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Note on the Convention

Reference to Displays is of the form (x. ¥) where x is the
Chapterrnumber and y is:the gserial tumber of the display within the
Chaptexr. For éﬁéﬁﬁié;' (243) refers to the tRIrd display in the

second Chapter.

Reference to Sections is of the form x. y where x is the
Chapter mmber and y is the serial number of the Section within the
Chapter. Fleagse note that parentheses are used in the case of dis-

play reference.

Reference to Sub=sections is of the form X. ¥e 2 where
i is the Chapter number; y is the Section number within the Chaptex
and z is the Serial nuwber of the Sub~section within the Section.
For example, 6.2,1 refers to the first Sub=section of the second

sectlion in the '8ixth Chapter.
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Chapter I

Replacement Problems in the Case of Coconut
Palms $& An Introduction to the Present Study

1«1 Introduction

Telel Production assebts which deteriorate in performance with time
(or age) are regﬁiréd o be replaced. In general, a gtream of benefits
and costs are associated with every produttive asset, be it a machine
or a tree. Usuailyg in replacement theory; the benefits and costs are
taken as given functions of the age of the dssete These functions
provide the criteria for identifying the physical condition of the
assets In simple replacement models, an asset i1s replaced by an idemr
tical ones The objective of a replacement policy is to find a sequence
of time points (or alternatively, replacement ages) for replacing
gsuccessive pieces of the asset that maximises some given objective
function based on the stream of benefits and costs over the time=
horizon of the investment processe Discounted net returns, average cost
over the invesiment period etc., are the most common type of objective

functions used in the literature.

Tele2 4 considerable literature exists on the optimal replacement of
assets in the determinigtic case. This 1s a situétion where the return
from an asset at a given point of time is assumed to be nor=random =

a given function of time or age of the asset. The objective of these
studies was to provide an understanding of the various principles of
asset replacements One of the questions asked ig ¢ How is the replace-

ment date related to the ammuity formed by the sum of the discounted
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anmal earmings and epther such;eaonom;g.vaﬁiables-?J Most ef these studies
consider a static sitagion where a piece of an. assetl is:replaced by an
identical one over an infinite horizons See for example,

Preinreich (1940), Perin (1972)s Btherington (1977)gives a brief biblio-
graphy of studies on the economies of replacement. Dean (1961)-has
summarised various deterministic replacement models developed by diffe=
rent authors for application to industrial problems. In this study also
we shall consider a static situation but our focus will be on the analy—
tical characteristibs of the replacement age i.e«, how the replacement
age 1ls related to tﬁe parameters that specify the performance of the
asset over time etéi We shell further attempt a comparison between the

solutions correspohding to the finiterand infinite horizon cases.

1e143 Studies which include stochastic ’eldments in‘the replacement
models have generzlly concentrated on 'unintentional' replacement, Here
the concern was with an asset that 'dies’ unexpectedlys See for example
Burt (1965), Jorgenson (1967). & light bulb is a typical example of
this situations. The performance of this asset is stable over time but
it ceases to perform all of a suddene. Thus, it's life ig stochagtic

in natures But it is quite rare to find a repiacanent study in the
other kind of stochastic situation where there is no sudden 'death' of
the asset but it produces benefits of stochastic nature and deteriorates
over timee An example of this is the deterioration in yield of perennial
crops 1iké cocormut palmsy rubber trees ete. At any given point of +time
(usually year as a unit) the level of yield is stochastic and is depen—

dent on the age of the plant. Btherington (1977) dealt with a similar
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problem for rubber trees. He made a simulation study of the sensitivity
of the net revenué and anmiity profiles to different parameters that
regulate the stochastic behaviour of the yield and prices. In his model
the optimum rcplacement date was at the point where annual returns plus
the change in the salvage value of the asset is equal to the anmuity
formed by the discounted sum.of the anmual earnings plus the salvage
values

Ward and Faris €1968) developed a stochastic modei for the
optimal replacement of plum trees. They employed a Markov Chain formu-
lation to specify the movement from one age—&ield state t0 another.
Dynamic programming was used to find out the optimum policy. A general
‘mathematical model for Markov replacement decisions (i.e., decisions at
a time point which depend on the age-performance at the previous point)
is provided by Howard (1960) and (1971) using principles of Dymamic
programming. A good demonstration 'of the applicability of Howard's

model is given by Kao (1973).

1.1.4 The Markov Chain approach is developed essentially for the
class of assets whose performance at a given point‘of time depends not
only on the age but also on past performances. This is a feature common
to a number of perennial cropse Here we deal with replacement problems
for one guch perermial crop, hamely, cocomut palms. Although the
formulations presentéd here are in reference to the palm, the results
obtained arc general enough to be applicable %o the case of any asset

characterised by the feature mentioned above (with necessary modifications
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specific to each,case). In the next section, we shall introduce the

essential features of coconut palms required for the study.

1.2 Characterisation of Cocamit Palms

1elel The yield profile of a palm over it's life span can be divided
into four phasese. 4 palm starts yiclding after a few years of gesta=
tion during which period the seedling grows. This period constitutes
the first phase of a palm's life = the 'pre-bearing phase's During
the initial years of bearing the anmual yield of the palm increases till
it stabilises at a certain level. This period of increasing anmual
yield constitutes the second phase. The annual yield hereafter remains
stable for a mmmber of years beforenit starts declinings This is the
third stage - the full bearing phase. Duriné'the fourth phase the
ammual yield declines till the palm diess. A palm is said to be senile
in it's fourth phase of life.

The above is, however, a broad profile of the annual yield of a

palm over it's life. What follows is a more precise description.

1e2e2 Let f(x) be the anmial yield (number of muts) of a palm at

ag8e Xy X = 15 2, eseey Ly where L is the life of a palm i.ce, L is the
‘age at which the palm yields for the last times In reality, there is a
considerable interwepalm variation in the anmual yield at a given ages
Also, the lifﬁ?g palm varies from palm to palm. Thus, a general formula=
tibn would require the joint distribution of (v(x), L) vhere both v(x)

and L are random variables defined for a palme But, for simplicity, we
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shall consider throughout this study the conditional distribution (¥(x) fL):
in other words, L is assumed to bec a given constante One of the reasons
for considering the conditional distribution is the lack of adequate

empirical information on thelife of palmse

E(Y(x) L)

]

Hy

(11) v(¥{x)|L) G;‘;

u

X =1; 2y seteny L

Both u  and ci are obviously functions of L but for the purpose of
subsequent development we need not specify the functions since L is

‘assumed to be fixed. Hencer, throughout this study the results are

derived for a given L and we shall accordingly omit, further references

to variations in L. We shall now define the following parameters to

specify the mean yield sequence { My }.

ap =Min f x3 It > 0}, the first bearing age i.e., the
beginning of second phase of a palm's life.
(142) | \a,s =Max { x § u:c-‘l < U }s beginning of the full bearing
or the third phase..
a_=Min{x?i n >ux+1 } s beginning of the senile or
the fourth phase.

<
af_asﬁaef_ L

On the basis of an examination of the yield data available on sixty

palms¥*, we postulate the following.

* Data were provided by the Central Plantation Crop Research =
Institute, Kasaragod, Kerala. '
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(143) (1) v(¥v(x)) ":25 = 02, g constant, 5§>af
= 0, for x < a

(i1) Cov (¥(x), Y(x%’ = cr 13 2203 x;é:-i'i Xy X > ap

where D}Dg’decreases with jx = x/ ', e is given in (1.2)'.

(111) (Y1), Y(2)s eeee, Y(L)) has a Multivariate Normal
distributions
This assumption is based on the fact that Y(x) is found
to have a symmet:&ic distribution for a given x. We may
note here that most of the literature dealing with the
stochastic nature of asset performance maices a similax
assumption. But Y(x) are usually assumed to be

stochastically independente.

(iv) We shell further assume that the dispersion matrix of

(Y(af)‘ Y(af4-1), eesey Y(L}) is positive definite.

We shall further =ssume the following piece~wise linear form for the

mean yield profile of a palm.

uX:Q “for 1<{x < ap
{1.4) =m, + s (x ~ af) for ap{x<ag
=m, fora._(_x(ae
=m2-52(x-ae) fora( <L

where m

1° Doy 8y5 8, are positive constants.
We may, however, note that except in Chapter VII where the rate of
decline in the mean yield is estimated, the results which follow do not

require any aséumpt_;ion of a specific functional form of b such as (1.4).

The above form has been used chiefly for the empirical exercises.
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Tala? The characterising parameters defined above for a palm, (1.1)
through (1.4)w vary with the variety of palms; For a given variety of
palm, they also depend upon = (i) cultivation practices (ménﬁring,
watering etc;) adopted iecey the.level of maﬁagement of the cocormut
garden and (ii} the density of plantation i.éé} number of palms per unit
arcas The eﬁact nature of sensitivity of the parameters to the changes
in the asbove two factors is not known.

For the purpose of this study, we shall be concerned‘with a
single variety of palm under given cultivation fractices and density of,

Plantation.

1.2.4. There are two ways of replacing a palm byranother. One way is
to remove the existing palm and plant a new geedling in it's places The
other way is to plant a new seedling somewhere in the proximity of the
sxisting palm to be replaced; and renove the old palm when it becomes
necessary to get rid of it in order to allow the new onec to grow; We
shall refer to theése two ways as replacement by ireplanting' and
‘underplanting! respectively.

Replacement by underplanting is preferablc because it reduces
the effective gestation period of the new palm § the poor-yielding old
palm can be retained for sametime with marginal benefits. But under-
plantation regquires adequate space around the palm to be‘replaced, which
means it 1g feasible only for & certain range of the density of planta-
tione

.

In any cases; we shall consider underplantation as our method of

replacements It will be easy to modify the results for the case of

replantations
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103 Data
TeZel The 1ife of coconut palms being very long (over 80 ycars for

certain varicties) it is difficult to gather adeguate amount of data
over the wholerlife of palms of a given varietye. The State of Kerala
is onc of the important cocomut growing regions of India with about one
fourth of it's cultivated land being under cocorut palmse. Anual produc—
tion of muts in Kerala is of the order of 4,000 millions which is about
62 per cent of all Indigproduction. The Central Plantation Crops
Research Institute (CPCRI) situated in North Kerala has been conducting
experimental research on coconut palms for over two decaded. The Insti=-
tute has generated some data on the yield response to manuring, irriga=-
tion etc. Moreoéer, this Institute hag a few plots with old palms of
-which yield data are available for a major part of their iife. We have
drawn upon this dgta gource for the purpose of formulating different

models and empirical exercises.
Te342 The data presented here are for a particular varicty of palms
traditionally grown in Kerala, namcly, West Coast Tall (WOT).

(i) Life of a padm ¢ WCT palms are found to have a very long

lifes As it is mentioned eaxlicr, the life of a palm veries from palm
to paltme There are no data available on the distribution of the life
of palms. However, it is generally believed that an average of 80 years

of life span should be a reasonable assumptions Thus, we put

(1.5) L = 80
In other words, for our purposc, we shall assume that the life of =a

palm is given to be 80 years.
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(ii) Yield profile § As noted earlier, the mean yield profilec

of a pélm depends on the cultivation practice. We ﬁave used the data
from CPCRI cxperimental plots which provide adequaﬁé information on the
anmmal yields of WCT palms in the second znd third phase of life., The
palms were under rainfed condition and a specified ievel of manuring etc.
For a given &ensity of 100 palms per acre which is the average stand (of

palms) per acre in Kerala, we shall assume the following.

ap = 9 years m, = 15 muts per anmim
(1.6) 4y = 12 years m, = €0 muts per anrum
a, = 60 yecars ... 8 =15 muts per anrum

w
it

5 5 nuts per annum

(iii) xﬂ;ianbe, Covariance and Coérrelation T TFrom the CPCRI

data we have already roferred to, it was found that the correlation

between Y(x) and Y(x+1} is more or less a constant for x 2 a.. We have

T
assumed the following:
42 = 900
(1 .7) Pm)‘-: 0.62 for x/= x+1', x z ap

/
o lx-x’) - 1.°.€2* for x, x> 2,
1 ¢ K

where n:. is a constant, 0 < 7 <.
We shall assume different values for @ in our empirical cxcrcigesg.,

(iv) Cost (annual) of Cultivation and Price of Nuts 2 Again

CICRI provided the following data at 1974=75 prices.
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(a) Pricc of a cocommt (with husk) Ras 0.90.
(v) Year Anmial Cost (Rsi)
(rge) per palm

1 7.14

2 Eed3

3 Ted3

4 1029

5 10.57

6 10,57

7 10.86

8 11.14

9 onwards 11463

The cost for the first year includes the cost for the seedling and
planting aldo. Annual cost consists of labour charges for cultivating

(digging pit, clearing crown etce),cost of mamuring and harvestinge

1.33 In order to examine the seénsitivity of the of the empirical
results to the above specification of different parameterdwe have tried
different values for certain paremeters (nzmely, a_, s,, L, T, P
e’ "2 Xy d¥ly
2

o etce) in various exercises.

1¢4 A Bricf Description of the Contents of the Study

1441 In Chapter II, we have considered the deterministic case where
optimal replacement age hag been derived on the basis of the mean yicld
~profile {Hx' X = 1y 25 eeeg L}e The objeqtive function has been taken
as the discounted sum of anmial net roturns over a given time-horizon.

Both infinite and finite horizon cases are considered. The anslytical
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"properties of the optimal replacement age are studied scparately for the
above two casess Then the optimal solutions corresponding to the two

casoes are comparceds -

Tebde? In Chapter I, we consider an alternative formulation in the
deterministic version. Instead of the discounted valuc as the objective
function the time~path {or the  trajectory) of the ammal net return is
considered ag the basis for choosing a ;eplaéement rules As the annmual
net return is 2 function of the age distribution of the palms, the rela-
tionship betwcen a replacement rule and the corresponding limiting
gtationary age distribution is studicdd The case of replacement in
phases is also considered as a modification of the optimal solution

cbtaincd in Chapter Il

Tefie3 In Chapter IV, we make an attenpt to modify the detgrministic
rﬁle cbtained in Chapter IT by incorporating the dependsnce of future
yield stream of a palm on it's past yield ;ecord. This is done by
replacing the future mean yield profile ( By i= %y x4, vevay L) by
(ué; i =%, Xy eeese; L) wiore u; is the conditional mean yield at
age 1 given the past yieid record T(x=1), Y{x=2); seveer¥{z=n), n < x,
x is the currént age of the palm. Conditions under which the modified

rule performs better than the deterministic rule are obtained for a
certain given criterion.

1eded In Chapter V, we consider stochastic replacement rules in a
general set upe. Replacement wTules are congidered on the basis of the
corrcsponding risks of retaining a low yielding palm and removing a

satisfactorily yielding one. Efficiency of a rule is defined as the

.‘.--r-vv——

A RATICAL ST
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- probability that tﬁe rule recomnends replacement given that the future
yields are lowe We Have confinbd ourselves to only linear forms of
dbjoctive and decision functions. Rules are derived on the basis of the
doeision functions given the objective Functione The decision function
which provides the most officient rule is investiga;{:ed for a given
objective function;,lFurther, the relationship between the efficiency

of a rule and the comron variance 0% of Y(i) is studied.

Teddd In Chapter VI, we consider a special case of the stochastic
version where the yield vector (Y(1), Y(2), eeeee, Y(I)) is a Markov
Chain. A lMorkov Reward Process formulation is adopted to develop =&
procedure for deriving a Mérkov Replacement Rule i#e., replacing or
retaining 2 palm in the current year depending on the yield in the
previous yeare The choice of rule is based on the extent of ~improve=
ment in the discounted value over the optimal level obtained in the
deterministic case discussed in Chapter II.

Tedeb In Chapter VII, we consider the problem of estimating the
future mean yield profile of a palm iecey § Bis 1= Xy X+ 1y eee, i&
where x is the current age of the palm. As the replaoemenf rules arec
particularly bascd on the above sequence of mean yield, it becomes
nccossary to estimate them when the current age of the palm is unknown.
A& few methods are developed for the estimation and their relative merits
are studied by simulation.

1edaT In Chapter VIII, we gummarise the study.
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1%
Chapter II

Deterministic Repiacement Policy Based On
Discounted Sum Of Anmnmal Net Returns

2«1 Introduction

2e1e1 In this chapter, we shall develop ré?lacement models on the bauis
of the mean ammal yield profile given by ha (sece 1.2). Since the re-
placemént rules will bPe based on mean yields and not actual yields {which
are random varisbles) the models in this chapter can be regarded as cetor—
minigstic. As mentioned earlier, a cpnsiderable 1ite£éture on replacement

]

problems in economicé dealt with the deterministic case. The exercises

presented here will resemble, in some respects, the earlier work.

- 2,1+2 In the deterministic version, a replacement rule is definacd by

specifying the age upto which & palm can be retaiﬁed before it is re~
placed. The repl@cgment age is to be determined by optimising scme speci~
fied objective function. The proposed dbjecti{e function is the discounted
sun of the anmual net returns (value of the amnual yield minus the ammal
cost incurred) over a given time—horizon. Thig is one of the objective
functions most commonly used in repladement theory.

We shall consider replacement by wundorplantatione This means
that if we decide to retain a pélm upto age 4, a seedling is underplan—
ted when the palm re4che§ age (A+1) and the old palm ig removed after a
few years when it caﬁnot be retained any more without hampering the
growth of the underplanted seedling (cee 1¢2¢4)« Let u be the Shmbes (OB

years & palm can be retained after a seedling has been underplanted to
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replace_it. Hence, the old palm Wili he removed when it reachesn age (A+u+1).
We shall define age (A+1) as the 'replacement age'.

Note that if we put u=Q, it becomes eguivalent to replacement by
replantétioné 8ince, in this case, the old palw will be removed at age

(4+1) itselfs

2.2 Formulation of a Replacemen# Model with

Infinite Horizmon

2+241 Let us congider a palm of current age x. it some point of time
this palm is to be replaced by ancther new palm (of the same variety)
which will subsequently be replaced by another and so on. Thig defines an
infinite sequence of palms beginning with the exigting palm of current
age x, followed by the subsequent ?alms that will be planted in it's
place over timee. Let (14Ai) be the replacement age of the ith palm in
the above sequence, i =1, 2; 3, +eees This means when the existing palm
reaches age (1+A1) a seedling is underplanted and the palm is removed
when it reaches age (1+u+A1). Similarly; when the palm that has replaced
the existing palm, reaches age (1+A2) another seedling is underplantsd
and the palm is removed when it reaches age (1+whA2), and so on. We
assume that all underplanting and remaval are performed at the beginning
of the age specified.

Thus, for every age ¥ (x =1, 2, eeep L) there is now defined an

age seguerce (ﬁ1, Az, ....). By 2 replacement rulc we would mean a gpeci-

) for a given palm of current age x,

fied age sequence (A1, 42, PP
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2242 'Let us use the following notations ¢
p 4+ Price of a coccrnut, 2 constant price.

s(x) ! Anmual cost of maintaining a palm at age x, a(1) will
include the price of the seedling and the cost of planting
bosides the cost of maintenance which consists of cost of

manuring etc.
4 ¢ Discount factor

r(x) = p e ~ s(x) ¢ Annual expected net return from a2 palm’

at age X

Throughout this chapter, by actual return from a palm we would mean the

expected return since we are dealing with the mesn anmual yield profile.
Yor any palm of current age x if the replacement age is (144)

where x A L, we define the following 3

- Ldu
7(x, 4) = Ex r(n)d™* x & <Imu
A n :
(201) L
. = 3 r(n)ya™* , I~u £ 4 <L

It is easy to see that Z(x, A) is the discounted sum of net returns from
‘a palm of current agc x if it's replacement age is given to be (1+4).
The summation runs from age x to age Min(L, A+ﬁ} since the palm will he
retained till age Min(L, 4+u) given the replacement age to be (1+4).

Let V(A1, Az, eess) be the discéuntcd suri  of net returns froﬁ
the infinite sequence of palms (corresponding te a gingle palm at
current age x)} given the'replaoément rule (Aq’ AQ’ s Vi

Let us now congider a replacement rule (Aﬂ, A2, seee )._We shall

treat V(A1, AE’ eeees ) itself as the\objcctive function Obviously,
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from (2.1), z{x, 111} is the contribution of the existing palm to the dis—

countad sum V.
1 -]C+A1 .
Similarly, 4 z2(1, Ag) is the contribution of the scecond palm
in the sequence to V, whore the multiplier is to adjust for the discounting

over time. The contribution of the third palm in the sequence will be,
1=x+l, +4

d 12 72(1, AB). ind g0 on. Thug, wc can write,
‘ . 1-x¢A1
V(¢1 3 .A.Q, atsee ) == Z(X,.{".1 )+d Z(1 ,112)
1=x+d, +i
(2’2) -+ d 1 2 Z(1 ,A3) + vesesces

=ty oo
| 1 a(k)
Z(xyh) + 8 k§2d 2(1, &)

H

where a(k) = 0 for k = 2

'ﬁ!A2+A3+oono +Lk"1 for k >20

Let ue definc

- Z/(ﬁ.") =] Z(Xg J.rx._l)

(2.3)
'} Ay : - a(k)

) (.u.2, 13.39 se 00 ) = kgz d. Z(‘l, .Ak)

Then we have from (2.2),

=xtA, 7
e /
(204) V(fa-_lg figg 000-) = 5 (.{4.1) + d 1 Vi <f12, AB“’ sese )

In {2.4) above, we have divided the total discounted sum into two
perts. The first part ZK(AT)Jacqqunts for the contribution due to the
initial palm and the second part Zij(Az, A3' sens )} accounts for the
contribution due to the subseguent palms. The multipliexr to the second

torm adjusts for the discounting.
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It is ecasy to sce that

Max V{J‘.:L1 IS A.z, YRR )
Il‘l ,i’lzgacl
(2.5) 4 1“X+ﬂ1 /j'
= Max § zuﬁ) + d Max Z (AE, Ly cead) }
-{&1 ' -piz,-l,-‘.-ggol. F

From (2.5) it is clear that we can £ind out optimal L, and the optimal

A2, A3' evees separately. We shall refer to the replacemernt of the

existing (initial) palm 2g the first cycle of replacement, roplacoment of
the palm which replaces the existing polm as the second cycle of roplaso-

ment and 50 orte

2.3 Determining the Optimal &, i.e., Optimal Heplacencnt
dge for the First Cvele

2¢%3¢1  From (2.4) we have

Max  V(A,y by seeees )
L ‘ 1 2
.u.*1 ,A2,t‘n\i
(246) ‘
= lax {Z (1\1)+d Mex Z (112, Az cena) }
.L'l.‘l .ﬂ.zgﬂ.s’oonc
Let us define, .
E= Max z’f/(Az, Bgy eees)
(2.6&) 1'3.2,.[:\.3,.000
=i

g/ (&) =z’(A1) +a 1 g

Note that E is independent of 4,. Therefore, frem (2.6) and (2.62)

we have,

L J

/4
(20 6b) MELX V(L_} g.{.‘uz ,-A- 9 Baa .) = M?QC Z /f{
5 it

. . ().
J'...._I ,!*2"“3’.... 1
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Thus, the optimal A1 is the one which maximises Zﬂr(f.»j) given in (2.6a).
Before determining IL1 let ue note that in the detorministic versicn we used
to consider replacament of & palm only in it's declining yield phase i.ce,
when the palm is senile. 4pzin, since we are considering replacemont by
underplantation, a palm should be retained till the age (Lr-u) 2t the
latest so that the effective gestation pericd between removal of the old

palm and the first bearing of the now palim can be minimiszcd. Thus,

assuming that current age x < ae, we shall restrict our choice of the

optimal A1 within the range a_ SL_I (l~u where e, is the zge at which

the declining yield phase sets in (sce Tad) e

2¢3¢2 Theorem : If r(L)S(‘I = d]dﬂu # then the optimal il1 satisfics

r{itu) > (1=a)d * B for &

I

a‘-ep LR ] -[\-\-1
(2.7) r(i+a) L(=d)d 2 & for £oo= 144,y seey e
If (1) > (4=a)d 8  then optimel Ly is eoual to Iru, B is defined in (2.62).

Proof ; From (2-6‘0) we already know that optimal i;1 ig the oro
that maximises Z{//(A Y, ae_<|_ A% Imue
Now, from (2.6a), (2.6b), (2,3) ond (2.1) we car write
214y - 27 > o if and enly if
(2.8) . | o
r{1+u+d) > (1=a)d "€ for a_< 4< Imu
But (%) =7p H= a(x) {(from 24242} and from (1.4) it can be seen that

e is decreasing for x> 2y Therefore, r({+u+i) ie decremsing in A for

&e-<" l\.\. < L-uo


http://www.cvisiontech.com

19

Hénce, if #{LY < {#=a)d" " E, it easily follows from (218} $hat

there exigts A, satisfying (2.7) which maxiniscs Z99(A) i.e., Zﬁ/(AT)k 1)

for aes,A_%_Léu; 1f o(L)> (1 = a}d ® B then it trivially follows from (2.8)

that A, = Ieu maxizises ZAQKA) gince r(1+u+A} ig decreasing in Aj

1
Henice the theorem.

2e%.3 Let us note that the above theorem in 2.%.2 does not ensutre the
. It can be ecasily seen from (2.7) that if there

") = (1- Qa7 E, a A <Ly,

existence of a unique optimal A1

there exists A/ such that (1 + u +

then Z’Y/(A/) = z’///(q + Af’) 2 Z/’%A) for a A £ I~u. This mezns that
both A and (14 A’) will be optimal. However, for cur purpose we shall

characterise A, in the following way.

’
By =Max { At r(4+a) > (1-a)d " E, 2 SASTru }
(2.9) if r(agu) > (1-d)d ™ B
=a, if r(ae+u)_£(1-d)dﬂu E where E is defined in (2.62"

Obviously, A1 thus defined is unique, maximisecs ZﬁU(A), ae_gaﬁglru, and

hence is the optimal age in the first cycle of replacement.
While determining A1 we started with the asgumption that current
2ge X 2o Tow it esasily follows from the above theorem and discussion

that if aegnggﬂ. then optimal replacement age for the palm will be A

1 1
(defined in (?.9», and if x).A1 then the cptimal age will be x itself.
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2‘4 Detemining Optj-m-al Azg i‘_p (ELRTE iieo g Op‘tima.l Replace—
ment Ages for the Second Cycle, Third Cycle and so on..

N | In the previous section 2.% we have characterised the optimal-re-
placement age for the first cycle of replacement. We shall now do the same
for the subgeguent cycles.

From (2.1) £hrough (2.5} it is clear that optimal Az, A3, veee ATE

the ones +that maximise Z’y(Az, A3’ .....). Yow, from (2.3 and (2.6) we

have
E -—-Max Z/f(A 9 A}’ ase e )
b b sese -2
2! 39 L
= Max = ™ 2(1, 4)
A2,A39.0. k=2
(2.10) 5, _
=Max {Z(1,A)+d Z(1,A)+C0l.l.l}
A 2 3
2’A3,.I.
Az A3 -
=Max / 2(1, A )+ 4 Max {z(1,A3)+d Z(1,A4)+.....}_/
Az AB,IL4QOOOO
A2-
=Max { Z(1,A2)+d E}
A2

ObViOU.Sly, if A 113, esss Maximise ZJ/ (J’;'azg A3, scese ) then Az = 1-3 T seese

2’
80, let us denote the common optimal replacement age for the seconé
and subsequent cycles by (1+L2). Then, we have,
w (k=2)4,

E= 3 z(1, &
;{=2 p } ? 2)

(2411) = 2(1, A2) /(1 - 5%2 )

Tms, 4, is the one that maximises Z(1 L)/(=3%y,  a <AL Tmu,


http://www.cvisiontech.com

21

204,2  We shall now cheracterise A, in the same fashion as we did in the

cagse of A1 for the first cycle of replacement (see(2.9). Te do this we shall
noeed the following lemma.
Lemna ¢ Let {fn}-and {gn}'be two sequences of positive real nun

bers such that

f . %f +4
n+1 n n

(2.12) i1 = &n * O

d- =ke h s e
n - n- n

where hn is non~increasing., k is a constant. Then there exists a subseript

m such that

Hy
H

-2 > £ for all n.
&n &n

Proof ¢ Now it follows from (2.12) that

( ) fn.+1 fn fn M dn fn fn dn
2.13) L (B =) BB ¢ B> B 5 I g, g
8n+1 an gn ¥ en gn gn = “n B

We shall now show that

EE > kh => fn+‘|
= a2,
€neq
Suppose
-f-3’-1—> k. h
& = n
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Then
fn+1 i fn-*' dn
= f 4+ ke h.oe
n n n
(?114) 2 ke hn- gn + k. llnn en
2y hn+1° Er
Let f1'1
msﬁin{n:k.hnSE-n—}
We shall show
f i
L 2 = for all n
& &
From (2.13) we have
£ £ f
(2.15) ke b (P- = D
& S &
From (2.14) we have
£
m
Ke hm k(] g
i J{‘*n+‘l
{2416) =>ke h £ ——
1 +1
o i
Enez T By

From (2.15), (2.16) it is clezr that
noy I
€n T &

for n>mn
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Lgain by definition of m above we have

. f
k'hn‘ > i-—- for all n¥m
£ f :
>l > B for all n<m, by (2.12).
Ent €n '
& Hence the lemma.
2ed43% We can now characterise .£'12. Lot us define the common replacement

age (1-!-1&2} for the second and subsequent cycles as =~

ﬁu — .
(247) &, =Max {4 3 #lde) > d (1) 2(1, s=1)/(1=a""1), &, b <Tmu 3

if r(a_t) > d7(1=a) 2(1, ae-‘i)/(,1‘—da‘;‘1 )

, = =
=a_ if r(a_+u) L& (1-a) 2(1, a~1)/(1=a ° )
Theorem ¢ The common replacement age (1+A2) for the second and
subscquent cycles given by (2.17), is optimal.
Proof i We have to show that A, maximises % (1 ,A)/(1-dr‘) :

aesﬁ £ Ieu (see 2.10).

N\

Let 2 =Z(1,ae+n-‘l)
_ o a,e+n-2
gr‘ =1+d+d +o--|oo+d
n —':1’ 2, aneey L""u""ae+1q

It is easy to se¢e that the sequence

Z(‘I, ft)/(‘] - dA), ae_gA _<_I! - u
is identical with the sequence

fn/(1 - g, 1< 0 {Iruma +1

in the sense that the corresponding terms are the same.
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Now e
‘ a, +n-= 1
1
- =a* r{a_+u+n)d
£t ™ o (2
Let us put
k= du
h = R(ae +u + n)
Againg

a_ +n-=1
S =
€41 " Bn

So, let us put
ae+n—1

e d

n

4

Thug; we have
U™ &g 5 = Ko e 85
and h_ is non-increasing from (1.2) and 2,2.2.

Now by applying the lemma in 2.4.2 we can see that there exists m
such that

L)
L

Aoy 1
& T &

f{OI'all n=1, 2’ ervesy L"u-ae+1=

m:l*’Iin{n:k-hS.

Considcring now the eguivalent sequence

2(1,4)/(1=a%), a <4 <Iru,

of _{‘I/(1"d)gn ’ ns= 1, 2, sersvay L= = ae+1

A
it is easy to see that 4, given in (2.16) maximises %{1,4)/(1=3").

Hence the theorem.
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e

2,5 Existence .of Gohétant_gycle of Replacement
in the Infinite Horizon Cage

2.5.1 Theorem ¢ The optimal replecement age (1+ﬁ1) for the first cycle
and the commod optimal replacement age (1+A2) for the subsequent cycles,
given by (2.9) and (2.17)_respectively, are the same i.ce, A;: A2.

Proof 3 (i) Let ‘
e } o a,en‘l
r(a_+u) 4 (=) 2z(1, a~1)/(1-a 7 )

How from (2410) and (2.11)

& (1=0)E 2 4 "(1-a) 2(14 a~1)/(1=¢ ® )
since B is maximum of Z(1, 4)/(1 - dh).
Hence, r(ae +u) S d(1=-d)E
Comparing (2.9) and (2.17) we have A1= Lz $
-(ii) Lot ug now supvose

i g =
r(a ) > d {1-a) 2(1, a, = 1)/(1=a % )

hgain, we can write from {2,17) that

(2.18)  z(i+u) < &2 (1-a)E for L =1 + iy evey Iu
since & is the maximum of Z(1,L)/I1-d#).

Yow, we shell show that

r(a+u) > &0 (1-4)E £or & = 8y eeey by

As in the proof of the theorem in 2.4.3 let us congider

fﬂ/(1—d)gn the equivalent sequence of 72(1, A)/(1 = dﬁ).

Let
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(2.19)

Then,
T
ke b > &Ll by definition of m
gl gﬁr1

<zﬂk'%m1'%r1> %r1

<s&k.gr1 %?14-%r1> %y1+—%r1
f
m
fm
<==>k0h >_ fOI‘n:‘i, 29 “aseyg In-_'l
B &y

singe hn ig nor—increossing in ne

(2.20)

2¢De2

’ . A
Coming back to sequence Z(1, 4)/(1=-a"), (2.19) means that

f;2—1
x(hyra) > M (1=-a) z(1, n2-1)/(1— d )

C==dr(sn) > & M(1-a) z(1, £,)/(1 - @ )
= d_u("-d:)E fOI‘ e ae, senay 1.‘&2-

Comparing (2.18), (2.20Y with {2.9) we have i,= £

HE St

Hence the theoremes

Thus, in the infinite horxizon case we have found that therc exists

: #*
a constant cycle of replacement which is optimal. We shall refer to L as

*
the Optimal Economic Life of a palm where A 1s given by,

(2.21)

L
i

Wi § 4 3 r(h+n) > d0(-a) 2{1, L=1)/(=a"N), 2

e_g_f;_(_L-—u}
a =1

if r(a +u)> a® (1~a) z(1, 2, “)/(1-8% )

n

ae otherwise.
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Srinivasan (1967) had found similar optimal constant oyole polisy

in the context of expansion of industrial capacity in the face of growing

demand.
2.6 Replacement Model with Finite Horigon
24641 Tn the earlier sections we dealt with the objective funection which

was concerned with the discounted net returns from the palms over an infi=-
nite horizon. Considération of infinite horizon in similar studies has
become a conventions It is often mathematically coﬁvenient and also

obviates arbitrariness in fixing a finite length of horizon. However, we
ghall study the finite horizon model as a special case of interest. We

shall confine curselves only to the first cycle of replacement, particularly,
we shall consider a horizon of length not more than the given lifs of a palm.
" 24642 Let H be the length (in years) of the horizon, H L. &s eariier,
let ¥ be the current age of the palm. In the finite horizon case, it will

be convenient 4o consider the number of years a given palm can be reiained
before replabement. Let y Le the number of years a palm of ~ze X is ratained,
This meane that o seedling is underplanted at age (x+y} of the pala, and

the palm is removed at age (x+y+u); in other worés, the roplacement afe

is (x+y—1). Now,the underplantation should be performed nct later than

a point so that a pesitive net return from the new palm can be Tealised
within the period of the horizon. So, we shall consider a, <{H and

y ¢ E- 8¢ where ap is the first bearing age of & palm.
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Lét us defino for a glven'paln of age x,

e lnd

(2:22)  Wlyst) = 2, r(xtr?i’)“?' ¥ neyed 2(ney)d ™

3

o
for jr’ =05 1y 2, s, H= af
. Ay < HLL

_ and r(n) = 0 for n)>L
W(y,H) is the disoountea het returns from the existing palm and the new
palw. The first term accounts for the net returhs from the existing palm
and the secend term aceounts for the same from the new palm.

in general, optimal y for a given age x and horizon H.-can be found

out by dircctly computing W(y, H) for y = 0, 1, 2, eee, H- ac. However, 1t
is not pogsible to study the properties of the optimal y i.e., it's rela=
tionship with x aﬁd H. It would be interesting to restrict ourselves to the
palms which are in their declining vield phase and are going to reach age
(L~u) within (H—af) ycarse This means that we shall consider a palm of age

x> Max (L-H=~u+ ap + 1, a@). Let us put,
(2.221) x, = Yax (L - H=u + 2 + 1, ae).

The following theorems are concirned with the relationship between the

optimal y on one hand and x, H on the cther.

20643 Theoren I If the horizon is such that H2 Ieu - (ae - ag) + 1,

then the optimal number of years y, a palm can be retained is given by

(2.23) ¥ = 1+ Max { y’/: r(x+u+y/) Sa el D(y’; H); y/; Qs 14000y Imu=x 1}

if r(z+a) & © (0, HY.

= 0 otherwise ,
By’ =1 7 -
whoere D(y7, E) = (1-a) nE1 r(n)d® 1 &+ r(H%y/)dH—y L
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Proof s Optimal ¥ is the one that maximises W(y, H) given in (2.22),
Wow, from (2.22) we have

W(y—i-‘l JH) = W(y‘, H)

: Uty t ¢ =1
r(x+u+ a + - Yeu
.V) )E.{ {J.(n-y—1 ) :r:\n-y)}d

- (1)
By
= r(x+u+y)d.u+y - dy(‘l—d) 21 r(n\dn-1
n=
- (mp)adt !
for y_('_L - U= ¥,
Therefore_! W(y+1, H) > w(y’ H).
: | if ang Oljlly if By , .
(2.24) r(xtuty) > a7 { (1=d) 5—1 r(2)d™ " + r(E=y)a" I}

for y<L=-—u=-x+1
Lot us define
H=y=1

(2.25) D(y,B) = (1-a) £  (n)d™ "' + p(my)aF V!
| n=t

for y{L ~u-x

Then,
(2.26)  D(y+1,8) = Dy, B) = a7 gr(@y-1) ~ x(#y)}, ylruwx
NOWg
Hey=1 > Hltutx1 since y{L - u~-x
- (2.27) 2 Eltuts 1 since x>a_

2 Iru={a, - 2a) +1- Ituta, - 1

since H_)_Ir-lr-(aa—es) + 1
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Hence,

r(Bp-1) - #(#y) 20,  ygL=u=x,
since r(n) is non~increasing for n2a .
Therefore, from (2.26), D(y, H) is nor=decreasing in y, y L = u -~ x. But
»{x + u + y) is nor~incressing in y since x >% s

Now the theorem follows from (2.24).
2.6.4 We can summarise the above two sub~sections as follows :

For a given palm of age x such that x.< XSIFu (xo given by (2.22a)),
if the horizon H satisfics H _>_L-u-(ae - as) + 1 thon the optimal replace~
ment age A is given by A = x+y, where y is given by (2.23).

Lemma § The optimal replacement age 4 is independent of the age X
of the old palm if |

r(x+u) >d * D(0, H).

_2222; ¢ Let x, = Max (L=-H=u+ A + 1, ae) and AX1 be the

corresponding optimal replacement age given by

A =x1+y1

woere '
vy =14 Max § 3/t 2(xbuy’) >80 Dy ) 3
(2.28) :
when D(y/,, H) is given by (2.25).
y//=" O, 19 29 LALE X N ] Il-u.'_x_1
T Let us now consider a palm of age X, such that
X, <%y _<_L-u‘, r(x2 +a) > d v (0, 1.

Let Ax be the corresponding optimal replacement age given by
2

sz =X, + y2
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Then,
Voge 1+ Max { yj: r(x2+u+y/) >a D(y/, H'?
(2.29) g1 +Max y/s o(x oty + ) > & Dy, ) 3
ﬁhel;ef ¢ is such that X, =% *Co
From {2.28) and (2.29) it is obvious that
Yy =Yyt e
Therefore,
A =X, + ¥, =X, + ¥, =4

X2 X1

Hence the lemma.

26645 Letr us note from theorem 2+46+3 that the optimal number of yesrs |y
a palm can be retained is dependent on the length of the horizoﬁ H.

Let us denote y by Yg for a given He The following theorem shows
the relation between H and y.

Theorem & Supoose ag = 3 2L-u~- a, * 1+ Then,

(1) yH+1)=yH foi'L-u-(aeﬂaS)-i-‘l,SH(ae
f$ﬁ3yﬁﬂgzﬁi‘ for e SHSL,
_P_r% From (2.25): we have .

(2.30) Dy, B+1) - D(y, B) =a 7 {r(By+) - 2(&y)}, »20.
From (2.27) we have (E-y) >a_, hence

r(H~y+1) £ r(H=y) for y 20
Further, for H <a.e we have H - y_<H <a_ since y 2 G
Therefore, we can write

r(H-y+1) = r(By) for y> O, ku-(ae—a's)-’.-‘l_(_ 1 <a_ since H-y<a
(2.31)  anda
r(B-y+1) £ r(B-y) for y20, a <H<L.
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So, from (2.30) and (2.31) we hsve
Ny , B+1) = D(y, B) for L = u - (\a.e ~a)+1 (H<Ca,
(2.32) . and

Dy, B+1) £ Dy, H) for a’egH<L $ fory » O

(i) Suppose r(x+u) £ das D(0, H) where x is the age ofb the old pa].m
Then from (2.32) we have
r(x+u) ¢ & (0, .'H)».g d % (0, H+1)
Hence, !
Yy = Ygq =0 for Irem(a, =2 ) + 1< A<L,
(ii) suppose r(x+u) > & © (0, B). Now, since ¥y is optimal we can
write from (2.23) that
| r§x+u+y) > A Dy, H 5 ¥ =0, 15 eeees vy
(2.33) r{x+ury) £ g Dy, B , T ET + Iy edey Leu~x.
But since for I-u=(a_-a_ ) + 1 ¢ H<a, we have from (2.%2) that
D(y, B+1) = D(y, H), it is easy to see that Vit also will satisfy {2.%%).

Hence fox L—u—(ae - as) +1 < HE<C 2,

YE+1 T YH _
Again, from (2.32) and (2.33) it can be seen that for a <A <L,

r(x+uty) > e D(y, H) 2_ a- D{y, #1) for y =0, 15 euus Yo

Hence yH+1 2_ Yg for aeS}I( L, and hence the thsorem.

2.7 Comparison of the Optimal Soluticus
Corresponding to Infinite Horizon
and Finite Horizon '

207 e For the finite horizon case we considersd a p'a'lm of current age x
gsuch that x> X, where %, is given by (2e223)y af_<_H'<_L.‘

Let Ax-/=Max-(L-H-u+af + 1, 8.)

From section 2.6 we mave that, for H2 L -u = (a, = a ) + 1, the optimal
. L=


http://www.cvisiontech.com

replacement ag‘e Aﬁ of the pé,lm ig given by,
AH: X, * 'yH :
(2.34)  where
v o=Max § y 3 r(xsuey) > &0 Dy, B;

- LA

; B 3 yﬂ 0’ 19 2,‘..‘9 Iﬁunxé}’
i zlxge w) > 67 gﬁos H)
{ y-1 :
My, B) = (1= Q) S r(n)d™ " 4 o(Ey)a® v

"If we consider an infinite horizon for the same palm then, from

gection 2.5, we hax}e that the optimal replacement age A7 of the pale is

given hy,
e o]
g s
A axo-l‘,-# |
( 5) where
2.3 ' S :
- oy & + v o= 1)
yOetaxi v 8 olxgtu+y) > & (1=d) L X L
: o
i-4

y=0,1’29 LN Y L"’u_x}

Xy

- a
The theorem nn 20645 provides some ingight into the relationship

between. the length & the"horizem and the corresponding optimal replace—

ment age. It would br interesting to compare yﬂ and y©° (defined above).

But it is difficult irrveéﬁiga.te the order relation between .yH and y™ .

in general since it . ~* - . will also depend on the specific fune=

tional form of the. agemecific mean yield profile, rate of discount etc.
However, one intuitively *eels that when H.is sufficiently small y‘H and y*

should be different in gehersl. The following theorém substantiates this

“intuition.
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2¢Te2 [Theorem & Let us considér a palm of age x such that x 2% where x 1is
defined above. Let A and A bé the optimal replacement ages in the infi-

nite and finite ho:u.zon cases given by (2. 35) and (2. 54) regpectively.

i soppns

Then,A _A if H_\_ae-i-u.

Proof ¢ It is enough to prove y°°> yH when H <ae + U.

B

We have found in sub-sectlons 2edat and 2.,.1 that & is +he gfxé

that maximises Z(1, A)/ (1 -a )l- In otherwords, y°° ig the one that
X +y : ‘
maximises Z(1, %+ y)/(1 - q-_‘_°. -~ )s ¥ =05 1524 eeey L= 2 ua
It can be seen from (2.:1) tﬁat,
x ¥y x .t
121, xgiy+1)/(1=d ° - )} - { z(1 xqﬂr}/(‘l -a° )3
x4y x ok R
(2.36) ={ d /(1=a ) (1md )3
X { r(xo+y +u)d - ad(y, x,+ 2y + ) }
Aga.:m, from (2 23) we ha,ve,

Dy, X+ 2y +u) - D(y + 1', x + 2(y+1) + u)

x +y+u+i : L
(2.37) =gE T trg+y+ru)-rx+y+u+1)} 2 0

since r (5;0+ y+ u) 2 r(xoj{- F+u+1)e
Hence, D(y, :ca + 2y + u) is decreasing in y.
Therefore, from (2.37) we can write
r(x6+ y + w)at - 1y, X+ 27 + )
(2.38) > r(x‘+ Ng +.1J.)‘6.Tfl - d(y, X+ 2y + u)
> r(x+y+u) & =Dy, B)
S:ane x+2y+u> x+u

: 3
.>. a, + u (as %, _l_>_ ae,

2 H (a.sH_(_ae+u)

L]
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Now, from {2.34), (2.38) and (2.36) we have

Hy - ' ¥ - 3
Z(19 XO+Y) >Z(1’ Xyt .V) for y = 04 1, sues .VH""]-
Hence, y°° _>_yH for H.<.. a, + .

Hence the theorem,

28 Hapirical FExercige

24841 Let us now work out a few mmerical examples with the
results obtained in the previous sections for the purpose of
illustration.

In order to examine the ssnsitivity of the optimal
replacement age to the different parameters, we have chosen three
different wvalues for a isce, the age beyond which the mean yield
storta dgclining. We hafe further chosen two different rates of
decline (32) of the mean yield fof cach value of a,r These valuocs
will provide us gix differcnt mean yield profiles of the form
gpecified in (1.4). For the purpose of comparison we specified
three different time-horizons in each case. They are given by =

H = co

i

L=y - (a.e-a.s) + 1

=L~ 5
The socond value for H specified above corresponds to the lower
bound of H for which the results are derived in the fini%e horizon
case (sce 2.5.3).( The third value zbove has been taken as =

large value for H.
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e

Lot us note that for different values of 2, and 55 the life

of a palm (isece, L) will be different in cach cage. The rcst of the

o

parameters will remain the same as gpecified in 143,
We have worked ocut the coptimal age for two different rates of

digcount in each case. The results are presented belowe

2e822 Tables Optimal Repiacement Agze Corregponding to

Different Values of the Parameteors

"a % Age (in ycars) beyond which the mean yield-starts

e
declining.

e, * Bate of decline (mats per year) of the mean yiecld.

L-¢ Lifc of a palm in years

4 ¢ BRate of discount in per cent

H ¢ Time=horizon in yearg

A}i :

Optimal replacement age for time=horizon H.

a . s L i H T

¢ 2 | A
60 3 | 80 5 29 66
75 66

o0 6.6 '
60 15 80 10 29 70
) 75 70
= 70
€0 2 90 5 5 68
85 69
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H

a L a o A
e‘ .
60 90 10 39 75

85 75
oo 75
55 75 5 29 61
70 62
e 61

55 75 10 29 65 .
70 65
55 85 5 39 6%
80 65
oo 64
55 85 10 39 70
80 TO
22 70
40 60 5 29 46
55 47
o 47
40 60 10 29 50
55 50
oo 50
40 70 5 9 48
65 5
: . > 20
40 70 10 29 55
65 55
%0 55
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24843 Tt seams fyom the above table that the sensitivity of the
pptimal replédement age to the time=horizon incresses with lower life
span, lower rate of decline of the mean yield and lower rate of dig-
counte Iq the case of the values assumed for different paraméters
menticned in 1+3, the optimal replacomént age is inscnsitive to the
length of the time-horizon. However, rate of discount influenccs

the optimal age considerably,
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Chapter III

Deterministic Replacement ¥olicy Based On
Trejectory Of Net Anmuul Returns

3.1 Introduction

Zele Let us consider a collection of palmg in a given area. The number
and age distribution of the palms in a given year detérmines the total
annual yield of the year (alsc the anmmal cost and the net return). CGiven
the age distribution of the palms in the initial year, the manner in which
palms are replaced every year =ill determine the age distribution in the
subsequent years. Thus, the total annual yield trajectory over the years
will depend on the manner in which the old palms are replaced every yeare
4 perusal of the results on the optimal replacement age {infinite horison
case) presented in sectien 2,2 will ghow that the deterministi; replace=
ment rule doee not depend on the initial age distribution. The optimal

rule specifies an zge so that, all the palms that cross the specified age

in a given year are to be selected for replacement in that year.

3+142 In this chapter we shall first examine how the age distribution
changes over time under such an optimal rule {as discussed in the pro=

vious chapter) and then consider a model which relates a gi#en replace-
ment rule with the changes in thé age distribution and consequently the

total yleld trajectory.


http://www.cvisiontech.com

it

2,2 Impact of the Deterministic Replacement
Rule on the Age Distribution Over Time

3,2,1 Let (1+4) be the optimal replacement age i.e., a palm ig to be
replaced at age (1+A). We have already discussed this optimal replacement
age in the previous chapter, section 2.2. For convenience, we shall for the
 time being consider replacement by replantation (see 1.2.4), later we can
incorporate underplantation easily. Thus, in the initial year we remove allk
the palms of age ab ve A then in every subsecquent year we remove all -the
palms that enter age (1+4) iﬁ the given year. Let n, be the number of

paluws at age x in an arbitrary year t. We shall write the age distribution
in & given year (after completing replacements of the year) ag (n1,n2,;sa,nA)
where the ith component zives the number of palms at age i. It ig easy to

sece that the age distribution will change as follows.

Year Age Digtribution

3 \ (n1, Nys Ty seves Ty g nA}

t+1 (nA, nq, Nys seres 0, _o» n:F1}
t+2 (nk_1, 1, s n1, sevneg nﬁ_3, nA_2)

t4h~=1 (n2, n3i n4, sesey Ny nq)
A {n1, Ny na, veess Ty s nA)

T4 ig clear from above that at every (A+1)th year the age distri-
bution becomes the same as it was L years before. More preecisely, the age
distribution in (t+4)th year is same as that in the tfh yesr

| ) fof t>1. We can say that under the optimal replace-

ment rule'fhé age distribution rotates over the years and the period fox
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one complete rotation is 4 years, where & is the optimal replacement age.
The anrual age distributions over the period of one complete rotation will
be determined by the initial age distribution existing when the replace=
ment scheme beglinss

342.2 Ag noted alrealy, the annual distributions over a period of
rotation will determine the total anmual yleld trajectory over the period
which will repeat itself in the successive periods. Although the discounted
stream of net returns from this periodically repetitive yield trajectory is
maximum, there may be two undesirable conseguences. First, an initial age
distribution which has a large proportion of palms within a parrow range

of age, will lead to a trajectory with a upward swing followed by a similar
downward swing. This is easily verifiable by considering a distribution
which has all the palms at the same age. Sccondly, the nmumber of palms

to be replaced in the initial year may be (actually very likely to be)

very large both in proportion as well as in absolute number. This will
mean a heavy initial expenditure for the réplaoement gcheme,

It may be noted here that the two consequences of the optimal
replacement rule outlined above are partly related to each other. Replace=
ment of a large proportion of palms in the initial year will not only mean
a heavy initial expenditure and low ammmal net returns in the immediately
following years but also will generate a distribution which has a large
proportion of palms at a single age that will contribute to the fluctua-
tions in the yield trajectory. It is emsy to sec that more the distribu-
tion deviates from a uniform one more will be the year to year fluctua~

tions in the total yield.
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3¢3 4 Model for Considering the Yield Trajcctory

2e341 We are interested in the formulation of 2 model depicting the
relationship between a replacement rule and the congequent yield trajcctory.
We shall confine ourselves to the detorministic framework used in the pro~
vious chapter.

Since we are ccnsidering replacement of palms only in their dzelip—

o cevhoin
ing yield phase, let us club all the palms abovefage o (a B ae) into 2
single zge group and refer 4o the same as the 'old=age' group. We ghall
define the replaccment rule here as follows.

First we specify a certain proportion, to be called the 'r-to of
underplantation'. Every year we select a proportion of palms, cqual to the
rate of underplantation, from the old-age group, znd underplont an cqual
nunber of scedlings near them. Palms are selected in the discending order
of their age starting with the oldest palme Also, we remove all the palms
that were selected for replacement u years before (whore u is as defined
in 2.2.1%. Let us ncte that under the above replacement rule the nurber of
palms (inclusive of +he seedlings) existing in a given year will change
from year to year. For convenience, throughout this chapter, by age dis—
tribution we shall mean number of palms in various age groups. Givon o
rate of underplantation we can now generzte the annual age distribution
of the palms from year to yoar. The annual yield trajectory can thus be
computed from the generzted age distributions.

It will be shown here that given a rate of underplantation the

age distribution converges to a stationary one and, consequently, undex
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certain conditions, the anmyel total yield becomes stable. We are particu—
larly interested in the stable yield level ag a functicn of the rate of

undérplantation.

3.342 Let us define the following matrix G for generating the age &istri-
bution from year to year for a given rate of underplantation. G generates
the age distribution in the nth year given the age distribution of the
(n—?)jg year. For our purpose, we will be interested in the distribut{on
of the existing palmg, in a given year, into (a 4u+1) exclusive and
exhaustive age groups. The columns of G correspond to these age groups in
year n and the rows correspond & the year (r=1). Thus, the (i,j)th entry .
in G accounts for‘the proportion of palms in age group i in year (m1) *

moving into age group j in year n.

—1 2 3 ses a s a V_1 V2 e Vu
110 1 0 +os 0 7 O 0 0 we @ %
3 1
210 0 1 s 01 0 0 O  ees ©
1
(3'1) G o o =80 saa +49 sss san E ".w (X33 sae s sa
a| O 0 G mom .1 A 0 0 S @
¥
+ :
al q 0 0 eos G© ! 1=q q 0 aleve] | IO
G R R E S o o W O o o ' ------- S O MR M b Ee s e
f )
v,| © 0 @ mew OF 1 @ o e Bgsl @
i
-s ¥ L ats LER ] L ) |l0| LI N LN ] a0 . LI sn @
i
t
Y 0 0 0 eea C : 0 0 0 fea 0 ol
p— ?

where 0 ¢q¢1.
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The collection of palms of age above's consist of some which are
not yet selected for replaccement and the rest which have been selecied for
. : EE
replacement in the year o or (n—‘l) sssaea OT (II"'U.‘“!l)- Colurm a2 corrosponds

to the palms above age a excluding thosc already sclected for replzcermmnt.

v, corresponds to the palms selccted in f th year for replacement and
80 Oh.

In a given year n, all palms which werc in age group i in the
(n—1)§g year will move 1o the next age group, 1 =1, 25 «asy 2, v1,v99...,
V=1
underplanting. Thus, a proportion ¢ of the palms moves from age group "

+« From the age group at a proportion q of the palms are isolatced for

to group v, and an equal proportion of palms is accounted ir the age

1
group 1 to take care of the underplanted seedlings. Palms which werc in
group v, in yeax (n—1) will be removed in year n and hence the row vy

containg only zerc entries. This explains the construction of G

3.%,3 Let;ﬁi be the dge distribution of palms in year i, Lot us define,

r-i.:i = (n_u nzl sue nai nn+i nv L nv )
1 u
(3.2) i = ( £;. b ) where

= ( )/ ¢

Ry =ilm  Aogmeesat By By,
=
Ei = (nv 1 B,y cee My )
1 2 u

i =O’ 19 29 L RN N

where n . is. the number of palms in the age group x in yeor i,


http://www.cvisiontech.com

48

Let us notige that if q =1, we will Mave the similary kind of voias
%&6;@ of the anpiual age djz'stribiﬁian discussed in sécfion 3.2, We shall
thus songider q < Te

_Th,eorém % Under the reylaéement rule defined im 383edy the age
distribution of palms f , s defined in (3.2) converges to a stable one L.ee,
there existe an gge distribution £ gueh that £”_L-:> £ oas 45 ooy

‘g = (ﬂ1; I.’Qg, LT ‘ﬁa_‘_ agna:, ﬂ‘V‘ y eredy n‘V‘ }

1 Yu
where ny =.qiN/”"(‘} + ga‘jﬁ‘ for 4 = {y 24 sres S ‘Vlg Voy dkey LY
n =81+ qa) ¥ = Now of palms in the imitial years

&

Eroof ¢ From (3.1) and (3.2) we have
g Y & ol o L
{3.3) £ "’~i— -,gQ oty L=y 2y e
Prom (3.2} we have,
: 7 / . f‘/
G & = (&l 1 np)
Let us now partition the matrix Gas shown im (3.1} by dotted

Yines. Thus, Let us define,

[ s ; & 1
(a+1; a#t) P (a1, W)
(3‘.5) G. = L ™ :...-'-'e..—i-b-'—qg
E@—ﬁuﬂ 5 arl-u;l-“l) & L
- 3 ! %
i Cu, at1) 1 (e ) E

From (3.3), (3.4) and (3.5) we now have,
(3.6) g;/ = gf @% sincg G5 is a il matrixe
Wou @1 i8 & stochastic matrix and it is & well known resuld that thewe

exisfs a matrix G, sweh that &) __3 G, as i » oo

1
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*

L2 R T
Let g'=87 G, ¢ & is the limit of g;.
Le‘b’g:(n19 n29 LR lila‘_i_)
Agzin, from (3.3), (3.4) and (3.5) we have,
S A
By = 85 G + By

We can therefore write that

n .=q n
v1l a+(i-1)
nv i=n ¢

F = v1Li—1)

., =N o
nv31 Vs '{1—1)
n .

v 1=

fig ’
, Vt?1(l 1}

Since g, » £ asisoo;wehaven 4 -n ag i = o0
< 5 ‘ ai at i

~ ot

m 1 -
Thereforg, n_ ., = g I —> Qe 1 az i 5 o
Trus, we can write that

h, = h as i-~» oo where
1 ~

i~
' 2
(3.7) 1 % :
h= (rnaﬁ L I ) ¢
a
Let us define,
/ ; ,-/t /
£=0"11)
We have shown that fi - £ gg i- oo whore
o~ o~

/
t§ = (Il 9 n29 X EXX] na+)

f -
‘_I}S,‘\I'na_}_,fna_!_g.-oog 1‘1‘1,-,)
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Let E=n, _+n
(Ke]

%0 +oeecee na+°* N iz the total mumber of
palms existing in the initial year before the replacement rule is applied.
It is ezsy to sce from (3.6) that,

n,. +n

.t asee +1_., 4N =N for all i,
11

21 ai ats
since Gﬁ is a stochastic matrix.

Thercfore, w2 have

(308) H =n.1 +1'12 +‘oo-o+ na+na+

Again, since g = g G,, we can write,
i~ v

1
ngo=an

n, =n,

(3.9) ng =1,
n, =n._,

na+ =n_ + (1 - q) na+
From (3.8) and (3.9) it can be seen that
(3.10) D, = W1+ o)

The theorem now follows from (3.7}, (3.9) anc (3.10).

34308 It is not clear if the stable distribution given by the theorem
above {in 3.3.3) will necessarily generate a stable yield level over time.
The reason can be seen asg follows.

The yield of the palms in each of the age groups 1 through 's'
can be easily computed since in each age group therc arc palms at a single
age..But, yield of the palms in the age group at will depend on the ag:z

compogition of the palms in the groupe So is the case with the yixld of
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the palms in the age groups v, through v,» Thus, the total yield of the

4
palms in age gréups 1 through a will remain stablé for the stable age
dittribution buf_the total yield of the palms in age groups a', Vi oweey v,
will be stable 4f the age composition of the palms in each of these groups
'remain stable. The following theorem shows that such is the casge here,

Theorem § The total yield corresponding to the stable age digtri-
bution obtained in the theorem in 3.3.% is stéble over time.

Proof ¢ o prove thié we have to show that the age composition

in cach of the age groups af, Vs evesy is stabled

1
It dah be Seen from the stable distribution obtained in the
theorem in 343.3 and the matrix G in (3.1) that every year oi¥/(1 + ga)
number of palms enter age group at from age group a. These palms will be
at age (a + 1) when they enter a'. Since we are taking ont pelms from
group at in the descending order of age it is clear that depending on q,
either group a’ will have palms at all ages (é+1) through L or at the
first few of the ages. Let us suppose there are pelms in a+at ages
(a+1)s (a+2)y eeees (a+b) where 1 £ b (Llra. It can be seen from the
theorem in 343.3 that every year qN/(1 + qa) number of palms entor
group at s number of palms at age (a+1), (a+2) etce, will be qﬁ/{1+qa)
except probably at age (a + b).

Number of palms in a” is /(1 + qa). Therefore, we have,

b =Min (L - a, ¢) if‘& is an integer
(3.11) =Min (L-a, ¢ + 1) if % is not an intes r.
- 1

where ¢ is the integral of'E .
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Since there are N/ (1-*-a,q) number of palms in age group a¥ ana q is
the rate of underplantation @vVeTy year qI\I/ (1+a,q_) number of palms enter in
group v, from group at. Therefore, it can be gsen that, if b=c £ I~a
(ise0, whenever% is an integer), every year there will be &/ (14aq) momber
of palms at each of the ages (a + 1} through (a + P)e If b=L=-2a< Cy
every yeaxr there will bhe qN/ (‘l + aqj number of palms at each of the ages
(2 + 1) through (& + b = 1) and N(1 - (b -139)/(1 + aq) muber of palms
at age a + b. Let us note that in this latte.: case

1= (b = 1)a)/(1 + ag) > /(1 + ag).
Again, whenever :fll- is not an integar, évery year there will be qN/(1 + aq)
number of palms at each of the ages (a + 1) through (a + b ~ 1) and
(1 = (o= 1))8/(1 + aq) number of palms at age (a + b). Let us note here
that in thig case

51 = (6 - 1)0)/(1 + ag) § /(1 + ag)

dependiﬁg on 7

¢ + 1 § 1= a,
Hence the age composition of palms in age group ot will romain the same
over fime in the stable distribution.
4 will contain ™/ (1+ga)
ralms at a single age (a + b + 1) since (1 ={bv=1)q)§/(1+aq) > oli/(1+2q).

Similarly, if -3-_- is an integer, group v

If -::- is not an integer and ¢+ 1 < L~a then v, will contain

(1= (®=-1D8(1 + ga) palas at age (a + b + 1) and (b = 1)g/(1+2)
palms at age (a + b), every year. If ¢ +1 > L = a, then every year v,
will contain /(1 + aq) palms at age (a + b + 1). Hence, age composition

in ‘v,I is also stable.
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Now, sj_nce\ Vs has palmg moving in from V1 arnd g0 On; &%¢ COMPOSi=
tion in each of the groupse Vs Vg’ veey V will also be stable.

Hence the theorem.
34345 We can now write down the expression for the stable yield level.
Let Y(a, q) be the stable total anmual yield when the replacement is pere
formed from the oolie¢tion of palms of age above a (a,_.:‘a.e Y at the rate

of underplantation g. It follows from the proof of the theorem in 3.3.4

that,
- a+b+u |
e, o) = 75— I, i -i: is an integer and b = ¢ <Ima
a+b+u=1 |
(3.12) S R G0 DI L

1 + ag n=1 n 1+aq Hasb+u

if -:I is not an integer and b = ¢ + 1<{l~a

‘ atb=1 ‘ " a+b+u
Y S G Car DIV .

i L
+aq L 1+ aq T3 g aba

if %l-is an integer and b = L = ac¢e
or-;ll-is not an integer and b =L =3 {c + 1,

where b and ¢ are given by (3.11),

Let us note that when b =L = a, we will have palms of age L
and above in the age groups a.+, v1 y seeey Voo But, since palms are dead
by age L, we have taken O as the yield of such palms in the above
expressions. |

1

We shall consider the cases where g > ﬂ-a— since for Koy

we will have L = a< ¢ + 1 which means that q will be too low leading

te accumulation of dead plams in the old~age group.
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y ‘ 4
The following set of lemma show the relation between ¥(a, a)

and a, Q.

Lemma 1 ¢« Let a4, and 4, be two points in the range of g Leew,
1 1

( E}g, 1), such that, — and = are two successive integers i.eq,

(L) =(L)+1. teto = Lando, =1 . mens the stavle yiela

4 %2 1y 2 %

level Y(a, q) is increasing in q for g in the interval (q1 ’ 4 :] if
and only, if,

301 :
(3413) c ta ni} un>"a+cz+u+1

Proof & From (3.12) we can write,

aHuke, (1+c.q)
¥(a, q) = B 3 2, 4 2

1+aq =1 n 1+ ag ua+u+02+1

for 4 <q$q2

: atu+c
° 1*!33,\I q i Z My T % Patute 1 I+ Patusrc, +1
o n=1 | 2 s
Thus, Y{a, q), q<aLays is of the form (b‘l + bzq)/(1+b3q).
I+ is easy to see that a function of g of the above form is
increasing in q if and only if 'b2 - b1b3 > 0«
In this case, the above condition is eguivalent to (3.13).
Hence the lemma,
. L £iy ‘0 L .
Lemma 2 Let q1; Qo 01 and 02 be asg de 1ner:‘% in Lemma 1
Then, Y{a, q) > ¥(a, q1) for q in the interval (q1 » a :l if and omly

if the condition given by {3.13) is satisfied.
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Proof & ¥rom (3+12) we can write,

) N a+u+c2 j q1 ) a+u+c1
¥(a, a) = Yla, ) = . bH h = i
| q__] 1+aq n=1 n ‘l+a,cLl n=t by
(1 = c @)
* T+ aq u'a+u+c2+1
= a++c '
N 2
{ q (1+aq,) = °
(1+aq) (T+aq,) % e Hn
atu+e 2+1 : (1 —caq) N
- q1(1+a.q) nE‘E Hyy P+ _'-1_+q__ ua+u_+c.2+‘1
gince c1 = 02+1
(q—q1)N a4u+c,.,

5 - (e 4a) }
B, by 2 artusc ;1

[SEECE=THA
Hence the leumma,
Lemma 3 + Consider Y(a, q) such that -g: is an integer. Then

Y{a, q) is an decreasing function of a if and only if

1 atutc 3 |
c+a ni't b o >Ha +udc + 1 whe:cec-—a,az_ae

Proof ¢ From (3.12) we have,

‘ atute+1 ¢ atu+e
¥(a+1, q) = ¥(a,q) =ﬁ S Temy DK
: n=1 n=1
_ g ¢ (1+a0) atu+c+1
(rag)(Feary) © Y 2 in
atute
- (1+ag+q) Bl 5 !
n=1
q , . atyte
(1+aq){(1+ag+q) { (1+2q) Porurert — ¢ ni Un

. ‘Hence the lemma.
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From Lemma 1 and Lemma 2 above the follcwing theorem easily
follows. ‘
Theorem‘g If the stable yield level Y(a, Q) has a maximum
for q in ( ﬁ'a_. y 1} for a given 'a', it will be at some point gq such
1

that E-is an integer and sych a point g exists if and only if there

exists 9 such that

1
= —+1 =
T 1 1 c
(3.14) '1 atu+c
o+d Z Pn £ Hajuted]

n=1

Proof 3 We have only to show that

1 atutce '
Tota) Lo, <L op
cta =1 n a+u+c+ 1
a+ute—=1 ¢ i

4
I Car ) A N P

Thig can be geen easily as follows.

atute ' :
nﬁﬂ Hn e a)rua +u+c+1
a+tutc~=1

= I My ¥ Patuse
n=1

£ (e=1+2a) v

+ 38
a-+u+c+1 atutc+i

< (e - 1+ a) Ila+u+c T Harure

since ux+1 < By for x > a_

atute=1. "

moms) 21 by, £ (¢ = 1-ta) Maquso
n=

Now, the theorem follows from Lemma 1 and Lemma 2.
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3.3.6  Remarks $ Let us note that in our present model if g = 1 and
a = A* where (1 + A*) is the optimal replacement age (infinite horizon)
given by (2421) then it becomes equivalent to the optimal replacement
rule discussed in the ﬁrevious chaepter. The corresponding annual yield
trajectory will have the highest disccunted annual net returns although
there will not be any stable age distribution in the limit. Thus, the
replacement rule considered here ig sub—optimal by the criterion of dis-
counted net returnse The replacement rule in the present model is to be
defined by specifying a and q == the cut—off age for the old-age group
and the rate of underplantation respectively. The choice of a,(_Zaé) and
aq ( EE; <q<1 ) is to be made by considering the stable yield level,
the trajectory leading to the stable yield level and the level of sube

optimality.

344 Phased Replacement of the 0ld Palms

Bede The model considered in the previous section 3.3 was chiefly |
concerned with the annual age distribﬁtion of the palmsg which will comr
verge to a stable one over time. The stable agé distribution was sought
for in order to eliminate the fluctuations in the yield trajectory. Let
us now consider the second problem noted in 3+2+2+ This is the problem
of initial heavy cxpenditure and low anmual net returns due to the
presence of large number of ¢ld palms to be replaced immediately under
thé optimal replacement rulec.

One of the ways of sasing the burden of initial heavy cxpendi-

ture would be to replace the existing old stock of palms in a number of
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phases sinczthat case the initial expenditure will get distributed over
a number of years. Suppose the initial age distribution ig given hy

(nj, Dps seess Dyy Dy gy seees Op ) where n_ is the number of palms at
age x ana (1 + A) is the optimal replacement age., Under the optimal re=—
placament ru;e, all the palms above age A should be chosen for removal
by underplaﬁting. Lat us call the collection of all the palms of age
above (4 + 1) as the 'old stock;. These are the palms which have survived
their optimal economic life and were due for replacement at least an yesr
agce Thus, under the optimal replacement rule, the 0ld stock should be
chosen for ramoval by.underplanting along with the palms which zre ot

age (A + 1) in the initial year. This, we shall refer to as the rcplace-

+ ment of the old stock in a single phase. When the number of pelms irn the

old stock is proportionately large we can think of replacing the old
stock in, say, w muroer of phases, Thig means that in year i we shall
select (zi + wi) number of palms for underplanting where 2 is the nuge
ber of palms at age (& + 1) in year i and LA be the nmunber cof palms
chosen (in dcscendingorder of age) from the old stocks, 1 = 1, 25 eee, W,

L
bi w, = I In;
i=t 1 b2 J

Obviously, phased replacement of the old stock will 1=2d to o
fall in the discounted value of the anmual net return stream from it's
optimal levral. The following lemma provides an upper bound to such a
fall.

Zede2 Lemma ¢ The upper bound to the fall in the total disco atea

value of the amrmal net returns due to phased replacement (described


http://www.cvisiontech.com

56

above in 3.4.3) is given by,

. I L I- L
I- u
(3.45) § 2 n o+ 3z n (a7 )3E- T8 ¥r(n)e™™
X=A+2 =L+ x=A4+2 n=x+u

if replacement of a palm in the old stock is delayed upto it's age L
at the latest. B is given by (2.11).

Proof 8 The fall in the total discounted value will be only
due ‘to--the- fall in the discounted value of the net return stream corres-
ponding to the old stock.

The discounted value corresponding to the old stock if the
optimal rule is applied (i.e., the palms are removed in a single phase)

ig given by,

L Min(x+u-1 ,L) _—
(3.16) 5 n {E+ I r(n)d™ = }
: x =h42 x n=x

The same, when all che palms in the old stock zre retained till age L

before being replaced, is given by,

L L
| I~
(3.17) g n id g5, 5r@)ad™>}
i x=4+2 n=x

Obviously, difference between (3.16) and (3.17) gives us the required
upper bound.

Therefore, the required upper bound

I~u e Min{x+u=1,L) T
£ B 0 f(1-a * 1)E + I r(n)dn-a' - S r(n)d™*}
“=h+2 n=x n=x

Tz g x+u=1 L
= 5 n { {1 g+ g w(n)d X - F r(n)d™

wx=A+2 n=x¥ n=x

1 T L L
L T oo f(=NEs gx(@ad™* - 3 r(n)dd

K=l n=x n=x
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I-u : L , L :
= % n {(4=d"ME- 3 z(n)dF3+ 3 nk(1-a1"'x+1)E
x=A+2 : n=x-+u =Lt
={ % n_+ by nx(1-dL{x+1)} E- 2 2 r(n)a"
n=A+2 x=l~u+ x=A+2 n=xtu

Hence the lemma.

3ede3 Choice of a suitable phasing scheme i.e., a suitable combina—
tion of (w, Wy Woy eees ww) will depend chiefly on the constraints to the
initial expenditure, the minimum desirable armual net returns dur.ng the
immediate years etc. In the appendix we present a linear programming
solution %> the choice of {w, Vs Wor eees ww) which is applicable in

a variety of situations.
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A3.1 Suppose that we do not want to delay the replacemens of the
palms in the old stock Beyond“(LéAé1) yeats iy which time the youngest

palm (at age A+2) among them reaches age L. Again, we have already seen

in 3,2.1 that the age distribution of the poalns ?dtate over a périod of &
"fears. Suppose we want to complete the phased Treplacement within the
FTirst period of rotation so that the rotations repeat themsclves in the
successive periods. Thus, let us choose w = Min (A4, L~ A=~ 1), Ve shall
first derive the expressions for the anmal net retufns during tho first
period of rotation i.e., the first A years.. '

A3,.2 Tor convenience, let us for the tima!ﬁeing éoﬁsider replacement
by replantation. Let (n1, Nyy seey D ) T the initiél‘&ge distribution
before the replaccment programmé'starts. El1 the palmé at age (4 + 1)
will be removed now and an equal nusber of scedlings will be planted.
Thus, let us put n, = ) g and Ny = 0. Let Pj e the total net
return in year j corresponding to the palms of age between 1 and & in

the initisl years The expression for Pj can be written as,

A=+ A '
(2.19) Fr = T o r(j+}:—‘]) + 5 n r(x+j—A—1); J =25 Tgeneglie
b x= Xmho 142
A
= % nxr(j+x-1)5 jo=1
x =1

where r(x) is the expected net return from a palm 2t age x.
We obtained (3¢19) in the following way. Let us refer to the table (3a2¢1)e
Palms at age 1 in the initial year will be at age Jj in the jih year.

Palme at age 2 in the initial year will be at age (3+1) in the jth yeax.
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In general, palms at age x in the initizl year will be at age (j+x=1) in
the jth year, x = 1, 2, esey A=j+1. Again, palms at age A in che initial
year will be at age (3_1) in the jzg‘year (not nccessarily the same poams
but it may be the palms that replaced the initially existing ones). In
géneral, palms at age x initially will be at age (x+j—Ar1) in the jth

yeal‘, X = A-j+29 *e 0y Ao

J

Let us define wo as the number of palms to be replaced in year

J from the ones which were at age x in the initial year x3» 4 + 2,
-

F = Ay 25 eeeey s let Qj be the anmual net return in year J correspond—

ing to the old stocke The expression for Qj can be written as,

3 L Kk L J "
(3.20) Q. =4 §{ X W, } r(j—k+1) + X {nx - I wé 3 r(x+j—1};
J k=1 X =442 ¥x=A+2 k=1

j=19 29 sndy ILI
We obtained (3.20) i:. the following way. In year k, the number of pzlms

L
removed from the old stock is given by Z wi. The palms which are

X=4+2
planted in year k will be at age (j = kX + 1) in yesr j. Thue we get the
first term in the expression for Qj' The palms which are at age x in
the initial year and are yet to be replaced will be at age {x + j - 1}
in year J. Thus we get the second terms. Therefore, (Pj + Qj) is the net
return in the year j from all the palmse. Now, underplantation can be

easily incorporated by rewritﬁq;Pj and Qj from (3.19) and (%.20) as

fellows.
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A=44 A . .
( P‘ — n n I-/(j+x_1) + 5 I‘lx I‘(}C+J-A-‘1)§ J = 2,' 3, .OI,A.
I x=1 X Xl 342 y
(3.21) 17
7t .
= Sn r(j+x=1)3 =1
x=1 ¥

where r’tx) r(x) + r(44%), x =1, 2, seey

]

n

r(x), x>u

bR WG (x + 3
Qj=k=1 = x_{r;;-k+1)+rx+3-1)}

3o by 1) 1
+ - W rx 4+ j- H i = 2 Xy
b2 X e x J H J r C9 y U

(3.22)
Ju L 3 L
= ¥ z wﬁ r(j-k+1) + 2 z wjlz r//(};, J=k+1)
k=1 =42 k=j=u+1  x=i42 :
L 3 '

+ X (n =5 wﬁ) r(x + - i)s J= u+1,.;., L

x=A+2 T k=

Y/,
where r}(x, y) =x(y) + e(x+i-1)s v =1, 25 eeey u
zwz(y);s yoOu

The above expressions in (3.21) and (3.22) are derived from tho fact that,
in the case of replacement by underplantation net return from every palm
that has replaced an old palm is accompanied by the net return from the

old palm for the first u yearss

A%,3 Now we are in a position to formulate the linear programming
problem

Since-we are considering the phased replacement within the Tirst
period of rotation we may consider the anmual net return gtream only for -

the first A years for the objective function. The LP problem can thus =~ ©
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formulated as follows.

(1)

(2)

(%)

A .
Objective function @ _31 (Pj + Qj)dJ 1 where P and,Qj
N ’ "

are given by (3.21) and (3.22).

Optimising varisbles o wi; X = A+2, A4S, esey L3

j=.1, 2, LR Y J.nl

J

Let us note that if we choose w <& then w = 0 for j=i+l,eesshe

Constraints ¢ We may choose various kinds of constraints.

Following area few exampless
(1) Pj-!-sz_ij; 0< b <13 =1y 2y eeney e

g o

2 WJ =n ; X =-A-+29 rraay L.
o X

3=1

m

This specifies that the phasing should be such that the
a~nual net returns do not falllbelow a certain proportion
of what we could get in abseﬁce of the old stock.

(11) rj+Qj;_ Ps 5 =1y 2 ecnayg i

A

j§1 W_f{:nxs X=A+2g R XY LI

This specifies that the phasing should be such thet the
anmual net returns do not fall below & certain bound. The
bound P may be chosen to be Min (Pj; g = AL, By i, A) oF

some other level adjudged  to be satisfactory.

(1i1) P3+Qj_>_bQ; 14 b JE 1y 2% weeyolk
L '
j§1 Wx=nx§ X=A+ 29 LR '} L

This specified that the anmual net return should be raise.

by a certain proportion of the level Q where § is the
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Min (Pj + Qj; J =13 25 eesny A) when replacement is
performed in a single phase ie.€e, w = 1.
A3.4 Remarks ¢ (i) It may require a few trials of the LP formu.. ..on

with different number of phases and different bounds for the trajectory
to arrive at a sultable phasing schemes

(ii} Let us note that the phasing scheme will determine the
anmual age distributions in the successive periods of rotation. It can
be scen that phasing will reduce the lumping of a large number of palms
in 2 single age group since palms that replacc the old stock will spread
over diffrrent age groups.

(iii) Eesing of the initial heavy expenditure can be achieved
also in the mecdel for the trajectory considered in scction 3e3. This
can be done by simply chosing suitable rates of underplantafion
Qs Qs o= etcs, Ciring the early years before settling to a constant

rate of underplantation q.
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Chapter IV

Stochastic Replacement Rule ? An Improvement

Over Deterministic Rule

de1 Introduction

4.,1¢1 The deterministic modelling exercises in the previous chapters
do not use the dependence of the future yield stream of a palm on it's
past yield performancee. Thus, an obvious!limitation of the deterministic
models lies in therrisk of retaining a consistently low yielding palm or
removing a palm which has a potential for yielding 'satisfactorily!'
beyond the replacement age. Here we shall first try to modify the deter-
ministic replacement rule discussed in Chapter II and examine the extent
of improvement, in terms of reduction in the risks Just mentioned, that

can be achieved. Later, we shall try to formulate further rules in the

light of the results we obtain from this exercise.

441.2 Let us recall the deterministic replacement rule (infinite

horizon case) we discussed in Chapter II. There we were considering

replacement of a palm in its declining yield phase i.e., beyond age age
Let A be the Optimal Economic Life (OEL) of an .existing palme

Then, & is given by

i

r{x + u) > (1 - d)dfu B, X =4 4+ by eney £

e

r(x + u) < (1 - d)d-u E, X=A 4+ 1y svey L= us

where v(.), 4, B, u are as given in .2+2.2, {2.11),

2e241 Trespectively.

We shall refer to this replacement rule as the Rule 1 or in short R 1.
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44143 Let Y(x) be the annual yield of a palm at age X, x = 1, 25e..50,
where L is the 1life of & palme As mentioned in the introductory chapter

we shall assume that (Y(1), Y(2), e.e, Y(L)) has a Multivariate Normal
Distribution with specification as stated in 1.2.2. Given the past yield
record of a palm over a certain period we can easily obtain the conditional

expectation of the future annual yield profile.

Let
x(x) = B(¥(x) | Y1) =y s oees Y0om) =5 )
=box+b1x yx-‘l + ....+bmc yx—n; n<x

%X(x) is the conditional mean of the yield of a palm at age x given it's

past n years' yleld, b ’ ""bﬁx are the corresponding regression

ox’ b1x

coefficients.

In genecral

FA T ’
(4.1) X(x ) -be/+ b,1x/ y}c__,l + essse + bm/ y}{_n

gt

where x is the present age of 4 palm gnd b

=X X+1, seeg L, and
?
boﬁ‘ b11} g ey bnx/ are the regression coefficients corresponding

to the regression of Y(x7Y on v(x-1), ¥(x-2), esees Y(x-n).

4,2 Modification of Rule 9

4421 The deterministic rule R 1 was based on the expected amnual yield
stream of a pala. Let us instead consider the conditional expected yield
of the palm in the future given it's yield record over past n years. Let

x be the present age of the palm. A& stochastic version of Hule 1 is
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. obtained by replacing the expected yield stream e Wpgqs oovr M by
the conditional expected yield stream X(x) . X(x+1:), seéy X(L) in the
deterministic version (see 2.3.2). It is ezsy to sece that we should
replace the palm at the current age, in order to maximise the discouuted
value of the future net return stream, if

r(x+u) (01~ dd " E
where r7(x + u) = p. X(x + u) = a(x + u)
p and s are as defined in i(2.2.2), r’( (x + u) is the conditional expected
net return given the past yield record. X(.) is given by (4.1).
Thus, we can define the modified rule as follows.
Rule 2 ¢ Given x, the present age of a palm, and given
¥(x - 1), (x - 2), .....; Y(x - n) = the yisld record of the palm

duing the pas* n years, replace at current age ‘x' only if

r/(ix +u) (1 - d)d-’u B

ory X(x + u) S_% L (- d E+slx+u) 7/

1
1 aeqya? -
or, k§1 O, xtu Tk £ [ (1=a)d 'E + s(x+1.1)_7 bo,x+'u
by (4.1)
Thus, we can write 3 replace only if,
| _
(4.2) k-§-1 bk,x-i-u ol _<_k1

1 i’
-where k, = = L (1=a)a " E+ s(x+u)_7-b0’ e

Let us eczll this rule R 2 gn short.
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442.2 Now the question is =— how good is the. improvement of R 2 over K 1 7
One of the measurcs of the degrec of ir;lprovement can be given by
the probability that R 2 generates a net return streazm with higher dig—
counted value than R 1. Let 'x' be the present age of a palm. We shall
consider two situations separately xs& and x> A where A ig the optimal
replécement age according to the deterministic version (R 1 ). In the
first case Lleee, when x};A, R 91 recommends no replacement at current age.
In the second cage i.e+y when x >4, R 1 recommends replaéement at the
current agees
Cage (1) ¢ x4
Consider
P {(discounted value corresponding to R 2
P ‘discounted value corresponding to R 1
| R 2 reconmends replacement )
If this probability is greater then or equal to half then we shall con~
sider R 2 a better rule than R 1.
Remerk ¢ The choice of the number %’ in this context requires

gsome explanation. What really matters is R 2 performs better than R 1 in

an absolute (unconditional) sense. For this purpose we requires

P (discounted value corresponding to R 2
2 discounted value corresponding to R 14

R 2 recommends replacement)
which is equal to
P (discounted value corresponding to R 2
2> discounted value corresponding to R 1
|R 2 recommends replacement)

X P(R 2 recommends replacement)
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It can thus be seen that even i1f one replaces % by an arbitrarily large
number, say 0.9%, the problem would still remain since P(R 2 recommends
replacement) can be small. Moreever, the replacement of %-by an arbitrary
number ¢ leads to analytical complexities involving in particular non-
normal distributions. It is for this reason that wc have not Persued
this line further.

In any case, what is more important is that the probability that
R 2 recommends replacement whenever the pagt ylelds are low, is gquite
high. & modified way of looking at the problem in this manner is attemp=
ted in the next chapter.

Case Vil 2 x5 A

In similar fashion we shall consider R 2 a better rule than R 1 if

P (discounted value corresponding to R 2
- > discounted value corresponding to R 1
| B 2 recommends no replacement)
> 0.5

We shall derive a sufficient condition for R 2 to be better (in the
sense explained above) than R 1 in each of the two éituations.
44243 Congider x A

Let DV(RJ:) be the discounted value corresponding to the rule
RI =R 1,R 2, Let R(x) be the annual net return from a palm at age x i.e.,

R(z) = p Y(x) = s(x)y % =1y 2, eesy Ls

Givern that B 2 recommends replacement at the current age x,
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X+~ e
wWER2) = 3 Rn)d *+E
n=x

and
A4y

V(R 1) = E R(n)a®™ %+ <t g
n=x

Therefore, given that R 2 recommends replacement at .urient age x,

DV(R 2) > DV(R 1)
A+u P

- 5 REETF ¢ (1-a )
k=x+u

A+u ) Aau

T - -

= 5 (WE*FL LT od* s - )s | - ke, 9557 -
k=x+u P k=x+u

Thus, given (4.2) is¢ey B 2 recommends replacement,

V(R 2) > V(R 1) (=

A+u
(4.3) 5 Y)pF k,,
k=x+u .
A4u o =
where k. = + 5 s(k)d * o+ (1-a XH)-E
e P ] k=x+u

Now, using (442) and (4.3) we have

P( Dv(R 2) > Dv(R 1) ' R 2 recommends replacement at age x )

A+u T
=P( z ¥(k)a < ky % Py wea Y(x=k) <k )
k=x+u k=1
(4.4) |
=P (2, <k, 1 Z, <¥, )
Asa -
where Z, = v{k)a™*
K=x+u
7 n
/I k21 bk, x+a ¥ (k)

k, and k, are defined already in (4.2) and (4.3).
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Let us first consider

Iooaln g, : /
P('Zzs_ k, l Zy =X )s k{ is an a.rbltra.ry number so that k, < k,

GQV!£Z1 ln - Z )

b 1
VTZ,) § 1 - 2% (55 2,) 12

where :r(Z_l, 22)::00.3:1.:. (21, Zz)

(4.5) k, = Kz,) -

R ' A U
- 5z,

& (.) = Standara Normal Distribution Function.

Cov(Z’, ZE)
b =——(1‘j—- *
v Z1

ale L : = 1 ! i i ; ‘ / .
4.2.4 emma ‘P(Zzgkz | 2 51) increases with decrease of kj <k,

Lot

17 "2
(443) respectively.

where 7., Z. are defined in (4¢4) and k,' ! k2 are defined in (4.2) and

Proof + Note that

K - B(z,)

< k- E(Z1)

% [:(‘i - d)d"‘u B+ alx +fu)] = bo, —_— E(Z1) by (4.2)

= B(Y(x+n)) - ‘E(Z1)

But by s

< [:(1 -QdYE+ s(x + u)j- ;xﬂ

‘e |

[(1 ~ad " B-w(x+ u)]

sl

¢ O from 4.1.2 since x ¢ A

ilso b> 0 since Gorr. (Y(i), ¥(3)) > O for all 4, j = 1, 2, eee, Lo

dence the lommae.

P
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44245 Thus, a condition which is sufficient for

1°(z_2_<_1c2 -lzT = k1) 2 0.5
is also sufficient for R 2 to be better than R 1 in the sense explained
in 40202(3:)-

Now P(z, <k ,z1 =k) > 05 <=

(4.6) i = E(Zz) - b(k1 - E_(Z1)) >0

We hawve a.lready found in 4.2.4 that

k, - Bz, ) = L (-a)a -r.(x+u)]

Again k, m‘(zé) =%‘[k}ik+u5(k)dk"x + (qua® "*HE] ~ B(z,) by (4.3)

Adu
Mlso E(z,) =E{ 3 Y(x)a* }
k=x+u ;
1¢+u
= g
. k-x+u "
Atu

* k- Bz =1 [(1 &g . Ty R(k)dk"X]
* e k=x+u .

And finally, from (2.11)
_ Fit]
(1-dHE = 2 R(k)a*!

Thus, with necessary rearrangement of terms in (4.6) we have proved
the followings

Theorem: Let x( {4) be the present age of a palm whose past
n ;ears' yield performance is known. Thus, a sufficient condition that
R 2 is a better rule than R 1, in the sense explained in 4. 2. 2 is

given by,
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L
z 1 R(x) 20

k=1
a1
where lk =1 —p— for k = 1, 25 eeey adu-i
(1-4a")
= (18" - @ 4+ b)  for k = aw
= dk-x (de1 - 1) for I = ‘Autlyeeesy d40
=ldk-1 fork=ﬂ+u+1,oc.u, L
1 =1-a Jp(q - Q"
4.2.6 Let us ncw consider x > A.

Note that at every age x of the palm the rule R 2 decides, on
the basis of past yield record, whether to replace in the current year
or to postpone replacement by another yeai.

Given Y(x=1), Y(x=2)y eee,y Y(x-n), lot us suppose R 2 recommends

postponement of replacement by another year ileBay

B (xeu) Y (1 - )& B

(4.7) n
or k£1 bk,x+u ¥(x=k) > k, (see 4.?)
, I+ u -
Then, DV(R 2) = 5 R(k)d® * + dB
x=a

Again, since x >4, R 1 recommends replacement in the current year.
Thus

Xt
VR §) = S R(x)&E* + E
k=x

Thus, we can write, given (4.6)
W@ra 2™ &1
R (z+u) 2 (1 - Dd *E
(4.8) Y(x+u) }_% J:(1-d)cfu E + s(x-i-u)] = kg, say.
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Let us define

(4.9, 23 = Y(x + u)

Using (4:7) 2nd (4.8) we :an write,

P (ov(r 2) > DV(R 1) | R 2 recomends no replaccment

at current age x)
= 13(2321<3 [ Z1>k1')

Again as in the case x ( A (see 4.2.3), let us first consider

(4010)  P(Z5 > kg | Zy =X ), whero k{ ig an  ewllire~vy Wuemlos
( s0 that kq > k1
CoviZ,, Z )
ky=B(Z5) —ry— 1 ¥ - E(z,) }'l
-7 ‘ 1 i

= 1
\/ﬁz—;)_{’!*r(z1sz3)} J

4a2a7 Lemma ¢ P(Z3z k3 |Z1 = k1/) increases with increase in k{z_k_‘

where I, k, ave definod ia (442) and Zys ky aze defined in (4.9) and
" {4.10) respectively.
Proof & k, - E(Z_’)
& ke E(z,)
%-_ [(1-&)&"” E + s(x-m)] - b,

N E(Z )

% [(1 - Q4 ' E -r(xﬂl)] (see proof of the

lemma in 4.2.4)

: 2’0 from 4.1!2 gince x> 4
GOV(Z1 . )

AJ..SO —V(Z—1)—L> 0 Since Corr- (Y(l), Y(J))?‘ 0 fOI‘ alli,;] =1 ,2,'--a,L.

E-

The lemma now follows fram (4.10).
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4.2,8  Lemma ¢ Cov (z1, 23) = v(z1) where Z,, Z, are defined in (4.2)
and (4.9). -
Proof & Let us use the following notations.
' Z
rg = (-ID1 ,X"HJ. 9 b2' x4 g *tray bn, w1 )
Y = (Y(]{-1), Y(X-2)g senny Y(x-n) )j
D = v(¥)
L = Cove (Y(x+u), Y)
Now,
*1
g =
Z =%/Y
(Z ) =gDg = /3“11‘ ‘
Gov.(Z 1) = (Y(r +u), g ¥)

A
e

n
C s U anH:
ZH}

Hence the lemma.

4.2.9 Lemma § k, = 2(2Z,) = X, = E(Z1)

3
Proof ! ky = E(ZB) |
‘ : =%[(1-d)d_uE+s(x+u)] =
%— [(1 -d)d P E-r(x + u)]
= k1 - B (Z1) (see proof of the lemma 4.2.7)%

4¢2.10  Using the lemmag in 4.2.8 and 4.2.9 it is eagy ‘to gee that
v (2 >k3|Z =k ) =0.5
where Z Z3 are defined in (4.2) and (4.9) respectively.

1
Now, using the lemma in 4.2.7 we can prove the following.

Theorem & Let x(>A) be the present age of a palm whose past
yield record is known. Then, R 2 is always a better rulc than R 1 in the

sense explained in 4.2.2,
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Chapter V

Best. Linear Stochastic Replacement Rule

5.1 Intrpduction

5.1.1 In the previous chapter (section 4.2) we modified the determi-
nistic repl;cement rule R 1 (discussed in chapter 2 and 4) to incorpoe
rate the stochastic nature of the yield profile of palms. The modified
replacement rule R 2 (see 4.,2.1) is based on the association between
the future and the past yield performance.

Let us notice that R 2 given by (4.2) is based on a linear
function of the past yields of the palm. We shall refer to this func=
tion of the past performance as the 'decision function'. The objective
function in this case is the discounted value of the future net return
gtream which alsc is a lineer function of the future yield performance
(see 2.242). Given the objective function, R 2 is formulated by choos-
ing a particular decision function which ig derived from the regressions’
of the future yield; on the past yield record. |

In thie chapfer we shall congider the problem of choésing 2
decision function for a given objective function. In general, both
decision and objective functions can be arbitrary functions of the
yield performance. We shall, however, restrict ourselves to linear
functions only.

54142 Let x be the present ageipf a palm, g be & linear function of
v(x), Y(x+1), seee Y(L) and f be a linear function of Y(x-1), Y(x-é) ssey

Y(x=n)}, n<%. g is the objective function and f is the decision function
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on the bagis of which replacement rule can be oonstfuctedéllﬁgﬁeneral,

a replacement rule should be such that whenever replacement is gggpmmenr
‘ded‘the future yields of the palm should be unsatisfactory in some Sense.
Let us assume that g is an inéreasing‘function of the future yield per=
formance i.e., the better the yield in future higher the value of g. We
shall define the unsatisfactory future yield performance by a pair

(g, kg) where kg is a specified constant so that'zré‘:;kg;7 is an

unsatisfactory event.

5.,1,3 Let us consider the discounted value of the future net return
stream as the objective function for example (see @hapter I). We can
redefine the objective function and thereby the unsatisfactory event ag
follows.

The replacement rule is to provide the decision whether to
replace the palm (at age x) in the current year or to postpone it by
another year. Each year such a decision is to be taken. The following

table gives the discounted values corregponding to each decision.

Decision Value of the obiective function
X+u —
1. Postpone replacement by an year S R(n)a + OB
‘ n=x

x+u—1

2+ Replace in the current year (n)dn’x + B

z R
n=x
where R(n) is the anmual net return at age n and I is the discounted
value of the ne* returns from the subsequent seguence cf palms (see
(2.11) ).

The difference between the discounted values corresponding to

decigiong 1 and 2 is given by,

(5.1) Rx +u) - (1 - da * E
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Sincs replacement should be recommended whenever it will be gainful in
terms of the discounted value, the unéatisfactory eventin this case can
be defined from (5.1) as th(x +u) < (1 - Qg E /. Thus, in the
present example, g = R(x + u) and kg = (1 - a)d " E.

Let ug note that the objective function in the above example is
concerned with the net return stream over an infinite future. This kind
of objective function can be referred to as a 'long=sighted' one. In
contrast, there can be 'short-sighted' objective functions concerned with
the immediate future. For example, (i) average net return over the next
few years, (ii) ratio of the value of the total yi=ld to the total cost
ovef g certain finite pericd, and so on. The finite horizon cases congi~
dered in 2.6 is also an example of a 'short-sighted' objective function.

Given an objective function g and the unsatisfactory eveut
[g _<_kg_7 iece, given the pair (g, kg) we shall define a replacement
rule through a pair (f, kf), where f is a decision function and kf is a
chesen constants as follows.

Beplacement Hule § replace in the current year if and
only if f <k,

The above formulation is similar to the screening problem  considered
by Marshall and Olkin (196@). But, instead of minimising the expected loss
(after specifying loss functions) we are chiefly “nterested in reducing
the probabilities of the risks (explained in the next section) involved
in replacement Jdecisions.

Wow let us consider the class of all (f, kf) such that f is a
linear function and kf is a chosen ccnstant. We shall refer to this as

1
the class of 'linear replacement rules (LER).
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For a given objective (g4 kg) we are interested in the 'best’

rle {f, kf) in the class of ILRR.

5.2 Criteria for Comparing (4 kf)

5.2.1 For decision (to replace or to postpone replacément by another
year) at a given age of the palm, there are two types of risks involved.
The risks are as follows$ -

(i) replacing 2 palm when retaining wéuld have been satisfactory,

(ii) retaining a palm when replacement would have been satis—

factory.

For a given objective (g, kg) let us consider a replacement rule (ea kf).
The extent of protection offered by (f,‘kf) against thé above mentiocned
risks can be assessed by the following two probabilities.

1. Plgg ke | £<kp )

2. P(f <k [ egke)
The first probability is the chance that the future performance of the
palm will be unsatisfactory given that the rule recommends replacement.
We shall refer to thié probability as the Reliaﬁility of a rule (f, kf).
The second probability is the chance that the rule recommends replacement
given-that the future performance will be unsatisfactory. We shall refer
to this probability as the Efficiency of a ruleA(f,-kf).

Now we can compare the goodness of any two given rules in terms

of Reliability and Efficiency.
5.2¢2 Let ug note that 2 simultaneous maximisation of both the

probabilities may not be possible since
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| Pz < ke)
P(ggks | £<ked ='ka(§_~_<_1~:£ | e<ke) W

It can be seen from above that with increase in kg, P(£ $ke |e Ske)
increases and so also P(f% kfj.

In order to find the 'best' IBR we shall proceed as follows. .

We shall again assume that the yield sequence(¥(1), 1(2),...,7(1))
of a palm has a Multiﬁariable Wormal Disztribution with smecification as
stated in 1+2424 —

For a giﬁen objective (g, kg), let us‘define P as the class of
all IRR (f, k) such that ' |

| Corr. {(£f, &) > O
Plg kg | £ =k) =05

ieee, F is the class of all (£, k;) such that f is linear, positively
correlated with g and reliability of (£, kf) is greater than half. We
have already discussed the choice of the number %’ in 4.2.2.

We shall define the Best Linesr Replacement Rule (BIRR) as the

* ) - k] £ - »
(£, kf* } in ¥ which has the highest efficiency i.e.,

. ,
P(f _(_kf* [ e<ke) > P(f<k, |8 <kg) for all (f, ke)e T

£
We shell refer to £ as the Best Lincer Decision Function (BLIF).

5.3 The Best Lineaxr Replacement Rule (BLR@_

*

5.3.1 Theorem ¢ The BIRR (£, k _ ) corresponds to the regression of
ifd

g on Y(x=1), Y(x=2), «vey Y(x=n); n<x, if ke <B(g) where (g, kg) is

the given objective.
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Proof ¢ For (f, kf) e F we have,

P(gikg T f = kf) 30.5 4

=> ke - Kg) - Go—igs—gl (kp - B(f) =0
(5.2 (g - Ke))/RD = zplieg = B/
where T, = Corx (£, g) >0
Let us define : |
(5.3) k% = (ke - Hg))/7(&) and
kf = (s = B(£))/ /)

Thus, from (5.2j and (5#3) we have,

/ {
(5.4) ' kg: rf kf

Let e, be the efficiency of the rule (f, kf)

ef-—P(fS ke | g < ke)

(5:5) e/ | &/ xb)
where f£7 = (r = B(£)) /S~ (EY
g’ = (g - ¥g) /Vv(a)

From (534) ané‘(5.5) we now have -

A
, /
(5.6) e =R(& ¢ E | & ¢ x%)
: Sz < |
Let us note that P(f/_ge | g/g k7g), = o <8<, ,is a distribution

/

functicn conditional on g’};kfg-and f/; g’ are Standord Normal variates.

Hence, it is evident from (5.6) that ep is an inereasing function of r,

if kg ¢ E(g) since Te > 0 (see 5.242) and k/é < 0.
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Therefore, BIHR corresponds to the decision function £ for which

*
rf ig maximum or, in other words, (f " kf* ) corresponds to the decision
functions of the form = + bf where a, b are finite constants, b £ 0, and

f is the regression of g on ¥(x=1), Y(x=2), seuey Y(x=n).

5.3.2 It is easy to see that the above theorem is not valid for(g, kg)
where kg > E(g). In this case, one can see from (5¢6) the BIRR would
correspond to f which has the minimum Tp. The case is a curious one, bdut
we do not persue this here. The question of replacement arises only in
the case of palms which are already yielding lowe WQ are interested in
finding out whether a minimum level of yield performance (somewhat below

the expectation) can be realised in future from a low yielding palm.

5.4 Dependence of Efficiency of a Heplacement Hule
on the Variance of the Age-Speccific Yicid and

the Current Age

S5edel We shall use the following lemma due to Lehmamnn (1966) in this
gection.

Lemma $ If F and G are two random variables such that
P(F <8 | G =7) is non-increasing in A then,

P(F<E | G<A) > P(FE © |6 <) '

for all h/<:h and for 2ll &

The following theorem establishes the relationship between the efficiency
of a rule and the common variance 02 of the yield strcam

£Y(x), X =1y 2y eeves L}
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5o 4. Theorem -§ The efficienby e. of a replacement rule (f, k ) e F
for a gigen objective (g, kg), kg < E(g),ls an 1ncrea51ng function of the
common variance ag of the age~specifie yield
Proof ¢ Det us first nofte that
ep = P(f ¢ ke | g‘: k)
= »(s”. skf k')
-F |1 k"
T e
J1 re
where k’= (x - B(g))/V~(2),
Tes f{gﬁ’ kf are as defined in (5.2), (5.5)
and (503)’ =

#(.) is the Standard Normal Distribution

function.
Thus . Cp is non—increas;i.ng i‘l’l k/ since Te >0s Applying the lemma in
54441 we have,
(51) Pl | g/ské)z (f/_gk{ [e’sx) |
for all k/ <kk and for all ¥
where kg is defined in (5.3).

Wowy, g is a linear function of Y(x), Y(x#1), sss, T(L)}s Let us define,
- L ,
(5;.8) g = 2 li Y(i), 1i are constants, not all zero.

Then, v(g) 02 111 ‘ : \ g
Where l—(l ,l.k+1, eoey 1 )/
D = Correlation matrix of (Y(x), eeee, T(I))

02=T(Y(i)\ K] ir= 2, X + 1’ eoey I‘l.
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. i)
v( is therefore an increasing function of ¢ since D is positive
& P

definite i.eey lf D1 > 0 for 211 norn~null 1 (Se;\‘l ) ).

Let us consider Gf __{_02. Correspondingly we have & 5 Bp
1 2
x’ ’ k/ for a given f and g.
& g
1 2 s
kg
v
ep = P(f SE'_1 [g/_<_k; ) from (5.6)
1 £ 1 ‘
e
g
_(_P(f/f_,'_;—g——[g/_gk/ )  since k< k] a k < E(g)
k/
g
Pt/ <2<kl ) vy (5a7)
N % SED
=€
$2

. Hence the theorcme.

De¢4.2 In the proof of the above theorem we have alsc proved that
4 /

ep = P(£7<1G lgik; )
in an inereasing funection of k; since k; inereases with an inereasec
in o where ep is the 'efficiency of the rule (£, kf) e F. Sinee g is
an increasing function of the yield performence, it. is reasonsble io
assume that E(g) is decreasing with the age of the palm x,{sce 5.8).

Let us now :appose that kg = kE(g) where k is = const:,lntw,

0<ck<t, ¥, <Blg)

vie) = o l/Dl {sec the proof of the theorcm in 5.4.2).
It can be seen from (1.3) that the structurs of the correlaticn matrix

D is such that V(g) is independent of the current a2ge x. Hence

ké’.—. (B(e) (=1))/V5(8)
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in an increasing function of age x. Therefore, the efficiency ep cf a

replacement rule (£, kf) € F is an increasing Zunctiun of age x of the

palm-

5.5 Conditicn under which the BLIF for a given
Objective Punction Provides ag Efficient a
Rule a8 the BLIF for the Objcctive Function
Extended to a Longer Future

5541 Let us consider an objective function
i
(5.9) g= % L ¥(x+1-1); m L= x + 1
i=1
where x is the age of the palm.
Let the BLIF for the above objective function be given by
n [
(5.10) f= nw, Yx-i); n<{x
S
By the thecrem in 5.3.1, Wi are the re.cession coefficients corresponding
to the regression of g on Y(x=1), Y(x=2), «e., ¥{x=n).

Let us write,

1=

= D"'1 @ 1 where
P )

/!
= (W.I’ W2, ey wn)

: /
<= (119 129 seny lm)

(5+11) D =T(YP)

-
1

T, = (0G=1), ¥Ge-2),y enny Y(x—n)j ‘
¢ = Cov (YP, kg)

Yg: (Y(x)y Y(xH1)s see, Y(x + o= 1?
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Now let us considexr the following:objective function.

% i
(5.12) h=_21 L ¥+ i=1)5  t<my  m KL-x+
. i=

The objective function g given br (5+9) can be looked upon as the objece
tive function h given by (5.12) extended to a longer future.

Let the BLIF for h be given by,

n
(5.13) s = iE‘l 9 Y(x - i) 3 n <x

Again, the theorem in 5e3ely q; are given by the regr ssion of 5 on

Y(x =~ 1), Y(x = 2), essy Y(x = n). Let us write,

2 = I);! CJI .-15 where
g = (g ayr vees qn)/
(5.14) = (Lyy Loy eees lt)/
C, = Cove (YP, Y )
Y, = (Y(x)y Y(x+1)y sove- Y(‘sc—a-t-‘l))/

D as defined in (5.11)

Let us further define the following,

= /S
&= (lt+1’ Loaor 200 o )
¢, = Cov (Yp, Y )
(5.15) T = (r(xtt), Y(xrte1), eees; Y(xam=1))

8

so that we have,

1= (,1;’5 z;’ )’ see (5.11) and (5.14)
8l= (c,: ©,) see (5.11) and (5.14)
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The following theorem shows the condition under which s, the
BIDF for h, will be a BLIF for g also. It will be shown in the next

chapter that this condition is sa’isfied in the Markov case.

5+5¢2 Theorem s The BLIF s (given by{5.13 and (5.14) for h (given
by (5.12))will provide a Tule for g (given by (5.9)) as efficient as
the corresponding BLIF f (given by (5.10)and (5.11))if C,k and 02-’12_ are
lincarly dependent where 01 o, 02, k are given by (5.i4) and (5:.15).
Proof ¢ ©C ] Jg and 02'1;- are linesrly dependent implies that there

exists constants o, P not both zero, such that

%,k + Bczg =0, 0 is the null vector

oc(:ﬂs + B (c'j?-u 011%)

O ‘since
k -
CL = (c1 E 02) (5 ) = Cyls + Gk

140

n

Cr]; v Ck where v=06/(8-a)

How, 9} = U C1i‘5 implies that -

ki

(5:16) C;£JD;1 ¢l = (C:E/D; C.k d{]jl); cl) 2
by Cauchy=-Schwartz inequa.li‘ty;

A perusal of the proof of the theorem in 5.3+1 shows that two
decision functions with the saiile correlation coefficient with a given
objective function will provide equally efficient ruless Thus, we will

have to show here that -

r =r where
88 ig

it

Tog Corrs (s; &)

Trg = QOIT. (£, &)
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= e here D =11Y

P o~ Yg given by (5.11)
2 -
2l S Py since w = D 10L by (5.11)

Again ’

/
. .g'oL
el

r
sg

nﬂ—&

(g D Xt 1 ng, )<
qa*b?_c;

(!

since g = il ¢,k by (5.14),
~ P I~

ro|-+

/o= /
(015 DP Ck 1 Dg%)

Now the theorem follows from {(5.16)s

Bemark ¢ If s is the BLIF for a given objective functiern k and g

is an objective function obtained by extending h (see 5.5.1) then the

above theorem provides the condition under which s will be a BLIF for g

also. Now, if s is merely a linear combination of the BLIF f for g given

by (5:10) then the above theorem is not very useful. Let us note from

the previous section that -

Hence,

-l = . K
= 1 t— ® I.'I.l
¥ =D ClL =D (01:c2) ( 2 )
R a2
= Qp 015 + D 02%
1 -
= g‘+ o CBE
/. o / / il
== Y = Y + k D Y
-..:s-i-k/ 2’ Y
~ Y

Thus, £ is not a llneax-comblnatlon of s. This means that s is computa-

tionally more convenient decision function than f for the given objective

funntinn oo
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Chapter VI
A VMa#kov Replacemént Ruvle

6.1 Introduction

Geli In this Gha.‘pkter we shall consider a gpecial case where the
‘Normal density of the yield vector of the palm Y = (¥(1), Yfz)...,}f(-lu),){
is Markovian. LN g i |

Let us recall the agsumptions on the vector ;{.‘outlined in (1.1‘_’),
thrOughl (147) in Chapter I.

Y has a Multivariate Normal density such that-

vy (x)) 0-2 forx:af, af+1, eeey L
(601) = 0 fOI‘ X = 1, 2', oafo, af j—) 1.
Cov. (Y(z), Y(x)) T—'O’z 93&/ for x, x/_>_ 2

!
where pm.__ﬁ_;;x—x’q.:tp, xféx/g, o<l p<1i 0 <x <

Let us diefirie,;

(60 2) E'E = p )
This would imply that Y has a Markovian density. In fact the above come
dition is both necessery and sufficient for Y to have a Markovian density
(see Feller (1966)). '

Eele?2 Replacement rules in this case ob¥iously need be based -only on
Y(x~1) where x is the ourrent age of the palm. In other words, a repiace-—
ment decision will only depend on whether the yield of | thé palin in the
previous year was below a certain level. Rules discussed in the last

two chapters (IV and ¥ #an be applied in this vase simply by putting

n = 1 and the gesul.s on those.-nﬁ!es will be still valid. Moreoyer, the

Markovian case has the following properity for the decision rules.
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Let g = ii 1, Yc}{;l& ite 1), m¢L= x + 1, 1, are constants
not all gero, x is the ourrent age of the palm, The BLIF (see'Chapter’V)
for the above objective functi;n 7 will be given by the regression of g
on Y(xw 1)

Now, from (6.1} and (6.2) we have
COV'W(Y(X"“), Y(X+J)) = p:J+1 3 J = O, 1, 2, ssey =
Let us put
k
~=(1,)
T( = (12, 13, c‘oo, lm)
(P2; PN B &0

¢

2

Co

fl

Obviously, there exists a constant @ such that 01 k = oczg « By applying
the theorem in 5.5.2 it can be seer that the regression of 11Y(x) on
Y(x=1) will provide a replacement rule corresponding to the objective

function g as efficient as the BLIF corresponding to g

6.2 Formulation of a Markov Replacement Model

6.2 We shall formulate now a Markov Replacement Rule (MRR) with
the discoﬁnted value of net return;ih future {over infinite hoxizon) as
the objective functiom. |

For a given palm the strategy is to replace it in the currens
year depending on it's age and yield in the previous year. Obvious.iy,
it ig not meaningful to consider replacement decision before a palm

starts yleldinge We shall consider the replacement decisién~only if the
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palm ig above age 8, aoz Bpe Let J(t) be the age of a palm in year t,
t =1, 2, devine
Let us define,

J(1) = k where k is arbitrary age, 1Sk<L.

It

(6.3) 3(t) = I(s=1)#1 if J(+=1)< a, or a <I(t-1)<¢ L

and Y(3(+=1)) > 2(3(+1))

1 if J(+=1) =L or a <J(t-1) <L
and Y(J(+-1)) <2(3(+1))
where Z(.) are given constants.

We shall refer to Z(x) as the 'threshold' value at age x.
Thus, the replacement rule is — replace a palm at age x only if
a, < x< o i Y(x~1) £ 2(x=1), or x 3 L. It is easy to see that J(t)
is a Markov Chain.

Markov replacement rules have been considered by a few authors
in the case of ageing assets. See, for ewxamp’:z, Kao (19’73) who formulated
replacement rules when the asset deteriorates over time and the changes of
state are Semi-Markovian. Ward and Faris (1968) considered Palm trees
whose yield performance ig Markovian.

Now, the problem is to determine (2(x), x = ae caevey Im1))e A
given (Z(x), X =2y eseenee, I~1)) will be referred to as a; given rep zce-
ment rule. We shall attempt a formulation hewe which is similar to the
Markcv Reward Process Model due to Haward (1960). But we will wmot be
concerned with an optimal rule (Z(x), x = A reeerens I~1)) which will
maximise the objeotive function. We merely propose to develop a computa—

tional procedure by which a Markov Replacement Byle can be derived to
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improve upon the deterministic réplacement rule given in Chepter Il. By
improvement we mean au increafe in the valtie of the objective function

Jecey the disecunted valge of future net returnse.

6e2e2  The transition matrix ((Pij)) corresponding to the Markov

Chain J(t)y giv.. ty o3y, <o be constructed as follows. e

&

It ocan be seen that J(4) is a Markov Chain wi*h I s%é.tes% Fron
any state i, ao_(_ i¢ L, there can be transition either t'.._stateerl(;iﬂ) or
to state 1e Trom any state i, 1_<_i <a, there can 'be‘tr?«nslition cnly to
state ‘(i+1.}. _From state L, there can bc &ansition only te statoe 1o Thus,
we haire,

B2 =0 for i =1y 25 esey 8 = 1
Py P(¥(i) < z(1)) fori= a

(644) Py = P(v(1) < (1) ) v(im1) > 2(i=1))
for i = 1+ a.o, qu;, I=1e

P:’k'i =1 fori =1
Pi i+1s=~'1-Pi1 for i = 1y 2y eeey b
P,y =0 for FAL+1, 341
Corresponding to every transition from state 1 0 state j we
define a reward Rij' Let us notice that we need to define Rij only for
those transitions "(i, 3} for which Py #£ Os Also, these By will depend

on the given rule (Z(x), x = 8,7 seseseny Ir1))e For a given rale, we

define R, . in the case of replacem.nt by repiantatlon as followse

iJ

3
i
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\
]

B(r(1)) = r{1) for i =1, 2y esny a, and j = i+

R, .
i]
E(r(1) | ¥(1) > 2(1)) for i

1+ 24 and j = i#1

(6.5) = B(R(1) | v(i) < 2(i)) fori=1+a andj =1
= B(R(1) | ¥(2) > 2:1), Y(im1, > 2(1=1))
fOI‘ i = 2+aO’ sany IF"‘] and j = i+1
= B(R(1) | v(1) ¢ 2(3), ¥(i=1) > 2(i-1))
fOI‘ i = 2+ao’ sy L and j = 1
where R(1) = p. Y(1) - 9(i), the actual net return from a
palm at age i,
r{1) = B(R(1)), see 2.2.2.
In the case of replacement by underplantation we need to modify
Rij for the trangitions from state i to state 1 since the palm to be

replaced will be rotained for u years more before 1t is finally removed.

Thug, in this case we define,

i+u l -
z EBE(R(uw) I v(i) ¢ a(ai)a™t for i = a
n=i

pa !

[w)

(6.6) By

'l;u ER(n) | Y(1) < 2(1), v(i-1)> 2(i-1))

fOI‘i= 1+a0, |-.’L
Rij defined above in (6.5) and (6.6) are consistent with the determi-

nistic replacement model (infinite horizon case) developed in Chapter II.
In the present model, the deterministic replacement rule corresponds to
the rule given below.

a = A
(647)
Z(x) = 4 > fOI‘ X = .’ aog eney L"1
where {A+1) is the replacement age in the deterministic

version,
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It can be seen that the above rule specifies that replace a palm
only if it's age is abeve A. This is exactly the deterministic ruole dige
cussed in Chapter II. It will be shown in 6.3%.4 (hat the above rule leads
to the same expression for the ot jective function in the present model ag

that in the deterministic version given in Z.2.

6.3 ‘Toccuure L0 Torive a Markov Replacoment Rule

6e3et We shall consider the case of replacement by replantation here.
fﬁe necessary modification for replacement by underplantetion can be
eagily achicred by replacing Ri1 given in (6;5) by the expressicms given
in (6.6).

Let vy bg the disecounted value of future net returms for a

given rule (2(x), x = & 5 esvseeey I~1)) corresponding to a palm at

e}

age 1 in the initial year. It is easy to see thet the follow? o -ecursive
relation holds true.

L L .
6. v. = & P,.R,.+d & P 2 Bl = .
(6.8) 17 5 Piy Ry 2 i Vi, 7 h .1, 2y esey L
where 4 is the discount factor.

Let ug define,

L

(609) Q.-= b P..R.., i=1g 2, ..-,L
1 J=1 1] 1]

From (6.8}, (6.9) and (6.4} we can write,

vi=Qi+dvi+ fori=1, 2, saey 30—1

1

(6.10) =q, + d(Pi1 Vo ¥+ Py Vi+1) for i = & pepeceny I~
= QL + dVﬁ fori =154
where Qi = Rii+1 for i =1, 2y «euy 2, 1
= Pi1 Ri1 + Pii+1 Rii+1 for i = i:fl,o, sdeang LF1-
=R for i =15

1
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T+ xmpE® easy to see from (6.5) and (6.10) that

Q,i'-:l\“.; fOI'i=1, 2, wooey a-o

(6411)

n

B(R(1) {¥(=1). 2(i=1)) for L =1 +ag, gt e

6.3.2 TFor a given rule (Z(x), x = 8g? ***eesy I=1) the digcounted
values Vi san obtained by solwing the equations given in (6.10). From

(6.10) we mveg

[ = -+
) Gy Ty
o o 0

S0, i

it

Q1 + & { Q2 + dVS }

o + do. + 4
S, 1o d 3

and 80 One

Thig, we 2an write
(6-12) V =

Again, from (6.10) we have
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Vv = +dfP V, +P_ v }
a, a, a,t 17 Tay (1+ao} 1T+a
=& + adaPF ¥V, +dp r-Q
ao a01 1 ao(1+ao) [. 1 + ao
154l 41 4P T B, v }].
(1+a0)1 1 (1{&@)(2+ao) 2+a,O
.+ dF Q, .~ +& v
a, a0(1+ao) 142 a t 1
+a° Fa (142 ) P(1+a )1 Y
2 o] e} o]
2
+ d° P P vV
ao(1 + ao) (1+ao)(2+ao) 2+a0
Thus, we can write
I~2 i—&0+1 i :
I s W =9 =<+ E & i 5 P, Q)
(6413) a, o i=a 5 [l a_ J 3 LY
— 12 iw=a +1 ; =
(o] 0= . .
+dalP ¥ @ { P,.. ¥ Py, v
L 2, 1 1= iilo 33+t (i 4 "
L—ao L41
+ 4 >
t {QO Piav i g
Sos we have
a = 1 ;
W, e a© v from (6.12)
1 1 ao :
v'&o =C,*+Cy V, +C, ¥ from (6.13)
v, = 05 + av, from {6.10)

which imply
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a =~ ad -
(6.14) vV, =gcC, +4 © (6, +¢,0) 3 /11 -4 = (c5 + @) 3
a =1
. =1
where C, = & @.4d

2 . all

i=1
I=2 i—ao+1 i
C. =G + = & { TT
2" i 34 Fygen Qg

‘ I~2 i—a0+1 qil
C, =4d P o+ d 35 o P,
t_ a01 z { JZLO a3+ ! (1+1}1

I , Taeg
g = 1 IL PiGan) 8

o]

O

(@]
]

The rest of Ué, VB’ elerete s Vi can be obtained as follows.

V. =0C. + 4V wnere C. = 9

'L 5 1 5% 5L
(6.15) Vg Qn v Py Vo #F) gy Wy e, [E5 K @on oo By 1=
'n'i == Qi + dVi+1 2 1 = 2, scsey a,o e 1

where Q; are given by (Ga11).

£.343 Tdeally, one should derivethe optimzl rule (Z(x), x= ao,.,.gL—1)
over the set of (L - a_ ) - tuples of positive real mumbers. This can

be obtained by maximising V, expressed in (6.14) using one of the

.
standard mathods available for the purpose.
Mow, the Markov Replacement Bule (MRR) is considered here as

an improvement over the Deterministic rule. We have already ohtained a

replacement rule given by the deterministic version in Chapter II. In
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the present formulation the deterministic optimal rule will be given by,

a, <4
Z(X) = + = for X = A., svew ¢ L‘—1
= = fOI‘ X = aaog sy -f‘l-q if aoiA——-I

where 1 + A& is the deterministic optimal replacement age.

As ment: ~ned eariier, it will be shown in the next sub-cection
that V1 corresponding to the above rule is the same as the objective
function specified in the deterministic model. ¥ere we propose a
simple procedure for deriving a MER by improving upon the deterministic
rule mentioned above. The procedure maximises V1 given a small get of
alternative values for eachﬂ&} X = By eeres I=1y by direct erume-
ration. The steps in the computation are as follows.

Let V? be the walue of V1 corresponding to the deten inisticv
rule to be denoted by { Z°(x)}.

For x = aol, find out the altermative value 2. (a_ ) that
maximises V& over the set of al?ernative values (pre*specified} and
Zo(ao). This ig to be done by direct emumeratior of the expression
of V, given b¥ (6.14)s Now, consider the new rule obtaineu by
replacing Zo(ao) by the Zk(ao). Starting with this new rule, for
x =1+a, agin find out the slternative value Zk(1 + ao) that
maximises Vﬁ over the set of zlternative values (pre—specificd for

Z(1+ao)) and Z°(1+a0). Thus, we obtain the next improved rule by

replacing ZO(1+aO) by Zk(1+ao). Repeat the same procedure for
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X = 2+ 2, v sk, I#1. Thisg willrcomplete the first ipterationi Let
: | A
{21(1)} be the new rule derived in the first iteration and V, be the

corresponding value of V1.

Now, for the second iteration, start with {2'(x) } and repeat
the same procedure ag in the first iteration with the same set of pre=
specified alternative values for eachAZ(x). Tius, we would obtain

{2%(x) } and V2> at the end of the second iteration.

1
Carry -on the iterations till the value of Vv, converges or one
has cbtained a satisfactory improvement over V? — the value of V1
corregsponding to the deterministic optimal rule.
6-5

The above procedure is illustrated in/with nummerical examples.
Let us note that it may require to try a number of seis of
alternative values for each Z(x) before one obitains z satisfactory

improvement in the value of V1

6e%e4  Now, we shall show that with the matrices ((Pis)) and ((Rij))
iece, the transition matrix and the reward matrix gpecified in 6{2f2,.
the present model is consistent with the deterministic model (infinite
horizon case) discussed in Chapter IT. To o this we derive the
expression for the objective function in the present model corres—
ponding to the rule given in (6.7) which is equivalent to the deler—
ministic replacement rule. Only the case of replacement by replantation
ig considered here. The case of underplantation can be similaxly

deriveds
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It can be seen from (6.4) that corresponding to (Z(x),

X = aO’ Y] L"'I) we have

T2
(6.16) tJ

or i = A; seesyg L and j

0 otherwise

Therefore, from (6.14) we have
A=A

i~1
e, = £ @ a
1 1= i
(6417) C, =q since from (6.16)
C3 =4d te e '
04 =0
C =

5, =

Now, from (6.14) and (6.17) we have
A :
V= 3 q &1/ 0-ad)
. 1
i=1
Again, from (6.11), we have
G, = r(i), i=1, 2y sees A

Therefore; we get

. : p
v, = g r(i) a7/ (1~ 4a)
15 i

=1 ifiglfg 29 clogA-1 and,]

i+1.

= 1.

which is nothing but the objective functlion in the deterministic

vergion in the casge of replacement by replantation discussed in

Chapter II,. (See (2.11) and put u = O).
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6.4 Bioplified Formulae for Computation

foldel  For cp@ting the transition matrix '('(Pij}) given by (6.4},
bivariate normal probabilities have to be computed. We heve used the
method suggested by Owen (1956) in our empirical exercise. For computing
the univariste normal probé.‘ﬁiliﬁi“es -we have ﬁéed the IBM subroutine
availables
64462 In order to rcompufe the Qi’ values given by (6411) we have used
+the following resulte

Let B(Y(3) ) Y(==1) =2 ) = a+B%, >x.

Let £(s,t) be the joint demsity of (v(3), ¥(x=1)) and f1(t) he
the density of Y(x=1).

Then, B i
for s £ (s, t) asdt
B(Y(3) } Y(z=1) > Z.(;z_--'f)} = A*-mj()c"‘k), —
| J £ (%) at
( 631 8-) 7 (“X""[) p

, zi—‘ﬂ C‘cz+[3;t) i:,l(t)dt

fl

o ,
B
2}:'6,}?"1) !

oo

E‘I
a+ B __gi(ﬂx-q)

Z{xﬂ) £,(t)at

] (+) at

a + 8 B(Y(x=1) [ Y(=1)>2{(~1))

gi

. In order to compute E(Y(x) ,Y(x) > Z{x)) we hove used the follow=

ing formula given by Jehnson and Kotz (1970).
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Let G be a normal variate with mean v and variance 02. Then,
B(G}s < & ¢ B)
A = - 5 =
(6.19) = p+ [{H(T"E)-‘LI( Gu) }

. X B - A -
Tié(—c’—"—)—@(——ﬁ)}] g
where H(.) and #(.) are the ordinate and the distribution

function of the standard normal densitye.

6¢5 Hmpirical Exercige

6.541  Let us now work out a few numerical examples by applying the
iterative procedure described in the previous section. We shall assume
the same mean yield p£ofile ag specified in 13, In order to illustrate
the advantage of 2 Markov Replacement Rule (MRR) over the Deterministic
one we shall examine the sengitivity of MPR to itwo relevant parameters
vize, £ and 0% These paramcters are discussed in 6.71.1. We have chosen
tyodif ferent values for each of the two parameters mentioned above.
Let us specify that aé =55 i.e., decision to replace is considered
orily age 55 years omwards. We choose (10, 30, 50, 70) as ths sot of
alternative threshold values to be considercd for cach age ¥,
X = 8y seesneey I-1.

In 21l the four cases the iterative procedure convergced by not
more than four stepse The results are presented in the next two

sub=sactionse
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6.5.2 TABLE ! Optimel Threshold Values in Different Coges
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) Threshold vaiues 74ix) L
Age Deterministic P = 0.62 P =0.62 P =0.9 P=0.9
X cage o= 30 g =15 g = 30 g =15
55 e ke - e ol
56 ~® - ® - s ¥ >
57 e = = e S s
58 A ey £ Ly =5
59 - = = - 10 S
&0 - - ® - %0 10
61 - - - 30 30
62 - % 10 = = 30 %0
63 =2 P 10 10 20 30
64 - 10 30 30 30
65 - 30 30 30 20
66 - 30 30 30 30
67 + w 20 50 30 50
68 + ® 30 50 30 50
69 + ® 50 50 30 50
70 + ® 50 50 50 50
71 & o9 50 50 50 50
72 £ 00 50 50 50 50
73 = 20 50 5C 50 50
74 e 50 + ® 50 50
75 + @ 50 4+ 50 50
76 + ® 70 + ® 50 50
77 o (2 G &2 g 50 50
78 + ® + % + ® 20 20
79 + = + + 50 50
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503 TABLE % Optimal Values of a Few Selected Vy in Different Cases

rge  — — Optimal discomnted veluss (1) (&) J3) (%) T
5 Deter— P=0.62 P=0.62 P=0.95 £=0.95 X X x x
ninigtic o530 @=15 o=3C o0=15 5

casge V(1) V(Z) V(S) V(4) V(o) V(O) V(O) V(_O)
V(O) x X x x x b4 x x

1 470.63 471444 470,90 473.38 471438 1.0€17 1.0006 1.,0053 1.0016
10 823,94 825420 B824.36 828421 825,10  1.0015 1.0005 1.0052 1.0014
20  B844.83 846487 845,50 851,78 846.72  1.0024 1.0008 1,008z 1.0022
30 813.92  817.24 815.01 825,25 817,00  1.0041 1.0013 1.0139 1.0038
40 763,57  768.99 765.36 782.02 768,59 1.0071 1.0023 1.0242 1.0066
50 681457 690439 684447 711462 659474  1.0129 1.0043 1.0441 1.012
60  547.99 562435 552.71 603,03 561430  1.0262 1.0086 1.1005 1.0243
70 463.79 494,30 480.01 517.87 502.85  1.0658 1.0350 1.1166 1.03

/%) 450429 479,98 45C.54 527.49 492.04  1.0659 1.0006 1.1714 1.0927

£.5.4 Let us recall that Vins the discounted valus of net returns over
an infinite horizon starting with = palm at age x for a given soet of
threshoid values which defines & replacement rulee. Since the life span
. of a palm is very long (80 years) and replacement decision is congidered
only at a late age (ao =_55) of the palm the improvement in V& corres—
ponding to a MRR over thét corregponding to the Deterministic one ig not

vary pronounced. S0, we have presented Vx for a few selected x instead

of V1 only.
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It ig clear from the table in 6.5.3 that a Markov Replacement
Rule performs better when the variance of yield is larger and more so
when the ccefficient of correlation (p) between yields of successive
ages is higher. However, it must be'noted that the extent of improve~
ment achieved by a Markov rule over the Deterministic rule is not

veéry impressive.
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Chapter VII

Batimation of the Future Mean Yield Profile
When the Current Age in Urknown

T+1 Intro d’u_c'bi on

Telel So far we had been discussing construction of i’epla,ce'ment rules
assiming all the while that the current age of the given palm is known..
Let us suppose now that the current age is not known. In this case, we
do not heve any knowledge of the future mean yield sequence of the palme.
But suppose we have the pasgt performance #f the palm known over a certain
period of timé;

Let 2(1), 2(2), es.e, %(n) be the actual amual yields of the
palm observed during the pagt n years, Z(i) being the yield in the ith
yéar counted backward.

Let Z(i) = Y(Xj-i) , i =1(1)n, where x is the present age of
the palm, x is unknown', Let us supj:ose that x = n > a_ ie.e., the palm is
in it's full bearing or declining yield phase (see 142)e

Let 2 = (2(1), 2(2), oves 2(n))”

v(z) =D
where D ig the dispersion matrix of 2 (zee (1.3))[

E(Z) = N which is not kmown since the present age

ig not known,a .(n x 1) column vector.
We shall assume D to be knownzthis Chapter. Let us note from {(1.3) that
D iz independent of the unknown age Xe We ghall consider the following

two cased.,
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(1) és < *¥na iseey declining yield phase has set in
sometime during the past n years, #f at all, m, and Sé i.€ey the mean of
stable yield dquring the full bearing phase and the annual rate of decline
in the mean during declining yield phase (see (1.4)), are known and so
also 0° — the commod variance of Z(i).

(11) a < x=n i.e., declining yield phase might or might not
have set in even befére the period for whiph the yield performance ig
known is«ee, before n years. Here both m,s 92 are unknown. For oonvenienoe?

we shall drop the suffixes and simply refer to m and s. Since we are

considering palms beyond age a, this should cause no confusion.

Tela2 We are interested in constructing replacement rules when the
currént age x of the palm ig not known. For this purpose, we need an
estimate of the expected yield stream from the palm in future. With this
objective in mind, in case (i), we shall construot a test of significance
to detect whether the declining yield phase has set in sometime in the
prast n years. We shall obtain a maximum likelihood estimator of the year
at which the decline in the mean begins.

Note that an estimation of the ourrent age x is not possible
in general in case (ii). For example, if we find that the mean is
declining since the begimming of the period of obgervation of Z then all
we can say is a, {¥x1ve What we can do in this case is to find out the

" current mean and the rate of declinec.
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7e2 Maximum Likelihood Estimation and Test of Significance

inCasre‘(ri) ta <x-n<a

) = 2
o? Dgr 87 and a known‘

7201 Let us consider Z(1), 2(2), «ve, %{n) as a sample of n units
ordered {descending) in time. In this.case the decliming yield phase has
get in (if at all) sometime during the period of observation i.e.,
ag {x.—-—n< age If we look at the problem as one of detecting a change
in the mean over time it becomes similar to thé well-known 'slippage
problem' with two important differences. Firstly, here the sample units
ar‘e dependent random variablegand secondly, there is more than one shift
in the mean.

There is a considerable literature on the slippage problems.
For the material in this section we particularly refer to Hinkley (1970),
- Sen and Srivastava (1975) and Hawkins (1977). We also refer to
Barnard (1959) where dependent sample units for constructing control

chartaswers considered.

Te2e2 We consider the following hypotheses.

7 ~N (M(n), D)

( ) HO H
Tel
Hot 2 ~N @) | 1y, K =1, 25 aeey 1.
where_M(n) = {m, My seeas) m)/
nx 1) :
M(k) =(m m eeeeym o8, eun, m—(n—k)s)/

k times

with m, s and D known but k unknown, k =1, 2, eves, 01, m>6, s> 0
HO specifies that there was no decline in the mean over the past n years.
E, specifies that a decline in the mean has started from the (k+1)th year,

k=1, 2, seay n"'!.
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Let Li(Z) be the l:';kelihood of Z under hypothesis -Hi’ i= 0, 1.
Consider

L,(2)  exp - 1 (s - M(k).)/. 3'1'7 (z - ul® y 3

L(z) - exp - 15 £z - () )" 51 (2- ) ) 3

With some rearrangement we obtain

log, iig)y =21 @) -yl o %(M(k)m(n))/])-1(M(k)-M(n))

w(k), sayy, k =1, 2,'..., 1.

fl

Let us define

e = (15 1, vavey 5»)'/'
(741a) (nx.1)
4
B = (05 Oy eeey O3 =1, =2, wuey =(n-k) )
k times
Note that
v _ e} _ n

() 4 y(n)

2m e + 8§ _5{
It is easy to see that

w(k)

i}

o 1 -1
ZD E%:s -3 (2n:a4—s Ek D Ek-s
: : 2
s 2’D h=s m /T h - 2—H p! b

The meximm likelihood estimate of k is given by =

fic = Bneh Tret v U2 9" 2 52 W)
1
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Thme, the likelihood ratio rule for testing Ho against H‘I is given by

w(ﬁ:\ ) == reject B if w( {c‘) > ¢y where ¢ is a suitable constant.

2 s
A ) -1
Bw(X) ) =+ 3~ hqd " his ﬂ
’ under R
V(w(/];‘) ) = 2,@,’91 b g @
So, we obtain the tast statistic as =
* s 4 -1
(7.2) W= 7,1-u‘~— - (zZ-ne) T ha~n0, 1)

VELT g
It is interesting to note that the test statisfic above does not involve

g == the rate of decline.

T+3 Ag Alternative Approach in Case (1)

Te3al For the purpose of constructing replacement rules we are chiefly
interested in an estimate of the future mean yisld profile of the palm.
For .this reason our main attempt in this Chapter is to find out whether
a decline in the mean of the anmual yield has set in already and if so
since when %

We shall adopt here a discrimination or classification approach
which was first suggested by Page (1957) for slippage problems.

Let us consider the following hypotheses

H, * N =M(]E) = (M, My eeeey My M~Sy seey M = (n—k)s)/

where k = 13 2y ssey 11

N =8(Z) =M(k) under H_
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In order to detect 1f & decline in the mean of the anmual yield
of the palm has set in sometime in thepast n years we are to discriminate
between hypotheses H_, k = 1(1)ne. 4 method of discrimination or classi-
fication is specified by the definition of a division of the whole sample
space into mtually exclusive regions Ik’ k = 1(1)n; so that if the sample

point falls within region Ik the hypothesis Hk is accepted.
Let & be the a priori probability that Hk ig true,

%q =1
=k T

By Rao (1973) the probability of misclassification is minimised

when Ik are defined by =
Zel — if q Lk(z) > qL(2)s 4 Ak

where Li(Z) is the likelihood of Z unaer Ho,i= 1{1)n. But in this
particular case we do not have any way of allocating the a priori
probabilities. We shall assume q = %ﬁ, k = (1)n. Such a priori proba-
bilities has been suggested in various papers, see for example =
Randles and et. al (1978).‘

Thus, by the present method hypothesis Hk will be preferred
if 7

Ze I ieesy L,(2) > L.(2), ik
This method of discrimination is weil-khown and has been gtudied in
different papers. For Normal case; this method has been well sumarised
by Anderson (1958).,

Here we propose another mgthod of discrimination whose simpli=

city in this specific case is appealing for practical applications.
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7.‘:3.2 Supipose we consider the likelihood of 7 instead of Z where

o n
7 1 = z(i)
317_7 i=

. We propose to accept khypothesis B if

where Lk( Z ) is the likelihood of Z under H
Now,

) Fx n - 31
E(Z[Hk) i§1ﬁ+i§k+1{m—(i-k)s}Jn

L}

H :{7'%) = Vm -'&li-(rl-k) (n- k + 1) for k =1’ 2, svey 1.7
= m _i‘ork.=n
v(Z(g) = 12 &De forall k
I
where ei = (1, 15 seey 1) s0 that Z =%e’z
(13m) '
So, 2 e J, implies
Sy -
L(Z)
—— 2'1 5 J.,ék
L(2)
b A R
ieee 1 -Y—Lk( 2y 0 Ak
LeCa Og 7 o - y 1
e i(Z) g’ 2
2 " : o= N 2
ieee --%——ﬁ.{( z-%g"m(k) ) - (z-%sfm(l) Y 20, ifx
2¢e" De .

1een § (E--:-lg‘fn(k) )2- (Z-%g’ﬁ(i) )2 3¢0, ifk

i.eu 1E(£/M(k) - 3’1\1(1})( %E/M(k) #1 a/Mfi) - %) <0y i £x

e

1 R
where g i il “reey 1Y, (n x 1) column vector.
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B 8 .
But EfM(k) - gfﬁ(l) = El §(r-i)(n=14+1) = (o~k)(o=k+1) } from (7.2a)
f‘ao for i = 1, 2, es sy k
-<-- O 4 fOI i =k+ 19 sveg 11
Gl g J, implies for ¥ ¢ n

k

27 2% ( gM(k) +3M(l) ) for i =1, 2, eee, k14

2%5%( M(k) +Ei\’{(i) ) for i =k+l, eee, n

1o
It

and for ¥k = n

2"2%1-(e‘/M(k) +£/M(i) ) for i=1, 2, see, ke

But S/M(k) + N/M(i) = 2mm, - (n—k)(n—kﬂ) + (n=1) (n~i+1} }

%

r\J‘-L_L

Thus, it is easy to see that

(7.3) 7 SJk implies

ak__]<§$ak - k=1,2,...,p—1

aII'"] (z ¥ =n

where a == o
o
i 2
ak-.:m{“—zn(n-k+‘]) N k‘:", 2’ asey Il =1
TeFe3 Thus, we have two methods of discrimination between hypotheses

B, k= 1(1)n. One is the standard method found in the literature which
is based on the originally observed Z and the other is based on 2 — +he

sample mean.

Method based on Z is given by the partition of sample space of Z—

(1, s, 2102, 1Ak x=1(1)n}
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Method based on-ﬁ is given by the partition of sample space of Z =—
B P ]
{qkzlk(Z)ZLi(z), 1A%k, k=1(1)n?

As mentioned earliexr, the simplicity of the classification method
(computationally) based on Z as demonstrated in (7+%) makes it attractivo,
Let us now compare the above two methods in the following lemma,

Lemma . The classification based on 7 ie as efficient as the
clagsification based on Z in terms of the probability of correct classi-
fication.

Froof: Probability of correct classification for a given method

of clagsification is given by -

1 3
H k=1 P(k)

where P(k) is the probability that hypothesis Hk is preferréd.when it is
true.

Let I, ={2tZeyg }, k =1(1)n

Notice that {I., k= 1(1)n } maximises the prebability of correct clagsi=

fication over all partitions of the sample space of Z. So we have
( : POAT | ; d
7e4) 5 P(Z®1I Y2 2 P eI )

k=1 e k=1 R

s - :
Let  J,={Z23ZeL. }, k=1(1)n
Again, notice that { Jo» k= 1(1)n } maximises the probability of correct
classification over all partitions of the sample gpace of Z. So, we have

n n ?

(7.5) —k§1 P(Zes, |8 ) 2 Z B(Ze I LB ).
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But P(iEJlek)=P(ZgI;‘|Hk)
P(Zedy [B ) =2(zeT |B)

for k = #(1)un.

Therefore, from (7. )] we have

(1.6 3 (7o I n _
7' oy PZe I [ Bl> 2 PZe L | B )

Hence the lemma from (7.4) and (7.6).

Teod Maximum Likelihood,Elstima‘bion and Test of Significance

in Case (ii) *+ as { X =n, and m, g are unknown

Teda In this case we do not know whether the declining yield phasge
has set in sometime during the past n years (the period of observation)
or even before that point i.e., we only know that 8y { x = n. Let us

recall the hypotheses formulated in Case (i) as given in (7.1)

B : Z ~N (M(n), D)

A NN(M(k), B K =1y 25 sesy 11
3
where M(n’ = Qm, My weay m)
(nx 1)

(k) :

(nx‘l)

with My, Sy kunhlown’ k = 1’ 2, saey Xr‘", m> O, S>O|

1

( My My ssep My IS, m--2é, seey m-(n-k)s)
\____,,—\/__._,_/

k times

Note that irn this case we do not know X~ the age of the palm
‘ - ; ‘ (see (1w
and a <X = n. So it is not necessarily true that m = m,.ésigléﬁeér)t)here is

the possibility of x - n > a e
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We shall proceed in the same fashion as in the Cage (i) in

T.2.2 to derive the likelihood ratio rule in this case, after replacing

the unknown parameters In the likelihood Lk(Z) by their conditional

(ot k = j, j = 1(1)n) maximum likelihood estimates.

Tedel2 The likelihood corresponding to H1 is given by
n 1

g ) Y
L(2) = (2T D | ° exp. = 15 s(zad)y 51 (zl8)y

Il = 1, 2, se ey n="1.

Let ng denote the elements of the matrix Ir1

by tij iecs ’

= () 1, 3 =10

Now i
(YT (o) 2 257z - 225 ) M(k) 1 (x)

and M(k) = me+shk ’ k= 1(1)nn1

S0 we tan write

(2% Y 571 (2 - (B )

=Z/D-1Z'-2mZ/D1e-ZSZ Ekarme'“lg
+ 52}3?]3-1 b + ZBSE/D-1E1{ FOr K = 1y avavesyn=1s
‘o1 =) 2/-

=Z'D 'Z - 2mZ D 'e+n"eD - for k =
gince h is a mll vector.
~

where e and Ek are given by (7.1a).

Thus, we obtain the maximum likelihood estimators (MLE) of

m, s conditional on k as follows.
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for k

dhazell B =D (32;-5&%/)3'1

(n x n)

Tede3 Lemma o
by (7.7) are unbiased.

Proof ¢ Let us first note that -

K Bh

e/B' e

~ ~

U

Therefore, y,
Z B
By

7
S Pl

B@® (k) [ x) = B

‘Vl(k)/Bhl; - ( YB
i Bh : me + Srb:k Bk

i | e’BEk

mE/BEK + SE;( Bl

bE

= m
¢'Bh,
=1
. vl )] e
BB (k) ¥ = EB(—2=
e’D ' e

~ ~t

1
]

r v (e & )0y
& (nd - e )T e

[k) =

115

for k =1y 2y ssey n = 1.

V for k = 1, 2y eeny i

The Maximum likelihood estimators of m and s given

0, k =1y 2y se¢y 110

ior k=1, 2’ asey n-1

for k =n
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(ms + S}ﬁk )/B/e me/B/e + shlz B/e
% 1'1k e’jahk
s¢ B
=—_/_':J__=Sp for1§=1925 ...911'1

Hence the lemma.

Remork 3 Let us note that E(Z - M (k); k ) = 2 where

1

(k) =i‘ﬂ\ (k)e +/§\(_k) hk fOI.' k = 19 29 eaaoey 11_1 and ¥ (n) =/1;\1 (n) e’

=)

0 is the mmll vector. Also, it can be seen from (7.7) thet & (k) ~nd

~{k) zre simply linear combinntions of AGHERA ) e ¢ .

Tadod Let /L\k(Z) be obtained from Lk(Z) in 7422 by replacin: t.c
parameters by their respective me le ees given in (7e7.).

1, (2)

Ll M U B o

n
The me 1o ¢ of k is given by

% such that’Ww (&) = Max W (i)

i
Agymptotic propert’es of o in the slippage problem with independent
somple units hos been studied by Fimkley (1970)s We do no‘t intend to
persue the exercige hores. Howevery we sholl aake a simulation study of
the distribution of % in 7e6s Our lilkelihood ratio rule in this case
will be given by =

' o Yo

roject HO if Wy where ¢ 1s a suitably chosen

constant.
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Now 4

Hence, our tCst statistic turns out to be

M) - YT .y )

i T : 1 ZAlT N )
79 W  @-R )T E-f W)
Z/E1 7
E 3
>
whore
g =5 5 @
4 =¥y o
B, =F, D' ¥,
Fo=T+ /1 DBIB
eBlﬂk
F2 =1 - /1_1 e e“;ls_1
o :D SNN

=7 (ghf-ppev

e . Ll I
~ ard hk axe given in {7.12).
Lo

The distribution of this statistie can be dirived as follows.
Zh E, 3
P(t—<¢2)

thé

= B(z’(g, - 2E)z < 0)
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Lot E =E-~3zE
' i

’ EZ ig a symmetric matrixs Consider the tronsforme-

20
tion

72, =F, 2 wvhere F,. ag given in (7.8)

2
0

E(Z1)

v(z,) FQDI-‘:; since V(Z) = D, see Telele

; ! : . . = 7 :
F'2 is & nopesingulcr matrix. Hence b'2D F2 is also non-singular ond

symmetrio. There cxists 2 nomsingulcr lower trianguloer motrix U such

that
FDF = v
o =
Congider
_ 1
22 =7 Z1
o= _ ==il
Z = F2 Z_] -J!2 UZ2
T}.'ILISQ

/
P(ZEZZ$O)
' /

=

T eyl

s A -
— L. - T T
= P(Z2 FZ, < O) where P =7 I‘2 N

2
Agnin, since F is symmetric, there exists the orthogonal matrix H such

v
that H, FH, = H where H ig the diagonal matrix of eigen values of F.

1 1
/s
Thug, considering W = H,] 22 we have
z’/}%_;;I Z
P ( = £z )
Z .li.2 Z

i

7
P (22 FZQS.O)‘

P(W/H W< 0)

N )
=P ( 2 A,{z) WS ¢O)
= i i=
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where Wi are independent standard normal variates and Ki(z) are the

I-
eigen values of F =T F21

‘s 7w
z 2

Therc axre now geveral wafs of deoriving the distribution of
;§1 Ai(z) wi available in the literature. For an exhaustive account
;Zease see Johnson and Kotz (1970). Sece also Gurland (1953) where the
distribution of ratio of two, quadratic forms in normel veriates (with
parameters known) has been derived for various cases.

But the likelihood ratio rule, as it can be seen, leads to & come

plicated procedure. Let us now explore the discrimination approach comr

sidered in Cez e (i) in 743

T Discrimination_ﬁpproach in Case (iil.

7.5.1  Let us recall the hypotheses formulated in Te3.1. Wo shall
of
use m and s insteaq:{m2 and Sp congidered earlier.

H}C : N -':M(k) = (m m tsoss m M= % sewe I = (n‘l{)s)
k =1, 2, sesseny IN

52) = ¥ = 5% unger "
When m and s are known, and the hypotheses Hk are a priori cgually
likely, the clansification rule is given by —
Prefer H  if Lk(Z) = Max Li(Z) where Li(z) is the likelihood
i

of Z under H,, 1= 1(1)n.
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Bow , Max Li(.‘Z.r)

X
n 1 , o
< bt ."' = 5 / - ) .
eMax { (2x) 2 101 ® e -12- {(Z-Iei(l)} D 1(2&41(1)}_;
. ] A 0 A 5
e Max | exp. - %{ (Z—M(l) ) (,Z-F-f(“>)= }]
i - .
ﬁn o - . ] .
=Max | - 12*{ {7 - },{\.1))f ikl (g - M(l) }}J_
<o

H

Mim (2« w8y 51 (52 ulidy
4

Whst tﬁe parameters are not kumowns they can be replaced by their
:cespeciiiv'e "’suitable estimates conditional on the hypothasis I{i, :
1 =15 25 sewsy Be The resulting classification rules can be calleod
"plug~in classification rules’ {PCR}s The notion of PCR was first
suggested by Fishep -(1936); The egtimates were meant
to bé on the basis of what are imown as training samples, see
Anderson (:}95&}; Here of course our estimates of m and s ere basod
oh a gingle veetor observation.

From 7.4,2, where the m.l.os of m and s have been derived, wc

can write

Z [ 2 M(l) ﬁq‘iz.’ i == '1-’ 2’ #r00y n
where Ui-":I;f'J/_"—""]}B:aB.g i:ﬁ_‘g 2’ se0uy 1
e'Bh,
U, =1+~ "'1_1. e of 7
ra. por
- ! ;
B=D 1 {c h=h e )T

e and h as defired in (733}
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™ ey .
Let Ui'—'-'UiD Ui’ l=1’ 29 ses ey IN

Therefore, a plug~in classification rule in this case is given by -

prefer H. if Lk(Z) = M?x 'Li(Z)

iecs Min (2 - T’igi) )‘/ 51 (z - “’i(l) )
i

= Min Z/'ﬁi Ze
TeDa?2 The rule derived above is not difficult for zpplication. But
the efficiency of this rulc in terms of the probability ..Of coiract
classification is;*, not-easy to study theoretically. We note that, in
exactly similar fashion as above, we could consider plug-in likeiihood
ratio (PLR) rules in section 7e4s But the PLR rule with the mel.es

turns out to be as complicg,ted as the exact likelihood ratio rule. Soy

we didn't pursue the same in the earlicr section.

T.6 HEmpirical Exercise ‘ | ' .

T +6e1 We have considered two methods in case (i) based on the classi=
fication approach in order to estimate k ~— the time-point beyond which
the mean yicld declines (see 74341 and 7e3+2)s In case (ii), we derived
the maximwm likelihood e’s_timatora of m and s (the stable mean yield and
the rate of decline) and suggested a plug~in classification rule in
order to estimate.‘k_(see Tehe2 and Te5.1)

Here we propose tc; get an idea about the sampling distributions of
the estimators mentioned aboves. We shall also examine the sensitivity
of these distributions to some of the parameters that specify the

stochastic nature of the anmial yicld sequence of a palm.
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Let us recall the following

v(Y(x)) = 2 where x is the age of a palm.

' / ' xax/;-1
gov (Y(x), Y(x/)} = =

Pe 02, x ;é x{
0<C w1 <1, 0<P <1
The study of the sampling distributions is performed by simulation.
We have chosen the period of obscrvation of the actual yields as
10 years iec€e, n = 'IO.(see 7.1¢1}e We have fixed g =P for the purpose
of our stﬁd;y and selected the following alternative values of P and 0.

P = 0.62, 095

]

g =159 30

The first value for P is the coefficient catimated for Kerala (see 1.3).
The second value hasbeen taiken a.thigh correlation coefficiont. Again,
the sccond value chosen for O  is the estimate of variance of the
anmual yvield in Korala (seo 1.3). The first value has been taken as a
small variance. |

The rest of the parametors are taken as specified in 143.

100 samples of the yield vector are generated in each case by
generating Multivariate Normal samples with the specified I;a:c'ameters
(my 85 5 , Ps o and k) The results of the simulations are

presented in the following tables.
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7.602  TABLE ¢ ZHstimatiom of the Sempling Distributions of k

in Cagse (i) iece, m 2nd s are known.

100 in cach casc.

Sample size
n = 10, T =P, m=60, 8 =73

s ' _ N
'k,’ t Estimator of k given by the mothod in 7e3.1.

{{\2 1 Estimator of k given by the method in 7.3.2.

b a1

Variance a.nd &  Specified = liean of thc éé‘bimators; Standard BError of
Correlation .  wvalue of } the estimators
- k /’-\ /“ A A
1{1 k2 k_l k2
o= 30 3 ' 4.6 447 3455 3.73
P =‘0"m62 7 6.0 509 - 5039 3086
o =30 3 542, 51 3.16 4 08
P = 0.5 ' 7 5.6 " 640 3,02 407
o =15 ‘}; 3 3.8 4.4 2.64 3420
p=0.62( 7 6ud L 3417 3.60
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Tebe3s TABLE ¢ DEstimation of the Sampling Distribution of

kK in Case (1J;) leces, m and s Are Unkuown.

Sample Size = 100 in each casce

n = 10, T =0, m= 60, s = 3.
)1‘{' 2 Bstimator of k given by the mcethod suggested in 7+5.1.
“m ¢ Istimator of m given by (7.7)

‘s> ¢ Estimator of s given by (7.7).

Variance Specificd Mean of the Standard Zrror of
and . wvalue of estimators o the estimators

Correla~ ' A ~ e s s ~

tion Ik m s K “n “s I m ]

=

0=30 7 3 60 3 6.0 587 Tuh 2,63 25,99 16488
£

1

’ .

0 =095 T 60 3 6.0 619 4.2  2.69 27,97 B.13

g = 15 ; 3 £0 3 5.0 60.2 6.4 2064 11«81 T.79

ko]
i
O
.
[onY
\V]

7 60 3 5.7 60.6 4.2 2483 8471 8,57

Teboldt In case (i), we considered the situation where the decline in
the mean has set ir. sometime during the period of cbservation of actual
yiolds dece, as { X=n < a.e where x ie the current age (unknown) of

the palm and n is the rumber of observations of anmal yield {sce (R
Both »  {the stable mean yicld) and s {the ratc of declinc of the moan
vield) arc assumed to be known. The change=point for the mecan yicld

is to be cstimated.
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Let us recall that we considored two different classificatio:‘n
rules in this cases. ‘The first one pro{rides the egtimator -k1 (say)
based on the observed yicld vector (sec Te3e1) and sccond onc provides
the estimator k2 (sa,y) based on the average of the observed yields

(See 7.302).

It can be seen from the table in 7.6.2 that changes“in o or ¢
do not make any significant differcnce to the standard crrors of the
estimates given by k1 and k2. But a reduction in o definitely
improves the estimates although an incrcase in P does not lead to any
improvement. On the whole the estimates givéri by both the methods scem
to be satisfactory and more so when k = 7 than when k = 3,

In casc (ii), we considered the gituation where the decline
in the mean yicld might or might not have set in during the period of
observation ie.ce, a_< xn (see Tele1)e Herc in addition to the change=
point in thé méans both of m and 8 arc assumed to be unkuown and arc to
bo cstimateds. We have suggested an cstimator ‘& (say) for the change=
point based on a plug-in classification rule {see T+5) The maximum
likelihood estimators M and & of m and s arc given by (Ta7).

It can be seen from the table in 7.6.3% that the changes in o or P
again do not make any significant difference to the standard error of the
estimate given by ’E{. It is intercsting to notc that standard errox of
% is roughly of the same ordor as that of k, and k, if not slightly

boetters Howover, ’AIE‘ seems to be satisfactory only when k=7 and not

when k=3
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We have already shown in T.e4e3 that m and s are unbiased
estimators. The standard error of § impruves with an inerease in P
or a decrease in O but that of T secms to improve only with a
dec:c"ease in o ({see T+643). The reason for this is not clear. It
should be noted that the standard error of s is rather large gpeecially

when o= 30, P = 0.62 “{the estimated values for Korala)e
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Chapter VIIT
Summary and Conclusion

8.1 We have considered in the foregoing chapters various replacemeni
models (deterministic and stochastic) fqr Coconut palmse. Palms were
considered as a special case of ageing assets. The parameters defined
in (1.1)thr0ugh.(1.2) in section 1.2 to characterise the yvield profile
of a Cocorut palm can, in general, describe the performance of any
ageing asset. For example, the performance of various machines can te

described by putting a, =a, = 1e This would mean that the mean porfor—

s
mance of the machines remain stable for a certain period of time before
it begins to decline. Even the assumption of a Multivariate Normal
digtribution of the age-specific yield sequence (see (1.3)) of a palm
ig a reasonable one for a large class of assets. Let us note here that
the assumption of a constant variance of the age=specific yield is not
crucial for the analytical results derived in the previous chapters. It
can be shown with little modification {whenever necessary), that all
the results are valid even when the variance is not a constant provided
the correlation structure specified in (1.3) remains the same. Thuas,
although the analytical results derived here are specific to the case
of Coconut palme, they can be extended to a large class of ageing
assets. We further note that we have been concerned with & static

gituation ie.ces 2 picce of asset is replaced by an identical one.

8.2 In the economic literature, replaccment (of capital asset)
problems are studied with discounted value of the net income stream

as the objective functione Usually, the net income stream is
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considered over an infinite time-horizone The argument in favour of
considering infinite horizon is that if ons is not interested in the
income generated in the distant future, a high discount rate can be
used for necessary adjustments We studied the replacement problem in
the deterministi¢ version in Chapter II: In this version we take the
axpected yields (gx, X = 1y 25 ssaey L) as the actual ones. We inves=
tigated both finite and infinite horizon cases. Our frcus was to
analytically characterise the optimal replacement agees This roflects
the relationship between the net return stream, or equivalently, the
performance curve of ey of an asset, the rate of discount, length of

time horizon etc., on one hand and the replacanent ége on the other.

In the infinite horizon case, if one starts with = brand new
riece of an asset; the emistence of an optimal constant cycle of
replacement hes a strong intuitive background. But what we found
further is that the same constant cycle holdsltruo even if ~ne starts
with an asset of an arbitrary vintage \sec 2.5).

in the finite horizon casze, we congidered a single cycle rcplaéew
ment model. This mcans that the length of the horizon is not toc long
to warrant replacement more than onces We found that the optimal
replacement age, in this casc, is a nonwdecrcasing function of the

where the lergth
1engt@évaries within & certain finite range (sec 2.645)s Algo, we
found that for sufficiently short horizon the corresponding optimel

replacement age is less than or cqual to that corresponding to the

infinite horizon case, irrespective of the rate of discount (see 2.7).
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This result is not intiuitively obvious although one could articipate
an order relationship between the solutions corrésponding 0 a very
short time~horizon and an infinite¢ one. But,, what is more intceresting
is that the above two theorems leave one possibility open. Let AH and
A“) -be the optimal replacement ages corresponding to a finite time-
horizon {of length H) and infinite horizon case respectively. For
sufficiently small H, let us suppose AH < Aq). NOQ, as Hrincreasos

it is possible that AH incfeases beyond As) leCey there can exist H
large enough such that.AH > A°  gince AH iz & norrdecreasing function
of Ho We have found this to be true in certain empirical cases

(see 2,8), Let us note that all these results depend on the nature cf

the mean yield profile of a Coconut palm (or, in goneral, the perfor-

mance curve of an asset).

Be3 Consideration of the discounted valuc of the net income streom
as an objective function ignores the changes in the age distribution
of the palms over time. Conseguently, the time~path of the anmal
net income énd the anmual total yield are not taken care of in such a
formulation (see 3.1). Also, the optimal replacement =pe depends on thoe
choice of the discount rate and the longth of the time=horizon. In
this context, we considercd a replacament model bascd on the total
yield (or anmual net income) trajectory which depends on the changes
in the age distribution of palms over time {Chapter III). The rcla~
tionship between a given rate of replacecment andthe consequent stable
age distribution was establisheds The rate of replacement was

defind as the proportion of old palna (above a given age) replaced
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every year, It was found thet the stable age Qistribution is a uniform
oncs The moximum stable yield level corresvonds to & particular rate
of replacement and a cut-off age which defines the old palms. Both of
these optimal solutiocis depend on the yield profile of a palm (see 3.3

for the above results).

B4 An obvious limitation of the deterministic models summarised
above is that they do not utilise the fact that future yield perfor=
mance of a palm is dependent on the past performance. This leads to
a simple modification of the earlier model presented in Chapter IT.
The future mean yield stream of the existing palm was replaced by the
mean yiela stream conditioned by the past yield performance. The
resulting roplacement rule was compared with the deterministic rule
(Chapter IV)s It was found that if the present age of a given palm
is above the optimal replacanent age giﬁen by the deterministic version,
then the modified rule is betfer than the deterministic one én the
‘basis of the following probability of the criterion.
P (Discounted wvalue corresponding to R 2
2 Discounted value corresponding to R 1
IR 2 recommends nc replacement)
205

Deterministic rule

e

where R 1

R 2% Modified rule

The choice of the number 0.5 is discussed in subscetion 4.2.2.
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Be5 Next we considered {Chapter V) a general set up for the stochas—
tic replacanent rules on the basis of the above results. Given any
objective function g, an unsatisfactory performanée of a palm in the
future was defined by the event [ g < kg :] ﬁhere kg is a given
constant, g is a function of the future yiclds of a palms A replace—
ment rule was defined by specifying a decision function f and a

constant kf as followse

Replace only if f.S.kf
f is a function of the past yields of a2 palm. For a given pair of
(g, kg) the choice of a decision function f was propoéed to be bascd
on the following two probabilities as the criterias

1 P (ggkg ' £ k) % Reliability

2. P (fikf l g _<__1cg‘) .+ Efficiency.

We confined ourselves to only linear foxms of g and f: A class
of replacement rmles (f, kf) wies defined by choosing the congtant kf
for cach f so that the corresponding Reliability is 2 0C.5. It was
found that the replacement rule with the highest Efficiency iﬁ the
above class corrésponds to the decision function f which is the
resression of g on the past yields Y{x=1), Y(x2), ees; Y(x=n),

n ¢ X, where x is the present age of the palm and Y(i) is the yicld
of the palm at agé i. It was further found that the Efficiency of n
replacement rule (for a given objective (g, kg) ) is an  incceasing
function of the common variance of Y{i). This is of course &
desirable result since the question of stochastic replaccment rul.s

ariscs only when there is high variability in the yielde
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86 As a special case we considered Markov Replacement Rules in
Chapter VI. A replacement rule in this case was defincd by specifying

a threshold value 2(%) at each age xe 4 palm was to be reploced at the
current age x only if the yield.Y(x—1) was below the specified threshold
value Z(x—1). A conmputational procedure was developed to choose a
suitablc set of threshold values. The choice of the threshold values
was made by improving the discounted vealue of net returns over the
optimal level obtained In the deterministic version. et ConfiSte?i?
with the findings of Chaptor Vy it was found that higher improvoment

over the value of the objective function could be achieved wheneover

the wvariance 02 of the yield Y(x) wag higher.

87 Finally (in Chapter VII) we considered the problem of estimeting
the future mean yield profile of a palm (pi, i =%, X+1y, seses L) given
it's past yeild record Y(x=1)y Y(x=2); esee, Y(xn), n¢x, where x is
the prescnt age of a palm which is unknowne The common variance 02

of Y{i) and the correlation matrix of the yiclds Y(i) were assumed to
be known. Since the replacement rules arce particularly dependent on
the mean yield stream of a palm this estimation becomes necesssary when
the current zze of a palm cannot be ascertained. A classification
approach was congidered along with the likelihood ratio rulec for the
purposc of this estimation. A4 simulation study showed that the
classification piocedure provides satisfactory estimates and this

procedurc was found to be operationally conveniente
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