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Absiract

A neural vetwork model capable of self-organizing in presence of multiple or mixed
calepones & presanled, A certainty factor (s derived aboor the decision on how well the
features [due to single of mixed categories) have been interpreted by the network, One part
of the model, the, mondtor, controls the performance of the other pait, the, cofegorizer in
the seli-organization process. The network automatically adjusts the sumber of nodes in Lhe
hidden and outpul lavers, depending on the nature of overlap between the patterns from
differcnt catcpories. Mathematical derivations of the bounds on the number of nodes have
been presented. The capability of the model is dernonstrated expenimentally both on
rme-dimensional binary strings and visual patlerns.

Keywords: Sclf-organization; Monitor; Catcgorizer; Cortainty factor; Mived eatepory pergep-
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L. Iniredecton

Various newral penwork models haye been built o far for producing the desined
output for a given input pattern [10,13,6]. But most of the models used for patletn
recopnition problems determine a single category for a given input. That is, an
mput feature vector 15 assumed 10 be generated from a single catepory. However,
in rexl life sitnation, a feature vector of observable catcpories may be penerated
from a combination {or presence) of more than one category. In other words, the
inpul vector may result from the superimpoasition of more than one individual class
framre veetor. Fur example, in the feld of industrial inspection, several objects
may appear simultaneously in the scene and can occlude each other. In thal case,
the feature veutor does not cormespond to any single object. Similarly, in medical
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diagnosis problem, the symptoms of 4 patient may oot correspoend to any single
discase, In Kerature, there exdst very few investigations which can really tackle
such a problem [12),

This probiem becomes even harder if the connectionist model needs to be
operated under unsupervised mode. The task is ditficult becanse the model should
be able to decide if the input pattern has been generated by the presence of more
than one candidate feature vector, and at the same time be able to gutomatically
associale the festures with their corresponding categorics withoul the help of any
caternad feacher. 18 may be noted here that the hiological systems are able to
self-organize in such cases.

In literalure, there exist sgveral artempis on self-organization using connection-
ist models [1,24,7.8.9,11]. In most of them, the concept of self-organization is
analogous to the idea of clustering in the literiture of pattern recognition [5), and
it works only when the input pattern represents a single calcgory, In the proscol
problem, it 15 not sensible to compule any kind of distance between the input
pattern and the templates eorresponding to the categories {as performed in most
al the seH-organization models) because due to superimposition, the resulting
feature vector may he widely different irom its constituent feature vectorns.

In the present article, we attempt to develop 4 comnectionist model for perform-
ing the task of self-orgamization in the presence of mixed categories by interpreting
a feature veclor generaled due 1o the presence of more than one category. Instead
of using the conventional concepts of self-organization, the concept of similarity
based induction hypothesis [14] has been used. It may be mentioned that, opera-
tionally the model has a similazity to ART [4]. But, uniike ART, the present maodel
is able to categorize in the presence of more than one category. The categorigs arg
imitially hypothesized depending on the feature vector presented to the network.
Aflter the formation of initial hypothests, the presence or absence of cach category
is iteratively verified depending on the support it pets from its constiluent features.
Mate that it does not use any order search mechanism as employed in adaptive
resomance thenry, Rather, with each featmre a measure of ambiguity is associated
which indicates how well that feature has been interpreted. The certainty factor
about a decision {whether it is correet or potl i measured based on the ambiguity
value present in the feature vector. The confidence value indicates whether the
feature vector shonld be considered as a valid feamre vector (i.e. single or mixed
instances of the learned categories) or should be troated as 2 now eatepory, The
network model incrementally adjusts the nember of nodes with the incoming train
of paiterns, The total number of wodes in the neowork for a given set of patierns
has been theoretically estimated. The cffectiveness of the model has been demon-
strated on both binary and visuzl patterns.

Fig. 1 {next pagel. fad Stmcture of the coonecrionist model for self-oruanizution. Bald tnes represent
the pomtrol paths from the monilor netwark 1o the calegorzation network. (b) Stroclure and connes-
tivns of Lhe hidden nodes o the network.
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2. Neural network model

The proposed model (Fig, 1) consists of two subnetworks, One of them catego-
rizes the input patterns {cafegorizer) and another part monitors the performance
of the categorizer Cmonitor ) Tn the present scotion the structure of the categorizer
15 described. The monitor network will be described im Section 4. ‘The categorizer
consists of three layers: input, hidden and autput layer. The number of nodes in
the [nput and outpot layers are equal to the number of featieres and number of
pussible object classes respectively. Each input node accepts an activation value
egual to the confidence level about the presence of the corresponding feamre.
Similarly, an outpet node activation represents the confidence level about the
presence of the corresponding objeet, (If an entily 15 absent then the confidence
level i wero; i1 1L s present theo 1t 38 wnity; and some intermediate confidence level
represents more or less present.) The hidden layer associates the input node
activations to the output node activations. To each input node a group of hidden
nodes i3 connected which represents the group of the obfects 1o which the input
feature helongs.

Each hidden node is connected to exactly one input node through unidirectional
links of unit weights, and is connected to a single sutput node through bottom-up
and top-down links. Each ocutput node has a self-negative feedback. Each hidden
node has functionally two parts. Ong of them stores the activation vidue received
from the output layer through wop-down links. The other part takes the key rale in
competition with the other hidden nodes. (The hidden nodes connected to the
sime input node compete between themselves.) The network works as follows,

Initially, when 4 pattern or a set of features is presented to the network, the
input nodes get activated according to the confidence levels of the corresponding
featares, The input nodes send their activation values W the hidden nodes. The
hidden modes do not compete in the initialization process; rather the activation
values received by the hidden nodes from the inpot layer are propagated to the
putput layer throngh the bottom-up links. In this process, each output node
receives an activation value equal to the sum of all activation values appearing
through the bottom-up links. (This is cquivalent 1o mitial hypothesis formation,)
The output of each ontput node 15 related to its input activation by an S-function
[3]. After the initialization process, the ontput nodes send their activations back to
the hidden layer throogh the top-down links. Once the hidden nodes receive the
activation values Mmom ouiput layer, the competition process starts (this s per-
formed by the second part of each hidden node). The hidden nodes connecied to
the same imput node, compete between themselves, On the other hand, hidden
nodes corresponding o different iopul nodes do not compete wilth cach other. In
the competition process for each input node oaly one hidden aode remains active
{the winner-lake-all node receiving the maximum amount of feedback). The active
hidden node represents the most possible object cinss to which the feature belaongs.
Once the competition 5 over, cach WTA hidden node sends the differential
swupport {which is the difference between corresponding input activation and
feedback support) to the corresponding ontpet node through bottom-up link. Tn
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this process (referred as sertfing process), each output node gets some differential
suppurt fTom the hidden layver and some inhibition duc 1o negative sclf-fecdback,
The setiling process continues Hll the neiwork reaches a stable state. The oljects
which have their candidate festures in the set of features presented to the
network, get sufficient differential support from the hidden layer. As a result, the
activation values of these nodes reach some stable nonzers values when the
support and the self-negation beeome cyual. Oo the other band, the obects which
do not have their {featurcs m the Fealure train presented o the network, rocelve
only sell-nepation; consequently, the activation walues gol down to zero. The
seitling process approximately corresponds 1o the iteralive verification process,
where the ohjects compete for the features, Next we present the dynamic behavior
of the network.

The states of the output nodes are updated according to the differential
equition given as

du: i {1

— =} W, B — W,
l‘if b =i = }
where u, and v, are the total input to and output of the /th output node. w;, is the
weight of the bottom-up link from the (i, {3th hidden node (connecting ith input
node and fth output node) W the fth output node. w,_ is the weight of the
self-feedback in the ontput layer. ¢, (differensial support} measures the difference
of the Input activation from ith input node and the leedback from fth outpw
node, provided the (7, th hidden node is enabled fwinner-take-afl node) Mathe-
matically,
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0 otherwise

where ¢; is the activation at the ith input node, z,; % the weight of the top-down
link trom the /th output node to the ({, {ith hidden node. The owipt #, s related
to the instantancous imput u, by a semilinear nondecreasing gain function gi.)
{chosen as an S-function [3]),

The dynamic system described by (1} can be shows to converge, Let an energy
tunction £{t) be defined as

EH " w
gty = %Ex:'{ max  z,b,— Ci} + W, e (2)
=1 I=1,....m -1

where » s the number of input nodes and # is the number of output nodes. X, is
a multiplication factor such that

Ay=w, 2, iz n,= max z,u
I-1,....m

The rate of change of energy can be written as
dF M ORF du,
@ FEma e
PRI
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But,

¥4 s

a‘; = —iaz,,ﬂ.de,, — Wil
i.e.

g i,

duy, A

Theretore Eq. (3) can be written as

a& & s dr, ]2
From (4) it is evident that (d&/d1) < 0 for all £ = (. As 7 — o, (d&/de) — 0, and
thereby the system converies 10 an enetgy minima {Jucal),

The cnergy function (2) reveals the fact that the system always tries 10 minimize
the orrar of mismatch between the nput confidence values and the interpreted
conlidence values of the oulput layer. The weights ot the top-dowo links are set in
such 3 way that z, is zero if sth feature do not belomy 0 object, anc close to unihy
if it belongs to. As a result, the first part shows the similarity of the problem o the
‘set covering’ problem. The second part of (he cnergy tunction enswes the fagt
that the fcatore train presented (o the petwork should be interpreted by the
minimum possible number of objecty. This enables the network to reduce the
numbrer af redundant ubjects or the chance of false alarming.

3. Leamming strategy

The recognition would be correct if and only if the weights of the battom-up
and top down links are set properly. Sirce the network does not have any apriond
knowledze about the pature of assoviations between the features and 1he objects,
the knowledge has to be acguired adaptively. Presently the stratepy for learning or
the adaptive acquisition of the knowledge about the relative frequency of the
featurss and objects is presented.

i the network detects some new featurc-object pair (by the monitor network in
calepurization process), a new Didden nodc is allocated for the curresponding
input and cutput nodes. The hidden nede is then connected to the input node with
a link of unit weight. ‘The bolttom-up and top-down links are created from the
hidden node to the corresponding output node. The welght of the bottom-up link
is imitialized to zeto, and weight of the top-down link is initialized to unity. The
hidden node is also conpected to all other resident hudden nodes conoected to the
same inpu node, This enables the hidden node to compete with other nodes in the
same group connected 10 the input oede. Then the weights of the bottvm-up and
top-down links are updated so loog as the pattern is present at the input.
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The learning rules or the rules for iterative adjustment of the welghts are set in
such a way that the weipght of cach link asympiotically reaches a predefined
meusurc. The measure for cach weight s defined in such a way that it achieves the
ability 19 capture the relative frequency of appearances of the corresponding
feature object pairs. From the expression of the energy function (2}, it is intuitively
sgen that the weight of a top-down link (z;} should be proportional to the
prohahility of appearance of the corresponding feature (i) with respect to the
corresponding object (7). On the other hand, the value of A, should be propor-
tional to the probability of appearance of the object {corresponding to the winner)
with respect to feature (i} Therefore, the asymptotic values can be given as

2y =p(f10)) (%)
and

Ay=pleifi} (6}
The weight of bottom-up links should take a form

Wo G Az ({7

In the present work, since the transfer function of the output nodes 15 chosen as an
S-function, the owipul values always saturate if the total inpu activations exceed
unity. The weights of bottom-up licks are ilerated in such a way that the total
activation reaching an owotpot node is always less than wnity. Therefore, an
additional constraint is imposed on the weights of the bottom-up links which is

E.‘Hlﬂ'.ll = 1. fg}

bMoreover, if two objects {say A and B are such thar the feature set of one
ohject {say A} 15 a subsel of another ome (say B) and the probabilities of
appearances of hoth the obyects are the same then both A and B would be fully
active if the larger teaturs set (corresponding to B Is presented to the neiwork. In
that case, it would not be possible to decide that a single object has been presented
to the network, This problem can be taken into account by using Weber's law (as
presented in adaptive resonance theory [41). Considering {7), (8 and Weber's law,
the asymptotic measure for the weights of bottom-up links becomes

ploy | Fapif )
v+ Leiol fiplf ' o)

e=1

{9}

The constant ¥ 15 wsed o get the etfect of Weber's luw.

The weights of the links in the network are chanped in such a way that they
become equal to the measures after sufficient nmamber of learning trials. In other
words, the learning rules should be such that the weights of the bottom-up and
top-down links asymptotically reach the measures (Eqgs. 5 and %), The conditional
probability values are approximaled by the ratio of the number of appearance of
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the features and the objects. The detailed derivation of the learning rules is
presented it (3], The learning rules are

::fw]-l- o Her i

dr a8z o | — | ey — (e, +afy )wy (10}
-

dzh

at =ayic,—2,) (11}

where &, and o are the agility factors of the ith input node and the fth output
node, The agility lactor determines the capability of leamning of the links con-
nected to that node. The higher the agility factor, the higher wiil be the rate of
learning and vice versa. Initially, the agility factor of all nodes are set to unity and
they are decreased with the learning trigls. The agility factor of 3 hidden node is
the same as that of the input node connected to it The agility factors are changed
according to the following riies.

i TN (12)
i s

L S 13
dt IR (13}

The valug of y, is the desired output value at the fih output node, The desired
output is determined by the maonitor network. If the monitor network finds a
pattern already known to the natwark, it sets the desired output of the correspond-
ing nadeds) to be unity and all other nodes to zero, 1E it finds 8 new pattern then it
sels the desired oulput for the newly ergated node 1o unity and all other nodes o
zern. The value of 6, 15 given as

€

" v (u) e

8;
where g, =y, — o, measures the difference of the actual output at the [th gatput
node from its desired walue (as determined by monitor network). v is the constant
used in the asymptotic measure (Eq. 9 which also controls the rate of lesrning {as
captessed in the learning roles).

4. Categorization (unsupervised elassification)

Whenever a pattern (corresponding to either single or mixed category) is
presented to the network, it prodouces some ootput depending on the weights of
the bottom-up and top-down links. The ootput values indicate the confidence
[evels of the corresponding objects. The recognition mechanism should be such
that the crror between the feature comfidence values and the interpretation of
object confidence values {z.¢, in {23} should be minimam. In other words, the
network should be able to interpret all features presented to the input with the
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current output confidence values. This is performed with a measure of certainty in
the moenitor network. The certainty value is measured depending on the ambiguity
in the feature set presented to the network, If the ackivation of an input node does
not match with the feedback support received from the ogutpuat laver then there will
be an ambiguity at that node {i.e. the fearure is not properly interpreted by the
network). Therefore, if a2 new pattern (representative of a single or mixed calte-
gory} is presented at the input then the feature set would not be propery
interpreted by the output categorics. As a result, there would be a hiph smbiguity
it the leature scl The certainty 35 measurcd depending on the ambizuity in the
feature set, T the cortwinty 19 less than some threshold {(or ambigoity is preater
than some threshold) then the input feature vector is considered to be representa-
tive of a new category.

Mote that the categorization process 18 not similar to the clusterning problem in
pattern recognition. 1n the clustering problem whenever a new patteIn appearns, 4
distance is measured from the secd points of dilfercni clusters. and depending on
the distances the pattern 15 considered to be coming from the present clusters ot
some new cluster. But il a patlern i5 4 representative of some mixture of more than
one category then the clustering process would not be able to determine that. On
the other hand, the present categorization process is able to self-organize even in
the presence of mixed categorics, Next we prosent the measure of cerlainty factor,

Suppose, the neowork is presented with a set of » leatures with inpul confi-
dence values given by [e,, ¢, -+, ¢, ] Let, after the network has stabilized, the
top-down feedback corresponding to these featurcs be (B, bo.-- -, 8,] Then the
total ambiguity D corresponding to the entire feature sel can be defined ay

D=Yeic,—b) (15)
i=1
The mismatch between the input confidence ¢, and the top-down feedback &, in
cach feature is modulated by the confidence value of the feature itself, thereby
setting the relative importance of the mismatch. If (¢, — b, increases, the value of
I} also increases, and vice-versa. Here, £ =, and posseses a maximum value of
Y7ol = {say)
The normalized ambiguity measure 15 given by

D _
== (16)
The certainty factor is given by
CF=1—p, {17}

From (15}, it is clear that for some given set of ¢, values, if feedback sopport
decreases then the ambignity will increase and consequently, CF will decrease. But
if ¢, for each feature § {for a known category) is very small then the ambiguity {or
CF) will reflect the Tact that there is very little comfusion in the network, This-s
iee to the fact that the output confidence value will also he small (since input
confidence values are small? and as a result, the feedback will also be small. As a
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result, the network will accept the input as a representative of the catepory which
i not desirable. Therefore, the monitor network also measures the maximum
activation value prosent in the output layver. The ontpot activation of any node in
the network can be formulated as follows,

Without loss of generzlity, we can consider all the lcateres to be active, ie.
sending differential activation (¢) (o a particular output node . {If some features
are shared by other objects and do not send any agtivation to that output node
then they can be omitted from the feature set.) Under stable condition, the
positive and negative signuls at the output node will cancel each other. Mathemati-
cally,

Wy = E(Cf — 0wy (1%)
=

Considering linear gain function nof the nodes, the outpurt activation can be written
as

L3
Ewéffi
i =1
= ——§—— {19)
W+ 3wz
il

When the network has learnt a particular category, the value of E7_gw z, {we can
drop I to represent the validity of the expression for all nodes) is nearly unity (the
learning rules are designed in such a way). If w, is small enough and all £; values
are neatly unity then the output x (matmoum output is denoted by 1) will reach
Umily.

The certainty factor is compared with a threshold (vigifence threshold (p)) and
the maximum output activation with another threshold {outmi thresheld (T I
the pattern satisfics the conditions CF >p and x > T then it is treated to be a
known category or mixture of more than one known category. If cither of these
comditions fails then it is treated as a new category. The connectionist model works
as follows:

Mep I Prosent a oew pattern. Thoe pattcrn may be representative of a single
category or may be cuused by the presence of morg than one catepory,

Step 2 Measure the Certginty Factor (CFL Measure the maximum output (x) in
the cutput layver. Note that there does not exist any ourput node initially.
In that case, CF and x are considered as zero, The monitor network
measures these two factors.

Step 3 If CF > pand x <7 then goto Siep 7;
if CF> g and x> T then make all the output nodes whose activations are
greater than T fully getive, and goto Step 6.

Step 4. Allucate o new output node in the output laver. If the total number of
output nodes is greater than the capacity of the nemwork then exit.
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Stepr 5. Allocate hidden nodes for having input-oulput associations corresponding
to the featurcs which are prescnt at the input, Connect the hidden rodes
to the comresponding input nodes and the newly created output node.
Initialize the weights of the newly created links, Le. weights of the bottom-
up finks arc sel ¢ither to zers or to a small value. The weights of the
top-down Jinks are set 1o unity. Make the newly created output node fully
aclive.

Siep £ Learn the weights of the links, Le. iterate the weights till they converge.

Step 7. Present another new pattern. (ioto Step 2.

The categorization process is controfled by the mondtor circuit of the network
{Fig. 1). 1n Section 2, it was mentioned that cach hidden mode has two eperational
parts. With 2ach hidden node, another node 15 added to compule the ambipuity
value 4t that particular node. This node computes the ambiguity valuc only when
the network gols stubilized. The ambiguity values and (he input sclivations arc
propagated to the monitor circwit where the nomalized ambiguity value s com-
puted and the certainly factor 15 determined. The monitor cirguil alsg has a
connection to the output laver. The part connected to the output layer consist of a
comparator circuit which determines the maximoum activation present in the output
layer. The cortainty {actor s compared with vipilance threshold {p) and if @l is
found 10 be less then a oew output oade s allocated at the ouput layer, The
higdhden nodes corresponding to new fealure-object pairs are also allocated, and the
necessary hottom-up and top-down links are created. If CF s found to be preater
than g then the maximuom output activation is checked if it (s greater than T. 1 =0
then anly the network s allowed to execute the learning rules. On the other hand
if Lhe maximum outpot value is fund vo be less than T then lcaming rules are not
executed.

5. Estimation of the number of nodes

In Section 2 it has been mentioned that the network is formed adaptively along
with learning of the input features. The total nomber of nodes o the network is
equal 0 n + k +m, where B i the wotal number of hidden nodes, m s the total
number of output nodes (e, the maxitum number of categorics that can be
identified), and » is the number of input nodes {madmum number of input
features). Apparently, it seems that the total number of hidden nodes will be
approximately equal 1o the product of the nomber of input nodes and the number
of output nodes, i.e. of Qimw). Bul in pructice £ depends on the nwmber of
categories that actually share each input feature, because the number of hidden
nodes associated with an input noede is equal to the maximum number of objects
sharing the feature cotresponding 1o thit impul node. In one extreme case b is of
O min); In the other extreme, it is equal to the number of input nodes, when each
featore belongs o exactly one obyocl. Flere, It is assumed that there s no
redundant feature, i.c. cach feature belongs to at least one output catégory,
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The expected number of hidden nodes can be calculated by considering a
particular model of input-output association. It is very unlikely that a feamre will
belung to all the outpot categonies. Again, the probability that a feztare will not
belong to any object s zera, Therefore, for any particular feature §, if it is shared
by approximalely g, number of categories, then the probability that the ith feature
is sharcd by g, catcgorics will be muximum, and it will decrease as the number of
objecls increascs or decreuses, Following the nature of the input-output associa-
tion, it cam he validly assumed that the association follows & treneated Poilsson
disivibution. The probability that the fth feature is shared by j number of
calegories is given hy

cxp{ —p; el ™!

Ll LY
md Exp{—p‘-}

>

O b i 1

The expression is normalised because a feamre can be shared by at most m
categaries, i.e. the summation is in the range j€[{, m]. The total number of
hidden nodes can be written as A= XE7_,A;, wherc &, is the number of hidden
nodes associated with the mput node coreesponding o ith fealure, The capected
vilue of kb, is ghven as

Pr(7th feamre shared by j objects) = (20}

r—1
i

"
h,= ¥ i Pr{ith feature iy shared by § ohjects)

J—1

m= 1 expf — e hed

i=0 i
Mo lexpl -

=1+

=1+ u,H, {21)

wher

His %o {22)
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From Eq. (22, it is evident that A, < 1. Again by simple algebraic calculation, H,
can be written as

!
{m—l}!
Hf:l_ .ln—l#f_
r—a rl
But
w1, = r m—1
LN i i
DRERTSY R S S T e
rmpy ll i ll (= 1)1
Thetralore,
pt !
i
-1
Ho» | — frens (23)
H
expip, ) — (1)

From Eg. {23}, it can be inferred that the toial number of hidden nodes in the
network is bounded, and the upper and fowetr bounds in the number of hidden
nodes are governed by the bounds of /4, for all . The total number of hidden
nodes & ocan be written as

#?VJ
d
: N e
Bt ppmhEa+ Y - ¥ — (24}
im 1 i=l i=1 explpe;) - .
BT oy
In Eq, (24), il we assume g, = o= -+ =g, = p{say) then the total number of

hidder nodes cannol be greater than # +ng. For a fined value of g, the total
number of hidden nodes will he (X{#) and thereby the total number of nodes will
be of Olm +#).

&. Simulation and experimental results

The network has been simulated on SUN 3 /60 workstation. The capability of
the network 15 tested both for binary and visual patterns. Note that the application
of the network in practical domainy like 20 object recogmition, needs domain
specific knowledge and s not incorporated here.

The set of binary patterns presenied 1o the network 1% shown in Table 1, The
power ol the network is tested with different vigilance and output threshold values.
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Tablc 1
Patterns arc prescoted against features, Full confidence s represented by 1 and no confidence ay v
fi fa fa Fa t fs fa Te fa Y fu fiz Fia fra

et | 1] 1] 0 1 1] 0 i i L] i L i 1 1
Py 1 1 L] 1] 1 1 1 0 1 ] a LIy 1 a
izt y 1 1] 0 i L 1 [ 1] 1 1 1 I} 0 i)
Py ] 1 1 i} 1 0 1 U 1] 1 a it 1 1
pals 1 1 i 1 1 il 0 0 il it it it I} i
ey, 1 1 a 1 1 ¥} I} 1 1 a i i il {l
Table 2

Rcsults of categorization when partems are prescoted iodividually with vigilance factor = 0.9 and noise
lewe]l — 03

Actual Jass  Catepary

1 1 9 & o 0 0 42 0 o v 40 ¢ Do 10
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The value of ¥ is chosen as (L15. The value of negative self-feedback s set to be
.05, The patterns are contaminated with additive and subtractive noise. It was
found that the network is able to categorize single categorics for noise level as bigh
s 30% with an output threshold 0.8, Tables 2 and 3 show the results of
categarization for vigilance threshold values 0.9 and 0.65. With a high vigilance
factor (p), the network is very sensitive to noise and creates a large number of
catcgonies, Table 2 illustrates the effect of & large value of p on the categonzation
process, Tt has been found that 18 categories are formed for six classes, although
12 catcgories become redundant after repeated presentations of the patterns. Each
class gets associated with a particolar category, e.g. class 1 goes to 7th category,

Tabic 3
Results of catcgorizacion when patterns arc prescoted individually with vigilanoe chreshold = 065 and
noise level = 10,3

Actual chass Categony

1 1 it i {t §] 49 0
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1 fl ] ] s 0 0 M
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] a0 1] 1] ] I] I] 1]
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Table 4
Eesults of categorization when individual and mived patterns appear randomly 1o the nebwerk. “oly”
stands for class and ‘etg’ stands for categon
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Fig. 2. (a), (b}, {c) and {d) repeesent the objens 1, 2, 3 and 4 eespectively used as visual input pallern.
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Table 5
Confusion matrix when visual patterns are presenled with vigilance (hreshold = (8 and noise level = 0.2,
“clg” stands for class and “etg’ slands Tor catlefory

clgl o2 clgd ckgd
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LS S R B i e e e
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class 2 18 mapped 1o 121th category and so on, Effect of a relatively small value of p
has been illusirated in Table 3. With a small p, the network s less sensitive to
noise and as a result, only 7 catepories are formed of which only one Is redundant.

Next to it the power of the network is tested for categorization of mixed
categories. It was found that the network i1s able to categorize mixed categories
correctly. Table 4 presents the results of categorization with 10% contamination
foutput threshold = 0.8, vigilanee threshold = 0.8}, It shows that even when the
patterns are presented in a mixed form, the network is able to predict that more
than one category is present at the input. For example, whenever a mixture of class
2 and class 3 is presented. the model is able to prodict that the corresponding
categories 3 and 6 are prescnt at the input simultancousiy. Similarly, the network
response for other mixtures of patterns is illustrated in Table 4. The capability of
the neowork in the categorization of visual paiterns is also tested. The patterns
{Fig. 2} are comtaminated with a noise level of 20% and presented to the network.
The network was found to categorize correctly these parterns. Tahle 5 presenis the
results of eateporization lor visnal paiterns.

7. Diiscussion

In the present article we have presented a1 connectionist model which can
cateporize cven in presence of mixed categories. The network architecture is able
o incrementatly adivst its number of nodes. A theoretical estimate on the oumber
of hidden nodes is also given. The power of the petwork lics in the categorization
of mixed patterns. Although the present work has a gimilarity with adaptive
JTesonance theory, ART is not able to categorize in presence of mixed categories.
Moreover, the nemwork does not consider any ordered search technigue to catego-
rize which is essentinl in adaptive resonance theory. Another advantage of this
network is that it i3 not necessary to give input as 0 or 1; rather it can accept
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= 0

(a) thi (=]
{d} (e (E}

Fig. 3. Mixed patterns with 2095 noise lewel. (ad, (h), e), (), () and () represent the misture of ohjects
12 183 1&4, 283, 284, and 3&4 respeclively.

mtermediate values alsa. The same model can also be used under supervised mode
when an external teacher will operate in place of the monitor network.
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