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Bernoulli 1(3), 1995, 245-255 

Joint distribution of maxima of concomitants 

of subsets of order statistics 

S.N. JOSHI' and H.N. NAGARAJA2 

'Indian Statistical Institute, Bangalore Centre, 8th Mile Mysore Road, Post RVCE, Bangalore 560059, India 
2Department of Statistics, Ohio State University, 141 Cockins Hall, 1958 Neil Avenue, Columbus OH 43210-1247, 
USA 

Let (Xi:n, Y[i:n]), 1 < i < n, denote the n pairs obtained by ordering a random sample of size n from an 
absolutely continuous bivariate population on the basis of X sample values. Here Y[i:n] is called the concomitant 
of the ith order statistic. For 1 < k < n, let V1 = max{ Y[n-k+l:n] *... 

. 
Y[n:n]}, and V2= max{ Y[l:n, ,.. ., Y[n-k:n]}. 

In this paper, we discuss the finite-sample and asymptotic joint distribution of (VI, V2). The asymptotic results 
are obtained when k = [np], O<p<l, and when k is held fixed, as n--+*. We apply our results to the bivariate 
normal population and indicate how they can be used to determine k such that V1 is close to Yn:n, the maximum 
of the values of Y in the sample. 

Keywords: bivariate normal distribution; concomitants of order statistics; convergence in distribution; extreme 
values maximum 

1. Introduction 

Suppose we have a random sample of size n from an absolutely continuous bivariate population 
(X, Y). For 1 < i < n, let Xi:n and Yi:n denote the ith order statistics of the X and Y sample values, 
respectively. The Y value associated with Xi:n, denoted by Y[i:n], is called the concomitant of the ith 
order statistic or an induced order statistic. In view of their applications in selection procedures, 
functions of Y[i:n] have been extensively studied. For a recent review, see David (1991). Early work 
has been surveyed by Bhattacharya (1984). 

Here we explore the joint distribution of V1 and V2, where V1 = max{ Y[n-k+l:n] ... Y[n:n] } and 
V2 = max{ Y[l:n}],..., Y[n-k:n] }. Recently, Feinberg and Huber (1994) have investigated some 

properties of V1 in a study of cut-off rules under imperfect information. Assuming the sample is 
drawn from a bivariate normal distribution, they compared the value of E(V1) with E(Yn:n) for 
selected values of n. This information was used to determine k, the number selected, that optimizes 
some cost function of interest. Motivated by these applications, Nagaraja and David (1994) have 
studied the finite-sample and the asymptotic properties of V1. Our work extends their results to two 
dimensions by considering the joint cumulative distribution function (cdf) of V1 and V2. 

Since Y:., = max{ V1, V2}, using our results, one may determine the smallest k such that 
P(Wk < 1 - e) 

_ 
6 for a given n and prespecified small e > 0 and 6 > 0, where Wk = (Vi/Yn:n)- 

Since for w < 1, P(Wk < w) = P((VI/V2) ? w, V2 > 0), the joint cdf of V1 and V2 is crucial for 
determining the cdf of Wk. When k = [np], O <p < 1, and the population is bivariate normal, 
Nagaraja and David (1994) noted that the limit distribution of V1 is free of p, the correlation 

1350-7265 ? 1995 Chapman & Hall 
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between X and Y, whenever p > 0. Hence, it seems more appropriate to determine k using Wk than 
by comparing the means of V1 and Y,:,. Thus, our results are applicable to the selection problem 
considered by Feinberg and Huber (1994). 

In Section 2, we obtain an expression for the joint cdf of V1 and V2. Then, in Section 3, we 
investigate the limiting joint distribution of (V1, V2) in the quantile case where k = [np], 0 < p < 1, 
as n - c0. The limit distribution when k is held fixed (extreme case) is considered in Section 4. In 
both the cases we obtain simple sufficient conditions and suggest norming constants which ensure 
the convergence to a non-degenerate random vector. Finally, in Section 5 we apply our results to the 
bivariate standard normal population and discuss their implications on the choice of k that satisfies 
the constraint P( Wk 1 - e) < 6. As we march along this route, whenever we have a step that is 
similar to the one in Nagaraja and David (1994), we refer to it for details. 

We now introduce some notation. For a random variable or vector T, FT represents its cdf andfT 
its probability density function (pdf). We write a(x) a b(x) if the ratio tends to 1 as x -- oc. We let 
xo = F xl(q), where q = 1 -p, and v0o = sup{y : Fy(y) < 1}, the two special quantiles which 
appear in our analysis. The cdfs Fi( ylx) = P(Y < y X > x), F2(ylx) = P(Y < ylX < x) and 
F3(ylx) = P(Y ylX = x) represent three conditional cdfs associated with Y. The symbols b 
and 4 represent the standard normal pdf and cdf, respectively. 

2. Finite-sample joint cdf of V1 and V2 

The joint cdf of V1 and V2 can be expressed in a compact form by conditioning on the value of 

Xn-k:,. 
From Theorem 2 of Kaufman and Reiss (1992) it follows that, conditioned on the event 

Xn-k:n = x, V, behaves like the sample maximum of a random sample of size k from F1 (. Ix), and V2 
behaves like the maximum of another set of n - k independent random variables where (n - k - 1) 
of these have cdf F2(. Ix) and the remaining one has cdf F3 (. Ix). Further, these two sets of random 
variables are (conditionally) independent. Thus, we obtain 

Fv1v,2(v1, 
2) - P(V1 ? v1, V2 < 

v12) 

= E{h(vl, v2, Xn-k:n)}, (2.1) 

where 

h(v, v2, X) = {Fi(Vilx)}kF2(v2 x)n-k-lF3(v2 x). (2.2) 

Note that the joint pdf of V1 and V2 is given by 

fv, ,V(Vi, 
2) = kJ{(n - k - 1)F3(v2 x)f2(v2 x) +f3(vx)F2(vu2x)} 

x {F (v1 Ix)}k-l F2 (v2 X)n-k-2f1 (V IX)fnk:n (x) dx, 

for 1 < k K n - 1. Since Y:,, = max{ V1, V2}, the joint cdf of V1 and Yn:n is 

P( V1 < v, n:,,, y) = Fv, vv (,y), v < y, 
= {Fy(y)}n, v y, 

where the joint cdf of V1 and V2 is given by (2.1). 
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The joint distribution of V1 and V2 can be used to obtain the cdf of Wk = V1/ Yn:,. Since Wk > 1 
whenever V2 < 0, for w < 1, 

Fwk (w) = P(V1 < V2w, V2 > 0) 

= 

v2>0 
I<V2W fvI,v2(vl,v2)dvldv2 

=J {J(n 
- k - 

1)F3(v21x)f2(v2I) +f3(V21x)F(V2 x) 

x {F (v2wX) kF2(v2 n-k- k:n (x)dv2 dx. (2.3) 

3. Asymptotic joint distribution in the quantile case 

Theorem 1 Let k = [np], 0 < p < 1. Assume (i)fx is continuous at xo; (ii)fx(xo) > 0; (iii)f3(ylx) is 
continuous at xo for all y; and (iv) there exist constants an, bn > 0, c,, dn > 0, such that as n --- 0, 

{Fl(an + b ylxo)}n" GI(y) (3.1a) 

{F2(Cn + dn ylxo)}" * G2(y), (3.1b) 
for all real y, where G1 and G2 are non-degenerate cdfs. Further, assume that 

P(X is between xo and xo + c/nV, Y > an + bn y) = o(1/n), (3.2a) 

P(X is between xo and xo + c//Vn, Y > c, + d, y) = o(1/n), (3.2b) 

for all fixed real c and all y. Then 

Fv,,v2(an + bnVl, cn + dnv2) -- {GI(v)} P{G2(v2)}', (3.3) 

for all real vl and v2. 

Proof 
Define Zn = {(Vfifx(xo)(Xn-k:n - XO)/V I }, and note that from (2.1) and (2.2) we have 

Fv,,v2(an 
+ bnvl, c + dnv2) 

= E{h(an + bnvl, c + dvz, xo + coZn/v/)}, 

where co = Vj-q/fx(xo). Recall that 

h(an + bnv1, cn + dnv2,xo + COZ/V'/) 

= {Fl(an + bnvlIxo + coZ/v-)}k{F2(Cn + dnv2Ixo + CoZ/V-n)}-k-lF3(Cn + 
dnv2zx0 

+ COZ//-). 

In view of the arguments presented in the proof of Result 2 in Nagaraja and David (1994), it is 
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enough to show that, for all vi in the support of Gi, i = 1,2, and for all z, 

{Fl(an 
+ bnv Ixo + coz/v/n)}n - G1(vI), (3.4) 

{F2(c + dnv2 1X0 + CZI )n ---G2(2), (3.5) 

F3(cn + dnv2lxo + CoZ/Vn) -- 1. (3.6) 
Condition (3.1a) is equivalent to the fact that n{1 - Fl(a, + bnvlxo)} - log Gl(v) which can be 

expressed as nP(X > xo, Y > a, + bnv) --, -p log G1 (v) = q, say. Thus, in order to establish (3.4) 
we have to show that nP(X > xo + coz//-n, Y > a, + bv) -- r', where 0 < q < 00. The difference 
between the two sequences is nothing but nP(xo < X < xo + coz/x-n, Y > a, + bv), which 
approaches 0 by the assumption made in (3.2a). Hence (3.4) holds. Using (3.1b) and (3.2b), we 
can show along similar lines that (3.5) holds. 

To prove (3.6), note that f3(y xo + coz/'/n) is a pdf for every n and converges to a pdff3(y xo). 
Then from a convergence theorem involving pdfs (see, for example, Rao 1973, p. 124) it follows that 

c f3(ylxo 
+ 

COZ/3/-) -f3(ylxo)ldy 0. (3.7) 

Now, for any v with 0 < G2(v) < 1, c, + dnv approaches the upper limit of the support of F2(ylxo). 
By continuity, F2(ylxo) = P(Y < y X < xo) and hence, the upper bound for the support of 

F2((yxo0) is not less than the corresponding bound for F3(y0xo). Thus, we can conclude that 

Je+d vf3(yxo)dy -- 1. This, in view of (3.7), implies that (3.6) holds. D 

We now examine the conditions we have imposed to establish Theorem 1. 

Remark 1 
Instead of assuming (3.1 a) and (3.2a) to establish (3.4), we could have assumed the latter condition 
in the statement of the theorem. But (3.4) implies that (3.1 a) and (3.2a) hold for v1 in the support of 

G1 (see Nagaraja and David 1994, p. 484). 

Remark 2 
Sincefx is assumed to be continuous at xo, a sufficient condition for the continuity off3(ylx) at x0 is 
that the joint pdf is also continuous at xo as a function of x. 

Remark 3 
Condition (3.1 a) is equivalent to saying that the sample maximum of a random sample from the cdf 

F1 (. Ix0) converges in distribution to a non-degenerate random variable with cdf G1, where G1 is one 
of the three extreme-value cdfs. If this is the case, we say that F1 (. Ix0) is in the domain of attraction 
of G1 and we write FI(. Ixo) E D(G1). Following, for example, Resnick (1987), we will denote the 
possible forms for G1 by 4%, T and A. Condition (3.1b) has a similar interpretation. 

The domain of attraction entails a specific right tail behaviour for the cdf F1 (. Ixo). Quite often, its 
tail is messier to manipulate than that of Fy. But sometimes the two cdfs may be tail-equivalent; that 
is, there exists a finite and positive 

il, 
possibly dependent on xo, such that 

lim 1- = Fy (3.8) 
y-yo 1 - Fi( ylxo) 
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Since 1 - Fy(y) = p{1 - F1(ylxo)} + q{1 - F2(ylxo)}, if 
F1("- 

Ixo) and Fy are tail-equivalent 
with 01 > p, F2(. Ix0) and Fy are also tail-equivalent. So if (3.8) holds and 01 > p, then 

1 
- Fy(y) ql1 32 - lim (3.9) Y--Yo 1 - F2(yXo) 1 - P 

From Resnick (1987, Proposition 1.19) it follows that if Fy E D(G) as n - o00 such that 
{Fy(an + bn y)}I - G(y), and (3.8) holds, then (3.1a) holds with G,(v) = G(a + by). Further, 

a = 0 and b' = fi, if G = (, 

a = 0 and b-' = 01, if G = Ta, (3.10) 

a = log o1 and b = 1, if G = A. 

If 01 > p, then (3.1b) also holds with cn = an and dn = bn and G2(v) = G(c + dv). The constants c 
and d are determined using (3.10), by replacing a, b and 01 by c, d and 02 (from (3.9)), respectively. 

When fx,y(x, y) = 2 exp(-x - y), 0 < x < y < oc00, i = /f (Nagaraja and David 1994, p. 491) 
and hence the above conclusions hold. For the bivariate standard normal population, 

- 
= p, 

(Nagaraja and David 1994, pp. 486-487) and thus F2(. x0) and Fy are not tail-equivalent. 
However, F2(. Ix0) is also in the domain of attraction of A, as we shall show in Section 5. 

Remark 4 
Now we examine (3.2a) and introduce conditions that validate it. First, define F(x, y)= 
P(X > x, Y > y) and let AlF(x,y) denote its first partial derivative with respect to x. When 
c > 0, from the mean value theorem (under appropriate assumptions), P(xo < X < xo + c//-ni, 
Y > an + bn y) = F(xo, an + by) - F(xo + c/x/n, an + bny) = -{c/x/n}AlF(x*,an + by), where 
x* is between xo and xo + c//n/. Thus, if the conditions 

Al (x, an + bny) = o(1/( ), (3.1 la) 

Al1F(x, cn + dn y) = o(1/\/ ), (3.11b) 

hold uniformly in x in a neighbourhood of xo, then (3.2a) and (3.2b) hold, respectively. 

4. Asymptotic joint distribution in the extreme case 

The premise now is that k is held fixed and n -- 00. 

Lemma 1 Let there exist constants an, b, > 0, cn, d, > 0 such that for non-degenerate cdfs Gx and 
Gy, 

{Fx(an + bnx)}) - Gx(x) and {Fy(cn + dny)} - Gy(y), (4.1) 

for all real x and y. Further, assume 

nP(X > an + bnx, Y> cn + dny) -~ 0. (4.2) 
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Then, 

{F2(cn + dyla +? b'x)} 
-- 

Gy(y). (4.3) 

Proof 
Condition (4.3) holds if, and only if, n{1 - F2(c' + d'ya', + b'x)} - - log Gy(y). Now, 
n{1 - F2(c' + d'ya' + bx) } 

=nP(Y > c' + dfy){Fx(an + b'x)}-1[1 - {P(X > an +bnx, 
Y > c' + dny)/P(Y > cn + dny)} 

It follows from (4.1) that nP(Y > 
c', + d'y) - log Gy(y) and Fx(a' + b'x) -- 1. From (4.2) we 

can conclude that the last factor on the right-hand side above tends to 1. That is, (4.3) holds. D 

Now suppose Fx satisfies one of the three von Mises conditions (see, for example, Resnick, 1987, 
Propositions 1.15-1.17). Then, the pdf of (Xn-k:n - a')/b' converges to the pdf g(k) (see Lemma 1 of 
Nagaraja and David 1994), where 

g(k) k! gx((w). (4.4) 

Theorem 2 Suppose Fx satisfies one of the von Mises conditions, and, for all x and y, assume (4.1) 
and (4.2) hold where the norming constants are such that F3(c' + d'ya' + b'?x) -+ 1. Further, 
suppose there exist constants 

an, bn 
> 0, such that 

Fl(a* + byla' + b'x) -+ H(x, y), (4.5) 

as n -+ o. Then, 

F (a+ bv1,c + dv2) -+ {Gy(v2)} {H(x, i)}kg(k)(x) dx, (4.6) 

where g(k) is given by (4.4). 

Proof 
First observe from (2.1) that 

F 2(a ?+bvc+, 
c' +d' F*v2) = J{F(a + b v a ?bu) }kF2(c + dv2i a ?bdu)n-k-1 FvlV2n n 

bn 
nlV, 

Cnn 
+ 

bnvlla'n+ bn 
x F3(c 2 v a + b' u){b'fXn-k:n(a n b 'u) du. 

Next, use Lemma 1, and follow the proof of Result 1 in Nagaraja and David (1994). We omit the 
details. O 

Remark 5 
Note that (4.1) and (4.2) together imply that the marginal maxima are asymptotically independent 
(see, for example, Galambos 1987, p. 301). Under the conditions assumed above, asymptotically V1 
and V2 are independent, just as in the quantile case. Here, while the limit distribution of V1 is related 
to that of Xn:n, V2 behaves like Yn:n asymptotically. 
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5. Bivariate normal population 

We begin by deriving the asymptotic distribution. 

Theorem 3 Let (X, Y) be a bivariate standard normal population with correlation coefficient p 
(0 < p < 1). Then, for all real vl, v2, 

P(V - a< ,2-n v2 e-{exp(-vi)+qexp(-v2)} (5.1) 

if k =[np], O <p < 1, and 

P(V - 
pan< V, 

V2-an<v)b -- 
{((V)k 

e- exp(-v2)' (5.2) 

if k is held fixed as n - oc. Here 0 = 1 p2, and the other norming constants may be chosen as 

1 log(47r log n) 
2 2Tlogn (5.3) 

b, = 1/ 2logn, 

4 0 2 
log(4wrlogn)}- 

0(xo/2) 
+ log(qp/O) 

c pxo + ogn- 21ogn V/ logn 
(5.4) 

dn = Obn. 

Proof 
We verify the conditions assumed in Theorems 1 and 2 and identify the norming constants involved. 

(a) Quantile case. It is well known that, when the an's and bn's are given by (5.3), 
{Fy(an + bny)} -+ A(y). Since F,(. Ixo) and Fy are tail-equivalent with p being the 01 in (3.8) 
(Nagaraja and David 1994, p. 486), from (3.10) we may conclude that (3.1a) holds with 

G1,(y) = A(y + logp). 
We now show that (3.1b) holds with G2 A or equivalently F2 e D(A), where F2 stands for 

F2(. Ix0). To prove this and other claims that follow, we make repeated use of L'H6pital's rule and 
the following consequence: 

P(-y) = {1 - f (y)} 1 (y)/y as y -+ o. (5.5) 

Note that the pdf of F2 is given by 

f2(Y) 
-q- '(y)J(xoko + kly), (5.6) 

where 

k- = 1/0, k, = -p/0 < 0. (5.7) 

Hence, on using L'H6pital's rule and (5.5), it can be shown that as y - oc, f2'(y){yf2(y)} -1 
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-(1 +k2) = -1/02 and 

y(1 - F2()) 1 2 2()-+Ik = 0 . (5.8) 
f2(Y) 1 + k 

Thus, f2'(y){1 - F2(y)}{f2(y) -1 -1 as y -- oc. Therefore, from Proposition 1.1(b) in Resnick 
(1987, p. 40) it follows that F2 e D(A). 

We now choose cn and dn using tail-equivalence ideas. From (5.5), (5.6) and (5.8) it can be shown 
that, for large y, 

1 - F2(y) ? 03(y)(x0ko + 
kly){pqy2-1 

= 1 - Fo(y), (5.9) 

say. Thus the same set of norming constants works for both these cdfs. Now suppose rn can be 
chosen to satisfy (see Resnick 1987, p. 40) log{1 - 

Fo(r))= -logn. Since 1/nfo(rn)= 
{1 - Fo(rn)}/f0(rn) 0 

O2/rn 
(recall (5.8)), with dn - 02/r,, {Fo(rn + dny))n 

- A(y). 
From (5.9) it follows that rn satisfies 

r - 2pxorn + 402 log r + 202 log n (5.10) 

where a = x - 202log(03/27pq). Since the first term on the left is the dominating term, 
rn 0/2log n. Consequently, dn can be chosen as {0/ 2logn). 

Now our goal is to determine other terms in rn up to o(1/t), where t = 2logn. So, we define the 
function 

h(t) = Ot + 01 + 02(log t)/t + 03/t, (5.11) 

and determine the cofficients Oi such that (5.10) holds as t -- oc when h(t) replaces rn. That is, we 
have to satisfy the constraint: 

{h(t)}2 - 2pxoh(t) + 402 log h(t) + a - 02t2 -~ 0. 

On using (5.11), the expression above can be written as 20t(01 - pxo) + 20(02 + 20) log t+ 
(02 + 2003 - 2pxo01 + 402 log 0 + a) + o(1). Since this must approach 0 as t -+ oc, we must have 
01 = pxo, 02 = -20, and 03 -0{(x2/2) + log 00} where o00 = (27rqp/0). In other words, h(t) in 
(5.11) must have the form 

h(t) = Ot + pxo - 20(log t)/t- 0{(x2/2) + logo)}/t, (5.12) 

with 0 = - p2 and 0o = (27rqp/0). 
We choose cn = h(V21ogn) and show that (cn - rn)/dn -+ 0, where rn satisfies (5.10). For this, call 

rn = cn + 6(t) with t being V2logn. We have to show tM(t) -+ 0 as t -+ oc, where h(t) satisfies (5.12) 
and rn = h(t) + 6(t) satisfies 

{h(t) + 6(t)}2 - 2pxo{h(t) + 6(t)} + 402 logh(t) + 402 log[1 + 6(t){h(t)}-1] + a - 02t2 
- 

0. (5.13) 

On substituting for h(t) from (5.12), and noting that h(t) a Ot, it can be seen that the left-hand side 
of (5.13) is of the form 20t8(t) + o(1) + o(t8(t)) as t - o0. Since the right-hand side is zero, this 
means t8(t) -+ O. Hence we have shown that we can take cn = h( logn), where h(t) is given by 
(5.12), and dn = Obn. This establishes (5.4). 
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We will now show that (3.1 Ib) holds. Note that 

Al1F(x, y) = -- f(x, v)dv - - O(x)o(kov + klx)dv 

= - (x){1 - (koy + kix)}, 
where ko and k1 are given in (5.7). Thus, it is enough to show that, uniformly in x in a neighbourhood 
of xo, n{ 1 - J(ko(cn + dny) + kl x)}2 -+ 0. As dn -- 0, this is true if n{ 1 - J(kocn + klx)}2 -+ 0. This 
holds if {1 - T(kocn + kx)}2/{1 - F2(Cn)} -+ 0, since n{l - F2(Cn)} -+ 1. In view of (5.6) this 
indeed is the case, if Ax(y) -+ 0 as y - oc, for some fixed x < xo, where 

Ay) {1 - (koy + 
klX)}2 

AX(Y) = 

J $(v)>(koxo ? 
klv)dv (5.14) 

koxo + kly 02(koy + kix) 
koy + klx O(y)O(koxo + kly) 

The coefficient of y2 in the exponent arising from the ratio of the normal densities above is negative, 
which implies that Ax(y) -- 0. Thus we have shown that (3.11 b) holds. 

To establish (3.11a), we have to show that n{ 1 - I(koan + klX)}2 approaches 0 uniformly in x 
as n -- o. Since 0 < 0 < 1, an > cn for large n, and thus, n{1 - I?(koan + klX)}2 is ultimately 
bounded by n{ 1 - I(kocn + klX)}2. We have just shown that this bound approaches 0 uniformly 
in x. 

In view of Remark 4, we have verified the validity of (3.2a) and (3.2b). Thus, (5.1) follows from 
Theorem 1. 

(b) Extreme case. Now let us assume k is held fixed and n -- o. We will show that all the 
conditions needed for the validity of Theorem 2 are satisfied. First note that 4 satisfies the von Mises 
condition (equation (1.4) of Resnick 1987, p. 40), and that (4.1) holds with G = Gy =A, 

= an, and b' = d- = b where convenient choices for an and bn are given by (5.3). It is 
well known (see, for example, Reiss 1989, p. 237, or Resnick 1987, p. 297) that for the bivariate normal 
parent, (4.2) holds. Further, F3(c' + d'ya'~ + bx) -+ 1, since P(Y < c' + d'yX a' + b' x) 

4[{an + bny- p(an + bnx)}/0]. From Nagaraja and David (1994, p. 483) it follows that with 

a = pan and b* = 0, F, (a* + bYjaI bx) -- +(y). Thus (4.5) holds with H(x, y) - 4P(y). Hence 
(5.2) follows from (4.6). O 

We now discuss how to choose k. Suppose we are given n, and small positive C and 6, and the goal is 
to choose the smallest k for which P(( V1 / Yn:n) < 1 - ) Fwk (1 - <) K 6. For this purpose we may 
use the expression for Fwk given in (2.3). For the bivariate standard normal cdf Px,y, on 
substitution, we obtain, for w < 1, 

Fwk (w) {-- n! o (n -k- 1)>-(ko-x + k1v)>P(kov + klx)o(v) 

+ o-l (kox + klv)>x,y(x, v)}{I(wv) - 1x,y(X, wv)}k{JXy(X, v)}n-k-2q$(x)q(v)dvdx, 

(5.15) 
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where ko and kl are given in (5.7). One can use numerical integration to find k for which Fwk (1 - ) 
falls just below 6. 

For large n, we can use the asymptotic approximations in order to simplify the task of integration. 
Since for w < 1, 

Fwk(w) = P(( V1 - pan) < {w(V2 - an) + (w- p)an}, V2 > 0), 

in view of (5.2), it can be approximated for small k by 

. 
k(0-1{fwbnv? 

(w - p)a}) e-exp(-v) e-v dv. 

For a given w = 1 - E, when this expression falls below 6, if the associated k is not too small (say, 
k > 0.02n), we suggest the approximation based on (5.1). In that case, note that 

Fwk(w) = P({(VI - an)/bn<} wO{( V2 - Cn)/dn}? + y,, V2 > 0), 

where 7n = (wcn - an)/bn. On using (5.1), we can approximate the above probability by 

q e-{exp(-(w0v+n))+qexp(-v)} e-v dv, 

where q = (n - k)/n, and choose k accordingly. 
We can use the asymptotic results in another way. Let k* be the value of k suggested by the 

asymptotic considerations. Then k* can be used as the preliminary value in our search for the 
smallest k satisfying Fwk, (1 - c) 

_ 
<, where Fwk(w) is given by (5.15). 

Remark 6 
Theorem 3 assumed that p is positive. When p = 0, V1 and V2 are independent for all n. Further, 
(5.1) holds if c, is replaced by an and (5.2) holds with 0 being 1. When p < 0, with Z = - Y, (X, Z) 
will be bivariate standard normal with positive correlation 1pl. Since (X, Z) ~(-X,-Z), 

V1 - max{-Z[nk+l:n],... ,-Z[n:n]} max{Z[l:n],..., Z[k:n]} = VT, say. Similarly we observe that 

V2 max{Z[k+l:n],. . ,Zn:n} V2, say. In fact, (V,, V2) (V= , V ). Consequently, we can modify 
Theorem 3 to conclude the following: 

(i) If k = [np], O < p < 1, 

p n V, < V2 - 
an 

) < e-{p exp(-vl)+exp(-v2) 
dn - n 

where cn is obtained by replacing p by Ip1 and q by p in the expression for cn in (5.4). 
(ii) If k is held fixed as n -+ oc, replace (V1 - pan) by (V1 -| plan) on the left-hand side of (5.2). 
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