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Abstract
The problem of estimation of density-weighted average derivative is of interest in econometric problems, especially in
the context of estimation of coefficients in index models. Here we propose a consistent estimator based on the orthogonal

series method. Earlier work on this problem dealt with kernel method of estimation.
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1. Introduction

In a series of papers, Stoker (1986, 1989), Powell et al. (1989) and Hardle and Stoker (1989) proposed the
problem of estimation of the density-weighted average derivative of a regression function.

Let (X}, Y3), 1 < i< n be iid. bivariate random vectors distributed as (X, Y). Suppose E(Y|X) = g(X)
exists and X is distributed with density f. The density-weighted average derivative is defined as

5= E[ f(X) %]

assuming that g(-) is differentiable.

Stoker (1986) and Powell et al. (1989) explain the motivation behind the estimation of density-weighted
average derivative. For instance, weighted average derivatives are of practical interest as they are propor-
tional to coefficients in index models. If the model indicates that g(x) = « + Bx, then

dg 8
dx
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and d = BE[ f(X)]. In general, if g(x) = F(x + fx), then

dg
a—x—F(a+Bx)B

and 6 = E[F'(« + BX) f(X)]5.

Kernel method of estimation has been proposed and its properties are investigated in Powell et al. (1989).
Here we propose an alternate method for estimation of é by the method of orthogonal series. The method of
orthogonal series for the estimation of density and the regression function has been extensively discussed in

Prakasa Rao (1983).
Note that

_ dg | _ * dg
58 ronge|= [ e o
- Lo 12~ 2| 9L ats

integrating by parts.
We assume that the density f(x) and the regression function g(x) satisfy the following conditions:

(A1) lim g(x)f*(x)=0;

(A2) the density function f has an orthogonal series expansion

i) f) = 3 ae)
=1

with respect to an orthonormal basis {e,(x)}; the function f(x) and the elements of the basis {e,(x)} are
differentiable such that

aN) 2
(i) E| 3 aeX)—f'(X)] -0 asN-
1=1
whenever g(N)— oo; and
(iii) s?p lei(x)] < oo and s1’1p lej(x)] < oo.
Assumption (A1) implies that
6=E [f(X)j—;] ~ 28 [g(X) d%ﬂ

_ df
_ —ZE[Yd—)?], (1.1)

since g(X) = E[Y|X]. Hereafter we write f’(x) for df/dx and in general prime denotes differentiation.
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2. Consistency of the estimator

Given a sample of independent and identically distributed observations (X;, Y;), 1 < i< n, a natural
estimator of § is

s _—28 dfw

On Y, —

& ax

@2.1)

from (1.1). Here f;,,- is an estimator of f based on the sample (X, ¥;), 1 <j < N. It is convenient to choose
Sfyibasedon (X;, Y;), 1 <j < N,j #iand we will do the same in the sequel. An orthogonal series estimator
of fis

fulo) = 2 dine(x)
where
1 N

i)
iy = N_1. ez(Xj)

and g(N)— o as N > o to be chosen at a later stage. Then
q(N) @
= —Z Y[ Y dive E(X)] (22)

Let X{ denote the vector (X,..., X;—1, Xi+1,.-.» Xn). Hence,

2 N ) n
= —-= Z Z Yie(X;)diy
1 11=
2-1(N) N @
Z Z Y X, Yi)m(Xn), 2.3
l 1i=
where
vi(X,, Y) = Yiel(X) (2.4)
and
XN = diy. (25)
Note that n,(X( does not depend on the observation X; by construction. Therefore,
5 N N @
E[x]= —~ Z Y E{Yu(Xi, YD E{m(Xy)}
1 1i=1
)

-2 Z, E[Y,(X,, Y)]1E[e(X )]

q(N)
- 2(2 aE[Yel(X)] (since E[e,(X,)] = al)

=1

- ZE[ qu) alei(X)] (2.6)

1=1
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and

- df |
E(5N)—>—2E[Y8Y:|—6 as N- o 2.7)

under the assumptions (A2) (ii) and EY 2 < co. Note that

4 4 g N N

Varldl] =55 ¥ X ¥ ¥ Covlyu(Xe, Y)m(XR), ¥m(X;, ¥))im(X )] 28

I=1m=1i=1 j=1

Case (i): i #j. Let us compute
cov[y(X,, Y) ﬂz(XI(\;))a ‘//m(Xj, Yj) ﬂm(Xﬁvj))] = E[y(X; Yi)lpm(Xja Y) m(X%’) 'Im(XfJ))]

— EQpu X, YOMXD I ELWml(X ), Y 1m(X§)] - (2.9)
Observe that
E[u(Xs, Y)n(XP)] = EDYu(X 1, YO m(X)]
= E[Yel(X )] E[n(X{")]
= E[a Y, €6(X,)]. (2.10)

Let
I, = E[Y(Xy, Y1) Ym(X s, Yz)ﬂl(ngl))’?m(ngz))]
= E{yi(X1, YD) ¥u(Xs, V) E[m(XP) (X)X, Yy, i = 1,2]}

= s a6 1) [ (£ a00))( 3 et )| uvai=12]) e

j=1 K=1
j*1 K#2
Note that
N N N N
[et(Xz) + Z el(Xj)][em(Xl) + z em(Xk):| = e)(X,) en(X1) + en(X1) Y e(X)) + (X)) Z en(Xy)
=3 k=3 i=3 k=3
N N
+ { )y e,(x,.)}{ > em(Xk)}- (2.12)
j=3 k=3
Hence,
N N
E{( Z el(Xj)> < Z em(Xk)> ‘ Xs Y)i=1, 2}
j=1 k=1

1 k#2

J 3

N

= e(X5) en( X)) + en(X)(N — 2)a; + e(X5)(N — 2)a, + Y E[ef(X))en(Xd)]
k=
N

= /(X)) en(X1) + em(X)(N — 2)a; + e X5)(N — 2)a, + Z Ele(X))en(X))]

j=3

N
+ Y E[a(X)]E[en(X]

Jj#*k
3
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= e;(X,) en(X1) + en( X1} (N — 2)q
+e(X))(N —2a, + (N —2)E[ef(Xj)en(X )]
+ (N — 2)(N = 3)aya,
=1, (ay). 213)
Hence,
(N = D21, = E[¥iXy, Y ¥nlXa, V) 1]
= EDN(X, V) ¥lX 2, V)X ) en(X 1]
+ E[(X s, Y)Yn(X o, Y2)en(X DTN = 2y
+ EL(X s, Y)Yn(Xa, Y2)e(X2)1(N = Day,
+ EYiX s, Y Un(X o, V)TN — 2) E[e(X) n(X )]
+(N=2)(N = aa, E[Yi( Xy, Y)Ym(X2, Yl)]
= E[Y,6i(X,) Y2€n(X2) (X ) en(X 1)]
+(N—=2)gE[Y,e)(X)) Yyen(X3)en(X1)]
+(N—2)a,E[Y, e1(X,) Yoen(X1) e (X2)]

+ (N —2)E[Y e)(X1) Y; en(X2)] E[ei(X 1) em(X1)]

+(N=2)(N=3)aia,E[Y,ej(X)]1E[Y;€n(X2)]. (2.14)
Let
b = E[ Y1 €/(X1)em(X 1)), yim = E[ Y1 e/(X1) (X 1)], (2.15)
¢m=E[Y;en(X1)] (2.16)
and
dim = E[e/(X 1) en(X )] 2.17)
Then

(N - 1)2 cov [lpl(Xi’ Yl) ”l(Xg))a l//m(Xj’ Yj) ”m(Xg\'ll))] = bmlblm + (N - 2) albml Cm
+ (N = 2)anbimei + (N — 2) iy

+ (N — 2)(N — 3)3,0,nCiCpp — A1ApyCiCry. (2.18)
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Case (ii). i =j. Then
cov [Yu(X 1, Y1) (X Q), Um(X 1, Y1) (X ]
= E[Yi(X1, YD) ¥m(X 1, Y1) (X)) 1m(X§)]
= E[u(Xy, Y)m(X) ] E[Ym(X 1, Y1) (X
= E[Y,el(X,) Y, en(X ) m(XP) 1m(X$)]
— QA CiCpm
= E[Yiel(X 1) en(X )] E (XY ) 1l X§)] — @18mC1Crm
= Vim E [m(XY) 1u(XV)] — a1C10mCpn. (2.19)

Let us now compute

(N — )? E[m(X) nm(X{)] = EH D el(Xj)} { )3 em(Xk)}]

j=2 =2

M=
™M=

E [el(Xj) em(Xi)]

2k

]

J 2

=(N—DE[e(X1)en(X )]+ (N — DN — 2 E[e)(X ) en(X2)]

=(N — 1)d,, + (N — 1)(N — 2)aa,,. (2.20)
Hence,
(1) (1) dim N-2
cov[Y (X1, Y m(XY), Y X 1, YO 1(X5)] = Vim N -1 + malam —~ i€y Cpy. (2.21)

Calculations made above in the cases (i) and (ii) lead to the formula

~ 4 1N 4™ d " N-2
var[dy] = N > l:wm {N l_ 1 + N-—_la'a"'} - a,c,amcm]N

I1=1m=1

bmlblm N-2 W
[ o e

+ N=2

(N —1)?

4 1N 9 N=2
N2 DIED IR + (I—V_—l)iczcmdtm - N(N-1) (2.22)
I=1m=1

(N—=2)(N—=3)

(N —1)?

amblmcl

QA CiCp

— Ay CiCy
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4 q(N) q(N) 4(N - 2) q(N) q(N)

z Vim@im + m =1 m2=:1

= 1 YimQ1Qm
NN D52 e

) 2 buibim

NN -1 AL

4 (1M 2 4N(N _ 1) aN) V)
()

N\
4AN(N — 1)(N — 2) 4D o™ 4AN(N — 1)(N — 2) % 4@
bm m mbm m
NN -7 &L, et T & L Ot

AN(N — 1)(N — 2) 1 a®
NN-1)? 5.5

CiCry dlm

4AN(N — 1)(N — 2)(N — 3) 1™ 4™
A0y C1Cpy
N2(N — 1)* 2, &, A
4N(N — 1)1 9
— —% Y A CiC. (2.23)
I=1m=1
Note that
SUp vy, < 00, sup b,y < o0, sup a; < 0o, sup¢ < (2.24)
ILm I,m 1 1
and
SUp dy, < 0 (2.25)
Im

by assumption (A2)(iii). Observe that the coefficient of (Z?LNI’ a,c;)? in the expression for var(gN) is

4 4N-—2)(N-3) 4(N—1)_ 4(6—4N)

N NN -1) N  NN-1

— 16 1
~— 0(ﬁ>

Under the assumption (A3), it follows that

2(N)  g*(N
g 1\§2 )4 q—-—]f] )). (2.26)

var(dy)~0 <

Theorem. Under assumptions (A1) and (A2), if g(N)— oo such that

2
9%_, 0 asN-> (2.27)
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and EY? < o0, then
P
oy B 6 asNo . (2.28)

Proof. The result follows from the fact

var(gN)—>0 and E(S,,)—»é as n— 0.

3.. Remarks

Let us now discuss the limiting behaviour of
{x — EGn) } 3.1)
if any. Note that
X=x; >:|

N
3 YulXs Yym(X) — EWu(X, YIm(XY))

{on — E(bn)}

fx,
—E< X

M=
| —
=
|
[

P
E 1]
Z -

-
L]
—
Il
—

I
|
M=

W
A

q(N)

[zz {l//l(Xia Y)) m(Xﬁ?) — E[y(X; Yi)rll(X%))]}]
=1

Z

zZlo Zin 2z 2N

Ni>

N

It
—

where
Zy, = [Y1(Xs Yi)m(Xﬁ'}’) + o+ Ym(Xs Y) nam(X¥)]
—E {['/jl(Xi’ Y)n, (Xﬁ?) + -+ l//q(N)(Xia Y) g (X;?)])-
Note that
{Zyi, 1<i< N}

are finitely interchangeable for each N. Furthermore E(Zy;) = 0.

From the structure of {Zy;, 1 <i< N, N > 1}, it should be possible to study the asymptotic behaviour of
the estimator Jy. However, the limit theorems for exchangeable arrays presently available do not seem to be
applicable in this context. The problem remains open.
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