E fficient Computation of R ectilinear Geodesic V oronoi
Neighbor in the Presence of Obstacles

Pinaki Mitra

Deparment of Computer Sctence and Engneening Jadavpar Universaty,
Calcuta 700 032, India

and

Subhas C. N andy*

Indian Statstical Institute, Colcutta 70035, India
Received February 5, 1997; revised M arch 29, 1998

In this paper we present an algorithm to compute the rectilinear geodesic
voronoi neighbor of an arbitrary query point ¢ among a set § of m points in the
presence of a set # of » vertical line segment obstades inside a rectangular floor.
The distance between a pair of points o and g is the shortest rectilinear distance
awpiding the obstacles in # and is denoted by &{w, g). T he rectilinear geodesic
voronoi neighbor of an arbitrary query point g, RGFN{g) is the point p, £ § such
that &g, p,} is minimum. The algorithm suggests a preprocessing of the elements
of the sets 5 and « in «{(m + nMoglm + n)) time such that for an arbitrary query
point ¢, the RGN query can be answered in {loglm + n)) time. The space
required for storing the preprocessed information is £Xn + m log m). If the points
in & are placed on the boundary of the rectangular floor, a different technique
is adopted to decrease the space complexity to 2{m + n} This technique works
even if the obstacles are rectangles instead of line segments. Finally, the paralleli-
zation of the preprocessing steps for the latter algorithm is suggested, which takes
Mlog*m + n)) time, using Olm + 23> fogilm + «)) processors and @logim
+)} query time.

LIST OF 5YMBOLS

Set of points, called voronoi sites.
Cardinality of the set 5.
Set of obstacles.

315

316

n

P, and g
P,

Py

i, 3)

e, @)
Lﬂ;l‘lr ﬁ)

RGVN(q)

XY+ chain

LNN(u,)
RNN(u,)
RGVN(u,)

C.l

MITRA AND NANDY

Cardinality of the set #.

Arbitrary guery point.

R efer to arbitrary points on the plane.

The x coordinate of point p.

The y coordinate of point p.

Shortest rectilinear path between the pair of points o
and £ avoiding the obstacles in .

The length of «(a, 8).

The length of the rectilinear shortest path among the
points « and @ in the absence of the obstacles. Note
that, in this situation, the rectilinear shortest path is
monotone in both the x and y directions, and is an
L-shaped path.

T he set of pointsin § such that the shortest rectilinear
distance from g to any two members in %, avoiding
the obstacles in « are same, and is less than the
shortest rectilinear distance of any other point in § —

2 from g.

The rectilinear geodesic voronoi neighbor of the query
paint 4.

A chain consisting of alternating horizontal towards
right and upward vertical line segments from point p
to the top right corner of the floor avoiding the obsta-
cles, where the first move from point p is in horizontal
direction, and the direction changes when the move
hits the boundary of an obstacle or the boundary of the
floor. The X*¥Y-, X~ Y, XYV , YV X* YV'X-, Y X",
¥~ X~ chains can also be defined in a similar way.
Free space enclosed by X*¥*, X*Y¥Y~ chains (it is a
staircase region). The R, , R, ., and R, regions can
also be defined in a similar way. '

Free space enclosed by XYY", ¥*X* chains. The
R, . region is defined in a similar way.

Free space enclosed by X*Y~, ¥Y-X* chains. The
R, .. region is defined in a similar way.

T he sweep line.

T he set of end points of the obstacles in .

T he left nearest neighbor p, € § of the point u, € C.
The right nearest neighbor p, € § of the point u, € C.
It is LNN(w,) if 8w, LNN(uw)) = 8(u,, RNN(u,));
otherwise it is RNN(u,).

The set of end points in C already encountered by &
at a particular instant.

GEODESIC VORONO! MEIGHBOR AMONG OBSTACLES 317

5 The set of points in S already encountered by = at a
particular instant.

'] Cus.

I8 GlIALES

I The interval on the sweep line % such that any point

on I, is closer to p, than other points.

Olxg, 2, vie, vl The guery rectangle whose horizontal span is [x, ;]
and the vertical span is [y, .], where either y = y,
OF ¥; = ¥max-

§* List of points inside a query rectangle.

+X direction To refer to the right side of a point g, we introduced
the term +X direction of point 4.

1. INTRODUCTION

Given a set § of m points, called voronai sites, placed inside a bounding
rectangular region that contains a set & of n obstacles, the rectilinear
geodesic voronoi /nearest neighbor RGIFN(g) of an arbitrary query point
g is defined to be the set of points %, C § such that the shortest
rectilinear distance from ¢ to any member p, €%, avoiding the obstacles
in &, denoted by &(g, p.), is less than the shortest rectilinear distance of
any other point p, € §\.%, from 4. In addition, for any two points p, and
p, €F,, 8(q,p,) = 8(q, P; J (provided the number of points in 2, is more
tF‘ian 1). Given a query pmnt our goal is to locate any point from" 2. This
will be referred to as an RGIN-guery. In [7], an algorithm is presented in
which the obstacles are isothetic nonoverlapping rectangles. It computes
the rectilinear geodesic voronoi diagram in ((m + n)loglm + nllogn)
time. A more general problem of computing a rectilinear geodesic voronoi
diagram, in which the obstacles are arbitrary polygons with a total of O(n)
vertices, is studied in [14]. The preprocessing time for their algorithm is
O((m + n)log*(m + n)). After construction of the rectilinear geodesic
voronoi diagram, both of the algorithms can report RGINg) for any
arbitrary guery point g in O(logim + n)) time. Such types of geometric
problems often arise in VLS chip design, robot motion planning, mobile
computing, to name a few. I n this paper, we have shown that the prepro-
cessing time can be reduced in the following two restricted cases of the
problem:

P1 The obstacles are vertical line segments, and voronoi sites are
placed arbitrarily on the rectangular floor.

P2 The obstacles are nonoverlapping isothetic rectangles, and the
voronoi sites are located on the boundary of the rectangular floor.

318 MITRA AND MANDY

In both problems, instead of computing the rectilinear geodesic voronoi
diagram, we build up an appropriate data structure in the preprocessing
phase to answer efficiently the RGN queries for any arbitrary query
point.

The preprocessing phase for the first problem requires Ollm + n)-
log{m + n)) time. It uses line sweep paradigm and maintains a layered
segment tree that requires O(n + mlog m) space. It allows us to solve the
RGVN query for an arbitrary query point ¢ among the members in S, in
Ofloglm + n)) time.

The method of preprocessing for the second problem is based on
M ehlhorn's [13] algorithm for computing the voronoi neighbors of a subset
of vertices on the carrder graph [6] for the set of rectangles in #. This step
requires Olm + n) space and M{m + niloglm + nl) time. Here also the
RGVN query for an arbitrary query point can be answered in O(loglm + n))
time.

The paper is organized as follows. In Section 2, some practical applica-
tions of both problems are rigorously discussed. Section 3 introduces some
terminology and preliminary results. Sections 4 and 5 deal with problems
P1 and P2, respectively. Finally, a discussion about some open problems
and the concluding remarks appear in Section 6.

2. APPLICATIONS

R ectilinear geodesic voronoi neighbors for query points among a set of
disjoint isothetic rectangular barriers may have many applications in VL5
chip design.

Consider a VLS| routing problem in which a rectangular chip floor
contains a set of disjoint rectangular circuit modules. A set of nets is
attached to each circuit module. Terminals of a given net may appear in
several modules that are to be electrically interconnected. Let a new
module now be placed on the chip floor, and each net associated with it is
to be connected to the nearest pin of the same net, already present on the
chip floor. This leads to the problem posed by Guha and Suzuki [7]. Here
the circuit modules may be considered as rectangular obstacles; a given net
attached to the newly inserted block is the query point. Connection is to be
implemented using a rectilinear path to the nearest pin of the same net;
thus the pins of that net already placed on the chip floor may be
considered as voronoi sites.

In particular, if a newly arrived pin needs to be connected to any of the
existing pins of the same net appearing on the boundary of the chip floor,
it means that the voronoi sites appear along the boundary of the chip floor

GEODESIC VORONO! MEIGHBOR AMONG OBSTACLES 319

and the rectangular circuit modules play the role of obstacles. Thus the job
leads to the solution of problem P2 posed in this paper.

Problem P1 may evolve from routing problems in multichip modules
(M CMs). Inside an MCM, the circuit components are mounted on the top
layer, and the other layers are used as routing layers. The pins for
electrical connections, attached to a circuit component, are accessible from
all layers along a pair of vertical lines. Thus the pins exposed on the
routing layers appear along a line and are closed enough so that no routing
wire can pass through them. These vertical lines may be considered as
obstacles. A pin corresponding to a particular net needs to be connected to
some other pin of the same net by using isothetic wire segments. The
length of this routing wire needs to be as small as possible to reduce the
routing congestion and the time delay for signal propagation. This can be
formulated by problem PL

Both of the problems discussed in this paper may also find several
applications in the area of plant and facility layout, urban transportation,
locating power lines, robot motion planning, mobile communication, to
name a few [10].

3. PRELIMINARIES

In this section, we review some existing results on the rectilinear
shortest path problem in the presence of a set of isothetic nonoverlapping
rectangular obstacles. T hroughout our discussion we assume that the floor
on which the obstacles and the voronoi sites are distributed is rectangular.
The query point is assumed to be inside the floor. We shall denote the x
and y coordinates of a point p by p, and p_, respectively. For a pair of
points p and g on the floor, the rectilinear shortest path among them that
avoids the obstacles is denoted by #(p,q), and its length is denoted by
8 p,). Surelyif the obstacles are not present, this path becomes L -shaped,
consisting of a single horizontal and a single vertical line segment, and its
length becomes Li(p,q)=|p, — q.|+|p, — g,

Derition 1. Given the set & of n rectangular obstacles, an X*¥*
chain from a point p is a path from p to the top right corner of the floor
obtained as follows: Start from the point p and move horizontally to the
right side until a rectangle in # or the boundary of the floor is hit; then
move vertically up until the obstacle is cleared or the top right corner of
the floor is reached. In the former case, i.e., if an obstacle is encountered,
horizontal motion is resumed. This process is repeated until the top right
corner of the floor is reached.

320 MITRA AND MANDY

In a similar way, we can define X*¥-, X ¥*, X~ ¥, ¥*X*, YA,
Y X', ¥ X chains(see Fig. 1 for an illustration). It must be mentioned
that the difference between the X*¥* chain and the ¥*X* chain is that
the X*¥* (resp. ¥*X*) chain originates from point p with a horizontal
(resp. vertical) line segment.

Mote that when the obstacles are vertical line segments, the ¥*X™
(resp. ¥*X7) chain is a vertical line segment from p to the top boundary
of the floor, followed by a horizontal line segment up to the top right (resp.
top left) corner of the floor along its top boundary. Similarly, the Y- X
(resp. ¥ "X~) chain is a vertical line segment from p to the bottom
boundary of the floor, followed by a horizontal line segment up to the
bottom right (resp. bottom left) corner of the floor along its bottom
boundary.

Dermition 2. The free space on the floor may be partitioned into
following eight regions, as illustrated in Fig. 1.
R, region: Free space enclosed by X*Y" and XY~ chains
R_ region: Free space enclosed by X~ ¥* and X~ ¥~ chains.
R . region: Free space enclosed by ¥*X* and Y*X~ chains
R:\ region: Free space enclosed by ¥Y"X* and ¥ X~ chains
R, region: Free space enclosed by X*¥* and Y"X* chains.
R, '\. region: Free space enclosed by Y*X~ and X ¥ chains.
R, '\ region: Free space enclosed by X~ Y~ and Y X~ chains.
R_L.:\ region: Free space enclosed by XY~ and Y X" chains

YT ¥t

FIG. 1. Demonstration of the properties of rectilinear geodesic shortest path among
rectangular obstacles.

GEODESIC VORONO! MEIGHBOR AMONG OBSTACLES 321

It is easy to observe that the R ., R, , R ., and R_ regions are aligned
to the right, left, top, and bottom boundaries of the floor, respectively, and
the R .., R ., R ,and R_. - regons span from the point p to,
respectl vely, the top left, top rlght bottom right, and bottom left corner
points of the floor.

Lemma 1[5]. The shontest path from p to an arbitrary point in the R
region (s monotonic in the positive direction of the x axis.

Coroteary 1 [11). The rectilinear shortest path between any pair of
points in the presence of ventical line segments is always monotone in the
direction of the x avs.

Lemma 2[5]. There exists a shorest path from p fo an arbitrary point g in
the R region that passes through one of the two points wy and u,, where 1y
Cresp. u3) is a corner point of some rectangle visible from g, having uy, < g,
(resp. uy, <q.) and w,, < gq, (resp. uy, > q,) such that u,, Cresp. uy) is
greater than (resp. less than) the y coordinate of any other comer point r of
some rectangle that is visible from g, withr < g_,andr_ < g (resp.r > q)
(see Fig. 1). S ' '

Similar results hold for the other seven regions, referred to in Definition
2. It is needless to mention that if the obstacles are vertical line segments,
the R,. and R, regions will vanish.

4. RGVN QUERIES IN THE PRESENCE OF
LINE SEGMENTS

In problem P1, the set # of m vertical line segment obstacles and the
set § of n voronoi sites are given. In the following two subsections we
describe the preprocessing and query answering steps of our algorithm.

4.1. Preprocessing

The preprocessing phase of our algorithm consists of two parts: (i) com-
putation of the geodesic voronoi neighbors of each end point of the
obstacles in «, and (ii) preprocessing of the set § of voronoi sites, using a
layered segment tree data structure.

4.1.1. Computing Varonoi Neighbors of the End Points of the Obstacles

In this preprocessing step, a sweep line & is moved twice, once from the
left boundary of the floor to its right boundary, and then from the right
boundary of the floor to its left boundary. Let € be the set of end points

322 MITRA AND MANDY

of all of the obstacles in . In the left to right (resp. right to left) sweep,
the goal is to compute the left nearest neighbor (LNN) (resp. right nearest
neighbor (RNN)) of each end point u, € C as defined below:

LNN(u,)) =p, if u; =p; and 8(u;, p;) = 8(u,, p)¥p,ES

I

such that u, >p,,
RNN(u,) =p, if u, <p, and é(u, p,) = 8(u,, p)V¥p, S

such that u; <p, .
Finally,

RGVN(u;) = LNN(u;), if 8(u;, LNN(u,)) = 8(u;, RNN(u,))
= RNN(u,), otherwise (1)

In the left-to-right sweep, the points in § and the vertical line segments in
« are processed in sorted order of their x coordinates. The sweep line &
halts when it encounters a member of either § or #. Consider an instant
when §' < § and @' C# are respectively, the voronoi sites and the
obstacles already encountered by 2. A disjoint set of intervals is main-
tained on %, where each voronoi interval I, corresponds to a distinct
p, € 8§ such that if we take an arbitrary point « € I, then « is closer to
p; € 8" than any other point p, € §', j # i. I, is called the voronoi interval
of p, on & The following two lemmas suggest the course of action when
(1) & encounters a voronoi site p, € 8§ — §' and (2) % encounters an
obstacle [, € & — ', respectively.

Lemma 3. When the sweep line & encounters a voronoi site p,, its voronot
interval on 5 is single and continuous.

Proof. [By contradiction]. It is obvious that there is an interval [a, b]
around p, on the sweep line % such that any point o« € [a, b] will be
closer to p, than any other point p, & §'. Let B (& [a,b]) be a point
whose geodesic nearest neighbor is p,, i.e, 8(8, p,) < 8(B, p), Yp# p,)
= &'. We have to show that no such g exists.

Without loss of generality, let us assume that g is below b on &
ie., B, <b, l(seeFig 2). Since b is a boundary point of the voronoi inter-
val of p, 8(b, p) = 8(b, p,) for some p. € §'. Let us consider a point
vy (b, =y = B)inthe voronoi interval of p;-Now (B, p) =py+ yB>
8(p,v) + vB

Therefore B is nearer to p, than to p. Thus we arrive at a contra-
diction. |

GEODESIC VORONOI NEIGHBOR AMONG OBSTACLES 323

_r"“.l |'II|/-\\\ []
| Wiy " 1
_—
' i Ir Tr
v R
A l“!ll'
il .

FIG. 2 Proof of Lemma 3.

Thus Lemma 3 suggests that when a voronoi site p, is encountered by
&, the voronoi interval of p, isto be introduced on 2, and the neighbor-
ing voronoi intervals are to be modified. The actions to be taken here are
mentioned in Step 21 of the algorithm Left-to-Right-Sweep and are

illustrated in Fig. 5.
Lemma 4. Suppose 5 is moved to the right from its current position after

an encounter with a vertical line £luy, u;] € &, uy € I, and uy € 1. Let 1}

(resp. wy) be the horizontal projection of wy (resp. w,) in the curent position
af 2, fe., after the encounter with £, and before encountering any other

poinis of 8§ or obstacles of @, then the lefi-nearesi neighbor of any point
p € luy, w3 is either p, or p,.

Proof. [By contradiction]. Let p = [u}, uy] has its left-nearest neigh-
bor p, €8’ (where p, #p &p, #p) (see Fig. 3), i.e, 8(p p) <
min(&(p, p,), 8(p, p,)). Let P, be the shortest path from p, to p. This

path is monotone in the positive direction of the x axis (by Corollary 1)
Let # be a point on the path P, having the same x coordinate as that of

the line #,. Without loss of generality, we assume that # is above u,.

The length of P, = &(p,, 0)+ &8, p)= & p,,0)+ L0 u)+

Ly, p).
Nowu, =1, = 8(p,,8)+ L&, u) = 8 p,).
= Length of P, = &lp,w) + Lluy, p).

This implies that p, is at least as close to p as p, is and it leads to a
contradiction. If & isbelow u,, we can similarly show that p, is closer to p

compared to p,. Thus we arrive at a contradiction. |

324 MITRA AND MANDY

FIG. 3 Proof of Lemma 4.

Hence, when an obstacle #[u,, u;] is encountered, two different situa-
tions may arise: (i) «, and u, fall in the same voronoi interval, and (ii) u,
and u, fall in different voronoi intervals. The update of voronoi intervals
in both cases is presented in Step 2.2 of algorithm Left-to-R ight-Sweep,
and is explained in Fig. 6. We now state an important property of our
sweep technigue in Lemma 5.

Lemma 5. When the sweep line 5 is moved to the right after encountering
a point p, € 8 or an obstacle £, € &, then before encountering any other point
in § or any other obstacle in 8, the staius of the sweep line, i.e., the voronoi
intervals I, of each p; € 8" on &, remains unaltered.

Proof. Referring to Fig. 4, let [a, b] be the voronoi interval I of the
point p, € §" when the sweep line & encounters p,. Let the SWEE‘p line be
advanced by a distance d to the right, so that it does not encounter any
other pointin § or obstacle in #. Let [a', b'] be the projection of [a, b] on
the current position of 2 We have to prove that [«', '] is also the
voranoi interval of p; at the current position of 2.

Let us take a pmnt m & [a,b] and let m' be its projection on the
current position of . We have to show that &(p, m’) < 8(p,, m’)
Yp, €58 (p.#p)

On the contrary, let there exist a point p, € §' (p, # p;) such that
a(pk,m b 8l Py). From Corollary 1, the shortest path P1 from p, to
m' is monotone in the positive direction of the x axis. Let # be the point
of intersection of the path P, and the sweep line & when it was at p,.
Thus we have P, = w(p“m U oar(#, m').

As m is in the voronoi interval I, we have 8(p; m) < 8(p,, 0) +
&(d, m). Now from Lemma 4, the Iangth of P, = S{pMHJ + 56, m') =

GEODESIC VORONOI NEIGHBOR AMONG OBSTACLES 325

FIG.4. Proof of Lemma 5.

S(py. 8) + 808, m) + 8(m, m') = 8(p,,m) + 8(m, m'). Hence, m' is
nearer to p; than to p,. Thus we arrive at a contradiction.

The proof for the case in which the sweep line is moved to the right
after encountering an obstacle #, € # issimilar. 1

Let C'(c C) be the set of end points already encountered by # during
its left-to-right sweep at the current instant. Let F=cC u S and 7 =
€’ U §". Obviously, P < If. We now partition I into subsets 7, 3, ...

f’l ¢, such that for any element U, ﬁ{) its left-nearest neighbor is p,.

D uring the execution of the alg:nrlthm L eft-to-R ight-Sweep, the voronoi
intervals on the sweep line % are stored in a height balanced tree, and for
each voronoi interval ., we maintain the shortest path map of p.. In other
words, for I, we maintain those ¢, ﬂi that are horizontally visible from
I, (i.e,, whose horizontal projection on [, that are not obstructed by any
member in), sorted by their v coordinates, along with 8(v,, p,)s The
shortest path map, in this context, has been introduced in [5].

N ext, we describe our plane sweep algorithm.

4.1.2. Algorithm Lefi-to-Right-Sweep

1 sort the elements of If by their x coordinates;

2 for each v, € I do

2.1 if (v, = 8) (*sweep line encountered a voronoi site p, € §
(see Fig. 5F)

211 determine the voronoi interval I, of = in which p, lies;

2.12 sequentially search the elements of the shortest path maps

attached to the voronoi intervals starting from p,,
and moving

326

2131

2132

2.14
2141

2142

2143

2144

2.2

MITRA AND NANDY

dclc:_ud L inserted

FIG. 5 Processing of voronoi site p,.

upward until we get v € I [o, £]
(*1, is the horzontal projection of v (=) on % and
*[| e, B]is the voronoi interval of p, in the current
position of =*)
such that 8(p,,v,) + Lile,, o)) < Li(p, v.);
determine a point b, ; €1, st 8(p,, v,) + Ly, v) +
Lt b,) =Lip,b,)
downward until we get v, € I[y, &]
(*v, is the horzontal projection of v, €) on & and
*I|y, 8] is the voronoi interval of p, in the current
position of &%)
such that &(p,, v,) + Liv, v,) < L p;, v));
determine a point b, ; € 1, st. 8(p,,v,) + L, v3) +

i

Lty b, ;)= Lip, b, ;)

(Fupdate voronol intervals™)

replace I, = [a,b,] in =2
(*varonoi interncal for the point p*)
b, ;] and the point p; in =;
(*voronoi interval of p *)

insert 1, = [b,
replace I, = [b, ;. 8] in #;

(Fraronoi interval for the point p¥)
delete all earlier v;'s and b, ,'s, that fall in 1, and insert
pin 1;

m,n

if (v, € C)

(*F encountered a line segment obstacle #uy, u;] € %)

2.21

2.22
2221

2222
22221
22222

2.23
2231

2232

2.23.3
2.234

2.235

GEODESIC VORONOI NEIGHBOR AMONG OBSTACLES 327

b.
| ' 1 Y
=ra Nl
il 2] 1 1
)

5o/ | *~|

%
elzarad L
FIG. &

|
=
. o
E-—c

Ll
AN
i

inseried

Processing of line segment ey, 4]

search 2 with u;, and u, to find the voronoi intervals
e, Bl and [Ila, 81 in which «u;, and u, lie,
respectively.

(*see Fig. 6%)
if (f, = I,) then

compute &(u,, p,) and 8(u,, p,) from the shortest path map

attached to 1;;

(*insention of shortest path map of p. (for details see [5]7)
insert w, (with 8(uy, p,)) and w, (with &(u;, p, in I;
delete all elements of [, on & that lie inside the interval
Ligg, ee5];

if (1, # I,) then

compute &(u,, p,) and .S{uz,pjj;

(* from the shontest path map attached to I, and 1)
let the length of #, be #;

insert u; (with 8(u;, p,)) and u, (with 8(u,, p)) on &,

replace Ilw,,] by Ila,, b, ;] and [l] Ey ilb, ;. 81,

(Froronot intervals for p, and p *)
where b, . isa point on & that is at a distance x from u;,
such that 8(uy, p) + x = 8(uy, p) +£ —x,
= X = (3{:!2,_;;1}] = 8luy, p) +£1/2,
delete all of the earlier u;'s and b

. o5 that lie in the
interval [ay, usl;

endfor
end.

THeorem 1. The preprocessing algorithm Lefi-io-Right-Sweep can be
implemented in OWm + wloglm + 1)) time and Olm + n) space.

328 MITRA AND NANDY

Proof. Sorting in Step 1 requires (X(m + n)loglm + n)) time. The
information on the sweep line % is maintained in the form of a concaten-
able queue [2] (using a 2-3 tree). A search for all p,'s and end points of
#'s in Steps 2.1.1 and 2.2.1 can be carried out in O((m + n)loglm + n))
time. The insertions of p,'s(in Step 2.1.4.4), the end points of #/'s (in Steps
2.221 and 2.233), and the b, .'s (in Steps 2.1.4.2 and 2.2.3.4) requires
Olm + n)logim + n)) time. The deletion operations are performed in
Steps 2.1.44, 22222 and 2235 and we observe that once
an element is deleted it never reappears in the subseguent stages of
the sweep. This fact proves that the total time complexity is O((m + n) -
log(m + n)) for the search, insertions, and deletions on 2 for all of the
elements in I, which is of size O(m + n). The proof of the fact that the
space complexity is Olm + n) is quite direct. 1

In a similar way, using right-to-left sweep, we can compute RNAN(u,)
(= p, € §)for each end point «, € C. After two sweep operations for each
end point u, € C, we obtain LNN(x,) and RNN(u,), which are p, and
p A= 8), respectively. Finally, for each end point u, € C, we maintain
RGVN(u,), which is p (a =k or £), for which 8(p_,u,) is minimum.
Thus we have the following theorem:

THeoremM 2. Given a set of m points § and a set & of n vertical line
segmenis, the rectilinear geodesic voronoi neighbor for each endpoint of
£, € F can be computed in O(m + n)logim + n)) time in O(m + n) space.

4.13. Preprocessing Point Sets

In this section we will discuss the preprocessing of the point set S, so
that given an arbitrary isothetic query rectangle Qlx,, x, 1y, v,] satisfy-
ing either y, =y, OF ¥, =)., and containing a subset S*(& S) of
points, the rectilinear nearest neighbor of the four corner points of O,
among the members in 5%, can be answered efficiently. Here y_,, and y,__,
are the y coordinates of the top and bottom sides of the bounding
rectangle. We shall denote the four corner points of a rectangle by NW,
ME, 5E, and SW, respectively. In this context, we note that here we will
ignore all vertical line segment obstacles in #.

We shall use the layered segment tree data structure (%) (Fig. 7) [15] for
preprocessing. The points in § are placed in the leaves of 5 in sorted
order with respect to their x coordinates. The primary structure of &
consists of nodes o[r: 5], each corresponding to the set of points P()
whose x coordinates lie in the interval [x,,,, x,,], where x, is the kth
ranked point in the sorted order of points in § by x coordinates. The left
and right subtrees are also layered segment trees with the set of points
(e r Xeeamzpd @M Ixgi2)4 pe -0 Xl reSpectively. The sec-
ondary structure ¥i{v) attached to a node v is a sorted array of the y

GEODESIC VORONOI NEIGHBOR AMONG OBSTACLES 329

—_

s) ¥
T\
Lsony /. A T]

P e REON

Qoo Sl

Y[LEDN(‘-']IJ.' L o * ¥ (RSON(V))
(a)

node v in the

[YII'I ITREITY b“'UCtLLfE
Y{\-]

'!'IP“-' L

.‘_-.I_l: the set of painks
in the recrangle F‘.F‘"

(b
FIG.7. MNodestructure of layered segment tree.

coordinates of the points in Ple) It should be noted that each point
p € Y(v) represents a rectangle R, with top left (resp. bottom right)
corner (x,,.,, p,) (resp. (x,, ¥min), @nd it contains all of the points S, =
{glq, €lx,,x,)&q, =p}(see Fig 7b). We now describe the prepro-
cessing required for answering the RGN queries for the corners of the
rectangle Qlx;, x, v,y] where y, = The preprocessing for the
case where yy =y, is similar.

For efficient searching of the secondary structure during query time, we
maintain two additional links for each point p, in the secondary structure
during the preprocessing, as described below.

MNotethat LSON(e) and RSON(e) are the two children of the node ¢ of
the primary structure. So ¥(v) is partitioned into two lists Y(LSON(2))
and Y(RSON(v)), and any element p = ¥(v) will belong to any one
of them. Without loss of generality, let p € YIRSON(). Now p € Y(o)
has two pointers, one pointing to the point p in Y(RSON(v)) and
the other pointing to the point u in Y(LSON(v)), such that u =
Max, c virsoneity |1, = p,} (see Fig. 7a). '

Given the query rectangle Qlx; : x, My : v,], with y, =y, We per-
form a binary search at the list ¥ associated with the root of # to find a
point p such that p, <y, and the next point p’ in the same ¥-list has
7. > v, In each subsequent Y-list search in the next levels of the primary
structure, following the pointers from p, we can determine the point ¢ and

I'I"III‘

330 MITRA AND NANDY

the next point ¢' such that ¢ <y, and r, >y, in constant time. The
search in the primary structure with the interval [x; : x,] has to consider at
most (log m) nodes. Each node ¢ where the search stops is of the form
[r:s], such that [x, :x,] c[x;:x,]. Note that, for a node [r:s], the
property that [x, : x,] < [x;: x,;], is valid for all of its successor nodes, so
they need not be considered further. In the secondary structure (¥-list) of
each of these nodes, we identify the point ¢ and the next member ¢
satisfying ¢, =y, and ¢, > yi. The nearest neighbor n, from the NW
corner of R' can be found from the preprocessed data structure. From
log m) nodes of the primary structure, we get Mlogm) n,'s. Finally, the
answer to the guery will be the point among these O(log m) n,'s, which is
at the minimum distance from the NW corner of the rectangle Q.

R egarding the space complexity, the primary structure of the layered
segment tree 5 is a height balanced tree of depth O{logm), and it
requires O{m) space. Each point p = § appearsin the secondary structure
of exactly one node in all of the levels of the primary structure of 5, and
each of the occurences consumes (1) space. This implies that the total
space required to store the secondary structures is O{m log m). For this
data structure, the preprocessing and query time complexities are
Olm log m) and Oflog m), respectively [12, 15, 17]. Thus we have estab-
lished the following theorem:

Tueorem 3. A set § of m points can be preprocessed in O(m log m) time
and with O(m ogm) storage, using a layered segment tree, such that for a
given query rectangle Qlx; @ x; vy 0 v], with either v = Vmax o8 Vi = Vain
and coniaining a subset S*(€ 8) of points in its interior, it is possible io report
the geodesic voronoi neighbor p € 8% from any of the four comer poinis, in
(log m) time.

4.2, Query Answering

Given an arbitrary query point g (g & 5), we now discuss the method of
finding its rectilinear geodesic voronoi neighbor among the members of
the set § from the preprocessed data structure. We shall describe an
algorithm for finding the right nearest neighbor RNN(g), for an arbitrary
guery point g, in the + & direction.

4.21. Algorithm RNN-Query

Step 1 Shoot a ray from g to the right. The following two cases
may arise:
(i) The ray hits a vertical line segment obstacle #(u,, u,)
e « (see Fig. Ba).
(il The ray hits the right boundary of the bounding
rectangle (see Fig. Bb).

GEODESIC VORONO! MEIGHBOR AMONG OBSTACLES 331

¢ h
| | [I
| ! ai | | 3
o 2 o, | .
Ju4 o (Twy |
1 e i | &
L Tu-: ! la I
I 2 &
: |@| I 1“:
N
| | |
e d
{a) when ray hits an obstacle
T h
2 |]
[2 | @ | |
I -
i b A
e : qla
| | @l | ;]
! i ! | @ |
i | i
|
" d

{b) when ray hits the floor boundary
FIG. B Query processing.

Step 2 For case (i), find p, = RGVN(u,) and p,= RGVNu,),
with rectilinear distances &(u,, p,) and &(u,, p,), re-
spectively. Let 8lg, p,) = Lig,) + 8wy, p,) and
8(g, p,) = Lig,uy) + 8(uy, p,)

Step 3 For both cases (i) and (ii), find the geodesic nearest
neighbors of g inside the rectangles Ogabe and O gade
from the layered segment tree 7. Let these be p, and
p.. respectively. Compute &(g, p,) = L(g, p,) and
E(lq,pf-‘l = Lq, p;).

Step 4 For case (i), RNN(g)=p, if &g, p)= Min(é(g, Pah
g=ijk £) For case (i), RNNig)=p, if 8(g,p)=
Min(8(q, pg), B =i, j).

A similar procedure, LNN-Query determines LNN(g) for the query
point g. Finally, RGVN(g) can be found out by using Eq. (1) of Section
41.1.

Lemma 6 Algorithim RNN-Query runs in Olloglm + n)) time.

332 MITRA AND NANDY

Proof. To perform the ray shooting query in Step 1, a point location
guery is to be solved over the horizontal trapezoidation of #, and the
rectangle in which g lies is to be identified. This requires O(log n) time,
using the algorithm of Kirkpatrick [9]. Step 2 can be c