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Sankhy? : The Indian Journal of Statistics 

1995, Volume 57, Series A, Pt. 2, pp. 256-266 

A DECISION RULE FOR DIMENSION 
IN THE CONTEXT OF MANOVA 

By ANINDYA K. DE 
Purdue University 

and 

JAYANTA K. GHOSH 
Indian Statistical Institute and Purdue University 

SUMMARY. An ad hoc rule is proposed to determine the dimension of the space generated by 

the mean vectors centered at the origin. Under normality, the proposed ad hoc rule is close to being 

Bayes for a prior which seems to distribute the total mass in a reasonable way. The ad hoc rule is 

then slightly modified to incorporate some of the finer features of the Bayes rule without losing good 

frequentist features. Simulation studies show that the rule nearly attains the Bayes risk and so is nearly 

admissible. It has other attractive frequentist features. 

1. Introduction 

In the context of Multivariate Analysis of Variance (MANOVA) it is of interest 

to know the dimension of the space generated by the mean vectors centered at 

zero. This often provides insight by identifying a structural relationship among the 

parameters if there is any. 
An interesting application is discussed in Cochran (1943) where the problem is 

to compare different methods or scales of measurement. For example, in comparing 
two different methods of assaying vitamins with independent experiments one likes 

to know if the scales are linearly related, (see Cochran (1943) for details). If they 
do lie closely around a straight line then the slope of the line is meaningful. 

Let us state the problem formally. We have p populations each of dimension 

d) p > d. Let the mean vectors be //l5 ?2,..., /xp and SI be the common known 

dispersion matrix. Let M = 
(?^?fi,ii2 

? 
j?,...iip 

? 
fL), where fi = 

p~l J]f=i /V We 

have a multiple decision problem with possible decisions (or actions): ao,ai,..., a? 

where a, denotes the decision or action and rank of M is i. For simplicity we will 

focus on the case d = 2 and assume available decisions are a\ and a2. 
Our goal in this paper is to obtain a multiple decision rule which has some 

optimality properties from frequentist point of view and is also attractive to a 
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Bayesian. We propose an ad hoc rule first, then show that it is close to being 
a proper Bayes rule under suitable choice of priors and finally refine the ad hoc 

rule in the light of the Bayes rule. We have attempted to find the ad hoc rule 

and the prior parameters/hyper-parameters in an iterative way. Starting with an 

attractive ad hoc rule, a suitable prior is found with respect to which the ad hoc rule 

is approximately Bayes. Then the Bayes rule and the ad hoc rule are perturbed 
until a satisfactory pattern of the error probabilities is found and at the same time 

the prior weights are distributed on the parameter space in a 'reasonable' way (see 
??2.2 and table 1). Care is taken to ensure that the perturbed or the refined ad 

hoc rule is both approximately Bayes with respect to the chosen prior and has good 

frequentist properties. We shall also study its risk function at various parametric 

points and check that no substantial improvement is possible. 

Apart from being simple, ad hoc rule can be extended very easily to the follow 

ing cases where a) the common covariance matrix is unknown, b) the covariance 

matrices are different but known and c) the covariance matrices are different and 

unknown. Simulation studies showed that the performance is quite satisfactory un 

der these situations also, but deriving the analogous Bayes rule appears to be much 
more difficult. A sample of simulation results for the case (c), as stated above, is 

given in section 3 of this paper. 
There is a substantial literature on this subject, e.g. Fisher (1938), Anderson 

(1951), Rao (1973, 1985), Fujikoshi (1974). The concern in these papers is with 

the derivation of the likelihood ratio test or its asymptotic distribution. In Baiqi 

(1992) the concern is with consistency of an estimate of the rank of the regression 
coefficient matrix. Somewhat more similar in spirit to that of ours is an interesting 

paper of Shen and Sinha (1991), where a proper prior and the corresponding Bayes 
solution are exhibited. However since the prior puts weight on certain particular 
lower dimensional spaces, the Bayes solution, though admissible, is unattractive for 

practical use. 

In section 2 we introduce the ad hoc rule, construct the prior and derive the 

Bayes rule. A simulation study is presented in section 3. 

2. Decision rules 

2.1. Ad hoc rule. Let Xu, Xi2,... , Afm be the set of d dimensional vectors 

observed from population ?,z = 1,2, ...,p. Without loss of generality we will 

assume the dispersion matrix to be I. Between sum of squares and products 
matrix H = 

nJ2Pi==l(Xi 
- 

X)(Xt 
- 

X)1 
= 

n^f^Y/ and the within sum 

of squares and products matrix E = 
E?=i ]C>=i(^?> 

~ 
Xi)(X{j 

? 
X,-)' where 

*i = 
^EpA- 

X = 
p-lY,LiX? * = Xi- X. We define A = 

P"1 E?=i(m/- ?)(?i 
- 

?)' 
= 

P'1 E?=i ^t$, where t/>t 
= /?t 

- 
?. We know 

E(A) 
= 

H-^A 
...(1) 

p?1 p?1 
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Let d* be the number of eigenvalues of H/(p 
? 

1) which are greater than 1. Then 

d* may be taken as an estimate of the rank of A which is in turn equal to the 

dimension of the basis of the column space of M. In this vein a decision rule of the 

following form is proposed. Let Hk be the hypothesis that the rank of A is k i.e. 

the p mean vectors lie in a k dimensional subspace. The rule is: 

Choose the hypothesis Hk if 

Ar < c(d,p,r) for r = k + 1,..., d and \k > c(d,p, k) 
... (2) 

where c's are constants to be chosen suitably. If c(d, p, r) 
= 1 for all r then the rule 

exactly matches with the above approach but some allowance must be made for the 

sampling variation of the eigenvalues. So instead of choosing d* we shall permit 
ourselves more flexibility in the choice of c's. 

It may be noted that we may determine c 1s under the assumption of multi 

normality of X }s because even under non-normality y/?Xi will behave like a 

normal for large n, on which our rule is based. 

2.2. Bayes rule. As explained in the introduction, for the sake of simplicity, 
we assume that the populations are bivariate. Let X'ij 

= 
(X^ \ X^ ) be the jth 

observation from the zth population, i = 
1,2, ...,p;j 

= 
1,2, ...,n. We assume 

Xij 
~ 

N2(fii,I2) where /?- = 
(fj,[? ,//,) XtJ and Xty are independent if (i, j) ^ 

(*',/) The joint density of the sufficient statistics (X\,..., Xp) which we will refer 

to as X' for convenience, is multivariate normal and the density is given by 

C(Y,X) e~?tr{~2E^y''+E^^-2P^'+p^'} (3) 

where Y' = 
(Yi,... ,YP). The factor C will get cancelled from the numerator and 

the denominator of the Bayes factor. 

We wish to introduce a prior given Hk is true, k = 1,2, such that the part 

depending on X cancels in the numerator and the denominator of the Bayes factor. 

The way this can be done is to put the same prior on fi under H\ and H2. On 

the other hand the prior for i/?'s will reflect the difference between H\ and H2. 
These goals cannot be achieved with identically and independently distributed 

normal /xt 's under H\ and H2 for the simple reason that fi will then have 

different distributions under H\ and H2. So we follow a different route. We 

specify separately a prior for fi, same under H\ and H2 and a prior for *&' = 

(t/?!, ... 
,i?)p), 

different under H\ and H2. Under this specification /i/s will then be 

exchangeable. Details are now given below. 

We assume fi and \P are independent and both have normal distributions. The 

distribution of fi is assumed to be the same under the hypotheses Hi, H2. The 

Bayes factor would thus be free of X and would involve only Y?'s. 

The prior for ^ is chosen from the following consideration. If e * i~ /> ^ j 

were the only factor involving 9 in the expression (3), that is, if the other factor 
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involving <P namely, e- * l ?-* ̂ '^* ' were absent, then (3) could be easily integrated 
with respect to a normal prior for ^. Moreover, under an appropriate prior the 

result would depend only on the eigenvalues of the between sum of squares and 

products matrix, the calculation being similar to that for deriving the moment 

generating function of a multivariate normal distribution. So to take care of the 

factor e * ?2^^? J we choose a prior which is proportional toe5 iZ^ ?/ 

times a normal which, as we would see, is again a normal with the same support. 

The prior for ? would also be chosen from similar considerations. We need to 

introduce some notations. Let 7Ti() and 7T2() denote the prior distributions under 

Hi and H2. As indicated 7Tk(-) would be chosen as e1 \L^^^*] times a normal 

which we would call as 7T?(-), that is 

7Tfc(?) = 
K?e?tr{?^}7r;(?) 

... (4) 

nk(?) = 
K^t*{Z??'}7rl(?) ...(5) 

where ICs are constants. While choosing 7T^(*) we incorporate the condition 

l'ip = 0, where 1' is a- vector and its elements are all equal to 1, in the following 
manner. 

Let Wi ~ 
N2(0, E?), where S? is a 2 x 2 matrix of rank k. We assume t/>|E? 

~ 

Wi 
? W under 7T?(-), k = 1,2. We put a prior on the eigenvectors of E? as follows. 

Let the spectral decomposition of E? be UD?U' where U is an orthogonal matrix 

and DJ. is a diagonal matrix, let T>*k 
= 

diag^j, a22)^ a\i > a22. For DJ, a^ 
= 0 and 

for DJ, 0-22 > 0. The cr^'s must be such that the corresponding dkk's are positive, 
vide Proposition 2.1. We take DJ. to be fixed and let the probability law of U be 

the Haar measure in the space of 2 x 2 orthogonal matrices. The 2x2 orthogonal 
matrix U can be parametrized by a single parameter 0, U = 

( *e0 
~* 

?0 ) 
and 

our assumption of Haar measure on U translates to uniform distribution over [0, 

27r] for 0, (see Muirhead (1982)). We may point out here that the direction in which 

the mean vectors lie under H\ and the direction of the major axis of the elliptical 

spread under H2 get a uniform prior. Unlike Shen and Sinha (1991) no particular 
direction gets a positive mass under H\ which should be the case in almost all real 

life situations where there is no prior knowledge in favour of some special directions. 

This construction leads to prior distributions for \P and ? as given in the following 

proposition which we state without proof. 

Proposition 1. Under Hi, the prior distribution of M* given E* = 

\Jdiag(a\i, 0)U' is normal with mean 0 and covariance P (8> Ei where Ei = 

Uc??aflf(aii,0)U' and an = 
(a*u ?n)~l. 

Under H2, the prior distribution of *& given EJ 
= 

XJdiagfo^, o~22)XJf is nor 

mal with mean 0 and covariance P ? E2 where E2 = 
\5diag(aii)a22)\Jl and 

akk = 
(ell' -n)'\ k=l,2. 
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Under both H\ and H2, the prior distribution of ? given a positive definite 
matrix 

E? 
= U' diag(a*?U, o*22) U is normal with mean O and covariance E?? 

where EA 
= U' diag(a?U,otfi)^ and c^kk 

= 
(^-np)'1. ?kk 

The Bayes factor under the priors 7Tjb(^) and 7Tk(ii) for ^ and fi respectively, 

assuming a22 < a{l} is given by 

?Xe^^dO 
",(6) 

where T\(9) 
= 

a\x X\ cos2 0 4 a*^ A2 sin2 0 and r2(0) 
= 

tfnAi cos2 0 4 ^22^1 sm2 ^ + 

(j|1?2sin2^ 4- <J22A2Cos20. The Bayes factor (BF) may be reduced to a simplified 

form, as given below, by applying Laplace's method to approximate the integrals, 
and the approximation was checked to be quite good. 

BF^--, 
v 22 -. ...(7) 

If a\] 
= 

ff22 then BF has a very simple form, namely, 

BF ? 
?ir(p- 1) ,*,^ 

- 
A2)V (1 -na^e^'*'. (8) 

Let III be the prior probability of H\ and U2 be the prior probability of H2. Under 

the condition o~\x 
= a22, Bayes rule leads to the acceptance of H2 if 

{r< n2 rfo-lK^-AjU (l-nff;,).e>^! > 

which may be expressed as 

"(p-iK "'n2(i-n<r1*1)? 

? , 1A1 /?\ 

--7-^TT-r Ini^p-lM^A, 
- 

A2)| nfr-l)^ (2 J 

We write in this way to show the basic form of the rule. The expression involving 

(A] 
? 

A2) has been kept on the right hand side with other constants because it is 

not possible to solve the inequality for A2 analytically. Nevertheless this form is 

convenient for discussion. The term involving (Ai 
? 

A2) does not influence the rule 

very much if n or p or both are moderate. 

It is evident that the rule depends on the data through the eigenvalues of the 

between sum of squares and products matrix. Moreover the rule depends on the 
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smallest eigenvalue A2 for large n or p while the difference (Ai 
- 

A2) plays a role 

when A2 is near the first term of the right hand side of the inequality (9). Thus if A2 
is the first term on the right hand side of (9), typically large (or small) values of A2 
relative to A2 will lead to acceptance of H2 (or H\) but when A2 is near the boundary 

A2, the difference (Xi 
? 

A2) also comes into play. Now we present a simulation study 
to show how the parameters are chosen, how the Bayes rule is found it?r?t i vely, 
how the ad hoc rule is refined and how the resulting rules perform. 

3. A SIMULATION STUDY 

We first decide on the values of some of the parameters. We have considered four 

populations i.e., p = 4, for detailed study. For p 
? 3 detailed simulations were not 

carried out for the following reason. With only three populations it is not possible 
to distinguish well between Hi and H2 with acceptably low error probabilities. This 

is reflected in the relatively high overall Bayes risk of about 0.3 (see table 2). Also 

the case of three populations is not of much practical interest in the sense that the 

efficiency that would be gained by recognizing a structural relationship, would not 

be much. Under these circumstances it did not seem warranted to get a detailed 

picture for the case p = 3. For p > 5 the performance of the rules get better (see 
table 2) otherwise the same pattern as observed in the case p = 4 follows and we do 

not give the detailed tables. We chose a sample of size n=10 from each population, 
which is neither too small nor too large. In any case it is easy to calculate from 

table 3 and table 4 which give the pointwise risk, what the effect of changing n 

would be on the risk of the ad hoc rule at different parametric points. For example 
if we keep the ad hoc rule fixed and change n from 10 to 100, then the risk at 

(el5e2,n 
= 

100) is same as at (10el510e2,n 
= 

10), where ex's are the eigenvalues of 

the matrix 
-^A. Here it should be pointed out that our priors depend on n and 

so a given ad hoc rule need not be close to being Bayes for different values of n. 

We chose a\i 
= 

1/11 and cr* = 
1/41 which imply an = 1 and 0^ 

= 1 and assume 

S2 
= 

a\il and EJ =diag(cr]I1,0), giving a moderate variation to the ///s. 
From the tables of simulated joint distributions of (Ai 

? 
A2) and A2 (see De 

(1993)) under Hi and H2, we derived approximate likelihood ratios at various cells. 

We found that the likelihood ratios are mostly greater than one for A2 > b and 

mostly less than one for X2 < a where b is a number near 1.5 and a is a number 

near 0.5. 

As a starting point we chose ??] = ??2 = 0.5 and substituted in the inequality 

(9). The Bayes rule is then compared with the likelihood rule based on simulated 

joint distribution tables and cut off point one. The two matched well as expected 
and on examining the likelihood ratio table, it was found that the ad hoc rule that 

seemed to be close to the Bayes rule has a cut off point approximately at 1.44 for A2. 

We rounded it off to 1.5 and checked through some simulations that its frequentist 

performance seemed acceptable. Then Hi and n2 were adjusted a little to make the 

Bayes rule resemble more the ad hoc rule with the cut off for A2 at 1.5. New values 
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are II] = 0.523 and II2 = 1 ? 0.523. At this point the Bayes rule is finalized. Again 
the table of the likelihood ratio is studied together with the Bayes factor table and 
the following refinement is suggested for the ad hoc rule. 

Accept Hi if A2 > a 

and 

accept H2 if X2 > b. 

If a < A2 < fc, 

accept H\ for large values of Ai. 

We specify the rule completely after trying quite a few combinations of (a, b) 
where a is in the neighbourhood of 0.5 and 6 is in the neighbourhood of 1.5 and 

trying few straight line boundaries separating Hi and H2 when a < \2 < b. Final 

ad hoc rule is 

Accept Hi if A2 > 0.5, 

Accept H2 if A2 > 1.5. 

When 0.5 < A2 < 1.5, 

accept H2 if 52.5 - 
35A2 < \i < 35, 

otherwise accept H\. 

This brings in a slight refinement and improvement as far as the average risk 

goes but more importantly, when a < \2 < b, the rule chooses Hi for large (Ai 
? 

A2). 
For A2 neither too large to indicate H2 nor small enough to indicate H\, we have 

perturbed the Bayes rule to get small error probability for points in Hi with a large 
value of e-?, at the cost of points in H2 with small value of e2. We felt that the points 
in H2 referred to above are close to being one dimensional and therefore are less 

important than the points in Hi with large e\. These latter points would appear to 

be one dimensional and so one should have less error probability P(H2\Hi). This 

is not what the Bayes rule does but the ad hoc rule is made to do so to have good 

frequent ist properties, with negligible increase in the Bayes risk (see figure 1). The 

performance of the refined ad hoc rule under H2 is shown in figure 2. Detailed 

tables are given in De (1993). 
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Acceptance Regions under the Ad Hoc rule 

X: 

3 . 5-f 

3 . 0 

2.5H 

2 . 0 

1.51 

1 . 0 

0.51 

U . U ?i?,?,?-i?,?[?,?,?,?|?f?r?|?j?,?y~*t?i~**i?r?j?i?r?r?< ?|?t?r?i?t 

1 0 2 0 30 4 0 50 60 

Figure 1. The refined ad hoc rule and superimposed Bayes rule 

is shown by the white curve. 

Contour plot of average errors 

against e-, and e2 

2.5 

2.01 

1.5 

LO 

0.5 

5.0 12.5 20.0 27.5 35.0 

Figure 2. Contour diagram of error under H2 for the ad hoc rule. 
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Table 1. JOINT PROBABILITY DISTRIBUTION OF THE EIGENVALUES ex > e2 OF 

^y 
A FROM SIMULATION (size=80, 000). 

0-2.5 

2.!>-7.5 

7.5-12.5 

12.5-17.5 

17.5-22.5 

22.5-27.5 

27.5-32.5 

32.5-37.5 

37.5-42.5 

42.5-oo 

Under H2 

e2 
0 

0.25 

0.25 

0.75 

0.75 

1.25 

1.25 

1.75 

1.75- 2.25- 2.75 

2.25 2.75 oo 

.003 

.020 

.019 

.014 

.009 

.005 

.003 

.001 

.000 

.001 

.006 

.033 

.034 

.024 

.015 

.009 

.005 

.003 

.001 

.002 

.002 

.025 

.029 

.020 

.013 

.008 

.005 

.003 

.001 

.002 

.001 

.022 

.025 

.019 

.014 

.008 

.005 

.003 

.001 

.002 

.000 

.016 

.023 

.018 

.011 

.006 

.004 

.002 

.001 

.002 

.000 

.007 

.009 

.007 

.005 

.003 

.002 

.001 

.000 

.001 

.000 

.031 

.099 

.113 

.087 

.057 

.035 

.022 

.007 

.019 

Under H\ 

*2 
0 

.143 

.340 

.230 

.135 

.073 

.039 

.020 

.010 

.003 

.007 

Table 2 shows the performance of the new ad hoc rule and the Bayes rule for 

various values of p. 1000 sets of mean vectors were generated and for each set rules 

were tested 100 times. Difference between ad hoc and Bayes was also noted. For 

the case p = 4 we also examined the case where ?? is unknown. Results are given 
under the column 4(u) using unbiased estimator of 17. 

Table 2. PERFORMANCE OF AD HOC AND BAYES RULES 
FOR VARIOUS VALUES OF p. 

3 

n(//i) 
Overall error ad hoc 

Overall error Bayes 
Overall difference 

Error under H[ ad hoc 

Error under H\ Bayes 
Difference under H\ 
Error under H2 ad hoc 

Error under Hi Bayes 
Difference under Hi 

V 

.546 

.283 

.284 

.071 

.100 

.152 

.066 

.527 

.459 

.078 

.523 

.198 

.191 

.043 

.145 

.109 

.045 

.261 

.290 

.041 

.523 

.205 

.200 

.054 

.104 

.130 

.051 

.315 

.276 

.057 

.377 

.157 

.154 

.024 

.168 

.141 

.034 

.150 

.162 

.017 

.287 

.120 

.115 

.024 

.180 

.130 

.040 

.093 

.106 

.014 

Now we shall try to examine whether the ad hoc rule is really performing well 

at various points in the parameter space locally. For this we choose a point 0i G Gi 
where ad-hoc rule has not done well and a point 02 G2 close to 0\ where it has 

done reasonably. Is it possible to improve the performance at 0i without sacrificing 
the same at 02? We shall construct an approximately most powerful test (based 

only on Ai,A2) from the frequency table of A] and A2 generated by simulation at 

01 and at 02 respectively. We choose 0i = 
(e\ ,0) and 02 = 

(e^ ,e2 ) and take J2) J2)\ 

D0) _ ?(2) (2), 
e\} to make the problem difficult. We avoid choosing e2 

} close to zero because 

it represents ?1 for practical purposes. 
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Table 3. COMPARISON OF THE RULE WITH AN APPROXIMATELY 
MOST POWERFUL(AMP) RULE AT VARIOUS CHOICES OF (eue2) 

UNDER H2 AND (elf0) UNDER Hx 

(ei, ^2) P(HX\H7) 

(18, 1.7) 0.235 

(24, 1.7) 0.284 

(30, 1.7) 0.290 

(34, 1.7) 0.242 

ad-hoc I AMF 
P(H2\HX) 

0.245 

0.287 

0.255 

0.198 

ad-hoc 1 AMP" 
average error 

0.223 

0.185 

0.191 

0.226 

0.217 

0.183 

0.205 

0.239 

ad-hoc 1 AMP" 

0.229 

0.234 

0.241 

0.234 

0.231 

0.235 

0.230 

0.219 

Table 3 shows there is not much scope for improvement for the ad hoc and table 
4 gives a similar picture even when the covariance matrices of the four populations 
are unknown and different. For table 4, sets of four different 2x2 covariance 

matrices, ?2?,z 
= 

1,... ,4, are chosen with 1 in the diagonals and off-diagonals as 

given below. Here the ad hoc rule uses p^^fi* *n place ?f ?? where ??,'s are 

estimated covarianees. 

Table 4. SIMILAR TO TABLE 3 BUT HERE THE COVARIANCE 
. MATRICES ARE UNEQUAL AND UNKNOWN 

Variances are 1 and covariances are .2, 
- 

.9, .0 & 0 respectively 

(elfea) PjHiW) P{H2\Hj) 
ad-hoc 1 AMP | ad-hoc | AMP 

average error 

ad-hoc I AMP" 

(18, 1.7) 
(24, 1.7) 

(30, 1.7) 

(34, 1.7) 

0.242 

0.266 

0.251 

0.220 

0.240 

0.279 

0.229 

0.174 

0.222 

0.209 

0.242 

0.270 

0.225 

0.195 

0.241 

0.279 

0.232 

0.237 

0.247 

0.245 

0.233 

0.237 

0.235 

0.227 
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