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Abstract 

Previous applications of tests for trend in tumor occurrence rates in laboratory studies of 
carcinogenicity have frequently employed a beta-binomial distribution for the historical control 
response rates. In this paper, we develop generalized score tests for trend based on a logistic 
dose response model and an arbitrary distribution for the historical control tumor response 
probabilities. A closed-form expression for the score statistic is presented in the special case of 
a discrete uniform distribution with mass points corresponding to the observed historical 
control series. The asymptotic distribution of this statistic is shown to be a finite mixture of 
normal distributions. A discrete empirical Bayes shrinkage estimator of the historical control 
response rates is proposed, along with a bootstrap variance estimator for the corresponding 
score statistic which takes into account sampling variability in the historical data. The 
application of this test is illustrated using bioassay data taken from the literature. 

1. Introduction 

The first s tat is t ical  p rocedure  i nco rpo ra t i ng  his tor ical  cont ro l  da t a  into tests for 

increasing t rend in t u m o r  occurrence  rates observed in l a b o r a t o r y  studies of carcino-  

genici ty was given by Ta rone  (1982). In this approach ,  a be ta -b inomia l  model  is used 

to descr ibe  the ex t ra -b inomia l  var ia t ion  often seen in his tor ical  control  da t a  

(Haseman  et al., 1984), a long with a logist ic dose  response model  for the exper imenta l  
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data. Under these assumptions, the score test for trend is a simple modification of the 
Cochran-Armitage test which is widely employed without historical controls (cf. Gart  
et al., 1986). 

Subsequently, other tests based on the beta-binomial distribution have been pro- 
posed (Yanagawa and Hoel, 1985; Hoel and Yanagawa, 1986; Krewski et al., 1987; 
Smythe et al., 1987; Prentice et al., 1992; Krewski et al., 199l). A detailed discussion of 
these procedures has been given by Krewski et al. (1988) and Smythe (1991). Dempster 
et al. (1993) adopt a Bayesian approach in which the logits of the historical control 
tumor response probabilities satisfy a normal prior. Prentice et al. (1992) also use an 
estimating equation approach which requires specification only of the first two 
moments of the data. 

In this paper, we show that the score test for trend under an arbitrary distribution 
for the historical data is also a simple modification of the Cochran-Armitage test 
statistic. In particular, the use of a discrete uniform distribution with mass points 
corresponding to the historical control series leads to a closed form expression for the 
score statistic. This test statistic is developed in Section 2 along with its distributional 
properties. A discrete empirical Bayes estimator of the historical control distribution 
is given in Section 3. A bootstrap variance estimator which takes into account the 
sampling variability in the historical data is proposed in Section 4. The application 
of these methods is illustrated in Section 5 using bioassay data taken from the 
literature. 

2. Tests for trend with historical controls 

Consider a bioassay with k + 1 dose levels 0 = do < . . .  < dk with x~ of the n~ animals at 
risk in group i--0, 1 ..... k developing tumors by the end of the study. Suppose further 
that the probability of developing a tumor in the ith group is given by 

p i = [  1 +exp{-(a+bdi)}] 1, (2.1) 

indicating a logistic dose-response relationship. We wish to test the null hypothesis 
H 0 : b = 0  against the one-sided alternative H i : b > 0 .  

To accommodate historical controls, suppose that the spontaneous response rate 
P-=Po varies from study to study in accordance with some distribution 

F(6)=Pr{p<.6} (0<6<1).  (2.2) 

Since a=-log((1-p)/p) is a random variable, we will use the marginal 
likelihood 

L(blx)= L(blx, p)dF(p) (2.3) 
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for b given F and the data x=(xo,  xl  . . . . .  Xk) to construct a score statistic for testing 

Ho: b=0 .  Here, the conditional likelihood L(blx, p) is 

x Hi 

The score statistic is 

~logL b=O T = -  Ok = •  x , d , - / 5 ~  n,d,, (2.5) 

where/5=E(plx)  with x = y x l .  
Taking F to be a beta distribution with parameters :~ and fl leads to the statistic 

proposed by Tarone (1982), w i t h / 5 = ( x + ~ ) / ( n + a + f l )  where n=Zni .  Here, we con- 
sider a discrete uniform distribution 

F(6) = t-  ' ~, I{a,<_a,,, (2.6) 

where 0 < 6 ~ < l ( j = l  ..... t). Under (2.6), /5=Ycj@ where cj(x)=yj(x)/?.(x) and 
wj(x)=a;(1-@"-x with ?.=y.y~. The discrete distribution (2.6} for p thus yields 
a closed form expression for/5, and will approximate a continuous distribution when 
t is large. By using a discrete distribution with mass points corresponding to an 
observed historical control series, further assumptions concerning the distribution of 
other unobserved historical controls are avoided. 

Under the null hypothesis, E(T)=O and 

V(T) = { ~ n, d 2) (t-1 • 6j(1 - Jr))-I- ( ~" nidi) z {E@) 2 - t -1 ~ 6y }. (2.7) 

Since/5=/5(x) depends on the data x only through x, E@) z =2"~=opr{x} [/5(x)] 2 can 
be computed using the distribution pr(x)=y.(x)(~). Noting that /~(x)= E(plx) with 
[E(plx)] 2 ~E(pZlx) by Jensen's inequality, we have E(p) 2 ~<E(p) z so that the second 
term in (2.7) is nonpositive. Thus, a conservative approximation to the variance of T is 

Vc(T) = ( ~  n,d.2,)(t- ~ ~. 6j(1 - 6j)) ~> V(T). (2.8) 

As demonstrated in the appendix, the asymptotic null distribution of the standard- 
ized statistics S =  T/FV(T)] a/z is given by 

lim Pr{S<~s} = t  -1  ~ cI)(s/rj), (2.9) 
n ~ z t 3  

where r ] = 6~(1 -fi~)/{t- 1 ~ 6j(1 -6 j )}  and ~P denotes the standard normal cumulative 
distribution function. Thus, the limiting distribution of S is a finite mixture of normal 
distributions with mean 0 and variance t-1 Z r~-2-1. This leads to an approximate 
p-value 

Pobs= Pr {S>/Sobs} ~ l  - - t -  l ~ ~(Sobs/r j), (2.10) 
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where Sobs denotes the observed value of S. Since Vc(T)/V(T)--+ 1 (see the appendix), 
this same result holds for So= T/[(  Vc(T)] 1/z. 

In small samples, the null distribution of x given by 

p r { x } = " ( x )  FI ( xl (2.11) 

may be used to obtain the exact sampling distribution of T, and a corresponding 
p-value 

Pobs=Pr{T>~Tobs}= E pr{x},  (2.12) 
X: T/> Tob~ 

where Tobs denotes the observed value of T. In particular, Pobs can be calculated by 
complete enumeration of (2.12) or estimated using computer simulation. In the latter 
case, simulation of experimental outcomes x = (Xo, x l . . . .  , Xk)may be accomplished by 
first generating a value of Xo from the marginal distribution 

p r { x o } = t  -1 ~, 6].° (1--6j) "°-x°. (2.13) 
XO 

After generating Xo, x l  . . . . .  x t-~ (l = 1 . . . . .  k), xl can be generated from the conditional 
distribution 

H =o (1-at)"'"- .... 
pr{x,]xo, xx . . . . .  x l -  1} = / ",xu , (2.14) 

1-1 n, ~ 6  s ( 1 - b . )  .... 
I-~u = 0 Xu J 

where x m =Y.l=oXi and nm=y~=onl.  Calculation of the test statistic T for a sequence 
of experimental outcomes simulated in this fashion provides a basis for estimating an 
exact p-value using (2.12). 

3. Estimation of  F 

In order to implement the score test developed in Section 2, in practice it is 
necessary to estimate the distribution F in (2.2). This may be done using the observed 
historical control response rates z j=yj /mj ,  where yj of the mj animals in group 
j =  1 ..... t were diagnosed as having the lesion of interest. 

Although the empirical distribution function 

Vt(6) = t -  1 ~ i I z j ~  } (3.1) 

might be considered for this purpose, it will be subject to greater dispersion than 
F because of sampling variability in the z~. The estimator F t is also undesirable when 
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some of the zj are zero, a situation which often arises in practice with historically rare 
lesions. This is because a historical control response probability of p = 0 is incompat- 
ible with the observation of any tumors in the experiment at hand under the null 
hypothesis, and results in a weight of cj = 0 being assigned to a value of 6t = 0. 

Another possible approach is to use the nonparametric maximum likelihood 
estimator (NPMLE) of the mixing distribution F in (2.3) (Laird, 1978). However, our 
implementation of the N P M L E  using the algorithm given by der Simonian (19861 
generally resulted in a discrete distribution with a small number of distinct mass 
points (often only two). Much of this mass is concentrated at the origin when several 
zj=O. 

These difficulties may be overcome through the use of linear Bayes estimators of the 
6t. Suppose that al ..... 6, are independent identically distributed random variables 
having mean 0 < ~t < 1 and variance ~2 > 0. Conditional on the @ the y~ are indepen- 
dent binomial random variables with E(yjL6j)= mr6 j and V(yt[6j)=mj6t(1- @. The 
linear Bayes estimator of the 6j are of the form 

~j = ]A -b A j ( z j - - /A ) ,  13.2) 

where the A t are chosen to minimize T E(d j - f j )  2. This is done by choosing 
Aj = aZ/(Dt + a2), where 

O j= m f  1E{aj(1 - - 3 j ) ) = m j  I {~(1 - -p ) - -o  "2 ] > 0  (3.3) 

is the expe~ed value of the conditional variance of zj (Efron and Morris, 1973). Since 
0 < A t < 1, 6j is obtained by shrinking zj towards its expected value/t, with 0 < 6j < 1. 

Louis (1984) has shown that when the z t are normally distributed, the 6j are shrunk 
too far. This also occurs here, since 

e { ( t -  1) - 1 Z  (d r -  ~.) 2 } =~2/C2 < a  2, (3.4) 

where ~. = t - 1 2  c~j and C=( t - IZAj )  1/2> 1. It follows from (3.4) that this underdis- 
persion can be avoided using the modified estimators 

3t = u + A~(zj -/~), t 3.5) 

where / i  t = CA t. (Although it is possible that eij= CAj > 1 when the m r vary markedly, 
this has not been observed in the applications we have considered to date. In the 
balanced case mj-mo with Aj-Ao ,  we have At=CAt-A1/Z  with 0 <A ~ '2 <I . )  
A Lagrange multiplier argument may also be used to show that 6 t is the linear Bayes 
estimator of 6j subject to the constraint 

E{(t-- 1) -1 E ( g j - - ~ )  2} = a  z, (3.6) 

which has been used by Spjotvoll and Thomsen (1987) in small area eqimation. 
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Calculation of the linear Bayes estimators requires estimates of/~ and ~2. Ghosh 
and Lahiri (1987) show that unbiased estimators of these two parameters are given by 

it = ~ w j z j -  2. (3.7) 

and 

w 2)-1 {~ w j ( z j -  2.) 2 - ( m  - t ) -  l ( t  - 1) ~ wjz j (1  - -  Z j)}, ~2 =(1-Y~ j (3.8) 

where mj=mj/m with m=ymj .  These estimators may be used to obtain an em- 
pirical Bayes estimator of Aj and subsequently determine 6"j. The corresponding 
estimator of F obtained by replacing 6j by 6"j in (2.6) is denoted by fit. Lahiri (1990) 
shows that the empirical Bayes estimators of the 6j will minimize the Bayes risk in 
large samples. 

4. Variance estimation 

An estimator IT"(T) of V(T) may be obtained by replacing 6j with 6j in (2.7). This 
approach may also be used to obtain asymptotic or exact p-values using (2.10) and 
(2.12), respectively. This will work well when the error in estimating F is small in 
comparison with the sampling error associated with the experimental data x. Since 
this cannot be assured, we seek an estimator of V(T) which provides for this 
additional source of variability. 

In the absence of a more direct approach to this problem, we propose a bootstrap 
technique similar to the Type II bootstrap successfully employed by Laird and Louis 
(1987) in a closely related context. This involves the generation of a bootstrap 
distribution F*, which is simply the empirical distribution function of a random 
sample 3" . . . . .  6~* from F,. The bootstrap distribution f *  in turn is used to generate 
bootstrap samples y* and x*, from which the test statistic T* is computed. Here, 
y* follows a binomial distribution Bin(mj,6*) with parameters mj and 6*. Condi- 
tional on 3, x* is Bin(ng, 6), where 6 follows the discrete uniform distribution F*. In the 
event that all y*=0,  T* is calculated with ~= x* /(n + m). 

Repeating this procedure yields a sequence of test statistics T~' . . . . .  T* from which 
the bootstrap variance estimator 

V*(T) = ( b -  1) -1 ~ ( T ~ ' -  ]p,)2 (4.1) 

is calculated, where ]P* = b-  1 ~ T~'. The empirical distribution of the T* also provides 
a bootstrap p-value 

p *bs= Pr { T* >~ Tob~ } (4.2) 

for evaluating the null hypothesis. 



D. Krewski et al./Journal of Statistical Planning and lt~ference 43 (1995) 215-228 221 

5. Applications 

In order to illustrate the use of the procedures proposed in this paper, consider the 
data shown in Table 1 on the occurrence of lung tumors in mice (Example 1) 
considered previously by Tarone (1982). Ignoring the historical control data, applica- 
tion of the Cochran-Armitage test for increasing tumor occurrence with increasing 
dose leads to an observed significance level of 0.022, providing somewhat equivocal 
evidence against the null hypothesis. With historical controls, however, Tarone's test 
provides strong evidence against the null hypothesis (p<0.001). 

Using /~t to estimate F, our test statistic with historical controls is T= 5.3, with 
a standardized value of S = T/IV(T)] 1/2= 5.2 (Table 2). (Note that the computation- 
ally simpler conservative variance estimator ~(T)  provides a sharp bound on V(TI in 
this case.) Using either the mixed normal approximation to the null distribution of 
S or the exact p-value based on the finite sample distribution of the experimental data 
leads to a highly significant result. The intrastudy correlation is 0.007, reflecting a fair 
degree of homogeneity among historical controls (cf. Fig. 1). The intrastudy correla- 
tion coefficient p =~r2/[#(1 _ # ) _ e 2 ]  measures the degree of variability among the 
historical control response rates, with small values of p indicating a relatively homo- 
geneous historical control series. 

The asymptotic and exact tests applied here are based on the assumption that the 
distribution of historical control tumor response rates is known without error. The 
bootstrap variance estimator ~'*(T) is close to V(T), indicating that k ~, is relatively 
well determined in this example (Table 2). With only 12 of 10 000 bootstrap values of 
the score statistic T* exceeding the observed value of T= 5.33, the bootstrap p-value 
in (4.2) is p* =0.0012. The bootstrap distribution of T* is shown in Fig. 2, where the 
small number of cases (0, 43, 4, and 38 of the 10 000 bootstrap values in Examples 14 ,  
respectively) in which IT*] >6  have been excluded from the graphical display. Note 
that the bootstrap p-value, which acknowledges the sampling error in/~t, is somewhat 
larger than p-values obtained assuming F, is known. The bootstrap distribution of the 
score statistic T shown in Fig. 2 is slightly skewed to the right. 

As a second example, consider the data on aveolar-bronchiolar tumors examined 
previously by Smythe et al. (1986). As in the first example, these lung tumors occur with 
a relatively high frequency in control animals (Fig. 1), with ~ =0.085. Despite an apparent 
increasing trend in the experimental data, the Cochran-Armitage test leads to a p-value of 
0.103 without historical controls due to the relatively small size of the concurrent control 
group (no = 20). Because of the high degree of homogeneity among the historical controls 
(/~ =0.002), the asymptotic and exact tests for trend with historical controls lead to much 
smaller observed significance levels (p = 0.005 in both cases) than the Cochran-Armitage 
test. The bootstrap distribution of the score statistic T is nearly symmetric (Fig. 2), with 
a bootstrap p-value of p*=0.01. Note that in this example the bootstrap variance 
estimator I?*(T) is slightly smaller than the estimator I?(T), an observation which was 
confirmed by independently replicating the bootstrap distribution of T. 



222 D. Krewski et al./dournal of Statistical Plannin9 and Inference 43 (1995) 215-228 

Table 1 
Four examples of bioassay data with historical controls (yi/mj) 

Example 1. Lun 9 tumors (Tarone, 1982) 

Historical controls (yy/mj) 
0/50 0/50 0/50 0/49 0/49 0/49 
0/47 0/47 0/25 0/25 0/24 0/24 
0/22 0/20 0/20 0/20 0/20 0/20 
0/20 0/20 0/20 0/20 0/20 0/20 
0/20 0/20 0/20 0/19 0/19 0/19 
0/19 0/19 0/19 0/18 0/18 0/18 
0/18 0/10 1/53 1/50 1/50 1/49 
1/49 1/47 1/23 1/23 1/20 1/20 
1/20 1/20 1/20 1/20 1/20 1/20 
1/20 1/20 1/20 1/20 1/20 1/20 
1/19 1/18 2/20 2/20 2/20 2/20 
2/20 2/20 2/19 2/18 

Experimental data 
Dose(di)a: 0 0.5 1.0 
Response (xi/ni): 0/15 3/49 7/46 

Example 2." Aveolar-Bronchiolar tumors (Smythe et al., 1986) 

Historical controls (yj/mj) 
0/20 0/20 0/19 0/17 0/12 
0/12 0/10 1/20 1/19 1/19 
1/17 1/15 2/25 4/47 2/22 
2/20 1/10 6/54 3/20 3/20 
8/49 3/18 4/20 

Experimental data 
Dose(di)a: 0 0.5 1.0 
Response (xi/ni): 2/20 6/49 10/49 

Example 3." Follicular Cell Adenomas ( Bickis and Krewski, 1989) 

Historical controls (yj/mj) 
0/48 0/42 
0/20 o/20 
0/17 0/17 
0/10 0/9 

Experimental data 
Dose(di)a: 
Response (xl/nl): 

0/39 0/23 0/20 0/20 
0/19 0/18 0/17 0/17 
0/14 0/13 0/12 0/11 
1/21 1/14 2/19 

0 0.5 1.0 
0/8 0/23 4/39 

Example 4: Fibrosarcomas (Bickis and l&ewski, 1989) 

Historical controls (yj/mj) 
0/54 0/33 
0/20 0/20 
O/20 O/2O 
0/10 0/9 

Experimental data 
Dose(di)a: 
Response (xi/ni): 

0/25 0/25 0/20 
0/20 0/20 0/20 
0/20 0/15 0/14 
0/9 0/8 2/50 

0 0.5 
0/20 0/50 

0/20 
0/20 
0/14 
2/20 

1.0 
2/50 

a Expressed as a fraction of the highest dose used. 
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Table 2 
Tests for trend with historical controls 

223 

Component Example 

1 2 3 4 

Shrinkage parameters 

/~ 0.02216 0.08515 0.00870 0.00791 
~2 0.00016 0.00013 0.00025 0.00015 

Intrastudy correlation 
/~ = t~2/[/]( 1 _ / ] ) _ ~ 2 ]  0.007 0.002 0.030 0.019 

Test statistics a 
T 5.330 5.777 1.527 1.454 

Variance estimators 
I~(T) 1.059 4.902 0.238 0.489 
I~¢(T) 1.153 4.911 0.343 0.536 
I~*(T) 1.214 4.498 0.524 0.697 

Significance levels 
Mixed normal approximation <0.001 0.005 0.010 0.019 
Exact b <0.001 0.005 0.016 0.027 
Bootstrap ~ 0.001 0.010 0.036 0.044 
Cochran-Armitage test a 0.022 0.103 0.048 0.069 

a Based on the empirical Bayes estimator k~t. 
b Estimated by computer simulation of 10000 samples from the exact null distribution of the 
experimental data. 
c Based on 10000 samples from Pt. 
d Excluding historical controls. 

To assess the performance of these tests with historically rare lesions, consider now 
the data shown in Table 1 on the occurrence of follicular cell adenomas and fibro- 
sarcomas (Examples 3 and 4, respectively). These data were extracted from the data 
base examined by Bickis and Krewski (1989), which involves results from 25 randomly 
selected bioassays conducted under the US National Cancer Institute/National Toxi- 
cology Program carcinogenesis bioassay program. In both examples, the historical 
incidence of the lesion of interest is less than 1% (~=0.009  and 0.008 in Examples 
3 and 4, respectively). In both cases, the p-values for the trend tests are notably lower 
than those for the Cochran-Armitage test. Note that the p-values based on the mixed 
normal approximation are close to those based on the exact distribution of the 
experimental data, confirming the accuracy of the large sample approximation. The 
bootstrap variances I?*(T) are appreciably larger than the V(T), indicating that the 
empirical Bayes estimators /V t are not well determined in these two examples. The 
bootstrap p-values are thus greater than those for tests which treat F as known. The 
bootstrap distribution of T also demonstrated greater positive skewness in Examples 
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Fig. 1. Empirical Bayes shrinkage estimators of the distribution of historical control response rates. 

3 and 4 where the lesion of interest occurs less frequently than in Examples 1 
and 2 (Fig. 2). 

6. Summary and conclusions 

In this paper, we have developed a generalized score test for increasing trend in 
tumor occurrence rates in carcinogen bioassay utilizing historical controls based on 
a logistic dose response model and an arbitrary distribution for the historical controls. 
Using a beta-binomial model for the historical data leads to the test statistic proposed 
by Tarone (1982). Here, we examined the use of a discrete uniform distribution for the 
historical control tumor response probabilities. For practical purposes, this discrete 
distribution will approximate a continuous distribution when the number of historical 
controls is moderately large. Treating the historical control distribution as known, the 
asymptotic distribution of the score statistic is a finite mixture of normal distributions. 

To apply this procedure in practice, a discrete empirical Bayes shrinkage estimator 
of the distribution of historical control response rates was introduced. This estimator 
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Fig. 2. Bootstrap distributions of the score statistic T (based on lO000 bootstrap samples). 

is essentially in closed form, and is easier to compute than the maximum likelihood 
estimators of parameters of the beta-binomial distribution. Bootstrap methods for 
variance estimation and significance level determination were proposed to accom- 
modate estimation of the historical control distribution. 

The application of the proposed procedures was illustrated using three sets of 
bioassay data taken from the literature. When the lesion of interest occurred histori- 
cally with a frequency in excess of 1%, the uncertainty in the empirical Bayes 
estimator of the historical control distribution did not appear to contribute greatly to 
the variance of the test statistic. With rarer lesions, however, the historical control 
distribution appeared to be less well determined, with the bootstrap variance es- 
timator being notably larger than the variance estimator based on the assumption 
that the historical control distribution is known. In general, the bootstrap method 
appears to provide a reasonable approach to obtaining a p-value for testing the 
hypothesis of increasing trend in tumor response rates with increasing dose. 

Appendix 

The purpose of this appendix is to examine the large sample behavior of the score 
statistic T under the null hypothesis as n ~ ~ with k (the number of dose groups) and 
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t (the number of historical controls) fixed. To establish the asymptotic distribution of 
T, we first condition on p and write 

( ~  nid~)- 1/2 T= Z p -  Rp, (A.1) 

where we claim that 

Zp= ( ~  n~d2) - 1/2 (2  x~d~-p ~ n~d~) --,d N(0, p(1 -p))  (A.2) 

and 

Rp= ( ~  n,d 2) - 1/2 [p(x) - p] ( ~ n,d,) --*p 0. (A.3) 

The result in {7.2) follows immediately from the fact that conditional on p, the xi are 
independent binomial random variables with E(xi[p)=nip and V(xi[p)=nip(1-p). 

To establish (7.3), we note that for p = 6t, 

let(x)-11 = ~ cj(x), (A.4) 
j ¢ l  

where 0 < Ict(x)- 11 < 1. Defining 

Z= {x: [nJz(1 -61)]-  1/21x-natl <~nl/2~} (A.5) 

for e > 0, it follows by direct calculation that 

nE[lct(x ) -  1)liP=at ] --n ~ Ic,(x)- l lpr{xlp=at} 
x=O 

<~n Z ~ pr{xlp=at}+nPr{zClP=a'}" (A.6) 
j¢:l xex 

By Tchebycheff's inequality, we have 

<~ nE { [ n a t ( l  - a,)]- i /2 IX __ n a i l }  }4 = O(n- t)  (7.7) 
n Pr {Z clp = at } n2e4 

since Elx--nal[4= O(n 2) (Lamperti, 1966, p. 27). For e sufficiently small, xez implies 
[naj(1 - 61)] - 1/2 ix_  nail > n 1/2 e* for some e* > 0 and j ¢ l. Hence 

n E pr{xlp=at}=nPr{xExIP=at} 
X~ X 

<~ n Pr { [nai(1 - 6j)] - 1/Zlx- n@ > n 1/2 e* } ~ 0  (7.8) 

as in (7.7). 

Since Icdx)-112< Ict(x)-11, it follows from (7.6)-(7.8) that 

nE [Ict(x)-- 11Zlp = at] --*0. (7.9) 
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Noting that 

n [-p(x) - 6l] 2 ~< 2n(61 + 1)2(ct(x) - 1) 2, (7.10) 

we now have 

nE{[p(x)-3~]21p=b~} --*0 (7.11) 

so that 

nl/Z[~(x)-bz} ~p 0 (7.12) 

conditional on p = 6, as required. 
To establish the unconditional limiting distribution of S =  T/[V(T)]  1/2, we first 

note that as a consequence of (7.11), 

( Z n ,  d,) 2 {E[/~(x)] 2 - t  t y '6~} =o(n)  (7.13t 

so that V(T)I/V~(T)~I. It follows that 

where rE = 6j(1 -- b~)/{t - IF~ 8,(1 -- 6~)}. 
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