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A new topology for interconnection networks has been pro-
posed. The underlying network graph has N = 4° nodes (n =
2) and is almaost regular with maximum degree 5 and diameter
=|3/4 log, N | + 1. Algorithms for point-to-point routing and
single node broadcast have also been developed. It has also
been shown that various algorithms for real life applications,
e, matrix transpose, matrix multiplication, finding the sum/
average/ maximum/minimum of a set of data elements and
ASCEND/DESCEND types of algorithms can be efficiently
implemented on this topology. Finally, the underlying idea of
constructing this network has been generalized to define a
family of almost regular odd degree graphs of maximum
degree 2j + 1, (j = 2) with N = (2j)" nodes and diameter
L3/4 log, N] + 1.

1. INTRODUCTION

Interconnection networks play a major role in the design
of efficient parallel and distributed computing systems.
WVarious topologies for static interconnection networks
have been proposed in the literature.

Among the regular topologies there are two distinct
categories. The hypercubes [6], multidimensional meshes
and tori, star graphs and pancake graphs [1], etc. constitute
one class where the degree of a network increases with an
increase in the number of nodes. The other class includes
the constant degree networks like ring [4], chordal ring
[10], distributed loop network [5], cube-connected cycles
[7], Moebius graph [9], de Bruijn graph [2], Kautz graph
[8], etc. All the graphs in the latter category, except the
first three, have diameters of the order of O(log V) with
N nodes. Fault-tolerances of the 4-regular de Bruijn and
Kautz graphs are better than those of 3-regular Moebius
graphs and cube-connected cycles.

In this paper we propose a new family of almost regular
graphs with odd degrees. These graphs will be suitable for
multiprocessor systems as they have (i) a constant node
degree of 5, (ii) small diameter, and (iii) moderately simple
routing algorithms. The connections among the nodes are
defined in a functional form which leads to easy and effi-
cient implementations of different classes of algorithms.

The proposed family of network graphs will have N =
4" nodes, (n = 2) with a diameter = [(3n)/2] + 1 = |3/4
log, N| + 1. For even n, these graphs will be regular of
order 5. For odd n, all but 4 vertices will have degree 5
and the remaining 4 vertices will have degree 4. That is,
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these graphs are regular (for even n) or almost regular (for
odd n). A heuristic algorithm for point-to-point routing
in such afmost S-regular graphs has also been suggested.
Simulation of the algorithm shows that the length of the
path computed by this algorithm does not exceed the short-
est distance between them by 1.03, 127, and 1.52 on an
average for n = 256, 1024, and 4096, respectively. An
algorithm for single node broadcast has also been pre-
sented. This algorithm requires 3n time for a graph with
4" nodes. Implementations of various algorithms for real-
life applications, e.g., matrix transpose, matrix multiplica-
tion, finding the sum/average/maximum/minimum of a set
of data elements, and ASCEND/DESCEND types of algo-
rithms [7], have also been discussed.

Finally we have generalized the underlying ideas of the
construction of this topology to define families of such
almaost regular odd degree graphs of maximum degree
2+ 1, (j = 2)with N = (2j)" nodes, (n = 2) and diameter
=L@n)2] + 1 =[3/4 log; N1

2. THE PROPOSED GRAPH AND SOME
OF ITS PROPERTIES

We define the proposed graph G = (V, E) with V' as
the vertex set and E as the set of undirected edges in the
following way:

{1) Consider a string viv; -+ v; - v, v; € {0, 1, 2, 3},
1 =i = n. Every distinct string of the form vyv; - p; -
v, has a corresponding distinct vertex v € V. Clearly,
[V]| = 4"

(2) Forv € Vand k € {1, 2}, we define functions f, (v},
(1) and glv) as follows:

Felvqbn - vy} = tqtiz - by,
Vis1s forl=i=n-1
where u; = 4
(tn + k)mod4, fori=n
@bt - V) =tttz = Uy,
U1 for2=i=n
where u; = +
(v, — kymod 4, fori=1

S U} = Mgl e My,

U b

where u; = '
(v; +2) mod 4,

glvw; -
forl=i=pn-—2

fori=n—1,n

MNote that f;' = ¢ and g™ = g
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FIG. 1.

A praph with 16 nodes.

Now the following steps complete the definition of the
egraph GV, E):

(i) Connect an edge from u to v if and only if f(u) =
vor gfu) = vorglu) =
(ii) Remove the directions of all the edges.

It is clear that the maximum degree of a vertex v £ V
s 5. A graph with 16 nodes is shown in Fig, 1.

In what follows, vyvs; «++ v, will denote the string repre-
sentation of a vertex v. Any digit in a string will be regarded
as a modulo 4 number, and the corresponding arithmetic
involving such digits will also be in modulo 4, unless other-
wise mentioned.

2.1, Degree Distribution

It can be easily shown [3] that, Vu € V, (i) fi(u) = flu),
(1) @0} = @alad), (iil) for i = 1, 2, fi(u) # glu) and ¢f 1)
# glu), (iv) for i, j € {1, 2}, fi(u) = gu), only if i = j =
2and n is odd, with « of the form w( e + 2y - (0 + 2)eeq,
where u; € {0,1, 2, 3}. Hence, we get the following lemma:

Lemma 1 In G(V, E), with |V| = 47 (i) all nodes will
be of degree 5 when n is even, and (i) onlv 4 nodes will
be of degree 4 and the rest of degree 5, when n is odd

3. PATH LENGTH AND DIAMETER

We now consider a path from asource node s = 575, -+
5, to a destination node r = 16 -+ 1,. Since the links of
the graph G(V, E) are characterized by the functions f,
@, and g, a path of length k can be represented by a string
P2 pe,where p; € {fi. 2, @1, @2, g}. First we consider
the paths which do not involve ¢, or @,. Also, as g =
Id, the identity function, we would not apply two g's in
succession. To investigate the nature of such paths we
define the following:

Dermimion 1. For two digits a, b € {0, 1, 2, 3}, we
define an operation « as

0,
beg=
1,

if(b—a)ymodd=1or?2
if(b—a)ymod4 =3 orl.

We consider a path P, starting from the node s and of
the form hygihaga - hyg - h,g,. where h; € {fi, f2} and
g; = Id or g. Let the path P lead to a node u = uyu; -
1, . Corresponding to the path P we define two strings
c=c6 . GEYL 2landx = xxp - x,, € {0, 1} as

(i) if iy = f., ke {1,2} then ¢; = k
(ii) if g = Id, then x; = 0 and if g; = g then x; = 1.

Lemma 2. For 1 =i = n, the following relation holds
{SJ' aE Cﬂ'}'\-
;=
(s:i +e)+ 2

where X, = X,

ifx;Px =0
ff.t,"ﬂa.f,'q =1,

Proof.  The function k(=) operated on a string mod-
ifies the first digit, say a, of the string toa + k,ie.,a +
¢;, and puts it in the nth digit position of the resulting
string. Since the total number of k;’s in P is same as the
total number of digits in s, it follows that u; = 5; + ¢; or
£+ o + 2. Addition of the term ¢; is due to the function
fi and absence or presence of the term 2 is determined by
the values of x;and x,., , as each g function involves addition
by 2. In fact, there can be 4 possible cases.

(i} x; = 0, x;.; = 0. No g function is involved. Hence,
u; = 5; + .
(i1} x; = 0, xzy = 1. Only one g function is involved
and hence x; = L, u; =5, + ¢; + 2.
I:ﬁi} X = 1, Xiyi = 0. W= 8% 0T 2.
(iv} x; = 1. x;.n = 1. Two g functions are involved and
hencew; = 8;, + e+ 2 +2 =5+ o

Hence, the proof. B

Note that b« o can take on only binary values, i.e., 0 or
1. From the result of Lemma 2 we arrive at the follow-
ing results.

Lemma 3. For 1 =i = n, x; 9 x50 = U; « 5, where
Xps1 = X,
Proof. Follows from Lemma 2 and Definition 1. B

LEMMa 4. x; = (Z (u; = 5;)) P x1, where Z sands for
modulo 2 sum over i = 1,2, .., 1.

FProof. From Lemma 3, x; P x = wes;for 1 =i =
n. We can write this equation as x;., = (u;» 5;) P x;, for
i=1,2,..,n, where x,.,

Solving these equations, we get x; = (2 (u;+5,)) Bx;. B

= x.

CoroLLary. It follows that X (u; = 5.} = (.

LemMma 5. For any pair of nodes (s, 1) such that Z 1; «
5; = U, there exists a path P between s and 1, where P =

h|g1hzgz i hﬂ'ga i h"g", hi S {.IFI'JFZ}‘

Proof. The proof involves finding the strings ¢ and x
which will uniquely characterize the path P. By Lemma
2. 6,=3%5+ cors + ¢+ 2 Hence, we find ¢; by the
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following equation:

1,
& =
2,

To find the string ¥ we use the result of Lemma 3, ie.,
x; B x;., = I;« 5. This equation must be satisfied for all
i, which leads to the relation x; = (Z (1;+ 5)) @ x,. For
Z (1; + 5;,) = 0, we will always be able to find a string x
satisfying this relation. Hence, we start with an arbitrary
value of x; € {0, 1}. Then successively applying the equation
Py =feg,fori =12 .,n— 1 we wil get x,,
X3, e x,. N

if; —s,=1or3

ift; — s5;,=2o0r)

Let f{P) be the length of a path P of the above form.
Now we give the following theorem.

THEoREM 1.  For any pair of nodes (s, 1) such that 2
(1; « 5;) = 0, there exisis a path P between s and 1 of the
above form such that I{ P) = [(3n)/2].

FProof. I{P) = n + wix), where wix) is the number of
1's in the binary string x. Now, we can get two strings for
x satisfying the equations x; & x;., = f; « 5;, one with x; =
), and the other with v; = 1. These two strings are comple-
ment to each other and hence for one of them the number
of 1's is less than or equal to |n/2]. Hence, the proof.

Now we consider a path P’ of the form gh,ghs -~
h,_,g,. where h's and g/'s are as defined earlier. Let the
path P’ from s lead to anode & = w14 -+ 1, . Corresponding
to the path P’ we define two strings ¢ = ¢yjc2 ++* ¢, and
X = x1x; ++- ¥, as before. Now we state the following lemmas
(for proofs see [3]).

LEnmma 6.
i1+ cio1), ifxiP =0
For2=i=nu= (8 ) / I
I:.‘I;_| + 1’_";_|} +.3. ff.t,‘{‘-BI;q =1.
[ ifyPra=0
Also, =
5,2, ifqPrn=1
Lemma 7. For2 =i=mn x, P x; = u; 5., where
Xnt1 = X1

Lemma 8. Forany pair of nodes (s, 1) there exisis a path
of the form P' between s and 1', where 1" = 11213 -+ 1, 1
being equal 1o s, or 5, + 2.

Let {{s, 1") denote the length of the path P’ between s
and ',

THEOREM 2. [(s, 1) =n— 1+ [n/2]

Proof.  The proof is similar to that of Theorem 1. R

Tueorem 3. For any pair of nodes (s, 1), there exists a
path of length at most |(3n)/2] + 1 between s and .

Proof. By Theorem 2, I(s, ')y =L (3n)/2] — 1. I 1} =
f, then we are done. Otherwise, we consider the follow-
ing cases.

Casei n=n=*11n=n+1,then we apply fae
ont' toreachr If 17 =1, — 1, then we apply fig on ' to
reach 1.

Case ii. 17 =1 + 2. Note that the value of 1) is deter-
mined by § = s (f;+5:1). If we could complement § by
some means, then the value of 1) could be changed from
n + 2 to . Now consider a node 1,17 -+ 1,_10¥ such that
(¥ eg, ;= (1,+5,,)% 1. Such a r* can always be found

out by setting
r.lr i 1'

k=
{r,, +1,
Thus, starting from s, we can always reach the node 1,1, -+
1,11 by a path of the form g fg2 ++ g1 h,_12, having
length at most [(3n)/2] — 1. Applying now f, e (if 1 =1,

+ 1) or fae (if 1} =1, — 1), we can reach 1 = nf; - f,.
Hence, the proof. W

for(r,—5,,)=1lor3

for(f, —5,1)=00r2.

3.1, Comparison with the Moore Bound

According to the Moore bound [11], for a graph of maxi-
mum degree d and diameter D, the total number of nodes
N =(d(d—-1)” - 2)/(d - 2),i.e, D = log,, N (approxi-
mately). For d = 5, we get D = logy ((3N + 2)/5) = 0.5
log N = Dy, (say). In our graph the diameter is close to
(.75 log N which is roughly equal to 1.5 times D, . This
may be compared with the diameter of other constant
degree graphs, e.g., Moebius graph, Cube-Connected Cy-
cle (CCC), De Bruijn grade, as in Table I where N is the
number of nodes in each graph.

4, ROUTING ALGORITHM

4.4, Point-to-Point Commitnication

We can always find a path between a source node s
and a destination node r, with a path length less than or
equal to the diameter, by employing the method described
in the earlier section. The routing algorithm in that case
will be simple and its complexity will be no more than
that in a Moebius graph [9]. But there may exist a path
of much shorter length between s and 1 than that obtained
by this method. This is illustrated in the following ex-
ample.

TABLE 1
Comparison with Three Other Common Graphs

Diameter Moore bound
() (D) DD
Topology  Degree  (approx.) [appros ) [ appro. )
Muoehius 3 flog N logs N 1.5
cCo 3 flog N logz N 25
de Bruijn 4 log, & log, N 1.6
Proposed graph 5 Hlog N lingy N L5
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Exampre 1. Let s = (M213 and r = 01012, The method
given in section 3 gives a path of length 7 as s — 12132 —
21323 — 21300 — 13010 — 30103 — (1030 — 01012,

We may note that there exists a path of length only 2
between s and ¢ given by 5 — 10121 — 0112 = 1.

In the above example, a path of shorter length was possi-
ble because the first 3 digits of s match with the last 3 digits
of 1. Whenever such a matching exists we can exploit this
to get a path of length shorter than that obtained by the
method in section 3. Guided by this observation, we discuss
below the basic ideas of a near-optimal routing technique.

Let j be the largest integer, j = 1, such that one of the
following conditions hold

(1) 8poi1 = i, forall i € {1, 2, .., j}
(2) 5 =t . foralli € {1, 2, .., j}
Casel. s, ;1 =1, foralli€ {1,2, ..} Since j bits

are already in position, we need only n — j shifis. We
consider a path P of the form g1 hag2 -+ by g, where
h € {fi. £} and g, = Id or g. The path P is uniquely
characterized by the two strings ¢ = ¢,¢; ~- ¢,;and x =
XXz x,; as before. For 1 =i =n — j, we find ¢; by
the equation

lfh —5;=1lor3

1, ifg.
o=
2, ift;—s;=2orl

Now to find the string x, we set x; = () and then by
successively applying the equation fi; = 5; = x; & ¥, for
l=i=n—j— 1, we compute Xz, 3, .., X,;. Then the
path P will lead to the destination node ¢, if 1, »5,,; = X,
Otherwise, we will reach a node ' = 1 - 1, where
1, =1, + 2. Hence, we consider the following subcases.

I, =5

Subcase la. wj = X, B 1. We will be able to reach
the node r by *;untabl],' modifying P as done in Case ii of
the proof of Theorem 3. Hence the path length [, is equal
ton —j+ wix) + 2.

There is also an alternative path from s to r. Let m,
(#m = 1) be the first position from the left at which a 1
occurred in the above string, x, ie., x; = x; = =

tm1 = 0 and x,, = 1. This implies that, if &,,_, = f1, then
1;4,,,_1 (501 + 3). We now modify the string v as follows:
we replace b, by g f5, and set x,, to Oso that ¢, is
again equal to (s, + 3). Similarly if h, , = f5, then
Gim-1= 8m-1. We would replace f._, by fie fi, and set x,,
to 0, so that f;.,,,.1 = a,,-1 again.

Thus, x,, is now 0, whereas earlier it was 1. Keeping h,,,,
By s oo by, unaltered, we can now ge[ a different string
for x as x1%; *** X1 Xm Twa - X Moreover, we can
directly reach the vertex r by this process and do not need
the extra two steps at the end as it was necessary corre-
sponding to the earlier string x.

Number of 1's in this new string for x is equal to (n —
j—m) —wix) + 1. Hence, the new path length £ is equal
ton —j+2+n—j—m— wix) + 1. The minimum of

f; and I; is less than or equal to (§; + LE)W2 = (3(n — j +
1) —m)y2+1=03n)2+1—-(3j+m—3)2withj=
1 and m = 1. Hence, the path length obtained is always
within the bound given for the diameter and decreases with
increase in the value of j. Also, L =< L if, n — j — m —
wix) + 1 < wixhie,wix)=(n—j—m+ 1)/2.

Subcase Ib.  1,+5,; = x,;. Here, the path length [, =
n — j + wix). An alternative path can also be obtained as
in Subcase la with 2 more extra steps at the end, resulting
in a new path length , =n —j+2 +(n—j—m) —
w(x) + 3. The minimum of /; and /; & apain less than or
equal to (I}, + £W2 = (3(n — j + 1) — m)2 + 1. Also,
L= hif, (n — j—m) — wix) +5 < wix); ie., w(x) =
(n—j—m+ 3)2

Case 2. 8j_; = I, for all i € {1, 2, ..., j}. Routing is
similar to that in Case 1 if we start from 1 to reach s.

ExampLe 2. Lets= 00000 and r = 01011. By following
the method given in Section 3, we find a path of length 8
as 5 — (001 — (0012 — 00121 — 00103 — 01032 — 01010
— 30101 — 01011 = 1.

Here j = 1, as s = 1, and Case 1 is applicable. By
following the routing technique given above, we find a
path of length 6 as 5 — 00001 — 00011 — 30001 — (0010
— 00101 — 01011 =1,

Remark. The path of length 2 between s and 1 of Example
1 also follows from the near-optimal routing technique
described above.

Although the path obtained by our routing algorithm
may not be the shortest, its length is definitely less than
or equal to the bound on diameter of the graph. Also, our
routing algorithm requires O{log N) time for a graph with
N nodes. Further, we have computed the shortest paths
between every pair of nodes and found that the number
of extra links needed by following our routing algorithm,
is very small on the average. The results of these computa-
tions are given in Table II.

4.2, Single Node Broadcast

To explain the broadcast algorithm, we use the following
notations: @ a; +++ a1+ will represent 4 nodes, where ()
can take all possible 4 values (), 1, 2, and 3. Similarly, by

TABLE 11
Average Difference from the
Shortest Path Lengths

Mumber of Average number
nodes of extra links
16 04417
[ 0.7961
250 L0300
1024 L2665
40496 1.5138
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using more than one # in different positions, a larger set
of nodes can be represented. If v is the number of #sin a
symbolic notation, then the number of nodes represented
will be equal to 4*. Also, m successive occurrences of the
symbol * will be represented by #™.

To broadcast a message from a source node aya; - a,,
we would traverse the nodes in the following sequence:
dyila 0 dly — dady v g = iy vl B F — e

It is to be noted that a single arrow (—) in the above
sequence may involve more than one communication step.

To transfer a message from aa; - @, L0 gxi; ++ a.%, We
note that,

— &

filaas < a,) = axtz -+ a.lm + 1)
falmas - a,) = axtz + a,lm +2)
hefilma - a,) = axiz -+ aan
Fo flags - a,) = axz - a,la; +3)

Hence, it s clear that 3 communication steps will suffice
to perform the operations involved in each of the above
broadcast steps indicated by an arrow —. The total number
of steps required is equal to 3n.

For further details, the reader may be referred to [3].

Remark 1. Wecould have as well broadcast in areverse
way following the sequence as
R R T R e
For this we just need to replace f; by ¢; and vice versa in
the above procedure.

5. IMPLEMENTATION OF ALGORITHMS

In all discussions that follow, we would represent a pro-
cessing node intechangeably by its label aya; -+ a, or by a
unique integer {in the range (to4” — 1, where i = Z g, 4"
Actually, the integer i corresponds to a linear numbering of
the nodes with proper weights of the digits a;'s.

5.1, Matrix Transpose

To transpose a 4™ % 4™ matrix A we consider a network
of 4*™ nodes. Initially the element A(i, j) of the matrix is
stored in the node 4™ * i + j. After transposing, A(f, j)
should be in the node 4™ X j + i. In other words, we need
to move the element in the node a,a0; * @il 1maz *** Qo
to the node a,.00m.2 +** Gtttz -+ 4. We consider the
following two cases:

Case I, m is even.

We note that f5 fHg{aw: -+ @z, ) = @384+ dzpidz. Thus,
moving the data from a node aya; +++ da, to the node aaas

+ dagaz will involve 3 communication steps. Applying
this sequence of 3 operations successively m/2 times, the
whole matrix can be transposed. The total number of steps
required will be 3(m/2).

Case 2. mis odd. Let m = 2x + 1.

By applying the sequence of 3 operations (as in Case 1)
successively for Lim/2] times, the data at the node aa -
i, can be moved to the node a,.4,,., *** da,048; 4

As _Ir.l‘i:'l_lr'lt:ﬂarﬁm-t'l Tt dggthity I'im—'l} = dlypililyez 0
daniiiz iy, 3 more communication steps will suffice to
move the data to a,.100.0 ° Gauhits * 4. The total
number of communication steps required in this case is
equal to 3Lm/2] + 3 = 3|_mf2f

For further details, the reader may be referred to [3]

m-1*

5.2, Maximum/Minimum/ Sum/Average

We first consider only the summing up of 4" elements,
where each node contains exactly one element. The
maximum/minimum/average can be computed in the same
way. We plan to store the final sum in the node 4" — 1,
i.e. 33 - 3. We first show below that we can sum 4 elements
initially stored in the nodes #aza; - a, and put the result
in aaa; <+ a,3, in 3 steps.

Note that,

F0azas -+ a,) = aaa3 - a,2

(A)
fillazas - a,) = a0z a,2
Hence, after one communication step, the data stored at
the nodes Okoas <+ @, and laaas -+ a, will move to the node
da3 a4, 2. Now we can compute their sum at gaa; -
a,2.  Also note that,

F2azas - a,) = azaz - af)

(B)

f1{3u2ﬂ3 il ) = dallz .ﬂ,,ﬂ
Hence, the other two data at 2a.a5 --- a,, and 3a.a3 - a,
can be summed at gz -+ a,l.
These two sets of operations (A) and (B) can be exe-
cuted in parallel.
Also,

1ty - @,2) = laans - ay,

ol ity -+ a,0) = 2aans - @,

Hence, by another communication step, the partial sums
can be moved to the nodes laxi; -+ a, and 2a.a5 <+ a,,, re-
spectively.

Now, applying the steps as in (A), we can obtain the
SWM i gy @3,

Summing of 4" elements involves a sequence of n such
operations, which can be represented as
— #33 -+ 3 = 33 .- 3,

Ty =':.lr—lj s wn
We can also proceed in the reverse way as

533 3% 5330 3,

Ty 3*"—1 3 aas
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Hence, the sum of 4" elements can be computed in 3n
steps of which 2# steps involve both communication and
computation and the other » steps involve communication
only. Note that, the same can be done on a 2-D mesh/
torus with degree 4 processors in approximately 27 steps.
On the other hand, although this can be done in 2n steps
on a 2n-dimensional hypercube, the degree of each proces-
sor in the hypercube would be 2n in contrast to just 5 in
our proposed topology.

5.3, Matrix Muliiplication

Multiplication of matrices on the proposed graph can
be done in almost the same way as in a hypercube AR89
To multiply two matrices A and B of size 4™ x 4™ we
take a graph consisting of 4 nodes. We would represent
the processor at the node aa; <+ @bz boica <
by P(x, y,z), where x = Z g™, y = Z b4’ and z =
2 ¢4, The notation P(*, v, z) is used to denote the set
of 4" processors Pld, v, 2}, where d assumes all values from
0 to 4" — 1. The outline of the multiplication algorithm is
given below.

Initially, the elements of the matrix A[j, k] and B[, k|
are stored at the processor P(0, j, k). The elements
C[}, k] of the final product matrix C = AB will be stored
in the processor P(r, k, j), where r = 4™ — 1.

The first step involves a broadcast of A[j, k] and
Blj, k| from P(0, j, k) to P(j, k, ) for all j, k, which takes
3m steps (each step involves sending both A[j, k|
and B[], k]). Now, P(j, i, {) contains A[j, {] and P(i, k&, §)
contains B[i, k.

Next, we broadcast (in the reverse way) A[ ). i] from
P(j. i, i) to P{+, j, i) and B[i, k] from P{i, k, i} to
F(#, i, k). Hence the processor P(k, j, {) will contain
Alj. i] for all k and the processor P(j, i, k) will contain
Bli. k] for all j. These two broadcast steps can also be done
in 3 steps.

Next, the data B[i, k] is moved from P(j, i, k) to
Pk, i, i). This involves a shuffle of m bits and by following
the method as for matrix transposition, we can do this in
time 3 m/2 1

Now the processor P(k, j, i) contains A| j, {] and B[i, k].
Hence, the product of A[j, {] and B[i, k| can be computed
in parallel for all values of i, j, and k. To compute the sum
of these products over all i, we require another 3m steps
and the sums will be available at Pir, k, ): ie., Plr, k., |)
will contain C[j, k] = £ A[j. i] X B[i, k]. Hence the
multiplication can be done in O(m) = O(log N) steps,
where N ® N is the size of each of the matrices A and B.
This may be compared with Q(N) time on a 2-D mesh/
torus and O{log M) time on a hypercube of degree 3 log, N.

J4. ASCEND/DESCEND Algorithms

A class of parallel algorithms, called ASCEND and DE-
SCEND types of algorithm [7] have many areas of applica-
tion such as FFT and bitonic sorting. Here we will describe
the implementation of DESCEND type of algorithms only.

We consider N data elements d[0], d[1], -, d[N — 1]
stored, respectively, at storage locations x[0], x[1], -+,
[N — 1]. We denote a basic operation in the DESCEND
type of algorithms by Oper(sm, i, x[m], x[m + 27}, where
the operation involves the two data elements at locations
x[m] and x[m + 2] whose binary representations differ in
the ith bit. Oper(m, i, x[m], x[m + 2']) computes two
values Ry and R, which are stored at x[m] and x[m + 27|,
respectively. Let N = 4" = 2°n. Then the DESCEND
algorithm runs as follows:

fori=g —1to(do
for all m, 0 = m < N do in parallel
if bit,(m) = O then oper{sm, i, x[m)], x[m + 27]):

Initially, we store the data d[k] at the node aa; - a,,
where a;'s are related to the binary representation b b, -+
b, of k as

H;=2h2,'+h2;_'|..151-5n.

We now give a brief overview of implementing the
DESCEND algorithm by our method. We denote by

wlaw: +++ a,| the data stored at the node a: <+ a,.
Note that,

Jr'z{ﬂ*ar— I} — fi- 12

f]{l*ar—l} = *"'12.

Hence, after one communication step the data stored at
0+ ! and 1#" ! can be moved to #" 2. Then the operation
Oper can be performed on them. Another communication
step will bring the computed results R, and R, to ("
and 1+ respectively. Similarly, the data stored at 2+
and 3+" ! are operated upon and the results R, and R, are
moved to 3+ and 2+ respectively. These two steps
complete the operation Oper corresponding to the bit b,.
The next step of the DESCEND algorithm corresponding
to the bit & will involve data pairs in the nodes (0+"!,
3+"1) and (1", 2+"1), respectively.
We note that,

_IFEI:]':F"_ I} et =':.lr—'lj
f]{z*ar—'l} iz *Jr—'l3t

Thus, the data in 1" ' and 2+"~' can be operated upon
and stored at #" '3, Now one of the computed results, i.e.,
Ry s moved to #" 12 in 2 communication steps as,

(Pzﬁ{*ar— I3} — 12.

Simultaneously with these steps the data stored at 3!
and 0+ ! are brought to +"'1 to be operated upon, and
the corresponding result R, is brought to #"-'1,

Hence, after 5 steps, the operation of the DESCEND
algorithm corresponding to the most significant two bits
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by and b of the binary representation of m can be com-
pleted. The above process is repeated » times for comple-
tion of the DESCEND algorithm. The detailed steps can
be found in [3]. The total time required is equal to 5n for
4" data elements. Note that, on a CCC, the ASCEND/
DESCEND algorithm requires roughly 5u steps, only for
n2" data elements, in contrast to 4" data elements on the
proposed topology.

6. EXTENSION TO HIGHER DEGREE
We now propose a family of graphs & of maximum

degree 2j + 1, j = 2 and having (2" nodes, n = 2. Each
node v of the graph is represented by a distinct string of

length n, ie., vws - v, v, €40,1, .., 2 — 1}. Forv € V,

we define functions fo(v). e (v). (k€ {12,...jDand g(v) as

felwg =+ vy ) = ttqtaz -+

where u; = {

ty,

Uis1 forl=i=n-—1

(v; + kymod2j, fori=mn

@ (v; v, = wu; o,
Ui for2=i=n
where u; =
(v, —k)mod2j, fori=1
g{lﬁ”z e Uar} = '"qu b '".lr'

{u,- forl=i=n-—2
where u; =

(v;+ imod2j, fori=n—1nm

The edge set E of the graph is defined as follows: (u, v)
EFe filuy=vor ¢ (u)=vorglu)=ur

DerFmarion 2. For two digits a, b € {0, 1, .., 2j — 1},
we define an operation « as

0,
beg=
1,

We consider a path P, starting from the node s and of
the form Mg fog: - Mg~ h.g., where B, = fi, k €
1,2, ....j}, and g; = Id or g. Let the path P lead to a node
u = upt, 0 u,. Corresponding to the path P we define
two strings ¢ = ¢z > &, ¢ € {1, 2, (. j} and x =
X% &, X € {0, 1} as

(iy if, = fi, k€ {1,2, .. jlthene; = k
(if) if g, = Id, then x; = Oand if g, = g then x; = 1.

if (b —a)mod2j € {1,2.....j}
if (b —a)mod2j € {0,j+1,j+2,...2 — 1},

THECREM 4. For any pair of nodes (s, 1) such that =
(1; » 550 = 0, there exisis a path P between s and 1 of the
above form with path length = | (3n)/2.

Proof. Referto[3]. W

Lemma D Forany pair of nodes (s, 1) there exisis a path
P’ of the form P' = gihygahs < giby -+ By g, between s

and 1", where 1" = 11al5 =+ 1, 1] being equal 1o 5, or s, +
jand the corresponding path length is upper bounded by
n—1+Ln02l

Proof. Referto[3]. &

Tueorem 5. For any pair of nodes (s, 1) there exists a
path length at most | (3n)/2] + 1 between s and 1.

FProof. By Lemma Y9, length of the path beween s and
1" is = (3n)/2] — 1.1f1} = 1,, then we are done. Otherwise,
we consider the following cases.

Casei 11=n*k ke{l,2 . j—-1L1f; =1 +k,
then we apply i@ on ' to reach . If 1y = 1 — k, then
we apply fige. on ' to reach 1.

Case ii. 17 = 1, + j. Note that the value of 1] is deter-
mined by § = 2.5 (f;+ 5,1). If we could complement § by
some means, then the value of 1) could be changed from
1, + jtor. Now consider a node 1,1, <=+ 1, ,1¥ such that

(Feg, 1= (t,+5,1)E 1 Such a ¥ can always be found
out by setting

Lr_-k~
=
f.+1,

Thus, starting from s, we can always reach the node 6 -+
1,_1f* by a path of the form g b, g, -+ g,.h,_ g, having
length at most [ (3n)/2] — 1. Applying now fie (if 13 =
e+ Vorfiogm. k€ {1,2, - j— 1} (if £} = 1, — k), we
can reach 1 = 14, -+- 1,. Hence, the proof. B

for(t,— s, )=korj+ k. ke{1,2,..,j—1}

for(f, —5,.1)=0orj.

7. CONCLUSIONS

We have proposed a new family of graphs with (2j)"
nodes, j = 2, n = 2, with a maximum node degree of 2j +
1. The diameter of this graph is bounded above by [(3n)/
2| + 1, which is, however, not tight. For the graphs of
maximum degree 5, we have exhaustively checked that
except for n = 3, the diameter is one less than this bound
for all values of » less than 7. For n = 5, the diameter is
equal to this bound and the diameter may be equal to or
less than this bound for # = 6. Implementation of various
algorithms on this topology has been discussed. Future
works may include studying the fault-tolerance properties
of the topology and embedding of other popular networks
such as trees and meshes.
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