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ABSTRACT

Necessary and sufficient conditions are given for a commutative ring R to be a
ring over which every regular matrix can be completed to an invertible matrix of a
particular size by bordering. Such rings are precisely the projective free rings. Also,
over such rings every regular matrix has a rank factorization. Using the bordering
technique, we give an interesting method of computing minors of a reflexive g-inverse
G; of a regular matrix A when I — AG and I — GA have rank factorizations.

1. INTRODUCTION

Bordered matrices have been studied in literature by many workers, and
these matrices also play an important role in finding generalized inverses of
matrices. Generalizing the works of Goldman and Zelen [7], Blattner (5}, and
Ben-Israel and Greville [2], Kentaro Nomakuchi [11] presented a characteri-
zation of generalized inverses of matrices over the field of complex numbers
using bordered matrices. Specifically, Nomakuchi showed that if A is an
m X n matrix of rank r over the field of complex numbers, there exists an

LINEAR ALGEBRA AND ITS APPLICATIONS 234:245-259 (1996)

© Elsevier Science Inc., 1996 0024-3795 /96 /$15.00
655 Avenue of the Americas. New York, NY 10010 SSDT 0024-3793(94)00116-U



246 K. MANJUNATHA PRASAD AND K. P. S. BHASKARA RAO

invertible matrix

r-[A P]

O R

of size (m+n —r) X(m +n —r) where P and Q are matrices of size
m X (m — r) and (n — r) X n respectively. Nomakuchi in fact showed that
all g-inverses of A can be obtained by looking at the inverses of matrices T
in

B(A) = {T = 8 II;] P, Q are matrices of size m X (m — r) and

(n — r) X n respectively, and T is invertible}. (1.1)

The above results hold good even for matrices over any field. But over an
arbitrary ring it may not be possible to find a bordered matrix of the above
kind for every matrix, as the following example shows.

ExaMpLE. Consider the matrix

_12 4
A= [° 4]
over the ring of integers Z. This is a 2 X 2 matrix of determinantal rank 1.
For this A there is no bordered matrix
. [a P
r=a R}

where T is an invertible 3 X 3 matrix over Z, because |T'| is divisible by 2
whatever P, Q, and R may be. Hence #(A) = & over the ring of integers.

From our Lemmas 2 and 3 it will follow that if a matrix A has a

bordering, then it necessarily is regular. Observe that the matrix [j :] in
the above example is not regular over Z.

From our Theorem 4, it follows that over an arbitrary commutative ring
every regular matrix need not admit a bordered matrix of the above type.

In Theorem 4 we shall give necessary and sufficient conditions on a
commutative ring R with identity so that every regular matrix over R has a

bordered matrix of the above type.
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2. PRELIMINARIES

Let R be a commutative ring with unity. Let A be an m X n matrix. and
consider the following mnatrix equations:

(1) AGA = A,
(2) GAG = C.

If G isan n X m matrix satisfying (1), then G is called a generalized inverse
(g-inverse, 1-inverse) of A. A matrix A is called regular if it has a g-inverse.
If G satisfies (1) and (2), it is called a reflexive g-inverse of A.

lLet A be an m X n matrix, and let a = {i,.... iLhoB=Aj..... j.} be
subsets of {1,..., m} and {1,....n}, respectivelv. We denote by Aj the

submatrix of A determined by rows mdexcd by a and columns indexed by B.
The determinant of a square matrix A is de noted bv [ Al and (r?/r?a )LA
denotes the cofactor of «a,; in the expansion of the determinant of A. The
determinantal rank (the largvst size of a nonvanishing minor) is denoted by
p(A). In this paper, we say that an m X n matrix A of rank r has a rank
factorization if there is a left invertible matrix B of size m X r and a right
invertible matrix C of size r X n such that A = BC. We denote by C (A)
the rth compound matrix of A with rows indexed by r-clement subsets of

{I,.... m} and columns indexed by r-element subsets of {1... .. n}. At several
places in this paper, a, B, are assumed to be r-element subsets of {1,2.. .., m}
or{l.2..., n} without that being stated explicitly.

The relevant properties of C,(A) from [3] that will be used are listed
below:

(i) C.(AB) = C (A)C,(B).
() If Ais an m X n matrix with p(A) = r, then p(C (A)) =

We follow Jacobson [8] for the notation and terminology regarding
modules.

Now we shall recall a result given by Rao [4] for the construction of a
g-inverse of a given regular matrix satisfving a sufficient condition.

TuroreM 1 (Rao [4, Theorem 1Gi) = Gii)]). Let A be an m X n matrix
of rank r over R such that for some cf € R
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where the summation is over all r-element subsets «, B of {1,2,..., m} and
{1.2,..., n} respectively. Then the matrix G obtained from

=) d’—IA“| (2.2)

a B (l,}

is a g-inverse of A.

The proof of this theorem given in (4] is basically a finer analysis of the
results of [3].

3. BORDERING AND g-INVERSES

For a real matrix A of full column rank it is always possible to find a
matrix P such that [ A, P] is invertible. This raises the problem of finding
necessary and sufficient conditions for a given m X n matrix A of rank n
over a f.,envml commutative ring to admit a matrix P such that [A, P] is
invertible. Over a general commutative ring the result mentioned above for

2 .
real matrices is no longer true. Take for example the 2 X 1 matrix : of

rank 1 over Z. This cannot be completed to a 2 X 2 invertible matrix over Z.
Our Lemma 2 gives some useful necessary conditions, and the second remark
after Corollary 5 gives some necessary and sufficient conditions for a more
general pr()blem For example, it follows that over a commutative ring if
there is a P such that [ A, P] is invertible, A must be regular. This tells us
that there is an inherent relation between regularity of the matrix A and the
existence of a bordering of the tvpe [ A, P].

We shall in fact consider for a matrix A of order m X n and of rank r the
question of existence of matrices P, Q. and R such that

A P
O R

is invertible. One can easily see that P must be m X [, where [ = m — r, and

Q must be k X n, where k > n — r. So we shall consider the existence of

Q R
(m +n —r) X Gn+n—r) Again, regularity of A becomes a necessary
condition, as is explained in Theorem 4 below.
First we shall start with a lemma which is crucial for our Theorem 4,
which at the same time explains what we mentioned at the beginning of this
section.

. U . . L
matrices P, Q, and R such that [/ J is an invertible matrix of order
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LEMMA 2. Let A be an m X n matrix of rank r over R, and suppose that
Pis an mt X (m — r) matrix such that T = [ A, P] has a right inverse. Then
A is regular. and P has a left inverse P' such that P, 'A =0 and

. PR . . .
p'p=1, . In fact. if [() is a right inverse of [A Pl then G is a
-inverse of A and Q is P, ' satisfying above propertices.

Proof. Suppose T has a right inverse. Then there exists a linear combi-
nation X [T le* of m X m minors of T which equals one, i.e.,

ZI?"'I (3.1)

Since plA) =r, p({A. PD = m. and A, P are of sizve m X n, m X (m — r)
respectivelv, we get that p(P)is m — r; also, |T"[ can be nonzero only if a
contains the indices n + 1.n + 2..... m+n —r. Let

a’'=a\{n+1l,n+2 ... m=n—r

whenever [T, is nonzero. Then

1T =Y sen(y) P} I1AY]

v

where vy = (y. vy, ...y, ) is an Gn - r)-element subset of

{1.2..... m), sgn(y) = (=D 700 and o= {12 mp\y (by
Laplace expansion). Hence by considering only the nonzero |l""'“f, (3.1) can be
rewntten as

Z(Z sgn(y)|1,,,_.||x\,’f-l)(“'»-—- 1. (3.2)

«@ b%

Z(Z sgn(y) [AY] ('”)I[’,,y, Jd=1. (3.3)

Y «@

and the matrix P; ' is obtained as

. d
(Pl‘_])'] Z(Z sgn(’y)|Az,|(7") ; IP:Z-;' (3.4)

Y a ¢ P/l

J
= ): ot —— 11, (3.5)

[‘u'z
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Clearly, by Theorem 1, P; ! obtained by (3.4) is a left inverse of P. Since the
matrix T* obtained by replacing the (n + i)th column with the kth column

of A is of rank strictly less than m, we get

d

(P 'A)y = Yy ( Y e ITa'"l) ay = Y IT}" e =0,

j o at_j,n-+-i a
ie., P_'A = 0. Since the left hand side in (3.2) is a linear combination of
r X r minors of A, we get that A is regular.

If [g] is a right inverse of [A, P], we get that AC + PQ =1,,. By

multiplying the above equation by P! we get that Q = P;'!. So we get
QA = 0, which gives AGA = A. Hence the proof. [ |

LEMMA 3.  Let A be an m X n matrix of rank r over R, and let Q be an
(n — r) X n matrix such that
A
T =
K

has a left inverse. Then A is regular, and Q has a right inverse Q' such that
AQr' = 0and QQi' =1I,_,. Infact, if |G, Plis a left inverse of[g] then
G is a g-inverse of A and P is Q' satisfying above properties.

The proof is similar to that of Lemma 2.

In the following theorem we shall characterize commutative rings with
identity over which every regular matrix A has nonempty #(A). Here we
obtain that such rings are projective free (i.e., every finitely generated
projective module is free).

THEOREM 4. The following are equivalent over any commutative ring R:

(i) Every finitely generated projective module over R is free.
(ii) Every regular matrix has a rank factorization.
(iii) For every regular matrix A, B(A) # .

Proof. (i) = (ii): Let every finitely generated projective module over R
be free. Let A be an m X n regular matrix of rank k. Consider A as a
module homomorphism from R" into R™. Since A is regular, there exists a
matrix G:R™ — R" such that AGA = A. We observe that AG is an
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o
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idempotent linear map on R™ into R™ and Range( A) = Range( AG) (= §,
say). Of course, AG is identity on S. Now observe that for any idempotent
linear map T:R™ — R™, Range(T) is projective. So we get that S is
projective, and by the hypothesis it is free. Suppose that S is isomorphic to
R" for some integer p through an isomorphism ¢: S = R”. Let C = ¢A
and B =i¢ ' where i:S > R™ is the inclusion map. Observe that A =
BC. where B is an m X p matrix and C is a p X n matrix. Now we shall see
that B has a left inverse, C has a right inverse, and k = p.

Observe that ¢ ' :R?” — S is a linear mapping onto S and AG:R™ -
R™ is a projection onto S. From this we obtain that AGi¢p™'=¢ '. In
other words, ¢AGid ™' is an identity on R”. Now clearly the matrix €’
obtained from Gig ' is a right inverse of C, and the matrix B’ obtained
from ¢ AG is a left inverse of B. Now A = BC and B'AC’ = B'BCC’ =
give us p(A) = k = p. Hence A = BC is a rank factorization.

(i) = (iii): Suppose every regular matrix has a rank factorization. We shall
prove that for every re guldr matrix A, B(A) is nonempty. Let A be an
m X n watrix of rank r, and G be a reflexive g-inverse of A,

We first consider the case r < min{m, n}. Then 1, — AG and [,
are idempotent matrices, and so thev are regular of rank m — r and n - r
respectively. [In fact, if an idempotent matrix £ has a rank factorization
E = PQ, then p(E) = trace E. Since P has a left inverse and Q has u right
inverse, we get that POPQ = PQ = QP =1, and

r = trace I, = trace QP = trace PQ = trace F.]

Since every regular matrix over R has a rank factorization and AG and GA
are idempotent matrices of rank r, and since r < minCm, n), we get that
I, — AG and I, = GA are nonzero idempotent matrices of rank m — r and

n—r resp(‘ctivcly. Let

L, —AG =B, - Cin- s (3.6)
and

I, —GA=P . QP rixn (3.7}
be rank factorizations. Since I, — AG and I, — GA are idempotent

matrices. we get that CB =1, ., and QP =1, . Using (3.6) and (3.7), we
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also get that CA = 0, GB = 0, AP = 0, and QG = 0. Hence we get that

A B
Q 0]

isan (m + n — r) X (m + n — r) matrix with inverse

& 1]

Hence @#B(A) is nonempty. For the case r = min(imn, n), a slight adjustment
in the above proof will give the result.

(iii) = (ii): Let X be a finitely generated projective module with X &
Y = R" for some module Y and some integer n. Let A:R" — R" be the
natural projection onto X, and p(A) =r. Then A and B =1 — A are
idempotent matrices, and so B is regular. From (iii) we get that #(B) is
nonempty. Let

T = [g f;] € B(B)

with inverse

s o [G E
F uj

B . . .
Then we get that [0] has a left inverse. By Lemma 3 we can obtain a right

inverse Q' of Q such that BQ;' = 0 and QQ;' =1, _.. Since [G E]is a

fn

left inverse of [8] we get that
GB + EQ = I. (3.8)
By multiplying both sides of (3.8) on the right by Q' we get that

E=0Qy'. (3.9)

Since (I —GBXI —B)=1-B and (I = BXI — GB) =1 — GB, we
get that Range(I — GB) = Range(I — B), and this in turn gives us that
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1o
ot
o)

Range(I — GB) = Range( A} = X. From (3.8) we get that
Range( I — GB) = Range( EQ) = Range( F).

the last equality because Q has a right inverse. But Range(E) is free because
E has aleft inverse. Thus, X is free. [ |

COROLLARY 5. Oter a commutative ring R with identity. if ecery finitely
generated projective module is free, then every m X k regular matrix of rank
k can be completed to an m X m invertibe matrix.

The proof follows from (i) = Gii) of the above theroem.

REMARK.  Over a commutative ring. if for a matrix A there is a border-

AP
o [o S]
is of the form
G E
Fooo

This follows from Lemmas 2 and 3 and their use in the proof of Gii) = (i) of
Theorem 4.

ing

that is invertible, then T !

Remark.  Clearly, for a regular matrix A, if G is a g-inverse of A. then
Ker A = Range(l — GA) and Coker{ A) = Range I — AG. From the proof
of the above theorem, it is clear that 8(.A) is nonempty if and onlv if
{, = GA and I, — AG have rank factorizations for any g-inverse G of AL If
I —AG =8B C and I, = GA =P, Qi o1t

mX(m—r){(m—-r)Xm 1
A B
Q 0

gives an invertible bordering of A. In other words, a regular matrix A over R
has nonempty £( A) if and only if its kernel and cokemel are free.
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ExaMPLE. Let R be an integral domain on which not every stably free
module is free. Let S be such a stably free but not free module, i.e., there is
a free module R* such that S ® R* = R". Let A be an n X n matrix
obtained by projection from R" onto S. Clearly, by considering A to be a
matrix over the quotient field of R we get that p(A) = n — k. Since I — A is
projection onto R*, we get a rank factorization I — A = PQ, where P is
n Xk and Q is k X n. Here A is an example of a matrix which does not
have rank factorization [because Range( A) = S is not free] but has nonempty
#( A) which contains

o

The matrix I — A is an example of a matrix which has rank factorization but
no bordering of the required type. In fact, if

I-A R
S T

is an invertible matrix of size 2n — k X 2n — k with inverse

[c X
N

by looking into the proof of (iii) = (i) we get that the range of A is free, a
contradiction. This example shows that for a given matrix C, the existence of
a rank factorization of C neither implies nor is implied by &(C) # .

COROLLARY 6.  Oter any commutative ring R with identity, the state-
ment that every regular matrix is of the form

I 0],
M[f 9]

where M and N are invertible matrices over R is equivalent to any of (i), (ii),
and (iii) of Theorem 4.
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Proof.  Any matrix of the form

1 o],
W[l s

where M and N are invertible matrices is easily vertified to have a rank
factorization. Thus, the statement given in the corollary implies that every
regular matrix over R has a rank factorization. Conversely, if A is a regular
matrix, then from condition (ii) of Theorem 4, A has a rank factorization, say

= BC. Then from Corollary 5. the matrix B can be completed to an
invertible matrix P of size m X mn, the matrix C can be completed to an
invertible matrix Q of size n X n, and we get that

a=rlf e

Hence the corollary. [ |

REMAaRK.  Part (iii) of Theorem 4, namely, “for every regular matrix A,
#(A) is nonempty,” is equivalent to the statement that for every m X n
regular matrix A of rank r, there is an m X (m — r) matrix P such that
[ A, Plis right invertible.

ReMarK.  Corollary 6 generalizes a result (Theorem 1 of [13]) of Sontag.
In [13] Sontag showed that over the ring of polynomials in several variables
with complex coetficients, being regular is the same as having Smith normal
form with S = 1.

As an application of our result we shall prove the following result.

~

TueoreMm 7. If R is @ commutative ring with the property that for
every finitely generated subring A of R with identity there is a projective
free subring R’ such that A C [R’ C R, then R is projective free.

Proof. Consider an R-projective module P, and let Q be an R-module
such that P ® Q = R". Let A be an n X n matrix such that A:R" - P is
the natural projection map. Consider the subring A generated by 1 and g,
(I <€ i,j < n). By hypothesis, there is a subring R" such that A c R’ ¢ R,
and R’ is projective free. Since R’ is projective free and A is regular over R
and R’, from (i) < (ii) of Theorem 4 we get that A has a rank factorization
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over R’. Since R’ is a subring of R, A has rank factorization over R, which in
turn implies that P is frec. Hence we get that R is projective free. [ ]

Now, using our results and Quillen and Suslin’s theorem, we shall show
that P[X,, X,,...] is projective free for any principal ideal domain P, thus
extending Quillen and Suslin’s result to infinitely many variables.

Cororiary 8. If P is a principal ideal domain, then P{X|, X,,...] is
projectite free.

Proof. Quillen in [12] proved that P[ X,, X,,..., X, ] is projective free
(Serre’s conjecture) for all n. For any finitely generated subring A of
PLX,, X;,...] we can find indices i), 4,,...,4;, such that A is in
Pl Xn’ Xi], v X ). So, from the above Theorem 7, we get that P[ X, X,,...]
is projective frec. [ ]

4. MINORS OF REFLEXIVE GENERALIZED INVERSES

Now we shall give a method of computing the minors of a reflexive
g-inverse G of an m X n matrix A of rank r. In the process, surprisingly, we
obtain a formula that is similar to (2.2) for computing any k X k minor
(k < r) of G. In particular, in the case of a 1 X 1 minor of G we obtain
Theorem 3 of [1]. In fact, if

e 1
0 0

is an invertible matrix of size (m + n — r) X (m + n — r) with inverse

G P
c 0

such that I —~ AG = BC and I — GA = PQ as in (ii) = (iii) of Theorem 4,
then we obtain that the r X r minor ICHBI of G is

sta)+s(BY+(m -rXn ) ‘
(-1 B Q.

where s(a) = Z]_, a,. s(B)=Z/_, B, a“*={1,2,....,m}\ a, and B° =
(1,2,....n}\ B.
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In the following theorem, for convenience, we shall consider the case
p( A) < min{m, n}, in which case I — AG and I — GA are nonzero.

THEOREM 9. Let A be an m X n matrix of rank r < min{m.n}. Let G
be a reflective g-inverse of A. If BC. PQ are rank factorizations of I - AG
and I — GA respectively, then:

G) The determinant

A B| _ S+l B Cm rHu 1) | gy e «
a. B

is « linear combination of r X r mminors of A.
(i) for any k-element subsets y of (1.2..... m) and & of (1.2..... n)
(k <r).

s (L [A Bl
l(‘7|_(d('t[Q 0])

—rAn -r ‘ (y
X L (e g 10, |~ Al
o B dl Al

where (37| A7 Ag| is the cofactor of | Al in the determinantal expansion
of 1Agl In particular,

=1
- A B sta)=s ~{m—r¥Xn r) @’
ICP| = (dct[o 0]) (-1) o B 11Qg,

the (j, Dth element of G is

d
— trv B a
g, = 2 GBI —1A5l.
J o B da,,
and
d
a Al

G2l = Y IGA [Agl.
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Proof. Since I — AG (= BC) and I — GA (= PQ) have rank factoriza-
tions, from (ii) = (iii) of Theorem 4 we get that

A B
=[5 0]
is invertible with
L _[c P
T [C 0].

Since B is a full column rank matrix and Q is a full row rank matrix, using
Laplace expansion (refer to Grantmacher [6]), we get that

ITI= X (-1 213 10,1 Agl.

Let v be any k-element subset of {1,2,..., m}, and 6 be any k-element
subset of {1,2,..., n}; then

(T-H5 =T ° i1
Y Ry '

Again from the structure of T and Laplace expansion, we can prove part (ii)
of the theorem. [ |

REMARK. If I — AG =0, it can be seen ecasily as in the previous

theorem that
A
T =
o]

det[g] = Y (-1)P1Q04 1 Ayl,
a. B

is invertible,

and

Al} ‘
The case I — GA = 0 is also similar.

REMARK. Theorem 9 generalizes Theorem 3 of [9]. This is because (9]
deals with only the matrices over fields or integral domains.
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