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Abstract

" A multilayer perceptron is used For the classification of noisy fingerprink patterns. In the first phase the input vector consists
of some fuzzy geometrical features. In the second phasc, we use some texture-based and directional features. The owput
vecicr is defined in terms of five classes, viz., whorl, left loop, right loop, twin laop and plain arch. Perturbation is produced
randomly at pixel locations te gencrate noisy patterns. Cut marks and loss of information in cerlain random locations are
also simulated. The investigation helps 1o demonstraie the generalization ability of the model in handling distorted ﬁngt'rpnnt

tmapes.
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1. Introduction

Anrtificial neural networks {5, 9] are found to be
proficient in solving various paticm recognition prob-
lems. An advantage of neural nets Jies in the high com-
putation rate provided by their massive paralielism,
0 that real-time processing of huge data sets be-
comes feasible with proper hardware., The networks
are.also. found to be robust to input noise and gener-

ally degrade. gracefully to loss.of components. On the -

other hand, the utility of fuzzy sets [7, 19} is inher-
ent in their ability to mode! the uncértain or ambigu-
ous data so often encountered in real life. Therefore.,
fuzzy neural networks [1.14] are designed 1o utilize
a synthesis of the computational power of the neural
networks along with the um:i:r!amty' handh mg capalnl-

ities of fuzzy logic.

In patte:n recognition and image analysis we ofien
want o mezsure geometrical properties of regions in
an image that are potcrisply defined. Many of the stan--
dard geometrical properties of and relatonship among
regions can be generalized to fuzzy subsets. There has
been a great deal of work in this regard by Rosen-
feld [ 15, 16} who made these generalizations and ex-
tended the concept of digital pictare geometry to fuzzy
subsets. Such an extension 15 called fuzzy geometry

‘of image subsets, Some more work has been done in

this regard by Pal ét al. [3, 11-13]. Fuzzy geometrical

‘measures have: also been found to reflect the spatial

(geometrical ) ambiguity of an image. Thus they seem

~ to be useful m cnmpunng image properties and. pro-

viding soft décision for i image description and analysis
by not allowing one to commit hard decisions.

- Texture is one of the important characteristics used
in identifying objecis or regions of interest in an image
[4, 17, 18]. It is ofien described as a set of statistical
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measures of the spatial distribution of gray levels in an

image. The method based on second-order statistical
features, obtained from the gray: level co-occurrence
matrix {4], assumes that the texture inﬁ:rnnatmn in an

image is contained in the overall or “average™ spa- -

tial relationships ' which the gray tones have to one
another. This:scheme has been.found fo previde a
powerful input feature representation’ for vaiicus
recognition problems.

- Automated fingerprint classification constitutes a
cumplcx problem:in the pattern recognition domain.
Conventional approaches for fingerprint classifica-
tion/recognition involve various tasks such as noise

cleaning/enhancement of the images, thinning of

ridges, fealure extraction and (then) matching. As
the regions arc not always well defined { particularly
because of the presence of noise, cui marks. blurs,
excess ink or loss of mformation}, any hard dectsion
made at an operation would have an impact on the
higher-leve! tasks; thereby introducing/enhancing the
uncertainty in the final decision. Moreover, as the
size of the database increases. the overall recognition
task may become computationally moré infensive.

~ A connectionist approach, with the input features
b-ng directly computed from the raw fingerprints
without doing low-level operations, may be proposed
as a solution for cthctentiy tackling such huge sets of
complicated data and in handling uncenainties in the
decision making process. Note that other connection-
ist appm;u.hea using low-level operations for pr
processing the fingerprint images. include the work
reported in [6] (using extracicd feature ridge paticrn

as nput and ditfercnt subnetworks for cach finger-. _
print category ) and {10] { ustng moiment mvanants for

fingerprint metching).

TI_:: fl_nrr_'ﬂeﬁt work 15 an atemnpt io demonstrate the:
capability of a multilayer perceptron (MLP) for clas-

sifying fingerprints in the aforesaid framework. where
fuzzy geometnical kavwes. and 1extural and direc-
tional features of the fingerprint images are considered
as input. The present investigation also demonstrates
ihe generalization capability of the MLP in identifying
noisy. incomplete, blurred, disiorted o2 cut marked
fingerprints, partivularly when it is traincg ily with
unamll:ﬂbt_mua_ (vorrect} sumples, The wo.w s n::ar_rled
out’in two stages. In the first part. we use fuzzy ge-
omefricat featurss as the input vector. In.the second

part, the.input veclor consists of features extracled

“from texture and somie directional properties. The out-

put is expressed in terms of the various fingerprint
categories. Note: thut in both cases the training is dﬂne
with unamhi guous {noise-free) data

2. Feature extraction from fingerprint-image
2.1 Fuzzy geometricdd fearures

A fuzzy subset of a set § is a mapping ¢ from §
mto [0, 1], Forany p £ 8. uf p) is called the degree of
membership of pin g, A cnsp (ordinary or non-fuzzy)
subset of § can be regarded as a special case of a fuzzy
subset in which the mappéng jt is into {0. 1}. Some of
the fuzzy peometncal properties of u. relevant to the
present work. are described beiow,

Let p(/) denote a luzzy representation of an Ay x N,
image /, i.c., a mapping p from 7 £ {1,....N,} into
[0. 1] rcpresenting & fuzzy subset of /. For conve-
nience, we shali use y only to denote pi(f ) in this work,

Areu: The area of a fuzzy subset j is defined as

ﬂ{lil]:[}.l_ e (1)

where the iﬁtcgratinn is taken over a region outside
which g = (. For u being piece-wise consiant (in case
of digital image) the arca 1s

a(i) = 5_:,4-:: . ()

e summation betng considered over a region outside
which gt = ©. The area ss therefore the weighted sum
of ihe regions on which ji has constant vatue weighted
by these values.

Perimeter: If j0s piece-wise constant, the pernimeter
of g 15 defined as

pLY = 3 i) — iy AL LK) (3)
ik

This is just the weighted sum of the lengths of the arcs

Atd f k) along which the regions having j values p(f)

und g /) mecr, weighted by the absolute difference

of these values, In case of an 1mage if we consider
the pixels as the piece-wise constant regions, and the
cormon are length for adjacent pixels as unity, then
the perimeter of an image is. defined by

Pty = EI iy - i ]i_

it
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where p(i) and _u{ 1) are the rrmnbershlp values cf lwa _

adjacent pixels. -

Compactness: The compacmess of a fuzzy sct g -

having avea a(u) and perimeéter p(,u) is d:eﬁned as

mmpm} a(uhp {n) ' {5)

Physically, cnmpacmass means the fraction of max-
imum area (that can be enciscled by the perimeter)
actually occupied by the fuzzy l'Egiml-"l;:ﬂni:EpI Tepre-

sented by .

. Height and width: The height A{p) and width wi{ i)
of a fuzzy set y are defined by
= | maxutz )} dy (6
and
w{p) = f m:';:-i{gt[x. ¥t dr (7)

where 1he integration is taken over a region outside
which u(x. v) = 0. For a digital picture the definitions
take the form '

) = 5 max{utx, ) o ®
and
wiu) = '):m.f_m{y{x, i} (%)

So, heigin (width) of a digital piciure is the sum of the

paximum membership vatues of each row (column). .

Lenipth: The length of a fuzzy set ji may be deﬁm:d_
as

1) = max {[,u!_x, }_-.] d_1'} | (10)

‘where the iniegration is taken over the region outside
whichi n(x, 1) = 0. In case of a digital picture the
expression (akes the form

!{,u] =-max {E-,{!{.‘t‘, _1'}}. _ ' {1%)

Brmrfrh The breadth of a fuzzy set ;t may be de-
fined- :1::..

b{u!— _{futx}ldr} - )

where the integradonis taken over the region cutsrde
which p{x, ) =0, For a digital image _'

ﬁiﬁilzm?K{ZF{L-ﬂ}" oy

The length {breath ) of an image fuzzy subset gives its
longest expansion in the v direction (x direction). if-
pt 18 crisp, p{x. v) = 0 or }; then length (breadih) is
the maximum number of pixels in a coiwnn {row).
Index of grea coverage (I0AC): The index of area
coverage of a fuzzy set may be defined as .

10AC() = a(p)/ i) X blp). (14)

- F0AC of a fuzzy image subset represénts the fraction

{which may be.improper also) of the maximum area
{ihat can be covered by the length and breadth of the
image ) actually occupied by the image,

2.2 Texturd and directional features

The textural features are computed from a set of an-
gular nearcst-neighbour gray-tone spatial-dependence
matrices [4]. The contextual texture information is

- specified by the matnx of relative frequencies Py; with
 which two neighbouring resolution cells, having gray

levels ¢ and j and separated by a distance &, oceur in
the mmage.

The unnormalized frequenclea are deﬁned by the
elements P(i.f. 0.8) of a set of co-occurrence ma-
trices, where # is 0°, 457, 90° and 135" for hon-
zontal. right-diagenal, vertical and left-diagonal
neighbour pairs, respectively. For nearest neighbour

' pairs, we have § = 1. Then the number of neighbour-

ing resolution cell pairs R is given by

INAN, 1) for § = 0°,
R={ NN, -1)  for8=9%0°,  (15)
HN, < 1N, — 1) otherwise, '.

Angular second moment (4) gives a measure of the
homegeneity of the texture and is defined as -

AN : P | i
:E{Z(P{H]) | “ﬁ}

Note that R, me Eq (15}, 15 uscd as the nc-nnalmng
constant. C ; :
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: The méas.ure Homuog(t ) alm 0rov idcs an indica-
tion of the-amount of hnmugenﬂr} [8] in the texture.
Itis efpm&qed as

S O PaY) |
" ;,,_ﬂw»z{!,_,,.l..;.T : -

Note that the notation # was omitted in Egs. (16)
-and {17} to avoid clutter. Each measure may be cal-
culated four times, corresponding to each of the four
“diréctional co-occurrence matrices. The average val-
ues 4 and H; provide a non-directional (rofation-
invariant } lexture representation. We have

_I,.:l — %[,‘fn :‘f".‘i.}.j ""’A‘HI +Ai35}'

H = i(Hn + His ‘|.‘HQ(1":' ffh33).

(18)

‘Next, ket us consider the ¥, x N, image to be
traversed along the right diagonal. \’t‘f.rlil:ﬁ]]}-’ (across
the middle ). along the tefi diagonal and horizontally
(along the middle and alsc the lower region), such that
each of the five directional traversals encompasses &
band of w pixels.

- Frequency 1s defined as fhe sumber of times one
encounters humps or focal maxit :a {valleys or local
minima) among (e gray tone values ia th2 course of
the traversal. An average value s computed along cach
direction, considering the group of w pixels. We have

A . : oy ' .
F ==Y (Ne of local maximalminime) (19}
W kL)
. Differeqce is evaluated as the square of the differ-
ehee in the gray level values, between successive pix-
els, along the direction of traversal. We define

D= ~zg (G- Gy} 20)

where pand p + | refer to consecutive piels along
the chosen direction.

Directional height s computcd as the normalized
sum of the maximum gray tone value (amoeng the band

of w pixels) along ihe dircction of traversal. It is ex- -

pressed as

Ll 1) ﬂ

where the summation over p e fers to the u}t of Pl"’.r’.‘h

alnng *he dtrectmn of tray El‘s.il

; -
Ewy=-Y%_
=30

I . : :
= ‘:max {G;.-} | - (21

Directional contrust (for vertical travérsal with ori-

“ertation /) is computed as

Pt

. | Al 2 - 3 '. iy
_m_ﬂmn{_g‘ J___MI__]} @y

t= gm0

where P(i.f) refers 10 the relative frequencv with
which two nearest neighbour cells, having gray lev-
els i and / occur along the vertical band of w pix-
els in the image. Here, the normalizing constant is
21-1'[:."\;_.‘ = 1}

3. The multilayer percepiron

The multilayer perceptron (MLP) [5, 9] consists
of muluple layers of sigmoid processing elements or
neurons that interact using weighted connections.
Consider the network given in Fig. 1. The output of
a neuron in any layer other than the mput fayer
(h > 0} 1s given by

I -
sl
s —— (23}
g I 4+ e—'_‘r_._j_.u ;
where 3 is the state uf the ith neuron in the pre-
ceding hth layer and w¥, is the weight of the connec-
tion from the ith neuron in layer / to the jth neuron
in laver 4 + 1. For nodes in the input-layer we have
¥} = x}. where x¥ is the jth component of the input
veglor. _
The least mean square error in outpat vectors, for a
given network weight vector w. is defined by

AL % (24)

where 3 (w) is the statc obtained for output node
j in layer H in inpul--output case c. and 4, is is
desired state specified by the reacher. One method
for minimization of £ is to apply the method
of gradient-descent by starting with any set of
weights and repeatedly updatlng cach weight by an
amount

 F
—‘-I_'&u' Af - 1) : {25)

{H

A — —&

~where the positive constant ¢ controls:the descent,
=21 13 the momentum coetliciens and ¢ denotes
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Fig I The mululayer pereaprron.

the number of the iteration currently in progress.
After a number of sweeps through the training set,
the error £ in Eq. (24) may be minimized.

To model real-hife data with finite belongingness to
more than one class, we can clamp the desired mem-
bership values (lying in the range [0,1]} at the output
nodes during training. For the jth input pattern we de-
fine the desired output of the jth cutput node as d;.
where 0 <d; <1 forall j. In the crisp case this reduces
tod; € {ﬂ. ] }

4. The output vector for the fingerprint patte:m

Fingerprint images ecssentially consist of ridges
and vaileys. The ridges run somewhat parallelly
and slowly: over the finger. The ndge struclure
and the skin texture provide the uniqueness to
the fingerprint, and this remains unchanged dur-
ing one’s lifetime. A fingerprint consists of three
regions, viz., core area, marginal area and base
area. The ridges from these three arcos mect at a
triangalar formation called the deltz region. The
centroid of this region is identifcd as the delta
point. - Bk ' :

4.1, Fingerprint cuteguries

‘Depending upon the ndge flow on the core areaand
the number of delta points, fingerprinis can be broadly
classified (according to Henry) [2) as
e Plain arch; Ridges enter from the left side, nse in

the middie and leave on the right side.

" » Tented arch: Same as in plain arch, but the amount

of rise in the midd!e is more here.

 Loop: This is the most comirmon type. Ridges enter

from one side, proceed towards the centre and then
turn to leave from the same side. There are two
caiegories, viz., lefi loop and nght loop, depending
on the direction of the loop formed. :
» Whol: Ridge flow in the core area is circular, and -
two delta points are defined. _
e Twin loop: The core area consists of ridges from- -
two distinct loop patteras. 5 oA e
» Accidental: This type consisis of those pattems -
that cannot be classified. under any-of the above -
categories . . . G
In this article, we have studied the classification
ability of our method on five common classes, viz.,
whorl, left loop, right leop, twin loop and. plam .

arch. These correspond 10 the five output nodes with |
- desired outpui o, for the MLP use1. Fig. 2 shows some
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CFig, EThe :iitferen't_ categones of fingerprint pattems. () Whorl. (b) left loup..1€) _rig_h:t loap, {d) twin loop and e ptain arch, -
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I}r‘pl{:al mmges of these five dlﬂ'erem fingerprint cate-
gunes 5 !

5. Moisy pattern generation

In‘ practice, we gel ﬁnﬁérprints which are noisy. -

Noise may be of different types. There may be one or
more cut markis) in the fingerprint, some portion ol
the fingerprint image may be missing due 10 an im-
property taken impression, or noise may be distributed
throughout the image. To medel such situations, we
have generated noisy fingerprint data using the fol-
fowing techniques.

5.1 Rundrm distribution of constant noise

With an ohjective of creating more patterns and also
to test the performance of the madel in the presence
of distorted images, we introduced noise. Perturbation
was made randomly at perc% of the N, x N, pixels
(for each pattern ). Let pixel p with gray value G, be
randormniy choscn to be perturbed. Then we have

i {G. +nt i G,2N, - nt
G -

N, uiberwise G

for p= 1,2,..., perc + Ny = N, 100, where nt repre-
sents the magnitude of noise introduced.

5.2, Randow: distribution of randoem nuise

Next, we randomly selected a predefined percent-
age of pixels and injected random noise i the cor-

responding gray values. Let the magnitnde of noise

s0 added be represented by X = x. where X is nor-

‘mally distributed. We use X -~ N(a. a) where m is-

the mean and the o is the standard deviation of the
‘normal distribution. Thus, if a pixel p with gray value
G, is selected randomly, its new gray value becomes

Gp=Gy+x .+ (27)
ﬁux;h that {} < Gpéh;,.

4 {‘m.nmrk

Any two pomts in the fingerprint image were se-
tected:randornly and the pixels fying:on a tine of width

&, joining thesc, Twa poiits were sv:t o the inghest

gray value, NV,. In other words; we used -
G,=N, - e ' _ {23}.

for all plxe]'-‘. P Iymg along the, generated Imﬂ {of mdth
b, ), 1o simulate a cut mark on the fingerprint image.

The cut marks were generated in two different orien-
tations {along the left and right diagonals through ihe
image ), such that they are 90 apart. These ase termed
as the forward and reverse dlrfﬂluns respectively, for
all later references.

5.4. Missing information

To model the occurrence of loss of information in
a certain portion of a fingerprint image, we selected
a pontion of the image randemly. Setting al! the pix-
¢ls within this portion 1o the highest (N, } or lowest’
{1} gray value simulates the loss of information in
th-t region. So we have G, = N,(1) for all pixels p
Iyin. within the randomly selected portion of the.im-
a2, Note that setting G, = N, models the case for

. insufficient inking of the fingerprint in the sard region,
whereas setting G, = 1 simulates the condition of ex-

cess inking or blutches.
5.3, Other nolsy versions

We randomly selected several seed points and gen-
erated boxus of size h, x b, around these points m
cach case. Then the gray values of the pixels within
these regions were replaced by the average of all pix-
els within the respective boxes.

6. Implementation and resuits

There were initially thirty two noise-free fingerprint
patterns, belonging to the five categories whorl. left
loop, fight Joop, iwin Joop and platn arch. In proce-
dure (i), we generated a total of 45 noisy samples,.
randomly perturbing 10% of the pixel locations with
constant magnitude {#s == 2} of noise by Eq.-(26),
while the original 32 patierns were used for trainmg
the netwark, The input features' were extracted as de-
seribed in Section 2, in cases of both the training as
well as test sets. A widthof w =5 waa. chosen for the

'IZIIFECHB['I:I] features of’ Eqa (]9] {
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{d}

Fag, 3. The differcni types of noise mndl,!imi {a) Random noise. (b cut =ark, 1c) missing information (bfack ). and {d) missing information

u'. ke .

' Pmcedure (i1} involved simulating random noise.
cut marks and loss of information in certain reglons,
as explained in Scctions 5.2-5.5. The various types of
noise injected are illustrated m Fig. 3. For inserting
random noise into an image we used a normal dis-
tribution with mcan 2 and standard deviation 10.0. A
total oi 10% of the pixels from the whole i image werg
selected for this purpuse. In the case of cut marks a
band of width b, = § was chosen in Eq. (28), while.
for the averaging of gray values of Section 5.5 we
used boxes of length b, = .21, Once agam the 32 un-
ambiguous tnmq{htrcc} hng::rprmt images constituted
the training set.

The mult_llay.cr perceptron had five output nodes
corresponding to the five fingerprint categories. We

used various numbers of layers as well as hidden nodes -

m. Note that in the case of networks having two

‘dden layers, the nuinber of hidden nodes m was

indicated as sy > corresponding to the two layers
respectively. The best match h was computed for the
(ratning set winle the individual classwise. recognition
scores along with the overall score ¢ were computed
for the test set. The network was trained in the batch
mode and ali input features were r.armahzcd to the

“range {0.1].

6.1, Using fuzzyv geometrical featires

The whole image was first divided into 16 blocks,
cach of size 64 x 64. Then we calculated the eight

fuzzy geomctrical features of Egs. (1)-{14) for each
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Tabie 1
Performance of fuzzy geometrical features using three-layered net

Hidden ndesm 25 0 - 35 a0 45 50
. Best maich 1000 1000 1000 1060 1000 1000
Test ;
. Whorl 78 TII8 TAI RIS 7L TILIE
L. loap bo.67 5556 6667 3356 5550  66.67
R. loop 6667 6667 6667 6667 6667  66.67
T. loap 1000 1000 1000 100 1000 88.89
P. arch 1000 1000 1000 1000 1000 1000
8222 800S00 HOO

reerall # Iz 500

such subimages and generated a total of 128 features
for a fingerprint. An MLP with a single hidden layer
consisting of m hidden nodes was used for classifying
the imnages. A total of around 1000 sweeps were re-
guired to reduce the error sufficiently dunng traiming,

6.1.1. Procedure (i}

Here we used the entire data set of 128 input fea-
tures. The results in Table 1 demonstrate 100% fearn-
.ing over the training set (consisting of the original
32 unambiguous images) and a good performance
" { = 80%) for the test set. It was anserved that the model
had relative difficulty in classifying patterns failing
under the categones left loop and right toop. The
test set corresponded to the palterns penerated using
- random noise of constant magnitude as described 1n
Section 5.1,

- 6.1.2. Procedure (i)

In this part we tested the effect of reducing the rather
large number of input features (used in Procedure (i))
on a different set of. noisy patterns. For this purpose
-we selected five features. viz., perimeter, compact-
ness, width, breadth and 10AC (from the eight initial

. fuzzy geometrical featurcs) intuitively. It can be ob-

served from Eqgs. (1) and (2) that area is merely the
sum of all tne pixels in an image. Therefore, we ig-
nored the feature area as this does not consider any

“neighbourhood information of a pixel. Sincé the fea- -

tures height and length are analogous to the features
width and breadrh, respectively (the only difference
being that the computation is row-wise/column-wise ),

e Sl:iﬂ,tﬂd I:ml}r the reatures w .-drh and bre adth from

this set. In addition. we retained the two extracted
features, viz., compactness and TOAC. These five
features werc calculated for each of the subimages
(obtained as above), generating a total of 80 fea-
tures. A multilayer perceptron with one hidden layer
containing 25 nodes was trained for 1000 sweeps
during training and 100% classification accuracy was
obtained for the iraining set (consisting of the 32 un-
ambiguous images). Finally the network was fested
with the different types of noisy data (simulated as
described in Sections 5.2-5.5), consisting of random
noise with random imagnitude, cut marks, infosmation.
loss and averaging of gray values. '

Tabie 2 shows the results of the testing phase using
both 128 and 80 features. ( During traieing the classifi-
cation accuracy was 100% in both cases.) The resuits
reveal that the data are very much sensitive to random
poise as compared to other types of noises. This may
be explained by the fact that the total number of pix-
els permurbed in this case, ie., 10%, was much larger
than that inveived in the other cases (like cut mark, in-
formation loss or averaging of information ). The per-
formance was found to be the best in the case of the
patterns where the gray values had been avcragcd over
small regions. As expected. the performance deterio-
rated {on the whole) 'I-I'-II]'I a raductmn in the nmnber
of input Fealum.. -

Next we computed all the E’.lght fuzzy gmmﬂm:al
features of Egs. (1)—(14) globilly, on the whole im-
age, without dividing it into blocks. The network was
trained with these eight input features (with seven
hiddert nodes ) for 50,000 sweeps when 96.8% clas-
alllcalmn accuracy was obtained. Testing was camied

- _out on the nmay data ‘as above. Re:.uha uf Tabie 3
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'Reci}j.:n'rtiu'n scome %) of nowy data with fuzzy peometrica! fealures

. _ Cow L Cumark Information loss )
IN:ui:ic t;me R:.'ll_.‘idﬂm noise! - Forward ~ Ruwerse Black White Averaging pray values
Featwres: 128 %0 - - 128 & 128 ¥ 138 0 128 80 (3 &0
‘Whart HJ..H 6.0 fon 1000 1o - 1000 M TEHE L AL .0 QLYY 1.0
‘L. leap HNRD - 1MLO (og  FOOE 1000 T000 agde T 1000y T D [0
R loop ' 1000 HMLD © IBOD 1RO 100G TG W00 Q000 I0R0 00 1000 1000
T. fvup Hiry 1000 LR R37 LR 8aT HEHYLD ka7 714 424 000 JEREL
P. arch T4 7.2 EL V) 1006 {iHLD LCHYAD PO - IHEAD R fb.7 JELIRE 1.0
Overatl 1 BE3 T30 W00 Y69 100D 9% 00D Y64 BER 656 10U 1600
Tuahle 3

Rucogmition scuve {%u) of noisy data with § fozey geomarical features

- Inlormation loss

Cotmaek
Noisge tvpe Randoum nuise Forwarnd Reverse - Blick Whiee Averaging prav values
Whorl 3i14) a0 RN nth0 400 LD
L. vop ¥R} a6 7 Bh.7 60T &h7 0.7
K. leop 3313 L LA IR Hi6. 7 67 O 03
T. lvop LR T4 714 RFN g i 0
P, arch A ) LI B EL YR ELIAY 3 0.0
hoperall f 438 LA ) . Mg TR o i

‘deinonsirate Lhat the performance is again verv much
sensitive 10 the presence of random noise, and leas
sensitive 1o the cate ol the ovoiaging 3Y mmay
values. Note that the recopnition ability of *hw net-
work 1s poorer tn afl cases with this reduced iaput
feature set.

6.2, Using rexturad and divectional input fearures

A wotal of 27 textural and directional {eatures were
generated tromt the whole image using Fgs. ( 16)--(22).
The training and test sets were the same as vsed in
case of the w2y geometrical features desiribed in
Section 6.1 (for the two comesponding procedures).
The number of sweeps required during training were
of the order of 150 10 200. It may be mentioned (hat
here cach input feature was computed along thée four

directions; viz., verical, horizonial, right diagonal and

left diagonal. This served 1o capture the dircetiona!
properties of the image pattern. Note that this tech:
mique is different from the division inte blocks as de-

scribed for the fuzzy g&dmctricéﬂ features. Thus both - |

techniques serve to capture more wnformation about

the input space, albeil in different ways.

6.2.1. Procedure ()

Tuble 4 depicts the results obtzingd with the textu-
ral and directional features wath the test set being gen-
erated using random noise of constant magnitude as
described in Scction S.1. During training, the network
classified with 100% accuracy. The testing phase was
also reasonably pood, constdenng the much smaller
number of sweeps required for training and 152 smatler
number of input leatures invoived (#s coimparad 1o the
fuzzy peometrical features of Table 1.

0.2.2. Procedure (it}

in this part we used a three-layered MLP with 15
hidicnt nodes. The performance on the noisy data
was found f; be pooter in Table 5, as compared to
that obtained with the fuzzy geometrical features of
Tables T and 3. Here we have tested the effectiveness
of the model for distortion under different types of

" noise stmulatéd as deseribed i Secuons 5.2-5.5.
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Table 4

Performance of texiural and directional fearures

[ayers 3 4

Hidden nodes m I 15 20 25 1. 12:9

Brest match b IU{}.U. 1.0 100.0 100.4 0 1HLD

Test N
Whorl 06.7 66.7 667 667 5546 6.7
L. Lowp il 11}).0 HIL U 66.7 &b 7 GO
R Loop 66,7 66.7 667 66.7 434 454
T. Loop 35.6 ng.9 889 100 718 78
P. Arch LIHEQ 1K1 20T} 1{HLID 100.0 1000
Overall s T1.1 44 B4.4 LA H LR 714

'I_":tl'lle 5

Recognition score [*5) of neisy data with textural and directional featores

Cut mark Informatton loss

Moise tvp< Random noisg Forward Reverse Black Whitc Averaging gray values
Whaor! 0.0 6.4 10600 i N1 200 [T}

L. loop 1 (3.0 1141.1) 10€).00 oh. 7 333 (R

B. loop 00 66.7 0o £00.0 1000 LRk

T. ivop - {1} Ti4 286 _W.U . 400 85,

P amch 7.2 100.0 .3 LD 1000 RN (R

Crverall ¢ ] 344 759 LR 5.0 96

This work serves to bring out the ublity of the fuzzy
geometrical features in classifying fingerprint images
under various types of distortion, viz., random noise,
cut marks, information loss and averaging of gray val-
ues. It is observed that the more conventional texture-
based features are Jess effective in modelling such
cases. Note that, once again, the network generated
ihe worst resulis in the case of random noise and best
resuits {(comparable to that of Tables 1-3) in the case
of the averaging of gray values.

7. Conclusions

. The multilayer perceptron was used for the classi-
fication of noisy fingerprint images. In the first phase,
furzzy geometrical features were used as, the input vee-
tor. In the second case, the input vector censisted of

features extracted from texture and some directional -

properties. The output was provided in terms of the
five fingerprint categories, viz., whotl. left loop. right
loop, twin loop and plain arch. Random perturbation
of pixel gray values was undertaken to obtain noisy
patterns. Cut marks and loss of information in ceriain
regions were also simulaied to. model damaged or dis-
torted patterns, Note that in both cases.the training set
cansisted of the unambiguous {(noise-free ) fingerprint
images. ' :

The results demonstrate that the use of fuzzy ge-
ometrical features helped ihe neural nctwork in rec-
ognmzing distorted patterns, to an appreciable extent.
This is a positive indication of the generalization’
ability of the neural net based approach -and the
choice of the fuzzy input features selected. for the
purpose of classifving distorted fingerprint patterms.’
The noise could be in the form of cut marks, blurs
or perhaﬁs be due to insufficient inking or smearing
of the fibgerprint images, Akhough only synthetic
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dlstnm{m has Im:n uscd in thc ]:Il'ﬂhﬂl'ﬂ “nrk the mulrs
hold promise for further mw:stlgdtmn mth r}aturail}

distorted Imgf:rpﬂnt patt:,ms. _
The fact that the cus mmarks or oy uj m_‘jnmm.l‘:mt
could be better-classified by the neural network brings

out an interesting point for furtner investigation. Per-
haps the 10% random notse, whick visually damaged

the pattern very little, cavsed some major changes in
the feature values computed (both in ¢ases of fuzzy
geometrical and textural/ cirectional features). This

calls for the selection of some new features {probably -

with a different approach 1 that may be able to over-
come this problem. However, 1t should also be noted

that the 10% locations of 2256 % 256 image consist of

‘much more pixets than a cut wark of size (say) 21 « 5
or a region of information loss of size (say) 21 x 21,
This probably aceounts for the better performance in
the latter case even though the distortion may have
been in a sensiiive region of thr.. tmage that is relevant
for the classification.
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