 4 ), cach with probablll’cy

, X is the random element talking the # (ﬁ_ ) values

o Y

H (4 ) N, n
X (.,w) (w ¢« &) each with probability 1},‘(—7 In view of
lemma 4.3.1, X converges almost surely to X (defined by (1) and]

regarded as a random element on (:Jh mh"u'h))' Hence it follows thi.ﬁ@_
(vii) X E>Xas m—> w.

let Uy be the W, -valued random vav:l.able taking the + (4,) valoes

w (veh o) each with probability ﬁ(A v+ Then, in view of the

porimanteau theorem, our hypothesis (v may be rewritten as :
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(viii) U, ==> Hy a8 n—> e,

 Such the map from 'L into H((TY sending w to X (.,w) is

a
continuous for each fixed m)> 1, in view of theorem 5.1 of [4,0.30]
; D ~1 Nl
ve can deduce from (viii) that X (.,U) &> 4 oX ' as n-=—> =,

| D ) L B et :
Bat X (.,U) = %,n’ and 4, oX"" is the distribution of X ., Hence

ve obtain .

'D_ & —— OO
(ix) Xm’n 25> Xm as n —> o« ,

The conclusion (vi) of our proposition may be rewritten as
T, %:> Xh as n —> =, Since by lemma 4,3,3, we have Kh D 5

we need to show that o

(x) Yng—>X a8 N ——> oo,

In view of theorem 4.2 in [4, p.25_], (x) can be deduccd from (vii’

.

Land (ix), provided we show that

(xi) 1lim  limsup P{sup|X -
n—bw n—>w g K 1
for each compact ¥ (T ()™ and ¢ > 0.

[s4

\z) - Yn(z)[> & =W

By virtue of Chebychev's ineguality, (xi) would follow from

1lim limsup E(sup]Xﬁ n(z) = Yn(z) ]2) = 0.
n=—>oc n=—>o0 S O

Computing the expectation, we see that we need only show that

i ST
(xid)  lim limsup —— &  sup|X(z,w) - X _(z,w | =0
M ==>0 1 —> oo *(An) qun 7 el :

for cach compact K (T (M.

—

o

Accordingly, let's fix a compact set XK (C (). Iet ad>a and

a

4>0 be such that K (C (M* . Iet 6>0 be a small positive
=3 a
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reals By assumpiion (iii) X(..w) is of finite order in Lf): :
X,(e,w), being a Dirichlet polynomial, is also of finite order
there., Hence the same i true of Xa@n. Hence; arguinéras in
proof of proposition 3.2,2, we obtain the representation
2Coyw) =X (W) = Tplesw) v g (oyw) (e nl='['iﬁn) where

o0

f (z,w) = = 2y w (k) exp(- (k)M K?  and
k=m+1
1 a=Xtiw Vs eV
&nl20) == oy, I Klavw,w) - Xy Grv, ) (P 6 Vay (X=Re(z)e(a,a*1
1= My S, 1]
1 (=} L=}
How —rp=y B |f, (2, = ((ka)-(kﬁ))
= = An)WeAnl m? W)I kﬁ“m+1 kz‘m+ak ak . ! 5

X Un()(k1 /1{2) :

And due to (viii) above, we have

S
it

BA

1im U(X )-M(X ).-=1 it X - e W
11— o0 /k; ky/k, " "h
=0 othervise.

L .
This observation, together with the description of Wiy obtained

in 4.2,2 yields ;

Un sy E Igtem|® e : ey I? exp 2oy

n—> o n k=m+
in case h 1is of type I. 4Anmd we get a more complicated expressior

for the limit in case h is of type 1II1.

But, in either case, it is easy to deduce that uniformly for

ze K, we have .

1 4 1 2 _
1in lim ﬁ—@ wi A,fm(Z,W)’ i
n

M==>o0 [e==>oca


http://www.cvisiontech.com

- 106 -

. . 1 2
Therefore, lim limsup —7 2 sup|X(z,w) - X (z,w}|
' bRt = = (8) weh  zeK ! m?

< laim limsup -—1—7 ) suplgm(z,w) i2 .
m—>e n—> o Ay wea  zeK

i This holds for an arbitrary & > 0.

Now, the integral formula for g, sShous that

—(2—)- 5 suplgm(z,w)|2
- n WEAn zeXK

1% = A : 2L 2
<« 8° [ (—(—-), 2 sup X _(a+ri(y+v),w) | e (v)dv
o WAy WEAn|y| ¢y @ ’
~J0
c = 1 : . <
I G ¢ % sup |X(a+i(y+v),w |D)e(v)av,
o " wed lyl<y,

where s >'O, ¥y,> 0 are such that for z=x+iye K, X> arc,

lyl&yy5 000 = sup 1 (&%‘ﬂ) 1°. Thus »(v) decresses
' xeRe(K)

exponentially as v —> = . &lso, by assumption (1117,
.-JA Z sup |X (a+i(y+v),WI2 is at most of polynomial growth,
T’ wed |¥ILy, |

wniformly in n., Hence the second integrand above decays ecxponen-
tially as v —> = . Therefore we can take V> 0 so lurge that

1 <)
m z sup|gm(z,w) |

WsAn zeX

v :

1 . 2

¢ 8% I (—(——) 2 sup |X(a+ri(y+v),w)|7)dv
x ;A = 9
-V T’ wed lyigy,

& 7 ) 2 :
+ 6" [(5g ©  sw |X_(a+i(y+v),w) |"e(v)dv.
I (R A lyley, = !

But by assumption (iv), the first integrand is 0(1) as n —> =

- o=
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also since Xm is a Dirichlet polynomial, we can easily obtain

. 1 . iy P
the estimatec 1limsup Ty B sup (X _(a+i(y+v) ,w) |~ = 0(1)
n=—> oo 1 tip’ wed [y{(y = :

as m —> e« uniformly in v (this may be cstimated exactly as we
obtained above the estimate for a similar quantity with fﬁ1 in
place of Xm by exploiting the absolute comvergence of the
Dirichlet series for f_). Hence we get :

limsup TI“"3 sup[gm(z,w)|2 << 6%, uniformly for m)> 1.

n-—> oo weA zeX /

Combining this with our previously obtained estimate for 'fm, we

get (since X-X =1 *'gm) g

. . ¢
hmmmﬁummp—fﬁj smﬂX&xﬂ—X &tﬂl 6% g
m—> 0 Nn—> o T V'p W&A zeK

Since 6> 0 was arbitrary, and the left hand side above does not
depend on & (only £+ 8, vere defined in terms of &), letting

510 in this estimate we get (xii) and hence (xi). Thus we are don

4.4.2 Remarks ! In the secouecl we shall deduce results on the |
asymptotic distribuition modulo h of Dirichlet series (theorem 4.5.1
and its corollaries) from the proposition 4,4.1 above. 4 proof of
theorem 4,5,7 could =asily have been modelled on the proof of |
theorem 3.4.5. However, wve havc chosen the alternate course of
deducing 4.5.1 from the rathcr involved result of 4.4.1 beacuse

this allows us a unified treatment of the " asymptotic distribution
modulo h " results and a result on the asymptotic behaviour of the
sequence of Dirichlet T-functions with large prime moduli

(theorem 4.6.1). Morcover, proposition 4.4.1 should prove useful
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in future studies of the asympiotic behaviowr of Divichlet serics

along more general scquences of verticul shifts.

-

4,5 Asymptotic distribution modulo h 2

' 45,1 Theorem ¢ Let aelR and let f be analybic and of finite
. order in the closure of ()7 . We also assume thatb

T 5 ,

’i‘f [f(a+it) Izdt = (T) as T —> e and that for some b>a,f

is given on _Q__)_w by an absolutely convergent Dirichlet sexries

- b
£1ann“'z. Let X, be the H(()") -valued random element defined
n= B a

| _)m X o ) A —Z- ey = °°.
on Dy by X, (2) ni1anzn’hﬂ Then f T X, mod h on I _)_a

Proof ¢ Tet a>a be arbitrary. Then argoments as in the oroof

of theorem 3.4.5 shows that it sufficies to prove the result with

H
. : 2
¢ in place of a . These arguments «lso show that I [ani = D(Nea)
n=1 -
ag N —> o, Further, if we out X(z,w) = = anW(n)n"Z, then
n=1

X(z,ag) = f(z+inh), which has an amelytic continuation to the

closure of ()7 .
a

If we put 4 = A aﬁ « mel lw[]:-n,n:l "? , then clearly

a (T wu

a (< W ?:‘é?"(An) = 2n+1. Purther if X is a nontrivial character

on W, then X(Gh) # 1, so that

1 1 - m
o = X(w) = 2 (X(e W > 0 as n > w,
n+l weAn e m=—1n h

Hence by Weil's criterion, the WU -valued random variable U,

taking the 2n+1 values in A each with probubility s goes


http://www.cvisiontech.com

- 109 .

to the Hzar measure Mh

as n =—> «}, Thus, in order to apply proposition 4.4.1, we.";

of ‘,-'-!h as n —> o (i-e"’ Ungwh.

need only verify that

(i) L él [T(P+1 +imh)f2=ro((-[v[')A) &s —> o
Zar B |8(Peiyeinh 3 y

wdformly for £ > o,

n
and (ii) 2711—:7- z If(z+imh)]2== 0(1) as n —>

—~]]

aniformly for 2z in compact subsets of _(_'—I” .
[a)

applying Gallagher's lemma (lemme 1.4 of [ 42,p.3]) +to the

function t —> flzrit), te [ -(nr1)h, (nr1)h’], we obtain !

(iii) = |£(g«imh) "¢ w1 1f(z+it) ["dat +! I Ar(z+i%) | ot
m=-n ~Mm+1)n “(n+1)nh

“(n+1)h : 4

% f I lf'(z+i’r.)]2dt\/'

e (n+1)n : :

In partic-lar, taking z =B8+.y for B > a, we get :

(n+1)h+ |y
il glf(ﬁﬁv-ﬂ'ww‘ 2 L 128+t [2at
N e e e R T ) -~
SR S N
A+ h+ v o1
L P T [?l)lgdt # 2
G+ Dh i }
(n+Dh- |y g
((n+1)h+]y] A %

x . f-;f'(mit)i«zat, ;

=) P

But arguing as in proof of lemma 2.4.7 and utilising the Cauchy

1+

integral representation of f and ', one obtains
Fleit) |"atcen, J [£1(B+1t) [“dt < CT as T —> =,
: "
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Judiforuly for B > o . Hence the above inequality yields @

(e ) mi_.ilf\gﬂ-g#nk‘i <= (2n+1.h . < C'I iyl as y—> <y

uwdformly in n>1 and 8> a . Thus we have (i) with A=1.

But we cun actually prove that
s 2 ; .2
I if(z+itd) |"at € €T, Jif'(z+it)|d% < CT as T —> o,

uniformly for =z in compact subsebts of () (C depending on ‘the
a
compact set). This observation, together with the inequality (iii),

readily implies (ii) &lso.

Thus the proposition 4.,4.7 is applicable, and therefore we

have, for any open set M (T (M7,
. o

liminf gg-ﬁ 4 Cmez || Enyn] 3 s™ (g e ) > P | YeM) .
n—> a

That is, T ::; Xh on ()7 . Since this holds for amy o > a,

a
the required result follows .
!

4.542 Covollaxy . et T be analytic and of Tinite order on the

closure of (T)° . Iet us suppose f is given by an absolutely
a

convergent Dirichlet series I anpfz on () for some b>a.
=1 b

T n
e also assume that [ ]f(a+it)]2dt = 0(TY as T —> o, Let X

=T
be the H(()” )-valued random element defined on (W, B,m} by

a
Xz, w) = & a wlnn 2,
’ n=1 %

If h is of type I then £ =2 X moduloh on ()
=
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Proof ¢ By theorem 4.,5.1, f ':_'“_g X, modulo h on [
a

lempas 4.3.1 und 4 3.2 fogether show thet if h is of type 1
then Xh 2 X o Thus we are done. Motice tiut X is also the
continuous asymptotic distribution of £ (theore 3.4.5).
4.5.,3 Corollary (Bohr's equivalence principle modulo h) :

Let f,f be analylic functions of finite order on the closud

of (MY . ZLet's suppose thatl

T G
flf(a+it) 12d+, = 0(T, | |f*¥{a+it) |2dt = (D).
~T T

We also assume that for some b > a, ¥ and f£* are given by tuj

&+ 20
absolutely convergent Dirichlet series £ ann"z s =2 a;ln"z vhid
n=1 n=1

are Bohr-equivalent through an W€ ‘.'Jh « That is, there oxisgts

W W shi a.:“ = a eli™,
for which N wo(n) - (nel

of “h
Then f,f have identical «symptotic distributions modulc h.

--.a\'L - -
Proof ¢ ILet X, s %, be the random eiements corresponding to

T,f* as given by theorem 4.5.1. Iet X,X be the H(™ )—valuari
a |

¥

random elements defined on (L-Jh ,IBh,u»h) by

oo . oo
X(z,w) = £ a w(nin™? , X (z,w) = 2 a w(nin™% ,
=1 n n=1 n

By lemma 4,3,2, we huve X 2 X i

¥*
o« But notice that X ,X are

X:r « Hence f “—“g X mod h
1 =

*
and f¥ =% X mod h on (

o3

* p .
connected by the formula X (.,w) = X(.,wow} . Since woe W, the

Haar mecasure M of W is invariamt under multiplication by w .
i h h Y Ty

D 5
Thus X =¥ ., So we are done.
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#oed  Corollary (to theorem 4.5.1) ! Iet # be a multiplicative

function such that [g(n) <1 (n ID, Let flz) = & glrin™?

¥
1’1—1

(Re(z) > 1) and we assume that f has sn analytic. continuation of

finite order to the closure of (7)7 for soume a>_—12- , and it

L
satisfies | ]f(aa-i"{i)lgdt = (T as T —> =, Let

X be the
h
; —TQ
H((")” valued random element given by &
P Ta
X (z) = 2 gladz_ . a"% = TT (2 goM(z. ,p75H-
h n=1 n,h p eIP n=o Py

Then :g X, modulo h on CO”

e

a
Iroof ! Since by definition of the 2z - 's, #n)z is a multi-
E— Az h Tyh

plicative function of n, this can be deduced from theorem 4.5.1
exactly &s corollary 3.4.6 was deduced from theorem 3.4.5, once we
show that the product over IP converges almost surely. But the
product ov:r IP may be decomposced into a product over the finite
set IPO and a product over IP_.IPO « By the description of the
joint distribution of z_ . i peD © (4.3.2), thesc two products

: H ’

are stochastically independent, so it suffices io prove the almost

sure convergence of the two products separately. Since the first

product is over a finite index set P, its convergence is trivial.

Since the joint distribution of =& « pelP -~ IPO?‘, is the same ds

P, h

14

that of the sequence ?'{w(p) s pe - I}?ow-‘; of independent and identi-

cally distributed random variables on (W, B,m), the almost sure

.comrergence of the second product follows from that of

[= %]
£ 7T g g™ Wwip)p~?) n, and this last fact may be established
Fe®-TP n=o

v
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by an appeal to Kolmogorov's three series criterion excatly as

3edebe So we are done.

4.,5.,5 Votation ! The H(Qﬁlﬁ ) —valued random element F, i3
1

/2 d
defined by F (z) = 2 z_ .,n"% = (1-z "Z)-1. -
N h_ e Ty h : pWIP P, nP )

By the preceding analysis, both the sum and the product convergs

almnost surely on ()7 - As a particulsr case of 4,5.4, we gt
1/ ‘

4eD46 Corollary : Let we W be such that the function

F(z,wo) = 21w0(n)n"z has an analytic continuation of finite
=

order to the closure of (7)° for some a ) & and it satisfies

i o &

] ]F(a+i‘t,wo)] dt = 0o(T as T — =,

T :
Then F(,,wo).jzg F, modulo h on Lfl: .
fotice that Fp DF ir n is of type D).

4e5.7 Theorem : Iet fy,f5,400,f, Dbe analyiic functions of finf

= — 00

order in the cicswe of L) . We also @ssume that

7 2 :
1y (2 \

! |fj(a+lt) |7dt = 0o(1) as T —> » (1< j<n) and that Tor some

|
b > a, fj is given by an absolutely couvergent Dirichlct series

on () (1¢3i¢n). Iet Xy, be the H((T)™) =valued random
b Js a
element such that T = Xy p modulo b on O™ (1¢jgn).
i L4

Then (£q,...,T ) = (Xﬂ,h""’Xn,h> rodulo h .

Proof ¢ This nay be deduced from theoren 4.5.1 exactly as

theoren 3.4.10 was deduced fron theorerm 5.4e5.
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T

H.S.S Theorem : (i) ¢ =P, modulo h on ( )

g
&

- and 731) If 7 is defined by niz) vk,
N —3F modulo h on ) :

Proof ¢ This may be deduced from theorem 4.5.7 exactly as

theorem 3.4.11 was deduced from theorem 3.4.10,

4.6 Asymptotic behaviour of Dirichlet L-functions for large

prime moduli 3

46,7 Theorem : ILet M be any open subset of H(() ). Then

1/2
liminf %ﬁ(, X:X is a Dirichlet character mod p and L(.,X)EM}E)
p—> e L

_>_ Ll(FE M) -
(Here p ==> « +through the sequence of primes). '

Proof : We shall apply proposition 4.4.1 with a fixed h of type )
(say h =1 or h = 2%), so that By Dp » Corresponding to any
Dirichlet character X of prime modulus p, we define an element
X' of W by °

() = X(9) if qeP-py, X(p) =1,
Then, in the notation of 3.4,7, we have L(z,X) = (1-D_Z)F(Z,X*),
for any Dirichlet character X modulo p., Let k Py v il {, be the
sequence of primes in increasing order. lLet A, be the set of
the pn-i? non-principal Dirichlet characters modulo Py, - Iet
%

3 <) W k3 o0
A =3X 1 Xe Anls + Let X ,X Dbe the H(_(_—}_1 /2)—va1ued random

elements such that X takes the p -2 values L(.,X0,Xe4d ,


http://www.cvisiontech.com

- 115 -

o .
sach with probability j 1'1 takes the pn,-2 values F(.;ﬁ

e 4%, each with 970 &oility L (m>2), Iet f. be the
n D~ < n
voint in H(()™ ) given by £ (2) = (1-p=%). Then we have
e S D L 2o 8,
Xn = i’an. We need to show that Xn =>F as n —> =, Since

*
fn — 1 ag n —> o, it suffices to show that X -Q-» F,

But "X L>F“ Tollows from proposition 4,447 with a, =l
and the sequence SA . o3 11'" in place of - A :n__'l:g (and h of
type 1 as already mentioned, so that Wy =W, and o = 1/2, ome
we check the subsidiary hypotheses. Specifically, we have 1o

check that —1—2 T |Fla+iy, X*)[2 = of [y{A) as y —> o,
P X sl

uniformly for n) 2 and a in compact subsets of (1/2,), and

1 *..2 . .
g D [F(z,X )| = 0(1) as n —> o uniformly for =z in
n~" YeA )
n N
compact subsets of _(_“2_01'3/2 .
Since the funeiiong fn are uniformly bounded in _Q_Q_T/ , 1%
2

i ' ]L{a+iy,X)]2 - O(]yIA) as y—>«
P X mod p :
%

3, & in compact subsets of (1/2 ),

surffices to show that
uniformly for primes

and that 5’ lL(z,)()[2 = 0(p) as p —> = through primes,
X mod D

— 1
uniformly for z in compact subscts of 16 /2 . Here = denotes
1 -
the sum over all non~principal characters modulo Do

Both of these estimates are clagsical results on L-functioﬁ's’l

For example, they are trivially contained {modulo a kerncl argunot)
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in the very much more powerful theorem 1C.1 of T 42,p.75:' ‘

Thus i* only remains to verify hypothesis (v) of proposition
1,4,17. In view of Weil's criterion for uniform distribution in

compact groups, it suffices to show that for each non-trivial

character X on W (this should be carefully distinguished Irom

Dirichlet characters), we have !

(1) —t 2 L, XG) —> 0 as n —> e,

'ﬁ;#-(A;) we Ao

Since X is a non-trivial chacter on W, by 3.4.1, there exist
my,m, W, (my,my) =1, my #m,, such that X = &1 fnye That is,
X(w) = wimy fmy) = wlmdwln,) (weW). Hence

1 1 —_ 1 ' *
: g Xw) = ——— 2 _win)dwin,) = ——= pX I(mi(m)o
# (A;) WEA; " :ﬁ:(An) WEA-':I 1 : P~ X mod 1 ? -

But if n is sufficiently large then my # 0, my, # 0 and

m, £ mp nodulo p, . Hence

1 N 1 '
B () = ey o X, ) X(ms)
* - 2
'i#(A;) we An):m1 /My Py X mod P, 1
1 1 ()
n n X mod Py

1

= - —— (by the orthogonality of the

P
- Fn
Tirichlet characters). Therefore (i) holds.

Thus proposition 4.4,.,1 is applicable, and we have

*
X, %>F as n —> «, Therefore Xn -‘g->}? as n —> «, That is,
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for any open set M (C H(( )™ ),
. 1/2

liminf lﬁi(ix ¢ X is a non-principal Dirichlet charascter modulo P

p—> = P °
pelp and T(.,X) eM?) > m(Fe i) .

Since to each modulus p there is exactly one principal character,
this inequality remains unchanged even if the principal characters

are allowed in .,

4.6.,2 Remarks i (a) A comparison of theorems 3.4.11 and 4.6.1
show that the asymptotic behaviour of the Dirichlet I-functions
with large prime modulus duplicates the asymptotic behaviour of
the Riemann Zeta function for large vertical shifts. At an
informal level this similarity of asymptotic behaviour is well
known (so much so that the literature abounds with'references to
"p-analogues” of classical estimates for the Zeta function).

Wal

(b) We L ve proved the theor.m 4.6.] for the sequence Spnk of
primes. An examination of the proof shows that the theorem goes

through if \Ppt is replaced by a sequence } a ¢ of positive integers

such that the least prime divisor of a, &oes to infinity with n

(¢} Thecrem 4.6,2 implies that for any z e _71:/2, the asympioti
distribution of the sequence of sets.

arg L(z O,X) + X a Dirichlet character mod

is given by the distribution of arg Mz e If z,=x_+iy_,

o

then F(z ,w) = F(xo,av ) 2 F(x_,w). Hence the asymptotic
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distribution is as of arg F(xo) . But the probability distribu-
tion of arg JI?(XO) hes been identified in (c¢) of 3.4.,72 with the

probability measure #, of Elliott. Hence we have, for any
0

£, -continuity subset & of [ -w,7n],
0

ligl N W ("X ¢ X is a Dirichlet character modulo p
p=> = :
peIP and arg L(zo,)()eA‘3) = M (4),

0
for z, =X *iy , X > 1/2 .
This is the qualitative content of the theorem in [24]. The
remerk  (b) above shows that this theorem of Elliott remains
valid if the sequence of primes is replaced by the sequences

(&

n“‘!? of the sort described in (b),
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CHAPTER 5

UNIVERSALITY THEOREMS AND STRONG RECURRENCE

Drell' introducfidn and summary ¢ It follows from the résults of
chapter 3 that the @#(k) I-functions modulo k have a joint
asymptotic distribution. In this chapter we determine the :
spectrum of this joint distribution restricted to g‘l} , . The
result is conééined in theorem 543,15 the spectrum terés out to

be very iarge ~-- as large aslis consistent with the existence of
Euler products for the L-functions. In 5.3.3 we reformulate this
result as a théorémfon.simultanequs approximation of @(k) non-
vanishing continuous functions by translates of the #(k)
I-functions. It will be seen that thus viewed, the main result

of this thesis is a generalization of Voronin's universality
theorem ([527]) in several directions, In the first place, it is
& pulti-dimensional result urnlike Voronin's theorem which con-
siders approximation by a single I-function (or, more specifically,
by the Zeta function 2lone). Seccondly, the functions admitting
such-approximation are defined on a fairly large class of compact . .-
subsets "of the strip %'% < Relz) < 13, whereas Voronin's theorem
(and later generalizations of that theorem in Dsj, [43]) con-
siders funptions;defined on compact discs alone. This is a

gennine extension since an arbitrary compact subset of the strip
can not be covered by a single disc contained in the strip, whereas-
arbitrarily good. approximation in the functioﬁ space reéuires

approximation on arbitrarily large compact sets. Thirdly, unlike
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Voronin's result, we prove mure then mere existence of a tra.nsla'i
of the I~functions which is a good approximation to the given
functions —- we show that the set of translates realizing a give
degree of approximation is a set of positive lower density.
Extensions in this direction have been anticipated by Reich
(E43j) -- although only in the case of a single L-function

approximating a given nonvapishing analytic function on a disec.

| The discrete version rcsults of chapter 4 lead to a sinila
discrete version u:aivefsality theorem (5.3.4 . This implies, J.n
particular, that the set of translates realizing a given degree
_of accuracy interseéts anyl given arithmetic progression on the

lJine, Thus it is a large set in morc senses than onee.

¥

Several implications of thése results havérbeen-consideredg
in:hthis chapter. One important cxample (5.3.5) shows that a 1arge'f
class of Dirichlet series wh: ch closely rescmble the L-functions
(but do not actually equal any I-function) have an even larger
spectrum -~ namely the whole of H( _Q—l_; /2).. Thus arbitrary

analytic functions (and not merely the“_,-nomr‘anishing ones ) can be

approximated by translates of any given member of this class. In
5,341we use the theorem 4.6.1 to prove a universality theoren

" of a novel sort -~ here we consider approximation by I-functions
belonging to a large primelﬁzodulus (not by its translates ). We
ineludc in the section several remarks (5.3. 9) designed to bring
out the full power of the universality theorems, and by & couple

. of questibns (5.3,10) that present themsclves.
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In section 5,4 we show that the results of section 5,3
imply a strange relationship between strong recurrence and rero-
free strips of the L-functions, This result is contained in
theorem 54441 which says thatan/ L-function (and in particular the
Leta function) is gero-free in a substrip of the stra.p
g < Re(z) < 13 4 if and only if it is strongly rccurrent in that
- substrip. In 5.4.4 and 5.4.5 we give several examples to show

that such a relationship does not obtain in the absence of Euler
reducts. In particular, the example if 5.4,5 (which is due to

| Titchmarsh) shows that the existence of & functional cquation

| (analogous to that of the L-functions) for a Dirichlet series is
consistent with the existenc_e of lots of merocs in the oritical

strip and outside the critical line., In 5.4.6 we show that the

| recurrence hypothesis of chapter 2 implics a very strong ncgation
of the Rismann hypothesis for the' Zeta Ffunction. (The deduction
1s dependent on the existence of & pole of the Zeta function, and
therefore doecs not go through for I~functions with nonprincipal
characterss). On the other hand, in 5.4,17 we show that an
affirmative answer to the question posed in 2 3.7 would J.mply the

.generallzcd Riemarm hypothesis for I-functions,

In section 5.2 we prove a number of lcmmas preparatory to
the proof of the main results in 5.3. Following Voronin, we base
the proof of the universality theorem on a Hilbert space result.
However, Voronin uses a theorem of Pecerskii on. rearrangement of

series in Hilbert spaces. This is found to be wmsuitable Tor our
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purposes since Pecerskii's theorem is a real Hilbert space resull.
Instead, we have prcved an alternative complex Hilbert space
result (5.,2.8) which is better'adé@%é& to our needs. Indeed,
‘even the proof of corollary 5.3.6, which could be based on

Pecerskii's theorem, is simpler when based on our proeposition 5.2

The other important ingredient in the proof of the univer-
sality theorems is a theorem of V. Berstein on' the behaviour of

an entire fumction of exponential type along a sequence. In 5.2,

we have restated this theorem in a form which weé found convenient

5.2 Some preparatory lemmas ¢

5.2.1 Definitions and notations : Tet 0<¢6,¢ . Let's recall

that & function analyiic in the closed angular region larg(z)lggo

is said to be of exponential type in case

: i

3 1

limsup og]fére €5[ < , uniformly for . [€]<£6 .
r=> o . B
Ia.this case the iﬁdicatdr function of f 1is the function

e [:--60, 8'0.] —> IR defined by IS
i@) I

h(e) = limsup 10g|fr(re

Ei] , 9c -8 ,6 .

If X is a nonempty compact convex subset of the plane, the

supnorting function hye ‘of K is defined by o

h.(8) = max Re{e"le.z); el ™.
d zeK ﬁ

If £ is-an entire function of exponential tyﬁe, given by
£(z) = b anzn, ze§ , then the Borel transform F of f is
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defined by ™(z) = = nya gz’ . P 1is analytic except in a
n=o0 :

neighbourhood of merea. The conjugate indicator dizgram of a

function f of exponential type is definsd to be the closed
convex hull of the set of singularity points of the Borel trans-
form of f. Thus, if f # 0, then its conjugate indicator diagram
is a nonempty compact convex set. If D 4is the conjugate indi-

cator diagram of f, then its indicator diagram is by definition

e ]

* & i - . ) >
the set D =72z : zeDy . The indicator function of an entire

function of exponential type equals the supporting function of its

indicator diagram (theorem 5.3,7 of [ 5,p.747]). 1In particular,
if the conjugate indicator diagram of an entire function 7 £ 0

of exponential type is contained in ()7 (ae )

a
then limsup __.&JMJ. > a.
-..-_> oo
Xx ¢ IR

50262 Lomma ¢ Tet 4 Dbe a complex Borel measure on the plane with
conpact support contained in ()7 . Let f be given by ¢

a
f(z) = feszdﬂ:(z) ; ze¢ Let's assume that f £ 0.

Then limsup —&M > a.,

X —> oo

X e R

Proof < Clearly £ is an entire function of expomential type.

A simple computation shows that its Borel transform is given by

Mz) = 'dg(g) for =z outside the support of 4 . Therefore the

-

conjugate indicator diagram of f is contained in the convex hull

of the suppart of # , and hence is contained in _(_—7_:? « Since by

[
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assumption f g o;‘ﬂhe’concluding remark of 5.2.7 now completes

the proof.

2.243 lemma (V, Bernstein) : Iet £ be an entire function of

exponential type. Iet %kﬁ e n > 1% be a seQuence of complex

4

numberse -Let a,B,6 be positive real numbers such that 3
I log|f(+iy) | 2
(1)  limsup 08 I (+iy) | a _
¥y = ¥ -
v e IR Btk

(13) WAm,.AnJ > 6|m-n| ‘(m;ns:ﬂﬂ ; | -
(iid) im- B . g :
n—>co 1 Yo l |

(iv) aB ¢ 7,

Tog|f (A )] \
Then limsup B [n = limsup 10g|£(x;[
n—> « “n X > oo

ne W X = R

Proof ¢ In the first place, let's suppose B = 1. Therefore

0<adnm. Tet h be the indicator function of £, By hypobhesis

(1), n(x ¢a . nio -%) < ®. Henee, by theovem 5.1.2 of [ 5,p.66],

h(8) £ h(0) cose+ a|sine| for |6 <5 alm, Also, as B=1,

we have lim = = 1. Hence by V. Bernstein's theorenm, we have
n=> oo

the stated conclusion in this case (see [ 5,».1857] and also the

remarks in 5.2,4 below).

In order to deduce the general result, let's define the

-

entire function g by 3 g(z) = £(Bz) ; let Ekiﬁ.be.the sequence
N y

given by k; =-3§ « Then clearly g is of exponential type, and
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loglg(x iy) |

we have limsup - ¢ a' = ap ¢, Also fh'- A9]> qum—nf
Jy=
y;:' ]R .
] i ?\lil ' n
with & = ﬁ > 0, and ~ linm - = 1. Hence by the case 5 = 1
n=—> o

loglg(r]) |
proved above, we have limsup | F‘ 1 = limsup —-iiui——wl
n—> o A I o= o0

ne N e x & R

Hence the required equality follows on substituting for g and ﬂé.

50244 Remarks ¢ 111]:5,p.185:], Boas guotes V. Bernmstein's

s
theorem as follows :~ " Iet f be regular in ].argz]$a$§ , and
let h(®) £ a cose + b|sing|, 8] < ¢, where a,b are finite.
If b < T, we have

limsup |2 !"Tlogff(h )] = limsup r 1loglf(r)l h(0) , provided that
n—> oo B 2 r=> o

4
Mm~%JzMnmh ngm, 5> 0."

:A): is a (complex) sequence such that n/h, —> 1 and

This is false. 4 counter example is given by £(z) = sin(nz).

= % , 8 = 2 s =0, A =n, § =1, An examination of the
proof shows that the theorem has been rigorously established under
the extra hypothesis that h(d) = a=o0, and it has been wrongly
asserted that this results in no loss of generality. In actuality,
from this particular case we can deduce the general theorem pro-
vided the hypothesis " h(6) (& cos9 + b =iné " is replaced by
"h(8) Lh(0) ccs8 + b sine ™ (then we may apply the particular
case to f(z)e"h(O)Z). This is the recetified version of the

theoren that we have used in 5eCe’ 2DOVGCa
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5625 I'mma ¢« Iet £ be a entire functica of exponential type,
et h,k be two relatively prime positive integers. We assume f

X > oo = h modk
p‘e:IP g

that limsup =i’ﬁ-‘—;{-—‘-’—i > =t. Then Z IT(log p)| = .

Proof « Since I is of exponential type, we may choose a finite

a> ¢ such that limsup loglfs(r_t ly)l ¢ ¢, ILet's now choose B3>0
y=r = N

so small that apf <7, Let's suppose w¢ have .

by [£(log P)| € .
P hmodk
pe

.
Iet A =nel{ 3x a((n--}-l)ﬁ, (n+%)£3) with [£(x)] ¢ e™ 3,

Then % 1f(log p)| 2 = % |£(log p) |
P = h modk nZh p 2 p medk
b, 1 2 Gl 1 1
log p e((n—'Z)B,(n+ 7,:)5)
> = 5 4 (by definition of 4.
ngaA 1 b
p £ h modk
e P

log pe ((n-)B8, (ns B

iow, the well known estimate

z % SE%ET loglog x + ¢ + 0{(log x)"z) as X —> o«
pLX
r = h modk
shows that ) % = 273@} -}1 + O(;:-g) as ‘n —_> o,
P £ h modk
2.5 1 1
log p e ((n-7)8,(n+ )8
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Therefore I (?3%{7 %—1 + O(lg)) < 2 {f(log p)| < = .
n

nyA P 2 h modk
p e IP
. Sl = . ¥ -
Since I —» < oo this implies that = g e
n=l w nga

A fortiori, the sst A has asymptotic demsity = 1. That is, if

{ F

1€a;<as< vao then lin = =1,
! & n—yc o

Now, by definition of A, for each n> 1 there is & real number

44 ’

.Y
A, such that B(a, ..—-)<7\ L < Bla Z) and [F(A )] ge T

: ?\ log|f Ay ) f
Therefore linm -ﬁ- = B and limsup T -1 .
n—> oo n—> « n

“snee by lemma 5.2,3, we get

limsup --g—’f—(X—J- { -1, This contradicts our assumption on £ .

1 ....> oo

x ¢ IR

S0 we must have z  |f(log p) |
p = h modk
p e P

5.246 Iemma I Iet XyyeenyX, be linearly dependent vectors in
an arbitrary complex vector space, Whenever Bqyeee,d, are
complex numbers with !aj <1 (1< jgn), there exist complex
rambers by, .ee,b,  with ,bl [ _<_I_1’1 (1< i<&n) and at least one

= I Dh.X: .

n
b.|l &1 s that £ a.x.
JJI _ uch that x . P

=1 4L

Proof ¢ By assumption there exist complex numbers CqyeeeyCy g

n

oy all of them zero, such that T o.Xx =10,
? J=1 3__‘1
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Let X

L

:;a = (a4,e00,0 )‘z-:' pRis (i | < A Zor 1<;]<n v and let
I={tcR:a«+t.geck?.

Here 2 = (84 ee0,a0, © = (Cj,eee,0)0

Since a ¢ K, 1t follows that 0 e I. Thus I 1is nonempiy. Sin

X is conveX, I is a convex subset of the real line and heunce i#

an interval, Since K is conpa.ct anf ¢ # 0,1 1is bounded. Thof

I 1is a nonempiy bounded interval. Let 1 be one of the end

1 o

voints of I, and let b = (bT,..,,bq) =&+t .c. Then clearly
b ¢ pd(X), the boundary of K. That is, ]bj‘l <1 and at least

one |byl = 1. Also,

n n n n
EbJ = E‘ a. 'i;o T oX, = D a.X.

So we are done,

5.2.,7 Iemma : Let Xq,.ss,X, be points in a complex Hilbert

space and let  &,,...,8 be complex number with

n
Iajl £1 (1<j<n). Then there exist complex numbers by,..a,b,
with !bj[ =1 {17354 nY apeh that
oy o 2 2
¥ a.x. - I b.x < E X. .
|2 - et cs Bl

Proof ¢ We shall prove the result by induction on n. It-is
trivial for n=1, So let us assume its validity for n, and

prove it for n+1.

Let fl"”’i{}}” be points in our Hilbert space, and let

84,000,814 be complex numbers with Iaj <1 (1¢3gn+1), Iet


http://www.cvisiontech.com

- 129 -

Vo1 be che orthogomal projuction of X 4 into the span of

XqyeeeyX, o Thus, ﬁl:‘!_ is a linear combination of x

——— —a——s

end g

1s"': ns

a+1 = Fyuf = Ypeq 15 orthogonal to XqgeeesXy and hence

elso to y,..¢ « In particular, ?\ Xp9 o009 Xns Vg z, is a set of

linearly dependent vectors. Hence by lemma 5.2.6, there exist
- compleX NumbErs Cq,ees,C,.q Such that ch &1 (1 jgn+1),
n e n

o,

3 | =1 for some i, and Sajx.+a

y = & c.X.¥C Y. .
o j=1 --l n+1-£l-,11 j=1 J_d n+1-—-£1-ﬂ

Now we have to handle two cases separately @
Case 1. i ‘= n+1, That is, |‘cn+1] = 1. By induction hypothesis
there exist by,...,b  with Ib.l =1 (1{j<n) such that :

n
I E s b 12 ¢4 5 g 112
L cX. = T b.X. < E X ®
=t a g gl g=1 4
et us put 6n+1 = Chiq e We have ¢
n+1 n+ 1 n n ( N
¥ a, X, - -2 X, = s 10 G JIFS S | S a - .
TR e i B Bl i e Y Rl L
Since 1z, 4 ;i.s‘or'bhogonal to S TRRTTE this implies ¢
n+ n+1 n :
: 2 _ 2 2 2
HJE’faJxJ Jf-'tbj}.c_j. ! “;1211 CJiJ_ Ji‘lbjii e l&1(1*«1 = Cns1 | ”Zn+1 I
n 2 2 N+l 2
<43 x4z <4 3 =,
o 3 g Pl 1P 6 B g
. 2 2 2
(ednce flxy 4 117 = Nyyeq 117+ Hzp,q 1l
> “Zn+1 [l S

Since ijl =1 for 1< jig¢mn+1, we are done,
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Case II. 1< JpLite So, wit! out loss of gerarality, we may.

assume j, = 1. That is, fc,| = 1. By inductive hypothesis,

there exict cumpizx n.osbevs Dyyeeayb, o with ij] =1 (2 j¢nl)

such that ¢ _ ' : . |

| ;1 ;l b e 4 2? (& 4 i
| 2 e5%5 ¥ Crnaq¥ne - 20553~ Paet¥ne 7S 4 z ey s ”{Eﬂ"_

J
Let us put by = cq' « In this case we have ¢
n+1 n+1 n n N
I a.x, z =( =z - & b.x. -
j=1 3737 _1b3_y_-_g_ (3—203x3 Cn+f!~vn+1. §=2 J_}iJ_ bn+1yn+1
Hence, as before, we deduce
n+1 Il+1. 2 It ' n D
”Jilaa_fg_ Jz1bj 3 ” ”,]i CJXJ Cn+1¥n+1 - jigbji{;—bn-i-']ynﬂ ]
2
¥ la‘11+'l "bn+'ll ”Zn+1 I
2
s.4§znx 1244 13p0q 124 llzgq |l
j=
n+1 n+1
2 2
=4 2 =g 1% <a stk 0P,

—
:'.-_ —— -— o

Thus we are done.
":! 2
5¢2.8 Proposition : ILet ixn s+ n2 1% be a sequence in & complex

Hilbert spage X satisfying .

(1) ; HanZ ¢ = ,  and (ii) E I(x x){woo for x#0,xeX,
n=l n=1

Then the set of all points which can be written as & convergent

sum £ ax with a_ eT] (u$1) is dense in X,
n=1 00 & l,
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-»

Proof : Jet 1 n* ng,’{{; be ¢ sequence of irdependent randon

-—h

variables such-that Ple, =+1) =5 = P(en-—--‘!). Let X =ex , n21,

' L
Then 1Xn . n_}_’l;\ =8 & Beguence of independent Xuvalued randon

elements which are unif omly bounded in norm, and which satisfy

E(X,) = 0, z1E(,,||X ey lix,, I° ¢ . Also, (ii) shows that
n= n—

no non—-null vector is orthogonal to all the Xn 8, so that the

span of§ X, 3 n>1 is dense in X, so that X is seperable.

Hence Kolmogorov's three-gseries Crlterlo‘“l appll to X~valued

random elements (see [297]) and hence 3 X, converges almost
n=1 ,

surelye That is, the serics = ¥y converges for almost all

silgn sequences ;‘;’gan\‘;‘ « Iet us fix one such sequence. For thisg

*

fixed sequence <en), we have 1

=]

(iii) Z1anxn converges, e, =+ 1 (> 1.

Now let X, eX be arbitrary and ¢ > C. ‘We have to exhibit a

L o

-

sequence . & ' in the unit ciicle such that 2 a_X_ converges

n)oo n=l nn
apnd || x, - lli1anxn < e

let us fix a positive integer N go large that

00 2 oo ‘
. 2 £ - - 3
(iv) EN len e ¢ 7z 5 and (v) ”*_nimeﬂxh ”. <% for m2N.

(such a choice is possible because of (i) and (iii) above).

.
i

( N+k ; :
Let A :.—.)miNamxm tk>1, am|_<_1 for N<{m < Neky o We shall

first show that A is dense in X. Suppose it is not. Then

there exists y_ # A . Notice that A 1is convex ; hence g
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and A are disjoint closed comvex subsets of X, the Tirst of
then is compact. Hence by theorem 3.4{b) of C46,p.587], there
exists a continuous linear funetional L on- X such that

Re L(x) > Re)‘L(.yo) for xeh. Thus T # O, and therefore by
theoren 12,5 of [ 46,p.2947], there exists an ¥4 & X, y1#C
such that L(x) = (x,y4) (x e X), There exists a real number c

sach that Re(x,y,) = Re L(x) > ¢ for x g A (namely we take
sy‘[ *

¢ =~ Re I(y_)). In particular if we choose a complex,
4 3 ] 2 N+k .
|aml = 1, such that J.am(xm,yj? = -]_(xp_l-,y,f )i ‘then Ve © miNamxm is

in 4 for k 2 2, and therefore e

N+l
Re(yk,y.]) 5 - miNIme,y1) | > = ¢ for k>.2,
. N+k =]
That is niNl(xm,yT)l & ¢ for k) 2. Hence niNl(xm,ypls_cw.

Since y, # 0, this contradicts (ii). Hence the set A must be

dense. 1herefore we can choose an x' ¢ & sguch that *

N .
i) X - Tox, -kt ¢c&E,
(v Il ] f z .

By definition of A, there exists k> 1 and o, (NE&m N+k)  in

: N+k : .
“he unlt disc such that x' = 2 o x . Hence by lemma 5e247,
n=Ny ® 8,
[ - . v N+k
'tltl@l‘i exists x s X give by x = mz_Namxm, where
| | 2, Nk G
Byl =1 (WM and lx'-x"||7¢4 = lix [I° ¢ =

=N
(due to (iv)). Hence

£

(viid lx* o x"]] ¢ 5 .
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(=]

Let us put x" = =¥ §, %X, » Then by (v), we get :
m=N+k+1 L y o o
(viid) fjz™ || ¢ £ .
How let us put y= 2 x, + x"+x" = ¥ a.x. where
j=1 9 =1 4 d

&jz1 if 1<{j<N, ajasj for Jj2N+k+1, and a. is as above

for N < j & Nek. Combining (vi),(vii) and (viii), we get

lx, =¥yl < e. Thus we are done.

52,9 Lemma o Let U be a simply connected planar region,
Consider H(U)n, the Cartesean product of n copies of the space
H(U) of analytic functions on U with compact open topology.

‘ . |
let {fy tm <IN} bo a sequence in HMT (2 G Syrereiny 2
which satisfies '

(1) whenever Hiyeeestt, are conplex Borel measures with

compac-b support contained in U such that
] E .ffvdy, f { «=, we have Jo¥au.(z) =
for 1£3j<&n r=01,2 ...,
(1i1) = ¢ cohverges in H(U)n,
m=1-&

and Gii) ;0 sup]f (z) » for any compact K (: U
n =1 zeK ~= :
(here [, () (% = = |£1() D).
: j=1

[e.e]

Then the set of all convergent scrics = a ofp vith a e ¢,
n=1 &4

la;l =1 (m21) isdense in HODT,
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Proof ; Let g = (g1,...,gn; g H(U)n, K & coapact subset of U
and e > 0. We have to exhibit a sequence 18, ¢ m 2 T @

o0 o g
such that = a f converges and sup|g(z) - & a f (z)]<e.
m=1 %A : zeK — net TLD

Let vs choose and fix a sinply connected region . V. such that

X q; V, the closure V of V is a compact subset of U and
the boundafy bd{V) of V is an analytic sinple closed curve.

Let us consider the Hardy space H?(V) on V (see [22, p.166_
for definition). Since V is a sinply connected proper subregion
of the plane, according to [22 ,p.1697], a conforual nap of V
onto the unit disc induces an isonetric isonorphisn between

_ F ()  and the classical Hg—space on the wit disc; accordingly
all the well known netrical propertics of. the latter space

carries over to H?(V). In particular, we have the following ;

(a) H2("5 is a conplex Hil'=2rt upace. Ietfg denote its immer
product by <o, . |

(b) Tet u e H'{V). Then Sacre exists a complex Borel neasurc
MV; uh with its support contained in bpd(V) such Lhat
whenever hy e E (V) hes & continuous extension to V, we
nave <h,,h> = fh,d#. (In fact # is absolutely continuous
with respect to arc length, and its density is'giﬁen.by the
conplex conjugate of the alnost sure boundary value of b,

But we shall not need this fact).

(c) If gh « > O% is & sequence in HZ(V) such that 1in h = h
R e ] n~do
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in wae topology of H°(V), then lin h = h_ uniforly on
n —>o E T
conpact subsets of V.
Further, since we have assumed that bd(V) is an analytic sinple

closed curve, in view of theoren 10,2 of [ 22,p,169 ] and theoren
10,7 of [ 22, p.174:j, we &lso have . |

(d) The polynquials are dense in the topology of HZ(V) .

Far by = (8], eee,n), § = 1,2, in H(D® (the Cartesean

product of n copies of HZ(V) , with product topology), let us
. n

define (El, 1:2_) = j?-‘!
= ’ t ]

converts HZ(V)Il into & complex Hilbert space; let Il el

<h? 3 hg> « This is an inner product that

denote the corrcsponding norm. That is || h ]I2 = (b,h), he Hz(V)n.

In view of assumption (iii) and observation (b) above, we readily
= &
get = |l |

.mﬂ__, =

Cw. Tet b e H(ND be such that

z (£, »)| < =, By (b) above, there exist conplex Borel neasures

n=1 -=

n .
with supports contained in bd(V) such that (f_,h) = _z1f fgldﬂj .
L J.—: Y
Thus we have 2 | =

I fj.dﬂ.] < «, Hence by assumption (i),
n=l j B q

1 )
Jzkdfzj(z) =0 for 1£j¢n," k= 0,1,2,... That is, h! is

_orthogonal to all the polynomials and hence by (d) above,

hy = 0 (1<j<n. Thus j = O.

Thercfore all the assunptions of proposition 5.2,8 hold,

so that we may conclude that the sect of all convergent series

o0

(in EMYH 5 ¢

.. . -
=1 mf.% with o e T[, n 2 1, is dense in i (2,
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Therefore by (c), there exists a scquence %a;‘z‘ in TT such that
b3 amfn Couverges wixiornay on K (as ¥ is a conpact subsect
n=1 =

of V) amd | ef . g|<E& on X This, together with assup-

tion (ii) show that we may choose an integer M so large that
M oo

|2 af -gl<5 on K ad | = 1<% on X. Hence, putting
n=t ° T=Mae ] ——=
8, = Af K ngM and a =1 if n> M, we get

a
n
caf - gl<e on K, as was to be ocstablished.

n&l o_zl 5 :

562,10 Lerma ¢ Tet k> 1 and n = g(k) be the nunber of
integers in [ 1,k ] which are relatively prime to k. Iet
X.,,...,)(n be the Dirichle‘t:.'cparacters nodulo k. For any prine

P, et T = (f;,...,fg) : H(,Q_;/-g).n be given by -

fg(z) 2 - log (1~ Xj(p)p"?’). Then the set of all convergent sums
(in conpact open topology) £ a f  with a_e ] is dense in
pe Ip P-R JEy L '
n ! o,
1/2

. 2 1 % y=
Proof I TLet %_db :pelP{be a fixed sequence in TT such that

T o f erges (f arpld, we may take o = (~1)2
el converges({or exanpls, we may ke 5 (-1 if v

i2 the mnth prire). Let us put 8 = « Then in grder to

a f
PR
prove the lerma, it clearly suffices to show that the set of all

convergent stms © & is dense in H(_(_"),_1 )
pe IP b ~172:;

Now by choice of a_'s, ¢ g, converges. Alse, it is easy to
pe IP B
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see that =  suplg (2) l2<oo for any compact K (T ()
pe P zeK ~E | 1/2

Therefore, by lemma 5.2.9, it sufficies to show that whenever

Fyyees,yt~are complex Borel neasures, with compact supports

n

contained in _C'_)_: bt such that 8 ] Z i g‘]df«f l ¢ o, we
/ P j=1 -
necessarily have fsqduj(s) = 0 for 1Jjsn, 4=0,1,2,¢.0

So let us fix Hyyese,#h, satisfying this hypothesis.

1 n S i '-, -
I‘et h J - . .
; e H(() /2) be given by FD(Z) aPXJ (»)p Clearly

r lg(2) =h (Z)I ¢ o wniformly on compact subsets of () .

pe IP & 2 1/2
n
Hence = |} 5 [hi(z)as.(z)|<=. That is we have &
peIP j=1 - P d
E | B X (p)f p"zdﬂj(z)lwo.
e IP 3!—1
Since the Dirichlet characters nodule k are pevriodic' with
period - k this may be rewrit'en as i
s Iz Xy@) I, (2) | <= for Trgk, (r,))=1.
pe P j=1 v
pEr nod k

Or, if we define the complex Borel measures u‘r by

dv_(g) = E )@ (r)d!-a’z (z) , then :
I :]'_1 a —_—

(i) |7 p™%au, (2)} < » for 1grgk, (r,0 =
PeIP.
psr nod k

Since all the Ma's have compact support contained in L_)1/2 .
™

the sane is true of the vr's « Hence if we put
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0. (2) ::,Ie"szdvr'(s) , 1¢r<k, (r,k) =1, then by lerma 5.2,2,

we have either °_ = O or else

|

logle_ (x) |
(ii) 1linsup r - S
X —> o x
xe IR
But (i) mey be rewitten as : % lp,(Log p)} < =
p # r nod k :
p elP :

Therefore by lemma 5.2,5, (ii) cen not hold. Hence (ii) is false
for each r, so that ¢,(z) = Iefszdur(s) s 0. Iet's fix an
arbitrary integer q > 0. "Differentiating the above equation g
tines, and then putting 2z = 0, we obtain J sqdur (s) = 0.

or, goiﬁg back to the definition of Ur'S é.nd putting

bj = bj (@) = Isqdﬂj(s) , 1 £ Jj&n, we obtain

n .
2 b Xi(r) = 0 Ffor 1&rsk, (r,k) =1,
Jj=1 JJ .

n
Since Xj(r) =0 if (r,k) > 1, this implics = ijj = 0.
J=1

But the orthogonality relation for the Dirichlet characters
irmplies that X.‘,...,)(n are linearly independert over (¢ . Hence
we nust have by = by Zeee=b, =0, That is {sqduj (8) = 0 for
1¢j<n, Since q 2 0 was arbitrary, this completes the verifi-

cation of the hypothesis (i) of lemma 5.2.9. So we are done.

5¢2.11 Lerma I Tet G be @ complete seperable topological group.
Let i\Xn e mn > 11 be a sequence of independent G-valued randon

elenents. Iet us suppose that = Xn converges alnost surely,
e
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Let An we the support of Xn. Then the support of E1Kn is
T+

the closure of the set of all x ¢ G which nay be written as &

convergent sun X = ni1xn, X, e b4, (2 1).

Proof { This may be established by nminor modifications of the
proof of theorem 3.7.5 of [ 40,p.62_] which gives a sinilar result

for real valued randon varizbles.

5.5 Universality theorens { In this section we shall determine

the spectra of the joint distributions of the Dirichlet L-functions

in the strip _(f)_"/ and formulate the results thus obtained as
1/2
universality theorems,

5¢341 Theorem : Iet k> 1, n = gk). ILet X{se0e, X, be the

distinct Dirichlet characters modulo k. Iet
s=ifem( Vifz0 o 7 H! )%, Regard
L 1/2 1/2 ° ]
(L(a,Xy)y e, L(e, X)) as a p int in the con’inuous flow H(()'
1 *n : 1/2

)n

L

Then its spectrum is ST,
Proof : By corollary 3.,4.,6 to theorem 3.4.5, and theorems 3.4.10
and 3.4,11, we get ©
@, X)) yeea, T, X)) 2 B 1 ,0e,P) om ._(_',)_1_/2
X, ,
where F J is the H(Lﬁi?/z)uvalued randon element defined on

(W, B,m) by

X,
: J . —Zy =]
(1) F <(z,w) = PL! (1-Xj(p)w(p)p M

Therefore by proposition 1.5.7 (anplied to the Flow homomarvhicm
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from H(gjfn/2)n to H(Lﬁl1 2)n defined by co-ordinatewise
1 1/

restriction) we havwe °
(A1) (L., X,) (e, X)) — (Fx1 Fxn) (]
o, 179000, .’XTL ___g groe, QYL & __1/20

x? -1 n -
seeey B Y as a H((M)' )™valued randon
1/2

Sc et us regard (P

X I
clement. We have (log P ',...,log P D) = 5 w(pf , we W,
pe IP -2

where fn's are &s in lemma 5.2.710.

Since %_w(p) A paIP}‘ is a sequence of independent random variailes
3

and the support of wip) is TT' zw(p)f . paiE“i 18 a secuence

of independent H(Lflq Y valued réndom elements and the support
1/2

of w(p)f32 is the set é.afg . a %, therefore, by Llemma 562.11,

X X
the support of (log F 1,...,log ™ is the closure of the sci

of all convergent sums 3 a mﬂ with By & TT. But by lemma 5.: 2,10,
p -

this closurc is the whole of H(gfgq ) o

. Thus the support of

[,

X
(1og F~1,...,1og Fx£) ie 2O P, Since the map from

H(( )1/ )R into itself sending  (fy,es.,f ) to'(expf1,.;.,expfn)
1 _
X X

is a continuous function sending (log F'1,.r.;1og P into

s

(F 1,...,F ) ang sending H(L_l1/ ) cnto 32 (where

2
S, = 85-%05, S being as in the statement of this theorem),
immediately follows that tho support of (F 1,...,F ) contains

Sg. But H((“):/z)n 18 a seperable metric space, and therefore

the support of = H<gf11, Y valued random clement is 2 nlaozd
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set (see 1.5,3). Since by Hurwitz' theorem (theorem 2,5 of
[18,p.1487]), the closure of 8, is 5, the closure of Slg is
5. Hence the support of (F |,e..,P D) contains S%. On the
other hand, (i) gives each F J as an almost sure convergent

product of nonvanishing factors ; hence by Hurwitz' theoren,

. Xn n
(P 'yeee,F ™) ¢ 8 almost surely; thus the support of

,-..’u.

is contained in S®™. Hence we have &

X
(1iii) The support of (F 1,...,Fxh) is s®,
Combining (ii) and (iii), we get, from the definition of spectrum

(1 .5.3) that the SpeC‘[’-I‘lIm of (L(.”I_‘I)"o.’L(.’xﬂ,)) iS Sno

5342 Theorem ¢ Iet h > O be an arbitrary but fixed real
number, k > 1 an integer, =n = @), X;,+..,X, the distinct
Dirichlet characters modulo k, L{.,Xy),...,0(.,X ) the corres-
ponding Dirichlet I-functions Regard (L(.,¥;),...,L(., X)) as

41
a point in the discrete flow H(()' )™ modulo h. Then its
1/2
spectrum is S™ where S =T H(_(__)1 ) 1f =0 or
] ]

12 .
3 e u(O! )q}
Proof ¢ If h is of type I then by the results of chapter 4,

we have (L(.,X1),..5,L(.,,Xrl)) :; (P 1,...,Fxn) mod h on _g_—_}_:/z,

hence the result follows from the description of the support of

(Fl L g i,F n) on LH)_-‘E /2 Obt.a-ined in 5.3 .1 .
1

If h is of type II, let Szp n*P e IP{ be the sequence of
< ] i

TT-valved random variables introduced in 4.%.2. ILet us define
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X, )&
nd,1¢3gn, vy FhJ(z) = 'TEP(1-ZD th(p)p"z)"1. Thern, as
} ok D,

before, we may deduce from 4.5.4, 4.5.7 and 4.5.8 that

Xy .
(1) (LCe,Xq) 000, T, X)) = @y ,...,Fin) mod h on g_ll/g.

Let IPO be the finite set of primes associated with h as in
4.2.1, We can'write (F,',...,B,™ = X.Y (co-ordinatewise

oroduct) where X = (X3,..0,X), Y = (¥y,...,¥,) arc the

H(L_ljfz)nAvalued randon elememts defined by

(@) = T Oz, X ;@D 1) =TT (-2, (p)p~)~
pelP p eIP-- IPO

0

1<jisn,
From the description of the joint distribution of gzp,h :;)alPi
given in 4.2.2, it readily follows that X and Y are stochasti-
cally independeni. Also, the joint distribution bf

Sz IR glP - IP is the same as ofj3w(p)2'paIP3 on (W,IB,m)c

L Py o
D
Therefore, Y = (® ' ., ., F ®). Hence from 5.3.1, we obtain that

P!

the support of Y is s™. Since X,Y are independent, X is

not degenerate at 0, the support of X 1lies in Sn, and ST is
closed under (co-ordinatowise) multiplication, it follows that the
n)

g pet 5 B
support of (rh yassyl X.7 is 87, Hence by (1) above, we

get the result.

The theorems 5.32.,1 and 5.7,2 may be reformulated as

follows .
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533 Theorem (Joint universality of I-functions - continuous

version) I Iet k> 1, n = glk), Xjsyeee, X, the distrinct

Dirichlet characters modulo k. Let Kqyeee, . Dbe compact,

simply connectéd and locally path connected subsets of Lﬁl1/2.
1

For 1£j4&n, let fj be a continucus function on Kj which is

non~vanishing on Kj and analytic in the interior (if any) of

Kj e let e > 0o Then the set A of all real numbers +t which

satisfies  sup sup |[L(z+it,X.) = £.(z)} < ¢ has positive lower
1¢j&n zz:Kj d J

density (i.e., d(&) > 0).

Proof : TFirst let us assume that T190ee,f, admit nonvenishing

analytic conmtinuations to (7)! . Iet U be the set of all
1/2

& 2 By ore gE 0 il H(f)_l/g)n- such that

sup  sup  {g.(z) - £.(2)| < ¢. By assumption, f = (fT""’fn}
TLignzeky d J
is in the spectrum S% of (L(.,X1),...,L(.,Xn)) (theoren 5.3.1),
also U 1s clearly .n open neighbourhood of f. Going back to

the definition of spectrum, we obtain
dGit ¢ R ¢ (StL(.,X1),-..,StL(.,)(n))aU_})) 0. That is, d(4) > 0.
(Votice that in this case the comnectedress assumptions on

Ky,eee,K are unnecessary).

n
Next let fyye90,f, be as in the statement of the theorenm.
Since fj is continuous and nonvanishing on Kj, and K. 1is

J
sinply commected and locally pathwise connected, in consequence
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of theorva 5.1 of [ 41,p.156 ], there is & comtinuous function
gy on Kj such that fj = °xp(gj); since fj ig analytic in the
interior of Kj, so is g5 (1< j<&n). Therefore by Mergelyan's
theoren (theorem 20.5 of [ 47,p.4237]), there is a sequence

L j . } 3 1 o o T‘s.

%P% «en 2 1¢ of polynomials such that ré s g5 38 n—>w,

exp(P%) Tor a sufficionte

H]

¥
miformly on Kj' Hence if we put fj

ly large m, then

-y

(0 sw swp 1£,(2) - 20| < §

#*
f. 1is entire and non-
1<j<n % ¢ K, J

vanishing. Let B be the set of all +t ¢R for which

*
(ii)  sup sup  [I(z+it,X.) - T.(z)| ¢ %.
T€3¢n z ek, J J

(1) and (ii) togsther show that B (C 4. Also, by the Tirst pert

of this proof d(B) > 0. Hence d(4) > 0.

5+344 Theorenm (Joint universality of L-functicns - discrote
version) . ILet h > O be ar arbitrary but fixed real nunber.
let k 21 be an integer ard n = g(kl. Tet Xigeea, X, De the
distinct Dirichlet characters modulo k. Tet Kiyeee,K, be
compact, simply connected and locally path connected subsets of

3711/2. For 1<£j<in, let fjkx a continuous and nonvanishing
1

function on Kj which is analytic in thes interior of Kj.

Let e > 0. Then the set B of all integers m which satisfy

sup sup  |L(z+imh,X.) = £.(z)| ¢ ¢ has positive lower
1<jign z e Ky J J

density (discrete version) (1eeo, 8(B) > O).
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Proof . This may be deduced from theorem 5.3.2 exactly as

theorem 53,3 was deduced from theore 5.3.1.

. ;
5035 Co¥ollary ; Det S{an :n eIN{ be a periodic sequence of

complex numbers with period Xk > 1 (i.e., Bpag £ &p)e Iet

pe BT ) be defined by #(z) = 3 a wZ. Thew ome of the
1/2 n=1 o
(n,k) =1
following two alternatives hold : '

(a) There is a constant ¢ ¢ ¢ and a Dirichlet character

X modulo k¥ such that ¢ = aL(,,X) ., °

or (b) If K is & compact, simply commected 2nd locally path

connected subset of _(_”_.‘)“1 s £ 1is any continuous fumction on X
1

which is analytic in the interfor (if any) of X, and if ¢ > O,

then the set of 21l + ¢XR for which suply(z+it) - £(z2)]| < ¢
zeX

has positive lower density.,

Proof i et n = #(k) and let Xise0e, X, be the Dirichlet
characters modulo k. From the orthogonality relation of the

characters we can deduce that there are ¢;,...,0 & ¢ such that

a_ = S1ﬂ Xj(m) for 1<4{m<k, {mk) =1. By periodicity, this
3—

holds for 21l m > 1 with (m,k) = 1. Hence
P(z) = 2 a, I:(z KJ)

(This shows, incidentally, that p e H( (@ 2)). The map from
1/2
n

A Brerd S

B! 3?0, BOOY! ) sendine (F . r0n, ) e

by
ps 142 ‘ : j=1 9 9
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flow homomorphism ; ﬂence Sy 1.5.8 and theoxem 5341, the spectmm
of the image % of (I(a X4) ,...,L(.,Xn)) under this nap contains
the closure of the image of the spectrun S®  of (L(., Xq ),.. LGX))
In case (a) does not hold, at least two of the aj's nost be
Ronzero. lLet's say o, # 0, ¢, ¥ 0. Since Q0 : S and S is
Closed under multiplication by nonzero scalars, the image of S%
under the said homomorphism clearly contains the set

81 =§_f1+f2 5 f1 e S, f2 e S-E. Hence the Spectrum of .y contains
§1 - But S,f oontalns 311 bounded analytic functlons on jf31

1/2
{(if “f ¢ H((“)1 ) is bounded then there ex1st 2, ¢ ¢ such that
/2

1
£(z) #2, far all z e (@) e s putting f1 (z) = i"(z) -z,
t,(2) = Zo s We See that f = fi4f,, £,,F, e 8), and the latter
set is dense in H(Lfl1/2) (e.g+, see the proof of propositiocn

24346)+ Hence the spectrum * p is the whole of H((f);/e

From this the st&temenﬁ‘(b)‘may be deduceﬁ$ex&ctly as theoren
5.3.3 wes deduced from 5.3.1.

5306 Qorollary : Iet X be an arbitrary Dirichlet character.
Iet K be a compact, simply cdhncéted and locally path connected
subset of gf}ﬁ e Let f be a Donvenishing continuous functlon

1/2
on K which is analytic in the interior (ir any) of K'

let e > 0, h > 0. Then |
(a) The set A of all + ¢ for which sup|L(z+rit, X f(z)l( €
zeK

has 9081t1ve lower den01tv. & fortiori the set 4 igs nonemohy .

-
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(b) The set B of all integers m for which

sup|{L(z+imh) ~ £(z)|< ¢ has positive lower density (discrcte
zeK

version), A fortiori the set B is nonenhty.
In particular the above statements remain valid if we take the

Riemann Zeta function in place of (., 0.

Proof : These are immediate consequences ¢f theorems 5.3.3 and
5¢3.4. The last part follows since £=1T(,X) where X, is

the unique (principal) Dirichlet character modulo one.

7+5+T Corollary ! Let 0<¢u<1, a #4 be a rational numver.
Consider the Hurwitz Zeta function t(e,a) on L“l;/Q. Let X

be a compact, simply connected and locally path connected subset

of Lfl:/z. let f be any continuous function on X which is

analytic in the interior (if any) of K. ILet e > 0, h > 0, Then

- (a8)  The set of 211 teR T op which sup|¢lz+it,a) ~£(z) [ <
zeK
has positive lower demsity (conmtinuous version).

(b} The set of all meZ fop which supf¢(z+imh,a) ~ £(z) | < ¢
zeK
has positive lower demsity (discrete version) .

Proof : By assumptions on @, there exist integers l1,k, 1£1<k,

(1) =1, k23 such that a = &.
t(z,2) = k% » n? 2 £(z}9(z) for Relz) > 1 (let's say) .
nxl
mod k

Using theorems 3.4,5 and 544,10, we can casily show that
(f,W) ::3 (X1,X2) on Lfl1 s Where X, ,X. are random elemonts
4 g

e
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Gefined on (W, B,m) by X;’z,w) = w(kIk? X, (z,w) = = win)n?,
nsl
mod k

Since w(k) 1is stushactically independent of each w(n) with

.71 modulo k (as (k,1) = 1, X1,X;, are stochastically indepen-

dent. Also, by corollary 5.3.5 (with a, =1 if n #1mod k,and

= 0 otheruise) the spectrum of ¢ is H((T)! ). That is, the
1,2

support of X, is H(&fl? )+ Since X, is independent of X,
‘ 1/2

and X1 is not degenerate at 0, this implies that the support

: - -1 —_ : 1
of XX, is H(( 2_1/2). But £ (.,0) = XX, on .Cl”e-

Hence the spectrum of £(.,a) is H(gfl1 ). This proves (a).
; 1/2
() can be proved similarly by using the corresponding discrete

version results.,

5.3.8 Theorem : TFor a real o, let ¢, be the restriction of
- s
to the line {Re(z) = o} (i.e., ¢, is defined by
£, () = To+it), teR),

(8) If o <% then the spectrum of ¢, is empty.

(b) If % < o<1 then the spectrum of ¢, is C(BR). That is,

for any continuous complex valued function £ on R, T> 0,h>C
and e > 0, then (i) the set of all +cR for which

ISTPH?ICG(X+t) - £(x)[<e has positive lower density
X £

(continuous version) and (ii) the set of all me % for which

]sup [t (x+mh) - £(x)|< e has positive lower density
Z{< T

(discrete vorsion).
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Finally, (¢) +the spectrum cf ¢4y 1is a proper subset of C(IR).

(Analogous results hold for all the I~Functions).

Proof ¢ (a) is an immediate consequence of the equaticn (iv)

of 3.4.12 (b) *

To prove (b), notice that by corollary 5.5¢6, the specctrum of ¢

on (O} 18 s=(gen()! Yirzo orem ! b
- 1/2 N 1/2 1/2

Let 4, H(&f}j ) —> C(IR) be the map which sends fe H(Lflj )
1/2 1/2

to the function f_ where f_(x) = f(o+ix), xR, g, is a
Tlow homomorphism. Hence by proposition 1.5.8, the spectrum of
t, = @ () contains ﬁc(Sj. So it suffices to show thut

7_(8) = (). Clearly for any polynomizl PIR-—> ¢, f = eP

o
is in ¢_(5). Since any ge C(IR) can be approximated, uwniformly
on compacta, by polynomials, it follows that expg e W for
any g ¢ C(R). But any ronvanishing 7 e C(IR) may be written
as expg with g e C(IR). Thus it sufficies to show that the
set A(R) of nowhcre vanisﬁing members of C(R) is dense in
C(IR) . Clearly any linear function (i.e., function of the form
X —> ax+b, where a,b e () can be approximated by members of
A(R) , and since A(IR), and therefore &(IR), is closed under’
pointwise multiplication, it follows that the pointwise product
of finitely many linear functions is in A(R), Since any polyno-
mial mey be represented as such a product, it follows that all

polynomials belong to A(R) . Hence AR = C(IR) . Hence
7,(SY = C(R) , as was to be shown.

g
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Proof of (e). Because of the pole of £ at =z=1, £y is nota
point in C(IR) . Therefore, as formulated, the statoment in (c)
does not really make any sense. Howcver, Ly may be regirded as
a point in C*(IR) , the space of ¢ _-valued continuous function
on IR, with the topology of uniform convergence on compicta
(here ¢_ is the Riemann sphere with the metric d of 2.2.2),
The space C*(IR) may be made into & continuous flow under shift
transformation. ¢ M(L_):/Z) — ¢ (R) defined vy #(0) =1y,
where f4(x) = £(1+ix),defines & flow homcmorphism. Since

it follows that

¥

¢ :__—g F when regarded as a point in IVI(_Q__]_?/2)
#

- £4==% ¥, when regarded as a point in C (IR). Here Py is the

C(IR) -valued random element defined on (W,IB,m) by

o0 E

~1-3 . ’

T, (x,w) = 3 w@n ~F, Therefore, in order to prove (e) above,
n=1 4

it suffices to show that the support of F1 is a proper subsct

of C(R) . This will folloy once we show that the support of
log F; 1is a prover subset of C(R) « We have -

log Fi(x,w) = & E-log('l-w(p) p~ 1%y o Gy (x,w) + Golx,wl, xelR, we W,
Pe

~1-ix

where Gy(x,w) = Z p , XelR, we W,
Pe

e
Clearly there is a constant cy such that [G,(x,w){ ey for all
XelRy we We Tet £ IR —> ¢ be a twice continuously differen-
tiable map with compact support, £ £ 0 (for example, we may

take f£(x) = expl(- -1-—1—?) if [x[<£1, = 0 otherwise). We have
-X

[ 12(x)Ga(x, wldx] < ca JIF(x) lax < cn o Alsn, since for almast all
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w e W, the series for G1 converges uniformly on compacta,

g

Je,x,wif(x)ax = £ Jp "ixf(x)dx, almost surely.

ps-:]P
But, integrating by parts twice, onc gets :

jp‘ixf(x)dx F . Ip"ixf°v(x)dx X

(log p) 2
1

Hence [JGy(x,wf(x)dx|< J|£™x) jax = s cpt i Csy < o0
' ! pe I’ p{log p

=y

Therefore |Jlog P (x,w)f(x}ax|<c = cq*cy  almost surcly.
Here 0X< c<§o and ¢ _d;pends only on f. Therefore for almost
all weW, log Py(.,w) e A where A -—-%.ga C(IR) @ Hg(X)f(x)dxls_c\%o
Clearly A 1is a closed subset of C(IR) ; since # 0, &4 is a
proper subset of C(IR) . Since the suppord of log F; is

contained in A, we arc donec.

5.5.9 Remarks ¢ (a) The theorems 5.3,3 and 5.3.4 appear to be
the uttermost limit to which the universality theorem of Voronin
([527]) may be extended. I:deed, Voronin'’s theorem is properly
contained in the corollary 5.3.6. The thcoorems 5.3.3 and 5.3.4

may be used to conclude that no nontrivial algebraic-diffcrential

cquation connects the Dirichlet I-functions. They also may be

used to produce denseness results of all sorts. Tor ¢xample,

from the corollary 5.3.6, we may deduce the following two &

(1) Iet 24,400,z be distinot points in (' . Iet h> 0
g 1/2

be a real number, k > T an integer. TFor any me Z, lct Am be

the nXk matrix vhose (r,s)ih entry is 3(8"1)(zr+imh), '

idrd{n, 1{s{k. Then the sequence (‘ A o smel t is dense in the

[]38
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space ¢n 1 of nXk comple. matrices. Indeed, for any nonempty
?

open set U (T ¢ the set of all meZ for which 4 eU has

nk?

positive lower density.

(1i) Agein, let n,k,h be as above. Iet A = ((ar,s)) be a
fixed complex matrix of order nXk such that “r, 1 # 0 (1<r<n)
and the entries in cach column of 4 are distinet. Iet

B = ((Nr’s)) be an nXk matrix with non-negative integral
entries. Iet U be & Jordan region with compact closure con-

tained in _(__')_1 /2 » Then for infinitely many meZ, the equation
1

s-1) s .
z;( (z) = 0y g has exachly Nr’S solutions gz in

U+ imh (counting multiplicity) for 1<r<&n, 1¢s(k.

Indeed the set of all meZ for which this holds has positive
lower density., This may be readily deduced from corollary 5.3.6
and Rouche's theorem (theorem 3.42 in 49, p.116]) .

Notice that the results (i) and (ii) above clearly indlude all the
theorems in the paper [517] of Voromin. 4 continucus analogous
of thege discrete version resulis could easily be provede They
hold for all I-functions ] further in view of coroliary 5.3.7,

(b) holds for t(a,a)  without the restriction 1 # O provided
@ #% is e rationsl number in (0,1,

(®) Tet 0<a<1,a transcerdental. In view of the remarks in
3¢4.12 (g), and the lemma 5.,2,10, the spectrum of the Hurwitz Zeta

function ¢(..a) on (_')1 is the closure of fhe oat of 211
b fe
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convergeut (in H(&fl1 )) scries % an(n+a)"z, a e [l. From
1/2 n=1

lemmas 5.2.2 and 5,2.,5 we see that whenever ¢ 1s a complex

Borel measure with compact support contained in le1/2 is such
1

that E1lf(n+a)"sz(z)l<cn, we have J 7 du(z) =0 for o =0, 1,2, a4
1= .

Hence from lemma 5.2.9 we get

(iii) If ««¢ (0,1) 1is transcendetal then the spectrum of £(.,a)

on S___)_: 5 is the whole of H(_(_—l1 /2) + This should be compared
1

with corcllary 5.3.7 above, which says that if oe (0,1) is

rational, o # % then the spectrum of ¢(.,2) on 5711/2 is

Hcf)_:/g. Also, if @ =%, we have £(.,2) = (2%-1)4(z).

-

Hence from corollary 5.3.,6, it can easily be deduced that the
spectrum of C(.,%J on Lﬁll/? is the set S of thoorem 5.3.1.
These observations together leave open only the e8se of an

Jdirratione 1 algebraic number a .,
5.310 Questions .

(a) What is the spectrum of ¢, /2 ¢ This is the only case left
open after theorem 5.3.8. Notice that we do not know if 51/2
has an asymptotic distribution. So, rigorously spesking, this
question does not make sense. However, in this context by the
.. spectrum of C1/2 we understand the set of all fe C(R) for

vhich every neighbourhood U of f satisfies

hY

a(iteR 1 5% ) e UD > 0.

This appears to be & very difficult question. We do not even know
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f’ b
if the set §§(12-+ ix) I xe Iti(‘_{ is dense in ¢ ..

(b) What is the smectrum of ¢(.,2) on .§___)_1 s if ee (0,1
1
is an irrational algebraic number + We expect the spectrum to be
the whole of H(__(_'—Q,1 /2) . But the proof is bound to involve many
1

technical complications.

5¢3,11 Theoren (Universality of the sequence of L-functions with
prime moduli) I Tet K ©be a compact, simply connected and

locally path connected subset of 5"11/2. Iet £ be a non-

vanishing continous function on X which is analytic in the
interior (if any) of X. ILet ¢ > O. Then +there is a constant
¢ > 0 such that for all sufficieuntly large primes p, at least

cp of the Dirichlet characters X modulo p satisfy -

sup|L(z,X) ~£(z) | < e
zeK

Proof ¢ As in the proof of theorem 5.3.7, it suffices to prove
the result in case f admits a nowhere vanishing analytic con-

tinuation to _(_—_}_1 S In this case let
1

— "'"'1 '- }
U -.-%‘ga H(( )_1/2) F ggﬁlg(z)-f(zH( ¢ .

Iet T be the random c¢lement introduced in 3.4.7. After
theorem 5.3.1, we know that f Dbelongs to the support of TF.
Since U is an open ncighbourhood of £, it follows that

m(F U) > 0. Hence by theorem 4.6.1 we have the regquired result.
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5.3.12 Remarks : (a) Trom the theorem 5.3.12 wec can deduce the
following anmlogues of the results (i) and (ii) of 5.3.10 3

(1) Tet zq,2p,ees,2, be distinet pointe In _(__)_:: o For any
Dirichlet character X 1let A(X) be the nXk matrix vhose
(r,s) th entry is L(S"ﬂ(zr,)() . Then, for any open subset U
of the space ¢n,k of nXk complex matrices, the set

ff;_A(X) X is a Dirichlet character modulc p intersects U for
all large prime p . Indeed, there is @ c¢> 0 such that at least
cp of the elements of this set belong to U for all large
primes p.

(i1} Iet mn,k be positive integers. Let A = ((ar’s)) be a
fixed complex matrix of order nXk such that “p,1 0 (1¢r<n)
and the entries in each column of 4 are distinct. ILet

B = ((Hr,s)> be an nXk matrix with non-negative integral
entriess Iet U be a Jorda: domain with cumpact closure con-

tained in (! ¢ Then for infinitely neny Dirichlet characters
1.2

X with prime moduli, the equation L(S"”(z} = a_ . has exactly
“ 9
N, o solutions (counting multiplicity) z in U for 1<{r&nm
r F

and 1¢s<{k. Indeed, there is a constant c¢> 0 such that at
least cp of the ©p-1 Dirichlet characters X midulo p satisfy
this condition for all large primes p .

(b) In view of the remarks in 4.6.2(b), the theorem 5.3.12 and
its consequences discussed above continue to hold if the sequence
$p,: of primes is replaced by any sequence ia, i, of positive

3

integers such that the smallest prime divisor of a, @oos o

Faianita, with

e s R \
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5.4 Strong recurrence and zero free regions

5.4.1 Theorem : Tet 5<a<b¢1, and let X be a Dirichlet
character. Then the Dirichlet I~function I(.,X) is mon-
vanishing on __(_"_lb - if and only if L(.,X) 1is strongly recurrent

a
on _(_—_)_b .
a

Proof ¢ © Only if ** | Consider the rostriction of L\.,)O to (113

as a point in the continuous flow H(( ) Y. It follows from
Cl-

corollary 5.3.6 that its spectrum is{fe H((2P® 2 £20 or e 11((“\13),.
a a )
If I{.,X) 4is nonvanishing on ()P +then it belongs to its own
2
spectrum. Hence by proposition 1.5.4(c) it follows that I(,,X0

is strongly recurrent on g“f’ s
&,

"If " . Let us suppose that I(.,X) is strongly recurrent on
(Wb and there is a @ ¢ _(‘) such that I(°,X} =0. Iet ¥ be
a slmple nlosed curve Co"l‘bal :d in (-')b such that if U is the
region bounded by ¥ (sc that U (T ()™ then ¢ is the only
&,

zero of IL{.,X) in U. ZLet us choose = such that
0<e ¢ min|I(z,X) [+ Tet 4 =3t eR I ouwp|L(zrit,X) = L(z,X0 [ <E L,

il ) ze0
Since IL(.,X) is assumed to be strongly recurrent, it follows that

(1) aWwr> o

On the other hand, let 7V be the set of all feH({)P) such
that f has & gero inside U amd if(z)]_)_-;- for z:)/. By
Horwitz' theorem ([18, p.148_]) the set V is closed. Since by
corollary 3.4.6, IL{.,X) ik Fx on () A

ford

when P is as given'

SD
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in 5.3.1, it follows from the portmantcan theorem that
d(B) ¢ m(F* V) whsre B =lteR ¢ SP(L(.,0) eV S, But tae
vroduct representation of FX shows that FX is almost surely

nonvanishing on _(_—_)__b . Therefore m(FI e V) = 0. Hence
4 =t
(1) a(® = o0.
But Rouche's theorem [49, p.116]] implies that 4 (_ B. Hence

(iii) &) ¢ am).

(1), (1) and (iii) together yield a contradiction. So we are donc.

5.4.2 Corollary « Iet X be & Dirichlet character. Then the
Riemarm hypothesis for I(.,X) is valid if and only if IL(.,X0

is strongly recurrent on g_l1/2. In particular, the classical
1
Riemamn hypothesis is valid if and only if Zeta is strongly

recurrent on Lf}j .
1/2

Proof : This follows from theorem 5.4.1 since, as is well known,
all the nontrivial zeros of I(.,X) 1lie on the critical line

{Re(z) = 5 ¢ if and omly it (7)] jp 1o free from zevos of T(e,X)s
- - .] .

5.4.3 Remarks « The relationship between strips of strong
recurrence and zero free regions of an I-function enunciated in
5.4.1 can be traced back to the cxistence of an Tuler product for
such a function. Mo such relationship necd cxist in the absencc
of an Euler product. This cun be scen from the examples that

f0110WQ
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5.4.4 Examples : Tet fe H((_}1/2) be one of the following -
SR

. 3 :
(1) t = L(n“(.,X) where n> 1, X a Pirichlet character.

(i) £ =73(.,a) where 0<a<1, aifé, @ is rational or trans.

cendental,
(i1i) £(z) = 21 ann‘z , wiere k> 1, Sa l is a periodic
n= ' 2
(n,Xk)=1

_ $
sequence of complex numbers with period k, and f is not of the

form c¢.I(.,X) for any constant ¢ and Dirichlet character X.
Then (a) f is strongly recurrent on ()

- H
1/2
and (b)) The set of real parts of the zeros of £ is dense in

[3,13.

Proof ¢ We first note that in each case the spectrum of £ on
L"l;/z is the whole of H(i_lj o In cages (ii) and (iii) this
follows from 5.3,7, 5.3, 9(% aéi 2.345. If f is the nth
derivative of IL(.,X), then, since the sﬁectrum of L(.,X) is
S =lge H(gflj Tig=0 g% lg:H(£_11 )% it follows that the

' 1/2 g 1/2 .
spectrum of f containg the closure of the set %g(n) cge S E‘ .
So it suffices to notice that this set is dense (indeed, any
bounded member of H(&fl1 ) differs from a member of S by a
constant, hence this set1g§ntains the nth derivatives of all
bounded members of H(ﬁflq 2). Since the bounded members consti-
tute a dense set, the same/must be true of their image under the

onto operation of n-times differentiation).
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In particular, £ belongs to its own spectrum, and there-
Tore by 1.5.4(c), ¥ is strongly recurrent. This establishes (a).
To prove (b}, let %( a¢B<t, Tet ge H(f'_}_?l /2) have & zero
inside _c_‘_)_i . et X be a compact convex subset of '("_')'i which
contains this zero of - g and which is such that the boundary Y

of X is a simple closed curve on which g is non-zero. Let

0<eX mi§|g(z) |. Since g 1lies in the spectrum of £, there
Ze
exists teR such that supl|f(z+it) - g(z){<e. Hence by Rouche's
zeK s
theorem f has a zero in K-it, Hence f has a zero in L—)_B .
a

Since %< a<p<1 and c¢,B were otherwise arbitrary, this

proves (b) .

5.4,5 Example ¢« Let P be the entire function defined, Tor

(e )

Re(z) > 0, by the series p{z) = 21ann"z , where -

; =

¢ 0 if n = modulo 5

\ 1 .lf n s 1 L1} 4]

an = 7 <7 if n =21 e W

( a if =2 1] "

.-& if n 5—2 i "
with a = M = 0.284079,...

A5 -1
Titchmarsh has shown ([ 50,pp.240-241_]) that ¢ satisfics the

L2

G2PT b+ Do) = D ° T G50 0-2) .

functional eguation

This, together with the arsuments of 5.4.4, show that P is

LN
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strongly recurrent in _(__2_1 and the set of real parts of thc
1/2
zeros of » 13 dcnee in ]:0,1 J+ We also krnow that ¢ has zoros

to the right of the line  Re(z) =1 ([ 50,pp.242-2437]),

54446 Theorem ¢ If the recurrence conjecture (2.4,10) holds,
then the set of real parts of the zeros of the Riemann Zeta funce

tion is dense in [ 0,1 .

Proof ¢ Tet ¢ denote the supremum of the real parts of the
Zeta zeros. It is known that -}2-5_ #<1. ZLet us suppose that

¢ < 1. Then (_)1 is free of Zeta mercs. llence by theorem 5.3.1
— - ¥

¢ 1is strongly recurrent on _§_—_)_1 « Hence by 2.2.5 (V)’“};' L&
strongly recurrent on _C‘:)_‘E e Also, it is known that the Dirichiet

/]

series representation of T converges in _Cl; ([50, pa315 D
7

and hence % is of finite order in _(;_)ﬂ; ([ 49,p.297 ). Finally,

for any ¢ such that @<a<1, it is known that 12 has finite

nean square value on the line Re(z) =a ([ 50,p.284 }). Thus

-;;1; satisfies all the hypotheses of 2.4.9 on __(_"_.)__‘1 « Therefore by
.1

a
the recurrence conjecture, v is strongly recurent on () .
a

Since #<a<1, and a was otherwise arbitrary, %— is strongly

Z —
at z = 1. Arguing as in the proof of the * if " vpart of

recurrent on (). But g has a gero inside (_)_c;,‘ namely

theorem 5.4.1, we can deduce that g— has infinitely many zeros
in (7)'. Thus £ has infinitely many poles. But this is falsc.
The only pole of £ is at =z = 1. This contradiction shows that

ﬁ=1..
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Vow let us suppose that the set of real parts of the Zeta
zeros is not dense in [0,7 ]« Since the functional equation for
the Zeta function [56, pe13_] shows that the nontrivial Zeta
zeros are symmetrically placed about the line %Be(z)-—zf, it
follows that there exist a,b, §< a{b<1, such that ( )_z is

free of Zeta zeros., Hence by theorem 5.4.1, ¢ is strongly

recurrent in ()P. Iet us put £(g) = (1-2"=%) .¢(2). Since the
g

factor (1-2'"%) 1is periodic, it follows from corollary 2.3.5
(or proposition 2,3¢3 itself) that f is strongly recurrert.

Now, on Lflb f satisfies all the hypotheses of the recurrence
a

conjecture. Hence in view of the assumed validity of that con-
jecture, £ is stvongly recurrent on ()" . A fortiori, f is

strongly recurrent on £ lﬁ « Since (1-2 "'Z))"'1 is also a
a

periodic point in H(gfl1), another application of proposition -
a

24,343 shows that ¢ is strongly recurrent in £f11. Hence by
a

theorem 5.4.1, ¢ has no zero in £f11. That is, gg¢a< 1. But
a

this contradicts our observation in the first part of this proof
that @ = 1 under recurrence conjecture. This contradiction

proves the result.

5.4e7 Theorem « Let X ©be a nonprincipal Dirichlet character
and let a(X) be the supremum of the real parts of the zeros of
L(+,X) . If the recurrence conjecture (2.4.10)holds then the set
of real parts of the zeros of I(.,X) is dense in [1-2()0,a(0].
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Proof + Since X is nonpri wcipal, L(.,X) has no pole, and
therefore the Tirst part of the proof of theorem 5.4,5 does not
go through. However, tie second part of that proof does go
through, and this yields the above result,

5¢448 Theorem ¢ ILet %—-( o < 1. Then ¢  1is - strongly
recurrent. The same holds for the vertical sections I,(.,X) of

a Dirichlet L-function I(.,X).

Proof ! Recall that £_C(R) is detfined by ¢ (x) = glorix)(ze ).
By theorem 5.3.8 the spectrum of ¢, 1s the whole of C(IR), and

hence ¢_ belongs to its own spectrum. Hence by proposition

g
1+5.4(c), t_ is strongly recurrent. An analogue of theorem Grg 305
for ‘L(.,)O can be deduced from corollary 5346, and hence we

can deduce the above result for I( ;,)() .

.
5.4.9 Question ! Is ¢ a strongly recurrent point of C (IR) ¢
What abo -t C‘I /2 as a point of C(IR)

5.4,10 Example (on the recurrences conjecture) ¢ There exisis
a real number a and a function £ which is analytic and of finite

-

order in the closure of ()° &and vhich satisfies .
a 5

(i) f 4is represented by an absolutely convergent Dirichlet
series in ()T for some b >a,

T 2
(11) | |f(a+it) ["dt = o(T) as T ~—> =,

) .
and (iii) f is strongly recurrent on the lins jRe(z) = a\&,

but (iv) f 1is not strongly recurrent on _(_"f s
a
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Proof ¢ We have to consider fwo posaibilities separately.

Case I. The Riemann hypothesis holds. In this case we take any
a such that % <a<cl1, and T = %-. By theorem 5.4.1, ¢ and
hence also f = % is strongly recurrent on ' . Hemce T

? -

. .
is strongly recurrent on the line | Re(z) = aj. However, f is

ndt strongly recurrent in Lfl: ¢ if it were then one could
deduce (as in the proof of theorem 5,4.1) that the zero of f
at z=1 would " reproduce itself"™ infinitely often, which is
not the case. That f satisfies the other conditions under

Riemann hypothesis is well known.

Case II. The Riemann hypobhesis does not hold. ZIet @ denote,
as before, the supremum of the real parts of the zeroz of Zeta.
In this case % < ¢ 1. Take any a such that % < a<c g, and
takxe f(z) = (1-21"%) £(z). Since by theorem 5.3.8 ¢ is
strongly recurrent on the line Re(z) = a, and since (1-21%) is
periodic, the amdlogue of proposition 2.3.3 for C(IR) (which can
be proved s;mllarly) shows that f is strongly recurrent on the

line : Re(z)-—am But f is not strongly recurrent on ()
a

If it were, then it would in particular be strongly recurrent on
(—)1, and hence by proposition 2.3.3 Zeta would be strongly
recurrent on ( )1 . By theorem 5.4.1, this would imply that ¢
is nonvanishing oi. gj}f ,and hence @ ¢ a. But this contre-
dicts the qhbice of a..aThat f satisfies the other conditibné

is well known.
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544.71 Theorem I If the set of strong recurrent points of
H(Lfli 2) is closed vnder addition then the generaligzed

Rieman£ hypothesis for Dirichlet L-functions hold.

Proof I As a particular case of5.4.4 (iii), we have the follow-

ing : Iet 1<h<k, (h,k) =1, k2 3. Then the function ¥y
oo P

given by T k(z) = £ n"? is strongly recwrent on (") .
¥

n=1 T1/2
n=h mod k '
If X is a Dirichlet character modulo k, where k>3,
k-1
then L(.,X) = = Xy is an expression of L(,,X) as a
h=1 h,k
(1, 1) =1

finite sum of strongly recurrent members of H(S_l:/zl. Therefore

under the given hypothesis, I(.,)X) is strongly recurrent on

Q_lz ) and hence by theorem 5.4.1, L(.,X) has no zero in

(' . Inview of the functional equation and the Euler product

172
for L(.,X), this implies that all the nontrivial zeros of

. 3
(., X} 1lie on the critical line {Re(z) =% 5 o

If X 4is the unique Dirichlet character modulo k, where
k=1 or 2, then I(z,X) = #(z) or = (1-27%) z(z). In this case

we use the representation
'?:;(Z) = (1—3“Z>-1¢1 ’_3(2) + (1—3“2)*‘.}‘{)2,3(21) .

Due to proposition 2,3.3, the two summands are again strongly

recurrent on {"11 . Hence we can complete the proot as haforc.

1 /<
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5.5 Concluding remarks .

(a) In our opinion, the chief merit of theorem 5.4.1 lies in the
fact that it establishes the cquivalence of a local property
_(namely absence of zeros) of the Riemann Zeta function (and the
I-functions in general) and a global property (viz, strong
recurrence) of the same function. In this regard the result of
5e4e1 differs from the countless equiv@lent formulations of the
Riemann hypothesis, available in the literature, which are either
trite rewordings (using, perhaps, different integral representa-
tions of the Zeta function) or else relate the Riemann hypothesis
to the inscrutable growth rates of various arithmetic functions.
A detailed study of H((D) 1 ) as a flow, with particular
reference to its strongly réiurrent points, should throw useful

light on the gquestion.

(b) In view of the inheritauce theorem 1.4.8 (or as consequences
of theorem 4.5.8) the criterion of thearem 5.4.1 could &also be
stated in terms of strong recurrence modulc h for an arbitrary

real h> 0.

(¢) It must be admitted that the conmbined effect of theorems
5e4.6, D48 and 5.4.11 is to leave the question of plausivility
of the Riemarm hypothesis in utter confusion. In view of theorenm
2.4.8, we are inclined to favour the recurrcnce conjecture as
against the possibility that the strongly recurrent points of
H((7)) form & subalgebra. But it should be noted that for the
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comparable notion of almost periodicity due t¢ Bohr (which is .

recursion notion for the space H_({T)) of bounded analytic |

functions on the strip ) with the topology of uniform cor-

vergence and with shift-as flow projection), the almost periodic
Points do form a subalgebra (theorem 5 of [3, pa143 7)),

(d) Theorem 5. 4 8 says that each member of the class

SZ ‘; <o <1 ’15 & strongly recurrent point of C(IR). Notice

that in view of the proposition 2.4.1 and theorem Ze4.1, the

Riemann hypothesis is equivalent to the statement that this alags

is uniformly strongly recurrent,

(e) The corecllary 5.3,.6 may be interpretcd as follows. 4ny
statement regarding the local behaviour of L(.,X) in the strip

O ” 1s either deducible from the Riemann hypothesis for

I(eyX) (and the fuct that (o, 0 is amplytic in ( ‘1/2) or
1
else it is untrue. The the orem 543,53 itself admits of a similar

interpretation as to the collcetive locul behavicur of a finitc

class of Dirichlet LI-functions.
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