
On Bordering of Regular Matrices 

K. Manjunatha  Prasad and K. P. S. Blmskara Rao 

hulian Statistical Inst i tute 

Stat-Math Unit 
8th Mih', Mysore  Road 

I~. ~'. College (P. O. ) 
IJan~alore-560 059, India 

S.bmitted by I~ichard A. Bruahli 

AI~STttA( 71" 

Necessary and sufficient conditions are given for a commutative ring '~ to be a 
ring over which every regpdar matrix can be completed to an invertible matrix of a 
particular size by bordering. Such rings are precisely the projective free rings. Also, 
over such rings ever)' reg~dar matrix has a rank factorization. Using the bordering 
technique, we give an interesting method of computing minors of a reflexive g-inverse 
(; of a regular matrix A when I - AG and I - GA have rank fiactorizations. 

1. I N T R O D U C T I O N  

Bordered  matrices have been  s tudied in l i terature by manv workers,  and 
these matrices also play an important  role in f inding general ized inverses of  
matrices.  General iz ing the works o f  Go ldman  and Zelen [7], Blat tner  [5], and 
Ben-Israel  and Grevil le  [2], Kentaro Nomakuchi  [11] p resen ted  a character i-  
zation of  genera l ized  inverses of  matr ices over the field of  complex numbers  
using bo rde red  matrices.  Specifically, Nomakuchi  showed that if A is an 
m X n matrix of  rank r over  the field of  complex numbers ,  there  exists an 
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invertible matrix 

T = 

of  size ( m  + n - r )  X ( m  + n - r )  where  P and Q are matrices of  size 
m × ( m  - r )  and (n - r )  x n respectively. Nolnahlchi  in fact showed that 
all g-inverses of  A can be obtained by looking at the inverses of  matrices T 
in 

P ]  P, Q are matrices of  size m × ( m  -- r )  and 

(n  - r )  × n respectively, and T is invertible}. (1.1)  

The  above results hold good even fi)r matrices over any field. But over an 
arbitrary ring it may not be  possible to find a bordered  matrix of  the above 
kind for every matrix, as the following example shows. 

EXAMPI.E. Consider  the matrix 

A = [ 2  

over  the ring of integers 7/. This is a "2 x 2 matrix of  determinantal  rank 1. 
For  this A there is no bordered  matrix 

where  T is an invertible 3 × 3 matrix over  7/, because IT[ is divisible by "2 
whatever  P, Q, and R may be. Hence  , ~ ( A )  = Q over the ring of  integers. 

From our I ~ m m a s  2 and 3 it will follow that if a matrix A has a :],n bordering, then it necessarily is regular. Observe  that the matrix 2 

the above example is not regular over 7/. 
F rom our  Theo rem 4, it follows that over  an arbitrary commutat ive  ring 

every regular matrix need not admit a bordered  matrix of  the above ) 'pc .  
In Theo rem 4 we shall give necessary and sufficient conditions on a 

commutat ive  ring R with identity so that ever?" regular matrix over  It~ has a 
bordered  matrix of  the above type. 
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Let ~ be a commutative ring with unib'. Let A be an m × tl matrix, and 
consider the following matrix equations: 

( I )  AGA = A, 
(2) GAG = G. 

If (; is an n × tit matrix satis~ing (1), then G in called a generalized inver~'~" 
(tz-im;erse, 1-inverse) of A. A matrix A is called reff, ular if it has a g-inverse. 
If  (; satisfies (1) and (2), it is called a rtflexive tz-inw'~se of A. 

l,et A be an m × n matr£x, and let a = {i 1 . . . . .  i,}, /3 = {jl . . . . .  j,} I)e 
subsets of  {1 . . . . .  m} and {1 . . . . .  n}, respectively. \Ve denote by A~ the 
submatrix of  A determined by rows indexed bv a and columns indexed by/3.  
The deternfinant of  a square matrix A is denoted by IAI, and (O/cgaijj!Ai 
denotes the cofactor of  aij in the e,,q)ansion of  the determinant of A. The 
determinantal rank (the largest size of  a nonvanishing minor) in denoted })v 
p(A).  In thin paper, we say that tin m × n matrix A of  rank r has a ranL 
fiwtorization if there is a left invertible matrix B of  size m × r and a right 
invertible matrix C of  size r × n such that A = BC. W e  denote by C,.(A) 
the r th  compound matrix of  A x~Sth rows indexed by r-element sl~bsets of  
{1 . . . . . .  m} and columns indexed by r-element subsets of{1 . . . . . .  n}. At several 
places in this paper, a , / 3 ,  are assumed to be r-element subsets of  {1,2 . . . . .  m} 
or { 1, 2 . . . . .  n} without that being stated explicitly. 

The relevant properties of  C , ( A )  from [3] that will [)e used are listed 
below: 

( i)  C , ( A B )  = (:r ( A ) C , ( B ) .  
(ii) If  ,4 is an m × n matrix with p ( A )  = r, then p(C,(A)) = 1. 

We follow Jacobson [8] fi~r the notation and terminology: regardin ~ 
modules. 

Now we shall recall a rest, It given by Rao [4] for the construction of  a 
~-inverse of  a given regnlar matrix satis~4n~ a sufficient condition. 

THEOREM 1 ( R a o  [4, Theorem l(ii) ~ (i i i)]) .  I,et A be at~ m × n matrix 
o f  rank r over ~ s'uch that fi ,r some c .  ~ E 

c~ Ia~'l = 1, (2.1) 
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where the su,nnmtion is over all r-elenwnt subsets a, ~ ()jr {l, 2 . . . . .  m} anti 
{1, 2 . . . . .  n} respectively. 77ten the matrix G obtained from 

d 
~ P = ,~f3 eft, c) a i-----]j I A ~ I ( 2 .2 ) 

is a g-inw;rse of A. 

The proof  of" this theorem given in [4] is basically a finer analysis of  the 
results of  [3]. 

3. B O R D E R I N G  A N D  g- INVERSES 

For a real matrix A of  fidl (:ohnnn rank it is always l)ossible to find a 
matrix P such that [A, P] is invertible. This raises tile problem of finding 
neeessa O' an(t sufficient conditions for a given m × n matrix A of  rank n 
over a general commutative ring to admit a lnatrix P such that [A, P] is 
invertibh,. Over a general commutative ring the result mentioned above for 

real,natrices is nol(,nger true. Take for example t h e 2 ×  I matrix [ : ]  of  

rank 1 over/7.  This cannot [)(' (:Oml)lete(1 to a 2 × 2 invertible matrix over 7/. 
Our  Lemma 2 gives some usefld necessary conditions, and the second remark 
after C'orollarv 5 gives some necessa~: and sufficient conditions for a more 
general problem. For example, it follows that over a ('ommutativ(-, ring if" 
there is a P such that [A, P] is invertib]e, A must be regular. This tells us 
that there is an inherent relation between regularity of  the matrix A and the 
existence of  a hor(|ering of  the t~])e [ A, P]. 

We shall in fact consider (br a matrix A of  ord('r m × n an(t of" rank r the 
question of  existence of  matrices P, Q, and R such that 

A P 

is invertible. One can easily see that P must be m × l, where / >~ m - r, and 
Q must be k × n, where k >~ n - r. So we shall consider the existence of  

[~  r ]  is an invertible ,,,atrix of  order nmtrices P, Q, and I¢ such that 1~ 

(m + n - r)  × (m + n - r). Again, regularity' of  A becomes a necessary 
condition, as is explained in Theorem 4 below. 

First we shall start with a lemma which is crucial for our Theorem 4, 
which at the same time explains what we mentioned at the begimfing of  this 
section. 
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I,EMM~ 2. l ,e t  A be  an m x n tna tHx  ~ ' r a n k  r o v e r  1~. a n d  suppo,s'e that  

P i.s an m × ( m  - r )  , u # r i x  s u c h  that  T =  [A .  t '] has  a r'i~ht inl:er.s'e. Then  

A i.s r e zu lar ,  a n d  P has a h f t  im:er~e Pt[ I s u c h  that  PI, tA = 0 a m l  

P, ' I ' =  I . . . .  . I,, fac t .  ! f  ~' i.s. a r ight trivets'," o f  [A .  1']. then C: i.; a 

~-i,,,.c,:,.e , , f  A cmd Q i.s. t'1.' .s.atisJiti,, ~ a b o v e  pn,perti,r,s'. 

I 'm, ! f .  Suppose  7" has a right inverse.  T h e n  the re  exists a l im,ar c o m b i -  
nation ~ . . . .  :t of  II1 × m minors  o[" T which equa ls  one,  i.e., 

IL~"I,'" = I .  ( :3 .1 )  

Siw.'t' p ( A )  = r, p ( [ A ,  P]) = m.  and A, P are  o f  size m × u, m × (m - r )  

respectiv( ' ly,  we get  that  p ( P )  is m - r; also, IT~:"I can b~' nonze ro  only if" a 

conta ins  the  indices n + 1, n + 2 . . . . .  m + , - r. Let 

a '  = a \ { n  + I , u  + ' 2  . . . . .  m - .  - r}  

whem'ver !111". is nonzero. Then 

!L:"I = ~ sgn(v)ICT ,IIA~I 
7 

w h e r e  Y = (71, Y2 . . . . .  Z,, , )  is an (m  -- r ) - e l e m e n t  subse t  o f  

T",  I (3. I ) can  be Laplace expansion). Hence by considering only the nonzero , ,  . 
r~'writh'n as 

S o  

"y a 

( 3 . 2 )  

( :3 .3 )  

and the matrix P;. I is ob t a ined  as 

( 
. " c)pp 

e,,T _,I (3 .4)  

8 
= Y'. c " - -  7 7 ' ( 3 . 5 )  

O t  I , -i t~ . 
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Clearly, by Theorem 1, Pt-. l obtained by (3.4) is a left inverse of P. Since the 
matrix T* obtained by replacing the (n + i)th column with the kth column 
of A is of rank strictly less than m, we get 

j Otj,,,+, IZ#'l ajk ~ Ir*'"l c "  = O, 

i.e., Pt~ tA = 0. Since the left hand side in (3.2) is a linear combination of 
r x r minors of A, we get that A is regular. 

1 " 3  / is a right inverse of [A ,P] ,  we get that A G + P Q = I  m. By 
L J 

multiplying the above equation by PL l we get that Q = PL-i. So we get 
QA = 0, which gives A GA = A. Hence the proof. • 

LEMMa 3. Det A be an m × n matrix o f  rank r over R, anxt let Q be an 
(n - r)  × n matrix such that 

has a left inverse. Then A is regular, and Q has' a right inverse Q f¢ l such that 

[ C l t h e n  Apf l  I = 0 and p p f  l = i ,_r" In fact,  i f  [c ,  P] is a left inverse of  Q , 

G is a g-inverse of  A and e is Q[¢~ satisfying above properties. 

The proof is similar to that of Lemma 2. 
In the following theorem we shall characterize commutative rings with 

identity over which every regular matrix A has nonempty 6i¢(A). Here we 
obtain that such rings are projective free (i.e., ever), finitely generated 
projective module is free). 

TllEOREM 4. The following are equivalent over any commutative ring R: 

(i) Every finitely generated projective module over R is free. 
(ii) Every regular matrix has a rank factorization. 

(iii) For every regular matrix A, ,~(  A)  ~ Q. 

Proof. (i) ~ (ii): Let every finitely generated projective module over R 
be free. Let A be an m × n regular matrix of rank k. Consider A as a 
module homomorphism from It~" into R m. Since A is regular, there exists a 
matrix G : R m ~  fit" such that AGA = A. We observe that AG is an 
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i d e m p o t e n t  l i n e a r  m a p  o n  R "  i n t o  [R" a n d  R a n g e ( A )  = R a n g e ( A G )  ( =  S ,  

say). O f  course,  A G  is ident i )"  on S. Now observe  that for any idexnlx)tent 
l inear  map  T : [R ' "  ~ ~ ' " ,  R a n g e ( T )  is project ive.  So we get that S is 
projective,  and  by the  h~×) thes is  it is free. Suppose  that S is isomoq~hic to 

P for some in teger  p th rough  an i somoq)his in  05 : S ---+ ~P .  l ,et C = 05A 
a n d  B = i05 i where  i :  S ~ JR'" is the inc'lusion map.  Obse rve  that A = 
BC,  where  B is an m X p matrix and  C is a t; × n matrix. Now we shall see 
that B has a left inverse,  C has a right inverse,  and k = p. 

Obserxe  that 05 1 : []~ p ~ S is a l inear  m a p p i n g  onto  S and  A C  : ~ '" --, 

~" '  is it p ro jec t ion  onto  S. F r o m  this we obta in  that A(;i05-1 = 05 ~. In 
o the r  words.  05AGi05-1 is an ident i ty  on [~". Now clearly the matrix C '  
ob ta ined  from (;i05 i is a right inverse  of  C, and  the  matrix B '  ob ta ined  
from 05A(; is a left inverse  of  B. Now A = B C  and  B ' A ( ; '  = B ' B C C '  = I,  

~ v e  us p( A )  = k = p. t l e n c e  A = B C  is a rank factonzaticm. 
(ii) ~ (iii): Suppose  eve D' regular  matrix has a rank Factorization. \Ve shall 

prove that t})r every regular  matrix A, ' ~ ( A )  is tlonemi)t) ' .  Let A be im 
m × n matrix of  rank r,  anti G be  a retlexive ~- inverse  of ,4. 

We  first eonsicter the  ease r < rain{m, n}. T h e n  I,,, - AC and  I,  - ( ;A 

are ic tempotent  matrices,  and  so thex are regular  of  rank m - r and  n - r 

respectively.  [In fact, if an ich 'mpoten!  matrix E has it rank factCmzation 
E = t>Q, t hen  p ( E )  = trace E. Since P has a h,ft inverse, and  Q has it riKht 
inverse,  w e g e t  that P Q P Q  = PQ ~ QP = I, and  

r = trace I,  = trace QP  = trace I 'Q = trace E.]  

Since ever), regmlar matrix over  N has a rank factorizat ion and  A G  and ( ;A 

are i d e m p o t e n t  matr ices  of  rank r, and  since r <  r a in (m,  n), we get that 
1,,, - A( ;  and  I,, - C A  are  nonze ro  i d e m p o t e n t  matric( 's o[" rank m - r and 
n - r respectively,  l .et  

I , .  - A ( ;  = B,,, x t , , , -  ,.~Ct,,, _,  ~/,,, 

and 

I,, - G A  = P, , . ,~ , ,  r>Qi , ,  ,~×, ,  (:3.7) 

be rank faetorizations.  Since I , , , -  A G  and  1 , . -  GA are iden lpo ten t  
ulatrices,  we get that CB = l , , , . ,  and  Q P  = l,, ,. u s i n g  C3.6) and  (:3.7), xv¢, 
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also get that C A  = O, GB = O, A P  = 0, and QG = 0. Hence  we get that 

is an (m + n - r )  X (m + n - r )  matrix with inverse 

Hence  C~(A) is nonemp~' .  For  the case r = rain(m, n), a slight adjus tment  
in the above proof  will give the result. 

(iii) ~ (ii): l_~t X be a finitely genera ted  project ive module  with X q) 
Y --- ~ "  for some module  Y and some integer  n. Let A : [ ~ "  --* ~ "  be the 
natural project ion onto X, and p ( A ) =  r. Then A and B = I -  A are 
idempoten t  matrices,  and so B is regular. F rom (iii) we get that ,&(B)  is 
nonemp~. .  Let 

x~fith inverse 

s] 

Then we get that Q has a left inverse. By l , emma 3 we can obtain a right 

inverse p a  ~ of  Q such that B 9 ~  t = 0 and Q Q ~  = I,,_~. Since [G E] is a 

le(} inverse of  Q , we get that 

GB + E Q  = I. 

By mul t ip l~ng  both sides of  (3.8) on the right by Q~ t 

E = Q~, '  

(3.8) 

we get that 

(3.9)  

Since ( I  - G B ) ( I  - B )  = I -  B and ( I -  B X I  - G B )  = I -  GB,  we 
get that Range( /  - G B )  = Range( /  - B), and this in turn gives us that 
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Range(l  - CB) = Range(A) = X. From (3 .8)we get that 

R. , ,g ( . (  i - C B )  = ~ , , , , g ~ ( ~ : Q )  = ~ , , , , g . ( ~ : ) .  

the last e(luality because Q }ms a fight imcrse.  But l),ange(E) is free I)erausc 
E has a left invers(,. Thus, X is f r e e .  • 

C()R()I.I.ARV 5. O v e r  a commuta t i t ; e  r ing ~ wi th  iden t i ty ,  i f  esery. . f ini tely  

~( 'm'rated pr(! jec t ire  moduh"  i,s" f r r e ,  then  eve  W m X k regu lar  ma t r i x  ~J'r:mk 
k ran Iw r o m p l e t e d  to an m X m int;ert ibe matr ix .  

ing 

The l)roof fi)llows from (i) ~ ( i i i )of  the above theroem. 

RI.:MAJ',K. Over a commutative ring. if for a matrix A t[mr(, is a [)order- 

that is im'ertible, then T i is of  the form 

This follows from l/emmas 2 and 3 and their use in thr  proof  of  (iii) ~ (i) o( 
Theorem 4. 

REMAI{K. ('learly, for a regular matrix A, if (,; is a g-inverse of  A, then 
Ker A -~ Range(l  - CA) and Coker(A)  ~ Range I - A C .  From the proof 
of  the above theorem, it is clear that ,"A(A) is nom'ml) ~" if and only if 
t,, - CA and I,, - AC have rank factofizations for any g-inverse C of  A. If 
t,,, - A G  = B ... .  (,,,_,)C~,,,_,~ ... .  and  I,, - G A  = P, , , (  . . . .  ~O(,, ,~×,," 

A /3 [.0] 
gives all invertible bordering of  A. In other wo,'ds, a r('gular matrix A over r~ 
has nom'nq)t>' . ~ ( A )  if" and (rely if its kernel and cok(,nml are free. 
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EXAMPLE. Let 1~ be an integral domain on which not e v e ~  stably free 
module is free. Let S be such a stably free but not free module, i.e., there is 
a free module ~k such that S ~ [ ~ k = l t ~ " .  Let A be an n × n  matrix 
obtained by projection from [~" onto S. Clearly, by considering A to be a 
matrix over the quotient field of  1~ we get that p ( A )  = n - k. Since I - A is 
projection onto I~ ~, we get a rank factorization I -  A = PQ, where P is 
n × k and Q is k × n. Here A is an example of  a matrix which does not 
have rank factorization [because Range(A)  = S is not free] but has nonempty 
~ ' ( A )  which contains 

:] 
The matrix I - A is an example of  a matrix which has rank factorization but 
no bordering of  the required bl)e. In fact, if 

[';A 

is an invertible matrix of  size 2n - k × 2n - k with inverse 

by looking into the proof  of  (iii) ~ (i) we get that the range of  A is free, a 
contradiction. This example shows that for a given matrix C, the existence of  
a rank faetorization of  C neither implies nor is implied by St~(C) ~ Q. 

COROLLARY 6. Over any commutative ring ff~ with identity, the state- 
ment that every regular matrix is of the fi~mn 

o]N 

where M and N are invertible rruatrices over ~ is equivalent to any of (i), (ii), 
and (iii) of Theorem 4. 
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Proof. Any matrix of the form 

where M and N are invertible matrices is easily vertified to have a rank 
thctorization. Thus, the statement given in the corollary implies that every 
regular matrix over ~ has a rank factorization. Conv(;rsely, if A is a regular 
,mtrix, then from condition (ii) of Theorem 4, A has a rank factorization, sav 
A = BC. Then from Corollary 5, the matrix B can be completed to an 
inverlible matrix P of size m x m, the matrix C can be completed to an 
invertible matrix Q of size n x n, and we get that 

I 0] 
A = P 0 0 Q" 

[lence the corollary. • 

Rr:MARK. Part (iii) of Theorem 4, namely, "for eve~  regular matrix A, 
,~(A)  is nonemph'," is equivalent to the statement that for every m × n 
regular matrix A of rank r, there is an m × (m - r)  matrix P such that 
[A, P] is right invertible. 

Rr:staRK. ('orollau, 6 generalizes a result (Theorem 1 of [13]) of Sontag. 
lh [13] Sontag showed that over the ring of polynomials in several variables 
with complex coefficients, being regldar is the same as ha~Sng Smith normal 
f't~rm with S = I,. 

As an application of our result we shall prove the following result. 

TH~;o~I.:M 7. If ~ is a commutative ring with the property that for 
e1:emj finitely generated subring ~ of ~ with identity there is a proje~'tive 
free subrin~ ff~' such that A c ~' c ~, then ~ is projective free. 

Proof. Consider an R-projectiw; module P, and let Q be an It~-module 
such that P ~ Q - -  1~". Let A be an n × n  matrix such that A : R  n ~ P is 
the natural projection map. Consider the subring ~ generated by 1 and a,s 

(I ~< i , j  <~ n). By hypothesis, there is a subring [~' such that /~ c R' c ~, 
and 1~' is projective free. Since R' is projective free and A is regular over R 
and ~' ,  from (i) ¢~ (ii) of Theorem 4 we get that A has a rank factorization 
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over ~ ' .  Since ~ '  is a subring of  ~, A has rank factorization over [~, which in 
turn implies that P is free. l tence  we get that ~ is projective free. • 

Now, using our results and Quillen and Suslin's theorem, we shall show 
that P[ X l, X 2 . . . .  ] is projective free for any principal ideal domain P, thus 
extending Quillen and Snslin's result to infinitely many variables. 

Com)H.nr~v 8. If P is a priricipal ideal &retain, then P[ X l, X 2 . . . .  ] is 
projective free. 

Proof. Quillen in [12] proved that P [X  I, X 2 . . . . .  X,,] is projective free 
(Serre's conjecture) for all n. For any f ini tely generated subr ing ~. o f  
D [X I ,  X,  . . . .  ] we can f ind indices i l ,  i 2 . . . . .  i~ sud l  that & is in 
P[ X,,, X,,, . . . .  X,~ ]. So, from the" above Theorem 7, we get that P[ X~. X 2 . . . .  ] 
is projeet{ve free. • 

4. MINORS OF R E F L E X I V E  G E N E R A L I Z E D  INVERSES 

Now we shall give a method of  computing the minors of  a retlexive 
g-inwerse G of  an m × n matrix A of  rank r. In the process, suq~risingly, we 
obtain a formula that is similar to (2.2) for computing any k × k minor 
(k ~< r)  of  G. In particular, in the case of  a 1 × 1 minor of  G we obtain 
Theorem 3 of  [1]. In fact, if 

is an invertible matrix of  size (m + u - r)  × (m + n - r)  x~th inverse 

such that I - A G  = BC and I -  GA = PQ as in(i i)  ~ ( i i i )  of  Theoren l4 ,  
then we obtain that the r × r minor ]Gffl of  G is 

where  s ( a )  = El= l a i ,  s(13) = El= t /3i, c e " =  {1,2 . . . . .  m} \ a ,  and  /3': = 
{1,2 . . . . .  . } \ ~ .  
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In the tbl lowing thcoren3, tor conven ien t ( . ,  wc shall cons ider  the cas( + 
p ( A )  < mitt{m, n}, in which cas(' I -- AG and  I - (JA arc nonzero .  

"i'm.:t)l{I,:M 9. l ,et  A be an m x n mz~trix o f  rank r < rain{m, ~l}. l,ct (;  

b c a  rcflectir]c ~- inverse o f  A.  I f  BC.  PQ are rank .filt+torizatio,,.~ ' +!f I - A l l  
and  I - (;,4 respect icely ,  then." 

(i) Th+' dc temninant  

&'t Q = E ( - 1 )  ."`,)+'t~>+( . . . .  ~"" ' I I3"I IQ~, I IAvI  

is a l inear cond)ination o f  r X r minors  (~,4 .  
(ii) .fi)r any  k -e lement  subs'ets 3] +~ ( i ,  2 . . . . .  m) and  (5 o f  (1 ,2  . . . . .  ,~) 

(k < r), 

,9 
x ~ ( - 1 )  `+~'+*`~13' ..... -+×"-'>II~"'IIQ~,I~IA~;I, 

a./3 

whet," (+~/~1A~'I)I A~I is the c,~z('tor of I A~'I i,, the deten,+h+a,+tal expa,,.+i+,, 
of IA~I. I,+ particular, 

- I  

ICfl= dot Q 0 ( - 1  

the (./, i )th +'le,u, nt o f  G i.s" 

i) 

c~./3 3 a , /  ~ " 

and  
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Proof. Since I - A G  ( =  B C )  and I - GA ( =  PQ) have rank factoriza- 
tions, from (ii) ~ (iii) of Theorem 4 we get that 

is invertiblc with 

0 =] 

C 

Since B is a full column rank matrix and Q is a full row rank matrix, using 
Laplace expansion (refer to Grantmacher [6]), we get that 

ITI = ~ ( - 1 )  ~<~)+~t~)+<''- ~x,, r) lB, ,  I Ip~,l IA~I. 
or, /3  

Let T be any k-element subset of {1, 2 . . . . .  m}, and ~ be any k-eleinent 
subset of {1, 2 . . . . .  n}; then 

= l 

Again from the stnlcture of 7" and Laplace expansion, we can prove part (ii) 
of the theorein. • 

R E M A R K .  

theorem that 

is invertible, 

and 

If I - A G  = 0, it can be seen easily as in the previous 

A]  1),(#) det Q = ~ ( -  IQa, I A~I, 
a .  fl 

c9 
( - 1) ='~> IQ~I 0-~]--~ I IA~I- 

/3 

The case I - GA = 0 is also similar. 

REMARK. Theorem 9 generalizes Theorem 3 of [9]. This is because [9] 
deals with only the matrices over fields or integral domains. 
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