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Abstract

It is well known that the normalized spacings of a random sample from a DFR (IFR)
distribution are stochastically increasing (decreasing). In this note we strengthen this result to
show that if the parent distribution is DFR, the successive normalized spacing increase in the
failure rate ordering (which implies stochastic ordering) sense. We also study the joint distribu-
tion of the normalized spacings when the parent observations are not necessarily identical. It is
shown that when the observations are independent with (possibly different) log-convex densit-
ies, the joint distribution of the normalized spacings is arrangement increasing.
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1. Introduction

In reliability theory and survival analysis, the nonparametric classes of increasing
failure rate (IFR) and decreasing failure rate (DFR) distributions play an important
role. There is a vast literature on stochastic inequalies and order relations between the
various statistics when the observations come from such distributions.

Let X,,..., X, be a random sample of size n from an absolutely continuous
distribution with density function f, failure rate function rg, distribution function
F and survival function F=1—F. As is the convention, we shall denote by X, , the
ith order statistic of a sample of size n. Let D;.,=(n—i+1)(X,;.,— X,;_,.,) denote the
ith normalized spacing, i=1, ..., n, with X,.,=0. It is well known that D, ., ..., D,.,
are independent and identically distributed if and only if {X,....,X,}
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is a random sample from an exponential distribution. Barlow and Proschan (1966)
proved the following result on stochastic ordering between the successive normalized
spacings from DFR distributions.

Theorem 1.1 (Barlow and Proschan, 1966). Let X,, ..., X, be a random sample of size
n from a DFR distribution. Then

(a) Di:nS!éfDi+1:n, i=1"'-7n_1,

st

(®) Diiny1 <Diw, n=ifor fixed i.

Similar results hold for the IFR case with the inequalities reversed in (a) and (b)
above. Later Pledger and Proschan (1971) partially extended this result to the case
when the random variables are independent with proportional decreasing failure rates.
Kim and David (1990) have also obtained some results on spacings from IFR (DFR)
distributions.

In Section 2 we strengthen the above result of Theorem 1.1 from stochastic ordering
to failure (or hazard ) rate ordering. If F(G) denotes the survival function of a random
variable X(Y), we say that X is greater than Y according to failure rate ordering
(written as Xﬁ;Y) if F(x)/G(x) is nondecreasing in x. In the case of continuous
distributions, this is equivalent to the failure rate of F being uniformly smaller than
that of G. If f(g) is the density function of F(G) and f(x)/g(x) is nondecreasing in x,
then we say that X is greater than Y according to likelihood ratio ordering and write it
as X h;Y. Likelihood ratio ordering implies failure rate ordering, which in turn implies
stochastic ordering. For some other properties of these orderings, see Bickel and
Lehmann (1975) and Joag-dev et al. (1995). We also show in this section that,
under the above conditions, the normalized spacings are also ordered according to
dispersive ordering. In Section 3, we look at the vector of D;.,’s as a whole and
establish that they are jointly likelihood ratio ordered (cf. Shanthikumar and
Yao, 1991) when the parent densities are log-convex.

2. Failure rate and dispersive orderings between normalized spacings
from DFR distributions

We shall need the following lemmas to prove our main results.

Lemma 2.1. Let i, (x, y) and ¥, (x, y) be positive real-valued functions such that
(1) ll’z (X, y) is TPZ’ that iS, fOr Y1 <yZ’

l/IZ (X, yZ)
(%, y1)

is nondecreasing in x,
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(i) for y1<y,.

Yy (X, y,) . e
———==" s nondecreasing in x,
l/jZ (X7 ,\’1)
(i) for each fixed x,
Yy (x,y) . Lo
———— is nondecreasing in y.
Yo (x.y)
Then for x,<x,, y1<y,,
0y (x2, y2)Wa (X, ) =Y (Xg, y)Wa(xa, v2) (2.1)
Y (X, y) P (X2, Vi) =Y (Xg, yoO W2 (X, y2) (2.2)

Proof. Since yr;(x,y)/{,(x,y) is nondecreasing in x and y, it follows that for x; <x,,
yl <.v2~

lljl(X27y2)~l//1(x19yl)>l//1(xl’yz)_llll(xbyl)
Y2(X2,¥2) Wz(xhh)/l/’z(xls}'z) l//2(«\'2’)"1).

Also it follows from the TP, property of i, that for x; <x,, yy <v,,

YalXa v ) Wa(x, ¥y 1) 2o (X y2)Walxe, vy ) (2.4)

The required result follows by multiplying the inequalities (2.3) and (2.4) and noting
that the left-hand side of (2.3) is nonnegative.

—
o
%)
-~

Lemma 2.2, Let

Wolx, y):F”_"(L.wL,\’),

n—1i

— . X
X, ___Fn*nkl ) ),
Yalx, ) (n-—i+1+">

where F is DFR. Then iy and 5 satisfy the conditions of Lemma 2.1 for 1 <i<n—1.
Proof.

Ya(x, y3) . 7(/ X _ X '
In<{-——">=(m—i+1)|InF —+yy J=In F{ ———+y, ] &
n{wz(x,y,) =i D I P e oI P )

On differentiating this with respect to x, we get

¢ (Pa(x, y2) X ( X
_71 —_ - i 3
Cx n{wz(x,yl)} rF(n—i+1+’\2>+rF &n—i+1+'”

20 for Vi <y2

since rg(x), the failure rate of F, is decreasing in x.
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Hence ¥, (x, y2)/W2(x, y;) 1s nondecreasing in x for y; <y,, thereby proving the
first part.
The rest of the proof follows on the same lines. [

Lemma 2.3. Let y(x,y) and Y,(x,y) satisfy the conditions of Lemma 2.1 and let
(Y1, Y,) be a bivariate random vector with joint density f(y,, y;) satisfying

S, y2)2f(y2,y1) Jor y1<ya. (2.5)

Then for x; <X,,

E[Y1(xy, Y2)] <E['//1(X2, Y3)]
E[Y2(x1, Y1)] E[Y2(x2 Y1)1'

Proof. For x; <x,,

E[y1(x2, Y2)¥2(x, Y= E[Y1(x1, Y2)¥h2 (x5, Y1)]

=ff (Y1 (x2,y2)¥2(x1, y1) =1 (X1, 2)¥2(x2,1)] f(¥1, y2) dyy dy2
+ff [¥1(x2, y2) W2 (X1, 1) =1 (X1, Y)W 2(x2,¥1)] f(¥1, ¥2) dys dy,

o | A AT AR EACR AT AR T

+ {1 (2, y )2 (X1, ¥2) =V (X, y )W (X2, ¥2) } [(¥2, y1)]1dy; dy,

(on making a change of variables in the second integral)

>JJ [¥1(x2,y2)W2(x1,¥1) =¥ 1 (X1, y2)¥2(x2,51)
y1€y2
F (0 y )2 (X1, y2) =¥ (x L,y Walx2,y2)] f(y1, y2)]1dy dy,
=0. (2.6)
The inequality in (2.6) follows by noting that for x; <x,, y; <y,
Wi(x2,y2)¥2(x1,y1) =1 (X1, ¥2) W2 (X2, 1)

ZY (XL Y1) Wa(x2,y2) = Wi (X2, Y1) W2 (X1, y2) 2.7)
(from Lemma 2.1) and by multiplying (2.5) with (2.7). Since by Lemma 2.1, the

integrand in (2.6) is nonnegative, the required result follows. [

Remarks. (1) If Y; and Y, are independent random variables such that Y; [rg Y,, then
(2.5) is obviously satisfied and consequently Lemma 2.3 will hold in this case.
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{2) Lemma 2.3 generalizes the result contained in Lemma 2 of Bickel and Lehmann
(1975).

Now we prove our main theorem.

Theorem 2.1. Let X,,..., X, be a random sample of size n from a DFR distribution.
Then

(a) Di:nfrgDH-l:n’ i:l,...,n—], (23)

(b) Dinsy<Dins n=ifor fixed i. (2.9)
Proof. (a) Let f;., denote the probability density function of X;.,, i=1,....n The
survival function of D;., is

P[Di:n>x]=P[(n—i+1){Xi:n _Xi‘ltn}>x]

i _; n—i+1
:J[Ml} G du

F(u)
B F_ X - n—i+1Fi42 )d
_f n_i+1+u A (u) f(u) du
=C(i, n)E[F"_i+1{n_>;+l+}’(i-,-)}} (2.10)

where C(i, n) is a normalizing constant and Y- ;,=max{X, ..., X;_{}. X;'s being
independent copies of X.
We have to prove that for x; <x, and 1 <ig<n—1,

P[Di+1:n>x2]>P[Di+1;n>x1]
P[Di:n>x2] - P[D,g,,>x1] ’

that is, to prove that,

E[F" 0 /n—+Y8)]  _ E[F"(x/n—i)+Y§)]
E[F" " Y in—i+ 1)+ Yy )1 E[F" FUx/n—i+ 1)+ Yi_y)]’

(2.11)

where Y =max{X;, ..., X,_;} and where (X, ..., X5;_,) are 2i—1 independent
copies of X. Let

n—i

()

Yi(x, y)=Fr"! <i+y>,

+
n—i+1
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Then (2.11) is equivalent to

E[yy(x,, YJS)] < E[yq(xq, Y(S)]
E[y,(x,, Y(i—i))]/ED//Z(Xb Y(i—i;)]
The proof of (2.12) follows from Lemmas 2.2 and 2.3 since Y;_,, and Y are

independent and Y;_ l)gY(,)
(b} We have to prove that for x; <x, and i=0,...,n—1,

(2.12)

P[D;yy..>x3] S P[Diy1.a>x1]
P[Di+1:n+1>x2]/P[Di+1:n+1>x1].

From (2.10)
P[Di+y.,>x]=C(i+1, n)EliF"’(ﬁ-g- Y(i))]

=C(i+1, nEY(x, Yyl (2.13)
and

. _— X
P[Di+1:n+1>x]=C(l+1,”l+1)E|:F +1<n—i+1+Y(5>}

=C(i+1,n+D)E[Y,(x, Y§)] (2.14)
Proving (b) is equivalent to showing that

E[Y(x,, Y(i))] >E[‘p1(x1, Y(i))]
E[y;(x,, Y(E)]/E[Wl(xn Y(S)] i

where again Yj; and Y} are independent as in the first part. The proof of (2.15) follows
from Lemmas 2.2 and 2.3, [

(2.15)

Barlow and Proschan (1966) have shown that spacings of ii.d. DFR random
Varlables have also DFR distributions. Bagai and Kochar (1986) proved that if
G < F and if either F or G is DFR then G is less dispersive than F (G F)in the
sense that G 1 (v)— G Y u)<F Y (v)—F (u) for 0<u<v<]1. The proof of the
following theorem follows from the above results.

Theorem 2.2. If X, ..., X, is a random sample from a DFR distribution, then for
i=1,...,n—1.
dis
(a) Dl n \p Di+1:n,
(b) var(D, n)<var(Di+1:n)a
disp

(C) Dl 1l < Dl ns
(d) Var( l:n+1)<var(Di:n)-
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3. Joint likelihood ratio ordering between the normalized spacing
from distributions with log-convex densities

In the previous sections we discussed some stochastic orders between the nor-
malized spacings in terms of their marginal distributions. We know that the nor-
malized spacings are independent only if the parent distribution is exponential. It is
argued that in the case of dependent random variables, studying only the stochastic
ordering between the marginal distributions may not be very useful in revealing
monotone tendencies between dependent variables because the dependence informa-
tion is being ignored. Realizing this, Shanthikumar and Yao (1991} introduced some
new orderings of random variables for studying the stochastic relationships between
the components of a random vector. We start our discussion with the extension of the
idea of likelihood ratio ordering. For two independent random variables X | and X 5. it
is known that X,'<X if and only if

E[p(X1. X)) 1ZE[P(X,. X1)]. V¢e¥,.. (3.1)
where
G, P d(Xy, X)X, xo) Y <Kx, ). (3.2}

Motivated by the above characterization of likelihood ratio ordering, Shanthikumar
and Yao (1991) extended this concept to the bivariate case as follows.

Definition 3.1. For a bivariate random variable (X, X,), X is said to be smaller than

X ; according to joint likelihood ordering (Xfré X,y if and only if (3.1) holds.

It can be seen that

/0 j .
‘Xl < X2 Q.feg/r5

where f(-.-) denotes the joint density of (X, X,).

As pointed out by Shanthikumar and Yao (1991), joint likelihood ratio ordering
between the components of a bivariate random vector may not imply likelihood ratio
ordering between their marginal distributions, but it does imply stochastic ordering
between them (that is, Xl[r% X, :>Xls'g)(2).

A bivariate function ¢e%,, is called arrangement increasing (Al). Hollander
et al. (1977) have studied many interesting properties of such functions, although.
apparently, they did not relate it to the notion of likelihood ratio ordering.

The above idea can be extended to compare the components of an n-dimensional
vector X=(X,. ..., X,). We define X:ré ---”% X, if the joint density f(xy.....x,) of
X is an arrangement increasing function. (See Marshall and Olkin (1979) for the
definition of an arrangement increasing function on R")
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In a different context, Robertson and Wright (1982) studied a subclass of arrange-
ment increasing functions on R", which they call ISO* functions, as described below.

Let x and y be two vectors on R" such that Z’zly,-<2{:1x,~, j=1,...,n—1,

and Y;_; y;=¥[_,x;. We shall denote this partial ordering between the vectors by
X%y

Definition 3.2. A real-valued function ¢ defined on a set .o/ — R" is said to be ISO* and
o if px)<P(y), Vx'ey.

As mentioned earlier, an ISO* function is arrangement increasing but the converse
is not true. It is easy to see that the joint density f(x,, x,) of a bivariate random vector
(X, X,) is ISO* if and only if the conditional density of X, given X, + X,=t is
monotonically increasing for each fixed t.

We shall prove in this section that the joint density of the normalized spacings is
ISO* when the joint density of the parent observations is convex. This will hold, in
particular, when the X;s are independent (but not necessarily identical) with log-
convex densities. Shaked and Tong (1984) have obtained a different kind of result on
spacings from dependent observations.

The above concepts are closely related to majorization and Schur-convexity of
functions on R". As we shall need them in the sequel, we define them below.

Let {x() <Xz <:-- <X} denote the increasing arrangement of the components of
the vector x=(xy, X3, ..., X,,). The vector y is said to majorize the vector x (written as
XML yo<Tl X j=1.,n—1 and £, vo=31-, Xe-

Definition 3.3. A real-valued function ¢ defined on a set o/ cR" is said to be
Schur-convex (Schur-concave) on o/ if xmgy = p(x)<(=)d(y).

We shall need the following lemma to prove our next theorem.

Lemma 3.1. Let d;>0,d; =0, i=1,..., n, be real numbers and let

di
‘n—i+1’

M~

U, =

J
U;= d
i— : ’ J
oyn—i+1 ;

j=1,...,n

Then

d’d = v<u. (3.3)

Proof. Obviously, the components of u (v) are increasing as the d;’s (d;’s) are non-
negative. Also Y 7_ u;=¥7_,0;=Y7_,d;=Y]_,d;.
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Let d'¢ d. Then

J (n—j)
sy (n—=in—i+1)

(dy+dz+ - +d;)

; (n—Jj) o :
; n—i) n—l+1)(d1+d2+ +d;i)

i

Mk—.

v; forj=1,2,...,n (3.4)

i=1
since Y/_, di<Y!_ di,j=1,...,n—1,and ¥}_,d;=Y]_,d;
It follows that v<v. [J

Theorem 3.1. Let the joint density fx(Xy, ..., X,) of X=(X, ..., X,) be convex. Then
the joint density of D=(Dy.,, ..., D,.,) is ISO*.

Proof. Let Y;=X;., denote the ith order statistic, i=1, ..., n. Then the joint density of
Y=(Y,,..., Y,)is
G V1, Voo oo Vu)= ZPfX(yjls Vizs oo Vin) if yy <y <<y, (3.5)
0 otherwise, o

where Y , denotes summation over all permutations (jl,j2,...,jn) of n integers
{1,2,...,n}.

From this we obtain the joint density of the normalized spacings
D=(D,.,.....,D,.,) as

onldy, dy, ..., dn)=2fx (ujls Ujzy oons ujn)a (3.6)
P

where u;=Y"_ d;/n—j+1),j=1,2,....n.
Since ¥, fx (uj1, 2, ..., uj,) is a Schur-convex function (cf. Marshall and Olkin,

al

1979, pp. 82-83), the required result follows from Lemma 3.1 above. [

In particular if X’s are independent with log-convex densities, the following result
holds.

Theorem 3.2. Let X, X,,..., X, be independent random variables with log-convex
densities. Then the joint density of D is ISO*.

Proof. Let g;(-) denote the density of X;, i=1, ..., n. Since ¢;(-)'s are assumed to be
log-convex and the variables are nonnegative, it follows from Marshall and Olkin
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(1979, p. 85) that the joint density,

gv(¥1, Y2, ...,yn)=z H i(Yji)s

P k=1
of Y is Schur-convex. The required result follows on the lines of Theorem 3.1. O
As pointed out earlier, the joint density of D being ISO* implies that its component
random variables are ordered according to joint likelihood ratio ordering. This fact is

stated in the following corollary.

Corollary 3.1. Under the conditions of Theorems 3.1 and 3.2,

£rij frij fr:j
Dl:n < DZ:n S S Dn:n-

Remarks. (1) If a density is log-convex, it is DFR, but the converse is not true.
Theorem 3.2 establishes a stronger ordering between the normalized spacings than
does Theorem 2.1 under a stronger condition on the parent distributions.

(2) Results parallel to Theorem 3.2 can be obtained if the parent distributions are
log-concave, but otherwise arbitrary. However, we do not know whether results
parallel to Theorem 2.1 hold for the IFR case.

(3) As pointed out earlier, in general, ng X, may not imply X, féXZ. However,
one can show that if X;,..., X, is a random sample from a distribution with
log-convex density, then

Dia'< <Dy
The proof of this result is similar to that of Theorem 2.1 and hence the details are
omitted.
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