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PREFACE AND ACKNOWLEDGEMENTS

This thesis deals with the problem of estimation of regrossion
parameters in single equation Errors—irr-Varilables Models (ENM'S).
Althoé%h the literature on EW's is quite extensive, the available
mefhods of estimation (viz., Maximum Likelihcod Method, Instrumental

wfifariable Method etc.) suffer from serious shortcomings.

The gtructure of the thesis is as follows @

Chapter 1 makes a critical survey of the different assumptions
made in the literature on the distribution of errors and reviews the
different methods of estimation suggested go far for different types
of EVM's.

Chapter 2 Dproposes some new moment/cumulant—based estimators
for the slope paramcter and compares fheir efficiencies yvis-a~vis OLS
egtimator assuming lognormality of the true regressor.

In Chapter 3 optimum three—group slope-estimators arc found for
difforent combinations of paramcter-values in the standard two-variable
EVM where the true regressor is agsumed to follow lognormal or gamma
distribution. Separate cxamination is made for the case where the
disturbances are homoscedastic and the case oﬁ heteroseedastic
disturbances.

-

Chapter 4 and 5 are concerned with estimation in more general

EVM's, where the classical EVM is extended in the following directions 3

(1) The standard deviation of the error term associated with

the regressor may vary with the level of the regressor.'

(ii) The Errors—irm-Variables (EIV's) in the regressor and the

” T\CAL INST” .
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regréssand may be correlated.
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Chapter 4 suggests mgthods of estimating the paramcters of
the distribution of error term in the regressor. Chapter 5 makes use
of these results and proposes consistent moment estimators for regre—
ssions where the algebraic form of the regression is nom-linear.
Actually, only two such forms are analysed == the semilog and the
" hyperbola == besides-linear regressions, but the method propc%sed_can
handle'si.:buations where the true values X and Y are rclated as
Y =q ! Bf(X) -i-'e-

The last chapter (Chapter 6) contains some rather isolated
results. It makes some comments on an estimator recently proposed by
Kaila, and then discusses how one can tackle the standard two-variable
EWM (i) when both the error variances are known and (ii) when there
are more than oﬁe Ivls available. |
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Chapter O’
ABSTRACT

In many econometric investigations, the 'erroréFirrvariables'
(EIV's) are not negligible (Morgenstern, 1963).‘ Fxamination of 25 series
relating to national accounts bSr Langaskens and Rijckeghem(1974) showed
that the standard ‘d_eviatio;ls of the errors ranged from 5 to 77 per cent
of the average value of the corresponding variable. Such errors may
vitiate 'least-squares’ (1S) estimation of regression coeffici_ents
(Johnston, 1972). The well=known methods (ML; IV, including grouping
method) proposed for handllng classical 'EIV model’ (EVM) in regression
analysis suffer from serious limitations. Some of them make strong
distributional assumptions about the errors (and the regressoi-s) and/ or
assume prier knowledge about the values of the error variances; others
need auxil'iary variables called 'instrumental-variables' (IV's) which are
supposed to be uncorrelated with the error terms, but strongly correlat_e:d
with the true regressors. The IV's are tlus not always handy and, in any
case, one can never check the assumptions.

‘This thesis attempts "I:o find consistent and reasonably efficient
estimators ef parameters of a variety of EIV modelss. The classical
linear two-variable EVM forms the basis of several investigations and

receives congiderable attention. This. ‘model is specified as
Yi=a+gj(i + (-'_'i§ i =1y 25 easy 1 ) ..n‘(o.-“)

where o and 8 are parameters to be éstimated; ¢, 'is the disturbance

term distributed nomally‘m.th__mean ;gfb:'énd variance 03 for all i,

and Ki and Yi are norohservable frue values of the regressor and the
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regres and respectively. The ¢'s are assumed to be independent of X's

where X is stochastic. The observed values x; and y; are written as

x., = X;-+ : .
i F LS T g ' (0.2)

vy =Yt

where u, and v; are thé_ EIV's which are independent of 'each other and
of the true ngue’s 'Xi and Y. ui'."s”:'é.nd v,'s have means zero and
variances Us and 03 respectively for all i, For i =1, 2, ess, 1,
we assume that (Xi, Yoy ugs Vys ei) are i.i.d. random variables.y
The main interest centres on estimating B ; .once B is estimated «

can be estimated very easily. Writing

1

y; = 4+ BX, + 8+ vy

o+ Bxi-l- ei-n-vi- Bui

1

3

o + ?B X, + W, (say) ‘ ees (0a3)
i

one fmds that 'ordinary least squa.rea' (oLs) regress:;on of y on x
gives an inconsistent estimator of 8 essentially because €ovi{x iV );éo
- (Jonnston, 1972, p.262). Extension of this model to more than one
regregsor is obvious. Otﬁer iﬁlportant extensions allow ug and v, to

be correlated or the dlstrlbutlon of uy 4o depend on the valde of X .

Various alternative methods of estimation have been sizggeété‘d

o % e

by previous researchers. These are based on different sets of assﬁmx;v-
tions. Tms, some assume X to be stochastic while others do not.
Chapter 1 makes a critical survey of the different assumptions made

in the literature on the distribution of errors and of the regressor X

J/ Not all the asgumptions are needed for every result.
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and reviews the different égthcds of estimation‘éuggested éo far. There
are, of cdursé, some models which e¢an not bé-fully identified at all
(g;gg Section 1.6 of Chapter 13 see also Aﬁpendix 442 of Chapter 4).
It may be mentioned here that some good review articles on EVM's already
exist in the 1iteratureA(Durbin, 1954; Madansky, 1959; Coﬁhran, 19683
Moran, 19713 Pal,"1980a). Among other things, this ohaptér discusses
how one can cbtain consistent estimators of 8 if (i) one has prior
knowledge about‘the value of the error variances or of their ratio or
if (ii) IV's are available. Infroduotion of lagged values of iégressora/
regressand may also be helpful in finding consistent estimates of the
parameters. Sometimes in the laboratory experiments repeated meagure~
ments are available for the same value of the ﬁariable. This may help
in finding consistent estimatess The proﬁlem becomes moré:difficult if
instead of one relation we have many relations in the modelg{ but the
variables are affected by EIV's. Apart from economists, sociologists
have lﬁng been applying such simultaneous equations models in path
analysis and multiple indicator analysis. But the progress does not
seem to have been satisfactory at all. OChapter 1 also i-ndica;o‘es the
results obtained{by ﬁayesian econometrioians who have tried to find
satisfactory answers to this problem. The chapter concludes with brief
observations on appliéations of EWM's to different fields like consumnp=
tion analys;s, geology, management s?ience etcs .

bhapter‘2 considers the clgssical tko—vafiabié linear{EVM
specified above, where the t;ggwgégressor;(X)”is”knqwn‘to be“nén-nﬁ;mal.~

Actually, all that is really needed is that the third order cumulant of

g/' These are known as simultaneocus equations models in econometrics.

'
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X is nopwzero. We examine the posgsibilities of consistent moment esti-
mation based on uni= and bi—variatvé moments or cumulants of third or
higher or_de:c.. If only the sample'mome:its of first and second order are

used for estimation, fivec .relations are obtained for seven unknown

parameters, vize, o, B, °2s 02! o?

/ 7
20 %51 % u(X) and ni(X). BHowever,

03 and 03_ always appear in the form fof 03 + OE., 80 that in effect

we have the following five equations for six unknown parameters 3

m;(x) = uf(x) : | 3 eee (0.4)
n/(y) = a+ 6u/(®) ves (045)
mgﬁx) E uzf'(x) + cﬁ" b (0,6)
W) = 0+ 2 /) ¢ Pu00 + (e D) s OT)
m;'1(x,y). = au1/(x) + Bu2{x) 2 ees (0.8)

One may, however, set up similar equations based on third order moments

and estimate B from them. Actually one has four such equations @

mj(x) = !JB(X) | \ A== (0.9)
Mo (ny') = Bu3(X) s (00‘10)
n (%) = 32u5(x) 8 eee (0.11)
n(y) = B3u3(x) , ver (0412)

g0 that there is a multiplicity of estimators of B « Some of the
obvious estimators are given below & :
8 = m A =m, /o B iy /o B 3/ m
B1 = 03/12’ 2 12/21’ 53‘“ 217300 "4 T 3/30’
& =t /oy B =t/ By

3/ @'5 ‘was suggested by Durbin (1954) B was suggested by DI‘lOIl (1951)

and the estimator proposed by Scott 1950) is a functlon of 31 ’ (32

apd 83 o o i e S
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In b - A A
= % k§1(xk -t (yk - y}a « Signs of 35 and B,

Where mij = mij(x ,y)
may be based on any one of other four estimators. Assuming B £ O, the
estimators 6\1 to ﬁé are consistent if uB(X) £ 0u All the estimators
based only on third order moments are functions of a 9 @2 and A},

which may be called the 'basic' estimators.

Asymptotic variances of the six estimators of B noted above"'havg
been'calculated in Chapter 2 and wére compared. Efficiencies of these
estimators relative to OLS estimator have also been 'i‘n\iestigated.‘ For
this latber examination, X has been assumed te follow a lognormal
disi:.ribution, which is realistic in some applications, ee.ge, in engel
curve analysis in many countries. fThe relative efficienc-'ié"s depend on
c, (= GE/U}Q{) and ¢, (=¢( Gi + Gf Y / ( 82 0)2{ }) and regions are
demarcated in the (cu, cs,) - plane where the different estimators
happen to be best. The estimators have been found to be fairly effiw
cient even when OLS is valide It should be mentioned here that the OLS
estimator is consistent only when the error in the regressor is absent.
The éstimators are computationally simple and need mildeéc assumptions
than maximum likelihood (ML) or IV estimatorse

Consistent estimators of the following type were suggested by
Geary (1942) @ | s

/B\ =%/(§1, c, + 1) //I'{”(c1 + 1, 02) ees (0.13)
where c, and c, ¥are positive integers and K/(c1 5 02) is the bivariate
cunulant of (x, y) of order (01, 02). This estimator is consistent if

K(r:,,i + 1, 02) £ 0, where K(c1 5 02) is the bivariate cumulant of (X,Y)

of order (01, 02). Some further estimators of this type are proposed
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in Chapter 2. These, hovever, meke additional assumptions esg., u or v
is synnnetripa.lly digj:ribp_.fed." ’E';timatc.:rs based on cumulax;fs of fourth
or higher order would be useful if the X-distribution is symmetric, for
then estimates based on third order moments would fail. The concluding
sections of this chapter extend these ideas to the case of m > 1 |
regressors and briefly mention the case where u and v are correlated.

Fer the standard two-variable EVM, Wald (1940) proposed grouping
estimators of the regression cbefficients in which the observed values
(xi, y.i), i =1, 2, eseey n, are divided into two equal groups accord-
ing to the rank ef the x;'s, and the centres of gravities »f the two
éroups in the scatter diagram are then joined by a straight line to
find the slopé estimator, La.tef Bartlett (1949)‘ suggested the use of
three groups witrh equal mumber of observations in each group according
to the order of xi‘s. Here, the centres of gravities of the two extreme
groups are joiried by a straight line to estimate the parameters. Suppose
the group means in the two extreme groups are '(321 ’ }1) and (;.3. ;3)

respectively. The grouping estimator of g is then defined by

e Sk IR eee (0.14)
x3 “2 x1 )

It is not necéa'sary Yo take equal rumber of observations in each group.
Phis choice is, however, optimé.l ‘in the Gau#s;Markov set=up if the X's

are equiépacea. In general, there is a profblem of optimal choice of -
the three groups if one decides %o use an estimator of the ferm of D .

Theil and Ven Yzeren (1956) have obtained the optimum group proportions

for different distributions of X. The optimum group proportions turned
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out to ve approximately O.33 0.48 0.3 rfor a variety of distributions
considered by them.ﬁ/ The prevailing opinion seems to be that the three—
group éstimator of Bartleﬁtﬂ(with equal groups) is nearly optimum in
almost all casese. The conéiusion is, however, based on inadeqﬁate
amount of investigations. The distribution of X examined so far (mainly
by Theil and Van Yzeren) are mostly symmetric or negatively skewed. In
most empirical applications in economics the X-distribution is highly
positively skeweds Hence the rule specified by Bartlett and Theil and
Yan Yzeren may not be applicable.ingall casesSe

In Chapter 3 we find the optimum group proportions assuming that
X follows (i) the lognormal distribution and (ii) the gamma distribution.
The optiﬁum:group proportions are those for which V{ % ) is minimized.
The most important finding is that the optimum proportions in the three
group {in ascending order of x) are quite stable around the values
(0.40, 0445, 0.15) for the commonly occuring lognormal or gamma type
distributioné of X« The estimators would be highly efficient (about

<.

80 per cent) relative to OLS if the group proportions are near-the
optimum valuese Further, the gain in efficiency appears to be consider—
able if one used th@ optimum group proportions instead of equal groups
as in the common Bartlett est@%ator.

4 similar investigation was carried out for the case where the
disturbances are heteroscedastic. Actually, we studied the set=up where

; - P
v( e, 1%, ) =\ X; ves  {0415)

A/ For the case where errors in X=values are absent, the Bartlett
estimator for three equal groups had been preposed by Nair and
Shrivastava {1942), who considered equi=spaced X-values. Nair and
Banerjee (1943) later showed that this remains efficient even if

LLLCLE ate Pataailoe
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as considered by Lancaster (1968), who examlned tne efflclency of Nald‘
and Bartlett‘s (equa.l-groups) estlmators yig~a-vis GLS estlmator. In
Section 3.3 of Chapter 3 we flnd the optimm group proportions in this
set-up by mlnlmiZLng the varlance of the three-group slope estimator
agsuming X to follow 1ognormal and gamma dlstrlbutlons with realistic’
sets of parameter values. HEre also the 0pt1mum estlmators are found
to be highly efficient vig-ar~vis 'generallzed least squares‘ (GLs)
- estimator which is BLUE. Thexr efficiency is about 80 per cent, and
further, the increase in efflclency over Bartlett's estlmator is quite
considerables. Unllke the hmnoscedastlc case, the optimum group propoi-
tions in the heteroscedastic case are highly dependent on p, the degree
of heteroscedasticity. As p increases, the first gréup.proportion
(1lowest ¥~values) decreases and the third group proportion (higheat -
X~values) increéses. (But the sum of the two extreme group pr0portions
is falrly stable.) This means that the’ choice of optimum group proper—
tions should be made in the 1lght of some approxlmate idea regarding P
In other respects, the optlmum group proportions seem to be nearly
stable with respect to the tyﬁes of distributions or parameters. The
efficiencies of the grouping estimatéfs in mest of the cases decrease
as the coefficient of variation of xrinciééses;

. The grouping estimafors have some obvious advﬁntages. One -

little known p01nt 1s that in the heteroscedastlc case mentioned above

exist in all cases._ [:*i} g 3
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13hapt§; 4 and 5 are concerned with estimation in more general
EWM's, where the classical EW is extended in the following directions &
(i) The conditional distribut;on"of the errcr term u give X may
vary with the regressor X. To be precise, we stipulate that V(u[X) is
proporticnal to some power of X.
(ii) The errors u; and v, may be correlated. Symbolically,
(1) v(u, %) =a® x5 g

%, i=19‘2g sangy I [N (Ot16)

(11) v, = ?\ui + W,
where wi's are i.i.d. random variables independent of ui.é/

In Chapter 4, the main attempt is to estimate parameters of the
distribution of X and of u given X, on the basis of observations
Xy Xpr seey Xp» making plausible assumptions about the form of these

distributions. The technigues used are ML and method of momentse. The

first three moment equations are

m; = E(x) = B(X) ees (0.17)
mg = B(x9) = B(x°) + a2 Ex°) ver (0418)
m; = E(xa) = E(XB) + 3&2 E(Xb+1) see (0019)

where m; = %-E}xi. Cases where b = 0 or 2 are of particular interest.
Note that b = 0 implies that u and X are independent while b = 2 implies
that the conditional standard deviation of u given X is proportional to

&
X (Cf. Friedman, 1957, pe27) « For specific values of b, the equations

2/ These problems clearly arise in the analysis of household budget data
" where both income or total consumer expenditure (x) and item consump-
tion (y) are affected by transitory (seasonal) variation.

&/ Interestingly, if the range of X is from zero to infinity and if the
observed variable x is always positive then b can be proved to be
equal to 2.
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(0.17) to (0.19) have four unknown parameters viz., B(X), B(X?), ()
arREa Hence, if the distribution of X contains .only two parameters tﬁen
the set of equations (0.17) to (0.19 may be solved for three unknowns.
As an applicatidn of this idea, we assumed X to follow a two=parameter
lognormal distribution and found conditions for existence of feasible
solution of these bquations for specific values of be 'Attempts are also
made to apply this technigue to a situation where X is three-parameter
lognormal. In this case, however, one has to use the fourth order
moment also.

Assumptions about the forms of the conditional distribution of
u given X may also help in the estimation of parameters by method of
moments. In the 'methods' suggested here, the range of this condi-
tional distribution is assumed to be finite and so restricted thai the
observed variable x can not be negative. To achieve this, u give X is
agsumed to follow a Pearsonian type‘II distribution which is in many
other reéfects similar to the normal distribution. An important advar—
tage of this set~up is that it allggs the use of fractional moments
like E(x's), E(x1°5) or even momentg like E(log x),rso‘thaf one need
not g§ to highefiordéi sample'moménts which are known to have larger
sampling'errors (Madansky, 19593 Géary,-19&2). The distributigh of X
has been assumed to be two-parameter lognormals Six sets of moment
estimators are proposed for this sét-up in Chapter 4.' Monte Carlo

experiments have been.conducted to-compare the-efﬁiéieneiesfof these -

estimators. It has been found that estimates based on moments of the

lowest order are the best and that the sampling errors of estimates
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increag with the order of the moments used. Of course, One can use

ML method for estlmatlon of parameters in thls cases. The Monte Carlo

axperiments, although llmlted in scope, suggest that one of the moment

estimators of ( u, 02,,m) is nearly as efficient as ML estimator.z/

The method of moments,~ij:should be noted; is obviously far more expedi=-

tious than the ML method.

Appendix 4.2 to Chapter 4 cites an EIV model which happens to be

non—identifiable.

Chapter 5 tackles the bivariate EVM's with generalizations (0.16)

and makes use of the results ef Chapter 4. It alsc considers different

algebraic froms of the regression equations, Vizae,

(i) Linear ¢ Y=g + X + & eee (0.20)
(ii) Hyperbola! Y =4 + 8/X + ¢ 9. a1 (020
(iii) Semilog ¢ Y =,4 + g logX + & e (0022)

In handling these curve-forms, X has been assumed to follow a twom

~

parameter lognormal distribution. If the regression equation is

Yoo+ PR £(X) +¢ oo {0.2%)

then one may use the following moment equations for estimation of

parameters

my = g cov (X, £(x)) + ra? BEXD) , wee (02)
m, = B cov &y £(x)) = 2 E(X) cov (X, £(x)) .
+ a’ g cov(x®, £(x)) + 2Aa? cov(x, %) eve (0.25)

Here j; and 02 are the parameters of lognormal distrib{ltion,

teea, X~ A (u, %) andm is the parameter of the conditional

m
density of u given X ¢ f(u,['X) = consta —uz/Xz) s = X<u X,

Fora R TeN

¥
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which has the solution

A 2m11 ov (%, X ) - By £ (x )

0 2 dov (X, f(X)) ooy (X,x° ) =, E e ) { cov x°, f(X))

T ves (0.26)

S 2B (@) dov(x,e() + A 2 oy (&, £(0) 3
Putting £{¥) =X, 1/X or log X, one-gets the estimators for three forms
mentioned above. Analogous results should be easy to obtain for other
types of distributions of X.
Distributional agsumption on X is nof always necessary. In the

linear- set=up {equation (0.20)}, with b unknown, the follewing polynomial

L, == =01 =0 vee (0.27)

has a solution ﬁ$ which is a consistent estimator of B8 (Section 5.3,
Chapter 5) . This is what Scott (1950) proved, tho&%h in a very
restrictive set=upe. | ) ) |

The problem of identifiéation ariges Quite often in econometric
vorks A model oan be undii-identified, just=identified o “oveiejdentified
" depending 5n prior informétidﬁ available to the,analysfa Tﬁ; cléssical
'linear two~variable EWM is known to be under-identified if X is normal.
That is why one needs additional informatioﬁ on the error variances
oé and 03, or on augxiliary variables called 'instrumental variébléS‘
(zv's), to tackle such problems. However, too many.IV's again make a
model over-ldentlfled creatlng troubles to the researcher.

" The. last Chapter (Chapter 6) discusses, how one can tackle the
standard two-variable EVM in-three different 51tuataons aarked by
ever= oY under-ldentlflcatlon. In the flrst casey no addltlonal 1nf0r-

%

mation 13 known, the model belng under-ldentlfled, gince X:is normal.

E3

‘auggg At
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Recently Kzaila (1980) proposed an estimator of the slope coefficient for
this model., On examination, this estimator turns out to be the geometric
mean of the LS regression coefficient of vy on x and the reciprocal of -
the LS regreésibn'doefficient of ¥ on y. It is shown that this estimstor
due to Kaila is optimal for a particular value of A = GE 7 03 while for
other values of A, it is less effiéient than estimates which could be
obtained if A were knowns e

The mext case considered is where both GS and 03;(: ci + Gs )
are known a priori. Here one has.two estimators namely

A 2
By = myy / (myg = o)

i

Y ) 2
and B, = (my, = 0 )/m,
both of which are consistent. One may then define a pooled estimator as

~N

Ba

A .
8.6\14'(1“8.) 82, s (0028)

and minimize the variance of *@a to find the optimum value of 'al
(vide Section 643 of Chapter 6). Since this is an over—identified
model, one may as well generalize it by assuming cov.(u, v/) % ¢

(here v/= v + €) and find tﬁe ML egtimator of B to be the geometric
mean of E; and g; (Madansky, 1959). Comparison between the optimum
pooled estimator 30 (say) and the geometric mean of E1 and gé ( %Mg
say) does not lead to one ciear—cut answers. When the correlation
coefficient between u and v’ ( o, say) is zero, '%0 is obvioﬁsky
betters &£s |P | increases from zero to 1+ gM gradually becomes

Fat

superior. When Dlﬁ 0, B, 1s inconsistent,; but the asymptotié bias is

0

very small. The difference between the asymptotic variances is also

very small.
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Finally, we consider a case with too many IV's, each of which is

uncorrelated with the error terms, u, v and & » Then all the estimatcrs -

A oya. - : f
*Bj =.'E;E?l_ y j = 1, 2,' saey K, - P (0.29)

where Z.j's are IV's, are consistent for g. We consider the podled

estimater
B(a) = Ea.j. Bj : | vee (0.30)

S COA
If we minimize the asymptotic variance of (a) we arrive at the

optimum estimator

"B\ B e W Ay (0.51)
- -_—.A— — 9 eee .-
01 e’ L e '

A /

where W= (( W\i‘ ),
J
~ N A N
i ° i / (e Gx.

i) 3 X %3 )
A 1 .

Gij = = bH Zi Zj 2

Al L .

ij = n X2 ¥

and e is a K x 1 column vector consisting of one's only. All the
variables are measured from their respective:means.
One may alternatively consider the following class of "consistent

estimators .

@(c) = i J } - eeee (0.32)
3)

. ; A
where cj, G =1y 2y seey Ky aTe real constants so that 8 (c)_ is
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defined, and,-zﬁ's are obtained from zj's by téking linear transforma-

tiong such that

. ‘ } ! .
(1) -E Zji Z,; = 0, for JJ% ips
and -
(ii) ?, zgi =050 for all j.

The optimum estimator in this class is again obtained by minimizing
the asymptotic variance. It is found that the optimum estimator thus
‘obtained is the same as the estimator defined in (0.31). That is, the
two approaches wentioned here lead to the same consistent esfimator.

Further investigations show that the commen estimator coincides with

Theil's (4958) 2SLS estimator.
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Chapter 1

INTRODUCTION AND SURVEY CF LITERATURE

1¢1 Introduction

“Ari error is no:::ma,lly viéwed to be an expression of imperfec—
tion and of incompletenesg in deBCI‘lptlon" (Morgenstern,’ 1963, Pe 13)e
It arises whenever measurable quantltles differ from the theoretical
counterparts'. Hence it may be defined as the dlfference between an
cbserved (or measured) quantity and the Ytrue' value of ite But it may
not aiways be easy to define what is a 'true' value of an object.
According to Haavelmo (1944,. pe 7) ¢

" The 'true" variables are variables such that, if their

behaviour should contradict a theory, the theory could be

rejeéted as falses while 'observational'! v‘a.ria.ﬁieé, ﬁhen

contradicting the theory, leave the possibility fhat we

might be trying out the theory on facts for which the theoxry

was hot meant to A"hold, the confusion being caused bjf the use

of same names for quantities that are actually ‘different'.

In many investigations we can never get rid of eﬁor of m‘ea.sure-
Iﬁent. There will é.lwa.ys be some imperfectiohs in nmea‘sﬁring qua:ititiés,
however small they may bes In natural sciences or wherever controlled
‘experiements are madey it may sometimes be possible to observe things
as accurately as they are needed with the help of modern sophi'sticated
ther

&
instruments. DBut even thereéls a limit to the accuracy of mea.surements.

Thus, it is not poss:.ble to measure both the momenhm 5 of a particle
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and its position x precisely at the same time, since

t

&x. APth )

where h is Planck's constant. This is known as the " Heisenberg
Uncertainty Relation' (see Mittelstaedt, 1976, ps 91)« In the social
sciences it 1s even more diﬁ'icult to0 have pre;ise measufanents. Nowadays
it has beén widely recoénized " L eses that there cannot be absolute
accuracy, that therer rust be errc;r, and that the important thing to do
is to try to uncover, remove, or at least limit the error'' {Morgenstern,

1963, P‘12)° -
3

1e2 Classification of Errors and Their Causes

Errors may be divided into two broad classes; viZa,

(i) Frrors—ir=Variables (EIV) s These ccoer when the data or

observations on variables are not perfect or accurate in the sense that
they differ from the “irue' or intended values They are alsc sometimes

called errors of observations or measurement errors.

(ii) Errors—in-the-Model § ' These are due to lack of fit of the

model even if !true' measurements are used. Often EIV's are agsumed to

be small compared to errors in the model, but there are situations

where such assumptions may be hazardous. .
We will mainly consider errors creeping into statistical data

used in economic ana;ysis. We can clagsify these EfV'rs into twc_) cgte—-

gories, namely .

(i) Sampling Ecrrors $ These errors occur due to the estimation

of pepulation parameters based on samples from a populations
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(ii) Norn~sampling Errors @ N03-sampling érrors are those ﬁhich
take place while we are collecting and processing the data. These are
the errors which are not covered by sampling errorse Complete emumera—
tion may give less accurate results than the sampling approach because

nor=sampling errors may be much larger in the former than in the latier.

-Anyone who is dealing with economic data must ﬁe aware of the
extent of errors in the obsepvations. Naturally, to have a good idea
about the amount of efrofé that affect the observatiéﬁs if is necessary
to know the causes and different sources of erxrors.

Morgenstern (1963) cited four main sources_of errors creeping
into different stages &

(i) Any economic model ig an attempt towards explaining ‘'reality'
But reality is too cbmplicated to be explained by a mathematically tract-

able models This failure of the model Zforces us to introduce errors

in the equations.,

(ii) Bven if we are sure that error due to (i) is absent ana
there is no error in the calculations, the parameters derived from'

cbservations will be affected with errors due to the errors in the

obgservationg or EIV's in the measured or observed values of variables.

(iii) Convergent and limiting processes have to be broken off at

some points Such errors due 1o approximati?n when accumulated may cause
seriovs damage to the ultimate results.
(iv) All computing devites and digital machines are either afflic—

ted with 'noise’ variables or with round off errors. The clementary
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operations affected with these errors, when rumerous, may

«

pose a threat
tc the accuracy of the ultimate results. A
The above classification made by Morgenstern is based on the
presumption of finding sources of errors in the final resultss, But what
we are now interested in is to find the sources or rather causes of FIV's.
Starting from the stage of planning of the data collection pro-
Jject, EIV's may belclassified stage by stage as followé .

(i) Frrorgs in the‘Planning Stage $  Setting up vague questions

and using incorrect definition of wvariables leading to faulty clagsifi=
cations, lack of training for investigotorw. ¢tos are main sources of

errors introduced at this stage.

(ii) Brrors in the Collecting Stage ¢ These may be divided into

two parts 3

(a) Errors due to Observer ¢ These may be duc to insufficient
understanding of the concepts and definitions on the part of the inves—
tigator. Bias of interviewer may also affect responses.

(b) Errors due to Observant $ Informants often conceal informas

tions due to fear or dislike of such digelogure. Regponse errors may
also be due to recall lapse and lack of understanding of the question etc.

(iii) BErrors in the Processing Stage ¢ These comprise errors due

to faulty aggregation, omission and duplication, approximation, mistakes
in scrutiny of schedules,ltabulafibns:etc;y”

Murthy (1967) named these tﬁreé categoriés as (a) specification
errors, (b) ascertairment er%éfs; and (6)'tabuiation'érrors corres—

ponding to the three stages of census or survey work. | He further
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subdivided ascertairnment errors into two parts, namely
(i) Errors due to over—or under—enumeration of the population

or sample, duplication and omission of units, and nomrresponse (refusals

etc.}s These he termed as coverage errors
(ii) Wrong entries due to errors on the part of investigators

and respondents give rise to the errors termed as content errors.

Diagrammatically &

Sources of FErrors in the Final Result

N

—d y } S )
Errors in . HIV's Errors duc to approxi~ 'Noise' vari-
the Equa=~ . “mation of series etc. ables and
tion Round off
errors
) A
b 5
Sampling errors Nomr-sampling drrors
¥ 4 4
Specification Ascertairment Tabulation
Errors Frrors Errors
!
00ver§ée Errors Content Errors

1«3 Hnpirical Evidence on EIV'g

It is essential for any econometrician dealing with data to be

v

avare of the extent and behaviour of possible errors in his analysis of

data. This'type‘of study is not only helpful for him to get his results
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but also necegsary in desjtgning' programs for the collection of new,
improved da’tg.l. | |
Without knowledge of possible errorsy it may sonctines: be

impoggible to draw any conclusion from the final result. The following
striking examples is. due té Milne (1949, p.30). The system. of equations

v .\ = = | | |

xu 5 1.00001y = O A |
1as the solution x = 100001, y = 100000, while the almost identical

system of equations

1

&y
X = 0499999y

has the solution x == 99999, y == 100000, A slight change in the

-0

coefficient of y produces a dramatic change in the solu‘bioﬁ. Such
things mé,y happen 10 a greater or less extent in all cases of near—
exact multicollinearity.

| An importa.nt study on EIV's was made by Langaskens and
Rijckeghan(1974). 'I‘he;y nad earlier (1967) compared two series of
rational accounts. estimates published by two independent Beélgian insti-
tutes, DeUsleBeE.le and the National Institute of Statistics (NeI.Ss).
The period c';f overlap betx;zeen these Vc'cxr‘ap‘e‘l:ing series was relatively
short {1954 to 1960) andit was not possible to have any statistical
estimation on the basis of these da:l:a. La.te:c, a new 0pportunity to
estimate the variances of the error terms arose when the N.I Se revised
its estimates for the period 19531 965 entirely, in order to ensure

compatibility with the 1965 input~output table. Fortunately enough,
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the period of overlé.p; in this case was 13 yéars to enable them t0 esti=
mate error variances with higher accuracys. |

They first assumed that the error terms in the two series were
independent of their true components as wel‘l-r as between themselves. They
assumed the following model |

-

Y =‘Pt+u

t t
;- . t = 19535 eaesy 1965, S 1 1. 1))
and Yt =‘?t,+ v‘t 1

where Y_ and Y are observed valuesof the two series for year t, ‘i’t the

..
% %

true component and u, and v, the exror components. The variables are

t 1

assumed to be serially independent. Moreover the expectations of error

terms are Zero,; ieCey

E(ut) = Kv,) =0, ¥t, vee (1.2)
Then, =
2 2 P
GY = o‘y + o vee (143)
°§,=,°$ X 03’ oo (1.8)
2 2
and 0'2 Y/“ = U‘[}_'-'V = GE + o’v j sae (1 05)
Hence ‘ ;
’ o2 i n a2 1 &2,
52 oo 2L e (1.6)
u - ) 2 LN -
and 2 2 2
> vy * T % (
o, =" 5 eee (1:7)

A total of 25 different economic series were analysed by them.
These series related to variables like Gurrent Expenditures of Enterprises,
Current Expenditures of Households, Income from Property and Fonirepre-

neurship, Current Govermment Expenditure etcs  The study provided
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informe tion regarding the relative importance of measurement errors in
the different national account series. They expressed the standard

deviations of the error terms as peﬁcentage of the average ol of ths
variable to which they correspond. The percentage ranges from 5 to' 77e

The following table gives a brief summary .

Table fe1
Errcr Vdriance as 3 Number of cases
Percentage of Mean 0la series New series
(1) ‘ __L2) %3]

0 =.20 9 | 9

20 = 40 9 8

40 ~ &0 5 6

60 - 80 2 2

Total - 25 25

The authors concluded 3 "Our results inéicate that a number of vari=-
ables in our national accounts are unfit to be used for economic
purposes*! .

It may be remarked here that for a number of years we have two
series of National ‘Income estimates for India == the conventional éeries
and the revised series =~ and a comparison of the two could bg‘extramely
revealing. The divergences are gquite large and.thé a;;uﬁption that

EKut - vt) = 0 does not seem to be appropriate (Mgkhequgﬁ¢1969).

Other studies on National Account Statistics also confirmed that
estimates of income and product are rarely egual. The discrepancies

between them could be studied furtherif sufficieht data are available. In
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1955 aw analysis of this "statistical discrepancy™ was published by
1
Gartaganis and Goldberger (1955). The main conclusions about the charac—

ter of the "statistical discrepancy® were as follows 2

(1) The hypothesis of normality was not rejected at the 5 per cent

level of significance for any of the seriese |
(ii) The discrepancy did not indicate (by the Manmr-Kendall test)
any time trend, though the GNP increased over the sample period.

(iii) Pirst order autocorrelation was not significant for most of
the series. The hypothesis of temporal independence was not rejected by
Wallig=Moore text.

De Janosi (1961) found no cyclical pattern in the ' statistical
discrepancy'' in & more recent revision of the same data.‘ Adams and
De Janosi (1966) later calculated the bias in estimation of regression
coefficient in the savings income relationship due to inclusion of this
discrepancy in the components of GNP. Murray (1972) also examined the
classical assumptions:concerning errors in thg data.

Numerous studies have been made on ''‘response errors' in survey
data collection. In some studies the response errors were seen tc be
geriously biased while in some studies bias was not found to be appre—
ciable (Keating, Peterson and Stone, 19503 Mosel and Cozan, 19523
NBER, 19583 lLansing, Ginsberg and Braaten, 19613 TIto, 1964;

Ferber, 19655 Borus, 19663 Som, 19733 ctce)

1e4 The Classical “ErrorSfinrvariables Model" (@vM)

In the EIV Models some of the variables must contain some €rroTre

These variables have two components, one is the Ytrue' value and the
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other, ‘ahe ér:;o_r. The general two-varisble EVM is demcribed by the rela~
tion 2t | |
Y = £(X) + ¢ | oo (1.8)
These X and Y are true components of the observed'ifariables X andy
respectively,; laecuy |
| x=X+u eee (1.9)
y=Y+v eoe (1410)
where U and v are error components variously called Fk_'rors—ierarigbles,
Errors-in-Obseryations, Measurement Brrors or Observational Errors.
X, Y, u and v are non-obgervable where x and y arc observable. & is the
Error=imthe-Equation.
v £{X) in (1:8) is a function of X and involves parameters say,
s B etce, which are to be estimated. The distribution of € rhay also
involve unknown parameters. Statistical estimation of these parameters
requires random samples of (x,y) observations from a population where
the sys.em of relations is assuuwed to be valid. Suppose n independent
- obgervation pairs (x1 A y1). cugy (xn, yn) are drawn from this population.

We may then rewrite (1.8) to (1.10) as

Y, = £(X,) + e, L 7(1.’1\1)
and  x; =X +u, iy eee (1412)
yi = Yi + vi J LK) (1013)

where i runs from 1 1o n. Th'e-‘fdll'lbwing assumptions are usually made 3™
(i) e;'s are iia ®(0, °§)*- and independent of X;,u, and v.i,.g :
23 ! il 3 4 n
£i1) u,'s are iid ﬁ(O, a‘u) -independent of vy, X, - oo (1.12)
(j,-iri) vi‘;s are iid 13(70,:'03) independent;, of Xi

Xi's are iid.
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X may sometimes be assumed to be nomstochastic. The situation is then
referred to as classical regression situation with EIV (Lindley, 19473
Kendall, 1951)« It is essential that e £ O for this model. Since
there is a great deal of confusion in the literature about the termino~

logy of EIV models (Lindley, 19473 Kendall, 1951, 1952¢ Moran, 1971),

we shall gtick to the terminology set out in the following table.

! X stocmastic ~ X non-stochastic
X : _ .
e=0 i Structural Equation Model Functional Eguation Model
i , o &
) i Stochastic Regression | Nor=stochastic Regression
i Equation Model Equation Model

Assuming linearity of £(X), the structural or functionzl

relation
Y= g+ BX
in the EVM, becomes.
y= O+ Bx +w
where w = v = gu. An exact relation ( e= 0) betwecen the true variables

thus gives rise to a regression relation of the observed variables.

1.5 Assumptions on FErrors

The basic duty of an econometrician is to explain the economic
reality by means of models involving variables and errors with their
behavioural assumptions. But the distribution of errors is different
for different situations. Among the ti types of errors — Systematic
Errors, Extreme or Chaotic Errors and Random Errors — as tormed by

Velikanov {1965), only Random Errors can be described by stochastic

modals.
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© It.is often neirbaned that wandon Grpors. dre symmetrically dis=
tributed about zZero on both sides.. This assﬁmption is made.dn derivation
of noraml distribution in the 'théory of errors. Thus the assumption of
normal digtribution of errors is widely used in stgtisti_cal analysis.

In the 1iteratﬁre m:me:-r:ous theoretical ﬁroofs have been given to explain
the wide occurrence of approximately normal distributions of érrors;
Gnedenko and Koil.:lnbgoz"ov‘ (1954) 3..: L1m1k(1954) e%c;,ahowever, obtained
a form of characteristic functions for exrors, whieh only under reog-
jt;ric{:éd ‘co'ndi-tions gives Gauss' normal distribution.

- It is vsually assumed in the literature that the siée of di-scré-
pency (strietly its variance) 1s indepéﬁdent of the inaghimde of the
quantity.mea.sure;l.- EIn econbmic‘ data it may not always be s0. '

I"riedmén (1957) proposed to treat the consumer un;i.t‘s measured
income (y) as the sum of the two components 3 a permanent component
(say 3‘;13), and a transitory componént {say yt) 3 leCey

yi= .Vp i Vi
The permanant comppnent. according 'to_‘.:Fri_edxxlany reflects the effect of
those factors determining its capital value or wealth, the nonhuman
wealth it owns etce The transitory componeont r:‘efl.‘édts ail othe:r i‘ac{:c;rs
which may be treated as -'a.‘ccid.énta,l“ or 'crja.née' occurrencé‘s‘. :Similar‘ly,
he divided the consumer experidiimre inté tﬁo parts ¢t

c=c +c
= o] t I

His PIH (Permanent Income Hypothesis) . is described by the following

three eguations 3
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= K *as 101

T (12

and Yy =yp + y'b ‘ see (1&16)
c = Cp -+ ct e (1017)

where K isra function of the rate of interest, the relative importance
of property and non=property income, and the factor determining the con-
sumer unit's tastes and preferénces for consumption versus additions
to wealthe
He also assumed that
o =i P = %0

Yy coh Vil ee. (1.18)

where P stands for the correlation coefficiente He then argued that the
first two assumptions in the equation (1.18) are very mild and highly
plausible. To quote fromkFriedman (ops cite, pe 27) ¢
"'"For a group of individuals, it is plausible to‘suppose that
the absolute size of the transitory coﬁponent varies with the
the size of the permanenk component § that a given random event
produces the éame percentage rather than the same absolute
increase or decrease in the income of units with different
permanent components. .......; it is not, however, inconsistent
with zero correlation. sesesssse ™
In a different conté¥£ MeIntyre and others (1966) also found the vari-
ance in isotope-dilution measurements of RhBT/Srss in geological sam—
ples to be proportional in general %o (RbBT/Sr86 ‘ . It is important
to note that Friedman recognized the possibility that %’t"t Lo

Thig complication is wusually assumed away in the literature.
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The following model may represent the above phenomenon %

X = X + u . g s (1.19)
with E(ulX) =0 s (1200
&nd E(HE*X) = az){z . saa (1 -21)

We may then write

x = X(1 + %-) \
or log x = log X + log (1 + %-)
or « x* =% % a’ (say) |, ees (1.22)

X”and u"may be token to be independent for our purpose, because

the first two moments are
- i
E(X)..O

and . V( %-) = al

which do not depend on X. Hence q”'may be taken as independent of the
level of the seriess. Also, log x is homoscedastic though x is not.

It is interesting to compare this with the wellknown Box-=Cox
transformation suggested in LS regression analysis. Box~Cox (1964)

suggested the transformation

xo‘) = (:x7‘ -1/, ifAN£O

log x, ifA=0

ees (1423)

]

it the regressor and/or'in the regressands There is one advantage in
texing this'type of transformation over simple power iransformation xk,
gince it is contimious at A=0, because

Lim (xk - 1) /}\ = 10g X snse (1'24)
A—=20
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Earlier Tukey (1957) had suggested that transformation of data might make
thgﬁmodel‘more,nearly linear, the errors moreé homoscedastic and more
nearly normal. In the bivariate regression analysis if we confine our—
gselves to the more practically interesting cases of A=t and A=0, wec
end-up with the two functional forms

YV = BO + 81x -+ u, e (i 250

log vy = GO + a1 log x +u “ao (1.26)

2
One can aslways choose between thése 70 models by method suggested
by Box=Coxe

Katona et al (1954) found ''that the standard deviation of
savings within each of several income cla;ses is proportional to the
average income of each class' (p.203). Lancasterl(1968) in hiéwstudy
on company-profit-dividend rclationship found the log-variance of divi-
dends and the log-mean profit within each group to be linearly related.
An appropriate model for such situations is

Y=g+ BX 4+ ¢

0 ' eee (1027)
v(e|x) = 2%°

vhere  E(e{X)

ang  V(Y|X)

For Katona's example b is obvicusly 2. Lancaster in his study found b
to be approximately equal to 1.5.

These discussions cn transformations were really concerned with

the errors in the equation, but we can adapt them to include errors in

variables. In the errors in variables case one méy have
Bvjx) =0 ! ees (1428)

and E(u2\X) = a8 3

which is more general assumption than (1.20) and (1+21) stated earlier.
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146 The Problem of Tdentification in the Errors~irn-Variables Models (ENM*B)

It ig wellknown that fhe unobservable Frrors-in=Variables (EIV's)
are uﬂavoidable factors so far as any statistical data in social, biologi-
cal or physicallsciences are concerned.. Some of the statistical problems
created by EIV's were recognized during the 19th century. Among the
mathematicians who t?ied £heir hands on this problem are Adcock (1978)3
Kummel (1879) 2nd Merriman (1890) (seec Roos, 1937). Since then much
effort has been made in this particular area, but the progress does not
seem to be satisfactory enough. There are mainly threc reasons for this
slow rate Qf progress. FYirst, the problem itself is very much compli=
cated. Maravall (19795 pe1) says 3 "Part of the uppopularity of BVM's
wag undoubtedly due to the identification problems that unobservable
variables could create'.s Secohdly, there are other complications in the
regression problem of econometrics which are believed to be more serious,
and since very few techniques have been developed for handling more than
one complications So errors-in-variables problems have usually been
neglecteds The third factor has been the lack of knowledge about the
nature and the extent of errors primarily because of the gdap among
policy-makers, theoreticians and data collecting agencies. To quote
Cochran and Rubin (1973) $''This is a difficult field as evidenced by
prolonged struggles of the econometricians to find satisfactory methods
for coping with such errors in their investigations of relationships
botween variables, and by the slow rate of progress that has requded
major efforts to study errors of measurement in sample surveys', Lack

of standardization of notations and terminology and hence vague model
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specification have also created some problems. In this section we shall
mainly discuss the problems of identification in the Errors-im-Varizbles
Models (EVM's).

Suppose we wish to estimate a regression equation ¥ =a+ B8X +¢,
from the observed values y and x only, making some reasonable assumptions
on true and error components and on their inter-relationship. But, can
ve always consistently estimate them 7 In general, the answer to this
question 1s in the negative; unless the assumptions are chosen carefuliy.
Before going into the details of this problem, let us have a concrete
definition of identifiability.

Wald (1950) defined identifiability, but his concept corresponds
to what was called multiple identifiability by Koopmans (49509. Though
Wald got some conditions of identifiability of parsmeters, they are
stated very generally and cannot be easily varified in'any given c¢ase.

In the present study we adopt the definition stated by Reicrsol (1950).

In defining identifiability we need the concept 6f 'structure's. 4 ‘model!
becomes a ‘structure' if all parameters and all digtributions in the
model are numerically specifieds "A gtructure is thms a particular
realization of the model, and a model is the set of all structures com=
patible with the given specifications't {Reiersol, 1950). Two structures
will be called ™obgervationally equivalent' if both of them lead to

the same probability distribution of the observed variables. A parame=
ter is called 'identifiable' if it has the same value in all observa=-
tionzlly equivalent structures. In other words I a set of parameters

is said to be 'non~identifizble' if there are more than one set of
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parameters which can give rigse to the same probability digtribution of the
observed random variables. For example, if

x =X 4+ 1u
2 2
1* %

are unknown and X and u -are independent of each other then only from the

and if we assume that X ~ N (111, 012 ) and u ~ (0, cg ) wheré By o

obgerved values of x we cannot identify 012 and o, separately, ‘ise.,

NN N

+ cg ) and there

are infinitely many sets of .para,meters { (Of, 02 )1012 + GS = congtant}

which give rise to the same distribution of X. But iy is identifiable.

they are non~identifiables Decause x ~ N ( s O

On the whole, the model is non~identifiable. (A model is said to be
identifiable iff all the parameters are jdentifiable.) In fact, it can
be proved that & If X and d are inde;pendent and u is normally distri-
buted with mean zero then the model x =X + u is identifiable iff X has
no 'normal componentl'. We say a .variable X has a 'normal component’
if X can be written as X l= X/+ u/ where X’and u’ | are independent and
u/ is normally distributed.

There are wellknown problems of identification in the bivariate
EVM's. Madansky (1959) gave an interesting example of such nomr-identi=-

flablllty. He considered the usual linear EWI with no disturbance term,

leCay S gx g
il § oo (1429)
x=X+u ‘
B(u) = Bv) =0 %

The errors u and v are independen"a_of each other and of true valuese.

 Successive observations on X; u and v's are assumed to be independent.
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V(X} = 0}2(9

Finally, X, u and v are normally distributed. In the above model the two

V() = o2, V(v) = o2, V() = oZ, V(y) = o and V(¥)= a.

sets of parameters

2 5 2
e o g 3 o
i | 1 Y=
5 2 5 1 .
1 £ 5L 2 —
3 3 4 ) S A

lead to the same joint distribution of x and y, namely a bivariate normal

2 2 1
x =% =1 end Plx, y) = 5

distribution with B(x) = 1, Bly) =v, ©

Obviously, a2 non~identifiable parameter camnnot have a consistent
estimator and, conversely, if there exists a consistent estimator for a
parameter then that parameter is identifiables. In the above model (1.29)
it has been proved that & and B are norridentifiable iff X and Y are
constants or jointly normally distributed (Reiersol, 1950, seer also
Koopmans and Reiersol, 1950). When a model igs identifiable consistent
estimates of the parameters exist, Kiefer and Wolfowitz (1956) proved
that in identifiable cases, the ML estimates of the regression parameters
are in fact strongly consistent,; Ls.eaey '.with probability one they cc;nverge
to the true parameters as n, the sample size, approaches infinity. But
it is not always easy t¢ sclve ML equations.

Other papers written before Reierscl on. the identification problem
are those by Gini (1921), Koopmans (1937), Geary‘(ﬁ942g‘ 1943, 1949),

Tintner (1944, 1945, 1946) etc. Koopmans had actually shown that B is

identifiable if the vector X, instead of being normally distributed,
can take only two values, But we can easily see that 1t 1s a direct

corollary to Reiersol's thecrem.
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v

One reason why the problem of identification arises is undoubtedly -
the contemporanéity‘of the model. ane the modgl contains dynamic fea—
tures the results obtained for contemporanecus models do not hold
(Geraci, 19772, pe107)a "Indeed, from the results reported by Hurwicsz
in 1949 until the recent attention, as evidenced in Hsiao (1976b, 1977)
Nowak (1977), Maravall (1974) and Ma.ravall and Aigner (1977), little
interest was paid to the problem of 1den't:|.f:l.cat10n in dynamic EIV
models*t (Maravall, 1979)« Dynamic models w1th EIV, however, were not
uhknown to engineers and stétisticians (see, for examplé Whittle,‘1963,
and Sorenson, 1966; see also Maravall, 1979, for further references).

‘Tn the general model discussed by Maravall (1979) some of the
exogenous variables may be assumed to be autocorrelated. Assume that
the rmumber gf exogenous variab%es that are independently distributed

white~noise variables is n,, and 0<n {ne The model ig described by &

1 1
a ¢ Gp(’:L) n, = §1 Bgi') (L) %1(; 1) 4 u,
bt R(Lu =5 (D)a,
o3 100 6 -5 @ o8, b g BBy i
as xﬁi) o ggi‘)w aii), DBy e
ed ¥y =My +ep
where R (L) =1~ 0L = 0,18« 00y =P 1" e
SS(L) =1+ 8L+ un 4 asz.s
¢ (1) =1- ?1L=-._?2L2 = qeee = VI
l)(L) = Béi) +'é$i) It + oses + B(i) o
'ngl)(L) =1 + agi) L 4 sese + aﬁf) L g

O O B )
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(where L is the lag operator) and the following assumptions (1), (2), (3),

(4) and (5) *

tssumption 1 ¢ The chargeteristic roots of the polynomial GP(L)

lie outside the unit circle. (Also, the shock process is assumed to be

independent of cach one of the exogenous variables.)

Assumption 28 The variable u is independent of the wvariables

(n)

(D

g *esey %

Assumption 3 3 The variables 6(1), X 3(n) and ¢ are

[ R N2

whitemnoise orrors, independent of each other, and independent of

§(1) ()

g esey g T and e

‘Assumption A % The variable a 1s white noises. The characteristic

roots of the polynomials RI(L) and SS(L) lie outside the unit circlee

(1) , , L0

Assumption 5 + The variables b — are independent

white=noise variables. The characteristic roots of the polynomials

Hﬁi)(L) and Mlgi)(L) lic outside the unit circles
i i

In short, the processes are assumed to.be stationary and

invertible.

Lemma 1«1 & The coefficients of the polynomials RI(L), GP(L)'

(1) (1)

(1) (1) (1) :
Mmi (), Hhi (), qu (L) and the variances b3 Opp 0 Tor
i=mn 1, 02, veves N, are always identified.

Theorem 1.1 § . Consider the order (q1 b Gyr seves qn1 } of the
polynomials of the -exogenous variables that are white-noise. Arrange
the set of numbprs.(p, q1, qé, eeeey O ) in nor~decreasing order, and

‘ 1

*
let qj denote the one occupying the jth place in this new sequence
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b1

" (iecey 11 < qz £ qg L oooovee < Q) Lo ). The above model is idegtified

Wy

1 . "
(2) when v>s, a5 251
(b) when r<s, qj 2 j4s=r

£or § =15 2, evesy ByHl =

It is clear that the properties of a.utoregressivé models and the -
moving af}eraige models are o;;ﬁbéife in nature, but theg;r airé not sy:mﬁétric.

Finding ouﬁ identifiability conditions in Maravall's xﬁodels is not
very difficult, as it may seem at first sight, because of the complexity
of ‘the model; since many of '-bhé variableg such as Uy s bt’ §t, etcay,
are assumed to be wh::.te no:Lse. ' 5

Willasen (1977) compa.red the J.dent::.f:.ab:l.l:.ty of stochastic diffe=
rence equations im‘rolving EIV's with that of classica.l EVM. From a
Bayesian v1ewpomt the problem of identification for parameters of the
gimultaneocus equat:.ons model has been treated by Dreze (1974). Kadane
(1974) also dea.lt with this problem from the Bayesian a.n.gle. His con=
.clusz.on is that "1den‘t1£:t.catlon is a property of the llkellhood functlon
and is the same whether considered class:.ca.lly or from the Bayesian
approach' « Mehra (1974) discussed the rela.tz.onshlp between d_xfferent
meanlngs ‘of identificationse

Farther work on identification and estmatlon of dynamic equations
systems with EIV"S and related “"gc.);\nilcs can be found in Nerlove {1967),
Griliches (1967), Graupe {1972), Hammn(1971, 1976) 5 Grether and
Maddala (1973), Pandit (1973) , Karni and Wéiséman (1974), Zellner and

Palm (1974), Menra (1975), Hsizo (1976a), Pierce (1976), Geraci (19772},
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Hauglh nd Box {(1977), Newbold (1978), - Pesaran (1980), Anderson and
Cheng (1980) etce Other articles on identification and estimation of
IWM's are by Geary (1949), Sargan (1958), Halperin (1961), Carlson,
Sobel and Watson (1966), Clutton Brock (1967), Solari (1969),

Mallios (1969), etce

1.7 Least Sguares Biag and Uge of Proxy Variables

The classical linear regression sitnation (vide section 4 of
thig chapter) may also-be written as

. = .+ e, + v, =P, -
yl. cx'-‘-Bxl el vl Bul~

or Y:L = X+ Bxi + Wi o2 ‘e n (1030)

SinceX and Y can not be observed, one usually regresses y on x and

Yordinary least squares' (OLS) yields the slope estimator

A m | ‘
b =-'—11 L] (1'51)

1 By

i _1 5 _ =3 I
where m;}k"n i(xi x) (Yi ¥) s

e

with 5:'15 Ly, and
.1

='l L X,s The OLS estimate is obvicusly biased
1 n i 1

and the bias does not decreéase to zero ag. the sample size increases inde-

A 9
finitely, i.ess the estimator b is inconsistents The limiting value

N

of b'l is
A B '
plim B, = ———— eee (132)
n - (1 +\vu)
where ?u = 0‘2/ 0)2(. Hence P iz under—estimated (in the absolute

sense) in the limite The asymptotic bias is’

u
1 + 7 6 ) see (1.33)

B(’S ) = -
1 u

The OLS estimate in the classical linear EVM is biased towards the origin.
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Jdne can as well regress x on y and get a 'reverse least squares'

(RLS) estimator
. o
B, = moz
11

the limiting value of which is

~
plim b, "= 8 (14 Yv/)
T, s &2 =

v 2 2 oy g . G
where v,—( 0§+ 02)/(3 ox). The asy@ptot:.c bias of b2 is

B( ’%2 )y = 8y e (1.34)

v/

A Fal
Since the agymptotic bias of 'b1 and b2 have opposite signs, B lies
these

betweer /two estimators in the limit. For exemple, if 8 » 0,

b1 < B<b2

where b y and b‘2 are the limiting values of % 1 A

Gini had observed this long ago (Gini, 1921) and thought that an appro-

. 7~
and b, respectively..

*

- ~ ’ H
priate average of % “and b2 would lead to a satisfactory estimate

1
of B\_. He proposed the aritimetic mean of the twos Recéntly Kaila (1980)
proposed a new estimator of 8 which on examination turned out to be the
geometric mean of the above two esti_ma{:ors. Comparison of biases and
MSE's of these two average cstimaters does _r."not‘ lead to a:ny dei"inite
conclusion (}i@g Chapter 6, Secticn 6.2, also Pal, 1980a) .:

The exisiiepceof such bounds scems to be the only comfort in ;,
nor-identifiable models In the multivariate case it is not difficult
to get bounds foi' partial regression coefficients also (Priseh, 1934,
R?iersol, 1945} Durbin (1954) in his review articlei wrote 3 ‘
M The trouble with this result is that although lit is of great

interesty it does not help us to improve the accuracy of the
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LS estimates of the coefficients. It is only of value in
revealing the limits of veriation when we are in a state of
complete ignorance about the relative magnitudes of the error

variances" (p+31).

The direction of the bias in the two-variable EVM is alivays avail-
able given the sign of #, the regression coefficient. But the question
is ¢ Does this result carry over to the case of more than one explanatory
variables 7 The answer is unfortunately in the ncgative. ~If there is
only one regressor with error and all the other regressors are without
error, then the results carry through. The direction of the bias
gspecially for the coefficient attached with the regressor containing
error can be calculated. All we have to know is the variance-covariance
matrix of the observations (Levi, 1973)s In the general case, where all
the regressors contain errorsg, no such conclugion is possible. Theil
(1961) derived approximate formulae for the LS cstimators of the

regression coefficients in a lincar errors. The formulae
A 1

B, -8 ~ —, (& 8
1 1 1_p2 1

A—
B = B

_] - %282) see (1-35)

1—*7 (8,8 - 7, 8), vee (1036)

12

Fal

A .
where 81 and [32 are the OLS estimators of 81 and 82 from a regre=~
ssion of the measured variable y on the measured variables X, and Xss
P is the correlation coefficient between the true values X1 and.Xz,

and.€1, @2 are -the ratios of the error variances to the respective

variances of the true values of the regressors.
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In a two=regressor EVM where there is only one regressor measurgd
with error {this is called thé PLOXY variable), one may face the problem
of choosing Wetween the following two alternatives for estimating the
coefficient attached to the variable measured without. error. (main
variable) ¢

(i) %o retain both the variables and to find OLS estimate in

the usual manner, and ‘ s W

(ii) to omit the variable measured with error and then find the

0LS estimate regressing y on the error~free regressor.
McCallum (1972) studied'ip detail this question and concluded that the
use of proxy variable‘(i.e., approach (i} above) is likely to be advan-
tageous so far as bias is concerned (see also Wickens, 1972). Aigner (1974)
also dealt with this problem and studied MSE's. He found a condition for
the superiority of the proxy-variable method (approach (i))_ More recently,
Lahiri and Chaudhuri inveatigated such conditioné for the case where the
regressOrs are stochastic (z;QQ-Chaudhuri; 1979). Giles'(1980)-aiso
discﬁssed the seme problem and found a -contour of dominance for the bias
squareda. |

Thé‘brobiem is even more‘diffic&ifTif bofh £ﬁe fegress;rs are
subject to errors In fact, in this case the,direction og bias may be
in either way (Welch,:1975). Moreovery, no general conclﬁsidn,is possible
as to whether to use the.proxy.variable or to omit it altogether to
estimate the regression.coeffigient of the main variable. waeVeryry
depending on conditions on variances and covariances of the variables,
there are some cases‘where definite conclusions are possible (Garber

and Klepper, 1980).
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1.8 faditional Information and Their Use in Bstimation
Sincé the classical EVM is nor~identifiable, it is not possible
to get a consistent estimator for the slope parameter unless some addi-
tional informatioﬁnis available a rriori or cne is able to assume that
cither the true veriable X or {u, v) is nerrnormal.,
Usually, the following additional informations are used in

econometrics o o
(i) Either Ui or 03 or A = qi/ ciziboth UE and Gi are known.
(ii) Information on one or more auxiliary variables called instru-
mental variables (IV's) is available.
(iii) It is given that X is nor~normal or at least third-order
cumulant is nonrzero.l*l/

Sometimes a different form of the model is used guch as one ir—
cluding a lagged variable. Repeated measurementé are aléo possible at
times, especially in laboratory experiments. In laboratory experiments
the veriable x can be controlled (Berkson, 1950), while X varies at

rapndom from one observation to another. Xnowledge on higher mements

of EIV's may also be utilized (Schneeweigg 1976) .

1.8e1 Kuowledge of Frror Variances

Cases’ where one has prior knowledge of Gi or Gi or both or of

their ratio A (= Gi/'oi ) have been extensively discussed in the lite-
1

rature (Allen, 19%9, Seares, 1944, Madansky, 1959, Barnett, 1967, etcCa)a

From the classical EVI one ﬁay derive the fdllpwing equationsg from

exact relation =

1+1/ Sometimes specific dlstrlbutlonal assumptlon ig made depending
on the situation.
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Bx) = BX) =u AETO | S e (1 37)
cz = 'c}% + GE - ] (1-39)
05 - 8%+ szr‘ 3 s vee (1.40)
E 8%2{ | , e (1.41$

ML estimation uses sample moments in place of the quantities at the
left.s We have thus five equations to solve for six unknowns, namely,
‘ 2o 0o - :
G e O O and 8+ So far as variance-covariance parameters

are concerned the following three equations are relevant

2 2 2
Ux s ¥
02 = 62 2 + 02
y X v
. 2 .
UW = ﬁcxo

These contain four unknown parameters, '0}2(,' Gu, i and B.' Hence -

2 2/ 52 .
knowledge of ea.ther Gu’ or 0%, or © u/ v would enable us to get

the ML esta.ma.te of Bse In fa.ct,-

(i) If Uu ig known, we have the estimate of g8 as

iy a '2 - g

B = o /(2= 2, = e (1.42)
(ii) If 03 J.s__known, we have

N | ,

By = (92 -0l o, e eee (1443)

‘ '(iii):‘ If N = 65/ 03 1slmown then the estimate of 8 becomes

(Lindley, 1947122

1.2/ Lindley's est;una.te is ineerrect. We have-written Madansky‘s (19)9)
correct vorsion. One may see also Creasy (1956) et 1
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A 3 %2-1\ +\/(7\i§>1 b, - 1)2+47\’%f
63 - o - LEX N (1-44)
2A b
1
» A
where b1 =mﬂ/m20 and ‘b2 =m02/m11,
where m Loh Z( -;c)i( -7
135 % 14 yp T ¥

13
The above three estimates are ML estimates and can algo be derived

by weighted LS method. Lindley (1947) suggested that one should minimize

n 2
i§1 Wl(g) (yl -a=- BXl) e (-}045)

where the wi(B)-'s- are inversely proportional to the variances of

s S B}Ci given Xi’ lecey wi(’?)) = k/( 03 + 52 UE), where k does not
) : . 2, .2 . 2 2 2

depend on i. Now if Uu/ Uv ig known to be A, then cv + B . becomes

(1 + B2 A) 03. S0 nov minimizing (1.45) we arrive at equation (1.44)

as the estimate of B+ This procedure can be followed even when we know

only Ui or 03 (see also Sprent, 1966).

(iv) If both Gi and 0'3 are known, then we have two estimators
31 and @2 defined above. Thig is like the problem of overidentifica-
tiop, since in our case knowledge of only one of i and Gs'is
neceésa.ry. We can, of course, define a pooled estimator as

’éa = a /[3\1 +;(1 - a) 62

and find out ‘s so as to minimize the variance of %a (zee Chapter 6,
Section 6e3)e Thfa’ML estimator for this model, where both 0121 and 03
are known, exist (Barmett, 1967)e The ML estimator of B here coincides

A

with ‘53. But the other estimators ( U; etca) differ from those fo‘rr

the model where A =" 05 /03 is knowne
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1842 IV Bzstimation 5 O

Information on one or more auxiliary wvariables,; called instrumental
variables (IV's), which are independent of {or at least uncorrelated in
the limit with) the error terms and highly correlated with the regressor{s)
are sometimes useful for consistent estimation for B8 (Reiersol, 1945
Geary, 19493 Sargan, 19583 Liviatan, 19615 Mallios, 19693 Carter and
Fuller, 1980). | |

If z is such 'an IV then

™ - -
b = { g’l- bX Zl(yl - y)}/i %Zzl(xl d X)} cen (1046)

is consistent for B provided

plim m, (v +g, 2) = 0,
Il °
plim m11 (U-s Z) = 0,
nas «

and plin  m . (x, 2) A0 13/
N ™

If z is uncorrelated with x the sampling wariance of the IV esti-
mator is ihfinitely laxges. With only a gmall correlation between z and x
the sempling variance is large and we may be paying a very high price for
consistency if we use IV estimator instead of other available estimators.
In general, one should look for a variable z which is fairly strongly

correlated with X but uncorrelated with ny £ and v,

/ .

1s3/ In the case of multiple regressors where some of:the variables are
free from errors while the others are subject to errors, the vari-
ables which are free from errors may be used as IV's, provided they
are uncorrelated in the limit with the errors in the regressors and
in the regressand and also with the disturbance e:.
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An IV, if based on x's aflfected by errors, is likely to be corre~
lates wiivh u's also, since x is correlated with ue S0y use of such IV'g
may not be sgfe even for‘consistent egtimation of parameters. In prac-
tice; IV's are extremely difficult _to obtain and there is no means for
checking whether they are really uncorrelated in the limit with each of
the error terms and with the disturbance e »

The difficulty of finding IV's may be illustrated Withjthe aitua~
tion ip engel curve analysis (es‘timatioln of demand-expenditure relation-
ship)s Data on both regressor (total household consumer expenditure) and
regressand (item consumption) are affected by seasonal and other transitory
elements apart from data collection errors. Liviatan (1961) suggested the
uge of recorded income as IV. But recerded income is hardly available in
survey data collected in developing countrieg. Actually, recorded income
even if available cannot be trusted; because informants most of the time
are reluctant to disqlose their true incomes. Again, the errors in the
variables may have a definite relation with the recorded income. Liviatan
himgelf admitted that if recorded income includes current borrowing then
it is likely to be correlated with the error part of the total expenditures.
Again, if expenditure influencesl income then algo we face the sanme
difficulty.

We may now consider multiple regression situations and suppose
that several IV‘sF are availables Given a.set of IV's, the model can be
under=identified, justﬂidentifieé_or over-identified, depending on the
mmber of instruments available for the purpose. In an under—-identified

model we can 40 nothing but explore other types of information. An
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over~identified model can be- tackled efficiently either by generalizing
the mode: making it just~identified or by minimizing the variance of the
pooled estimator (Blalock, 1969, 19703 Joreskog, 1970, 19733 Werts,
Joreskog and Linn, 19735 Joreskog and Goldberger, 1975). Chapter &,
Section 6«4 discusses this case in detail.

The well=known grouping methods due,to Wald (1940}, and Bartlett
(1949) or the method based on ranks due to Durbin (1954) are special
cases of IV method (vide Joknston, 1972). The‘use of equifrequency
groups in the three~group method due to Bartlett is widely believed to
be optlmal or near optimal in a large varlety of situations. A careful
scrutiny of the supporting evidence, however, shows that most of the
X-distributions so far examined are symmetrical or negatively skewed.
Pal and Bhaumik (1979) showed that- for commonly occuring lognormal and
gamma distributions of X the optimal proportions in the three groups
should be 0.40, 0.45, and 0.15, approximately, for a wide range of
parameter values (gggg Chapter 3, Section 3.2 for details). The above
group proportions, however, dces not hold good in the case of heteros=~
cedastic disturbances. The optimum proportions in different groups
vory with the degree of heteroscedasticity (vide Chapter 3, Section 3.3).

It is also not recognized by many usgers that the estiﬁatois
proposed by Wald, Bartlett and Durbin are, in general inconsistent,
unless the errors in the X¥—variable are too small to affect the grouping
or ranking of the regressor values (Neyman9 J.s and Scotty He Lay 1951).
Durbiniactually proposed that the x-values be arranged into broad groups

after ranking, snd observations in the ith group be given rank i, to
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reduce. the bias of the Durbin's stimator. Clearly, there is scope for
further investigétions.into the biag of all theée'estimators and for
modifications for reduction of biase

It has been found that the OLS estimator of B in the EVM has a
‘smaller variance compared to the IV estimators. But OLSE is biased. To
compensate for tﬁis Feldstein (1974) considered the following WAIVE
{(Weighted Average IVE). |

WAIVE = N(0LSE) + (1-A)1VE,

and minimized the MSE of WAIVE to get the optimum N+ Sargan ana
. Mikhail (1971) tried to arrive at some approximate formula for the cumu-

lative distribution function of the IV estimators.

1e8+3 The Case of Nor=normal Regressor s Estimation Via

Moments and Cumulants

In view of the problem of identification mentioned ie section (1.6)
of‘this chapter some work has been done for the case of norr-normal
regressors (Neyman, 19515 Wolfowitz, 1952, 1953a, 1953 Spiegelman,1979) .
These deep investigations have not,'hawever,:led;to any useful‘procedures;
There are some simpler estimafors based on moments and cumulants which
are not optimal, but which may have moderately high efficiency.

Geary (1942, 1943) showed that

s

(e, s ¢, + 1)
A 1% Y2
- g > O *c0 .
P ke, v 1aop ¢ T2 i L

where K(c1, 02) ig the sample cumulant of order (01, 02) of (x, ¥),
is 2 consistant estimator for B if plim K(c1 + 1, o) £ 0, Thus,

n - %«
one has an infinite class of consistent estimators. The sampling
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errors of sample cumulants (or i ments) generally increase rapidly with
their order (Geary, 1942; 'Médansky, 1959). Hence, one should confine
oneself to estimators based on momenfs/oumula»n‘ts of the lowest feasible
orders. If Xwis asymmetric one should not go beyond third o:t;der cumulants.
Scott (1950) and Irion (1951) pursued this idea and presented
consistent moment estimators for B . Durbin (1954) also suggested IV
estimator which reduces to' a moment eatimator, because the IV suggesfeq
by him happéns to be fsome power of the regressdr X. The estimators
based. on third order noments proposed by Geary, Scott, Drion and Durbin
are members of a more general class éonsidered by the autﬁor (Fal, 1980b).

The proposed general élass wags defined as
A AR A A
BS =~f( B1g 82, 83') (XX (1048)

such that
, 2

(:L) f(-ca, cféz, c%)-: ceof( 31,7 Byo (35) for all ¢ £ O,

and (1) £(1, 4, 1) =1,
~

A A
where B4 Bs and .33

are three 'basic' moment estimators defined by

N ~
.’6\1 = mOZ/m125-' 82 = 111_12/1112_I and {3.5 = m21/m30.‘
BEvery coxilsisteﬁt estimator based only on third order moments must be a
member of this class. The asymptotic efficiencies of six. estimators
(taking three more members from this class) relative to OLS.estimator
were studied by Pal (1980) assuming logno-x"ma.].ity bf fhe regressor. The
esfimatoi's were-fcju-nd to be fairly efficient even when OLS is fully
valid. The best of them may be: chosen in a given situétion and this

would have moderate or high éffidiency (vide Chapter 2).
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S¢ott proved that the equation

-+ 3b2m — bsm = O LN ) (1 !49)

¥ feny 21 %0

“03 2
has a root which is a consistent estimator for 8. This result; however,
can be arrived at even if one takes a more general model where

(i) v given X has a symmetric distribution with mean 'zero' and

variance a2 Xb where 'a' and 'b' are constantsy and

(ii) v iz assumed to be correlated with u by the following relation

=80 + w see (1.50)
where 8 ig constant and w is independent of u and is distributed
'normally! with mean zerc and wvariance ‘05 (}.’L@.‘E Chapter 5, Section 5.3).
The setcond gencralization is gquite understandable and its need has been
stressed by many .writers in the EIV literature (y_i_@__e‘ Rao and Miller,1972).
The first generalization kas already been discussed in section 1.5 of
thig chapter and can be traced to Friedman's book (1957, p.27) where he
says « "'For a group of individials, it is plausible to suppose that
the absolute size of the transitory component (error component) varies
with the size of the permanent component (true component)!. McIntyre
and others (1966) in geological samples also found the same for
isotope=dilution measurements.

In some aprlications one may exploit prior knowledge of the shape
of ¥~distribution baged on analysis of wx=values. Thug 'in engel curve
analysis one can assume that true income or expenditure (per capita)
is lognomally distributed (Aitchison and Brown, 19573 Bhattacharya and
Iyengar, 1961; Iyengar, 19673 Iyengar and Jain, 19743 Bhattacharya,1978)

and hove moment estima‘t(;rs of gpecific nature. At first the parameters
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~

of the distribution of income maj be estimated by method of moments or
by ML method since the specific nature of the model is known. Then the
fitted parameter may be used to get consistent estimators for B: The
gpecific nature of the problen also allows oqe-to incorporate generali=-
zations (i) ana (ii) above (Pal, 1977). In fact, one can take three=
parameter lognormal or even take different types of engel curves. The
ML egtimation requires assumptions on specific distribution of u given X,
This may be taken as normally distributed with mean zerc and variance
32X2 or — +to make its rdnge finite — following (Say) a Pearsonian
type 11 distriﬁution in the range -— c¢X to ¢X where ¢ is a positive
constant. It may be mentioned here that the Pearsonian type I distri-
bution is a closed approximation to the normal digtribution. Also,

the first thfee moment estimators give the same type of equations. If
we want to emphasize the fact that the observed variable is always
non—neg%tive;. ¢ can be chosen to be less than or =squal to one.

Taking c=1 does of course simplify the task. '

1.9 The Berkson’s'Model

The model due to Berkson (1950) discusses a situation in which
the cbserved values (x's) aré controlled (sece also Kendall, 19523
Lindley, 1953), iee., instead of trying to observe a given X, one
fixes x5 (= Xi + ui) and tries to observe ¥ie This model can parti-
cularly be applied in laboratory experiments where a researcher can

fix the x~value tc a certain level and observe the results. Herg x is

, 5
fixed and X is a random variable giving rise to x. .The model is
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Yi=cx‘+5Xi g
ylSYi‘FVl gg i=1g 2’ ssay Tl ens (1.51)
x, =X, +u %
1 iR 1
or
y; = ¢+ Bxi+vi— Bui

’i=1g 2, eeeg Il sse (1.52)

ed
n
(=]
+
<
A I, e,

x, = }{i + 'ui
Since both v and v are independent of x in this case (since x 1s non—
stochastic); OLS procedure gives a congistent estimate of §.

Federov (1974) later generalized this model to the case of multiple
regressors. He obtained moment estimators which are consistent, yrovided

they have a limit. - Analysis of controlled variables specially to the nomre

linear case have also been discussed by Geary (1953) and Scheffe (1958).

1410 IZffects of Errors

\2) On Regression Lines ¢ Conditions have been established under

which the regression relaticnship will continue to be linear even when
the variables arce affected with errors (Lindley, 194;7‘; sce also,

Allen, 19383 Fix, 19493 Laha, 1956), Cochran (1971) examined the effect
of errors on the linearity of relationship between twe variables where
only the regressor contains crrorse The conclusion, for the situation
considered by him, is that the relation can be approximated by (J.) a gua-
dratic equation if X is skoewed or by (ii) a cubic *equation if X is symme-

trice The linear component obviously dominates the retation.
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{b) On the Bstimates ¢ Bgsides Berkson's M del therc are some

models where the introdnbtion of error terms in the regressors db not -
have direct influence so far as consistency of LS:reéression_cdefficient
in concerned (Durbin, 1954). Under the classical functional relation-
ship assumptlon Richardson and Wu (1970) obtalned the exact bias and
MSE of the OLS ‘estimate ‘of P Assuwlng that the EIV ard the errors
in the eguation are correlated Halperln and Gurian (1971) found thf
same for the two variable model. They showed that the downward bias
does not necesssrily hold if the.measurement errors u and v are corre—
lated {see also Rao and Miller, 1972; Levi, 19773 Reed and Wu, 1977) .
Robertson_(1974) also worked along this line and found asymptotic
variances of ML estimators when (i) Qi, (ii) 03, (iii) oi/ 02

(iv) both 05 and 03 are known. He also found asymptotic bias of
these cstimates up to order ﬁ“1. Assuming‘tha‘t arn estiﬁator of the

covariance matrix of the measurement errors is available Fuller (1980)

investirzatod the limiting behaviour of estimators for several EIV models.

(c) On the Correlation Coefficients and Others : The presence of

EIV's causes the variance of the variable to increase its valﬁe. Hence
any statistic using variance estimates”will show some effect. Cochran
(1968, 1970) calculated the effect of EIV on multiple Correlétion
coefficient. He aséuﬁed a model where EIV's are uncorrelated with the

true values and with each other. Introducing the<fbllowing symbols 3

Pi.= correlation coefficient between Y and.Xi
p; = correlation coefficient between y and x;

1

PR R,
- ¥
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vhere B and R, are relisbility coefficientsy ieee, 62 =R,( 0° + o° Y.
'l e o b 1 B 1 ei

(y and xi's are measured variables and Y and Xi's are true vaqriables.)
r’: squared multiple correlation coefficient between Y and X's
\'r'gi squared multiple correlation céefficient hetween v and x's.

Assume the simplest case where X and Xj are uncorreléfed for all

iand j such that i £ j, then

— 4
. =g (3 Py Ry / T07 ).

HV's induce a lower limitiﬁé vélﬁe of the value of ' " statis-
tic (Bloch, 1978)+ Thus it has effects on inferences also. The author
(Pal and Chekravarty, 1978) introduced a model whére income is subject
to error. In that it was proved that the presence of error induces the

not surprising. Iankipalle (1973) examined the effect of error on

partial correlation coefficients.

1.11 Repeated Measurements with Error i s

The problems with repented observations'éontaining“errors have
been extensively discussed in Madansky (1959) and Cochran (1968). Ir

we have N, observations on each (X, , Y.) with
i > 17 T

Yij':Yi*Vij?' e
LY (1.53)

4
'_I
[
]
bt
'_I
+
o
He
[
SR,
[
il

1.“3 2, aseeg Ni

and if the usual assumpticns on independence are made, then one can

perform an analysis of variance on the x's and the y's and obtain
estimates of B (Madansky, 1959). We can explain it by the following

table §
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Source ‘ Mean Squares ) Txpected Mean Squares
i 7 . 4 , 2 E 2 7
= L= I N~ - 0
%N.(x. LaXEs ¢ )2 0'2 +( 1 i ‘0_2
1 iMoo 00 : P e %
I fiad| , : ' A '
Between : n o
Sets z Ni(xi - x )(y.‘LO oo) = E 2\
1 | covlu,v) B0
1T 1 oviu,v nN—N _—
- = \2
=
N, (v i) , A
III 1 — oD+ 2 2
=" A § UX
n N:i.
2
Z Z (XJ. 10)
i=1  3=1 J 02
Iv ' N-=n |
I\T
n
o | Il -x SICAFA,
Within 4 de ) 4= | :LO Cov (u, v) .
Sets Nen1 '
~ _N'
n :L( B )2
4 Z (y. .~y
w .= D e 2
N=n v
i lgi . N:|. | . n lgi
Where: s e Xi-‘/Ni’ Vi = % le/N:L’ oo = I . le/N’
§=1_x:° 3= =1 j=1
N -
n #
F = % Ne= ‘g ™.
Yoo x5V J/ = g0 i
i=1 =1 =

P -

The estimates of B are (II-v)/(I-Iv) (III-VI)/(II—V), el

v (II1-v1)/(I=IV), all of which are. consistent. Housner and

Brennan (1948) gavc: another estimate of 8 in the same model.
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The above model can also be looked at from the point of view of
grouping, isee, Ge have n groups, each groups having Ni obgservations.
In this case also we have the same three estimates. - These three estimates
are due to Tukey (1951)- IV's can also be used in this situation
(Medansky, 1959) .

Following Lord (1960) + Degracie and Fuller (1972) proposed an
estimate of the following functionally related covariance model 3

y..=(x+‘ti+ BX..; i=1, 2, ....9nandj=1;2g-..,r

1] 1J
LR (1-54)

where n is the rmumber of treatments and r is the number of replications,
and T, is the ith treatment effect with XT, = O. Xij and yij are the
chserved values with errors following o bivariate normal distribution
with zeromeans. Assuming that the estimates of the variances of the
ohservational errors are available, they developed the estimator of 8
that are unbiased to O(fﬁ1) where r is the number of obgervations on
each treatment. But these types of models are not useful in econometrics.
They are usually used in experimental design.

Ord (1969) agsumed a model where replicated cbservations (only two)

sre possible for fixed true values of the variables, and obtained the

ML estimators for the functional relationship

Y. =g + BX, i
= & % i=1, 2, enny Il ( )
] ”~ 'R 1.56
where gij =X + oij % 5=1,.2
nizYi-l- Si %

with usual assumptions. This may be relevant when observations are

based on two independent situations.
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Dolby and.Freeman (1975) dealt with ML estimation of linear and
rnon-linear-functional relationships with replicated observations. The
analysis for bivariate case was extended to multivariate situations and
the error variance wag allowed to be known. .Previous articles dealing
with replicated observations are Villegas (1961), Dolby-(1972), Dolby
and Lipton (1972) etc. Dolby (1976) later worked on striuctural rcla-
tions of this type: Very recently, Chan and Mak (1979) assumed a linear

structural relation of the types

Y, =g+ B X.
= * i=1, 29 esescy Il

oo (Ta5T)

19 2, v-;c, r

.
1]

&
1l
o]
+
m
T I, T YA T e,

Xij = Xi + 613

with usual assumptions. He found the ML solution to be a root of a
fourth=degree polonomial. However, it is consistent as the number of

replications increases.

1412 Simultaneous Equations Models

Some of the characteristics of simultanecus equations models are

shared by EWM's. As for éxample,rin the simplest case of EVM, we have
y = a+6x+v-ﬁu+ £
= O4gx + &f ees (1.58)

In the simultanecus equatiéﬂéuﬁﬁdéis the regress;r(s) become(s) correla=
lated with the disturbance terme Here also x iéioorrelé;éa with &%
because both variables involve ue. In fact; the IV approach in EWM can
be treated as one ﬁethod of esfimation for simultaneous equations model.

Thus, when the regression of X on z (2 is the instrﬁment) is linear
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(ivcey X =y2 + 1) then we have

y = (X"'BX + e/ % 5
and x @ Yz + T § sen (1;59)
cwithe' =v=08u+ g, N=T 4+ u g.

The IV apﬁroéch to simultaneous equations models hag been discussed
in detail by Madansky (1976). Avery (1977) showed how a two= or three-
component error structure can be used with seemingly.unrelated regression
which has an application to large panel data sets. Garaci (1977p) deve~
_ loped a theory for the asymptotlcally efficient LS estlmatlon prOﬂedure
of gimultaneous equations models with meagurenent error. Hausman (1977)
proposed FIML and IV approaches to simultaheous equations models with
ELIV. Mariané (1977) found the finite sample properties of IV estimators
where the iﬁstruments are assumed to be non-stochastic. Dahiri and
Schmidt (1978) discussed estimation of Triangnlar Structural Systems.
Among other work on gimultanecus eguations models Robinson {1974),

Geraci (I9BO), Hausman and Taylox (1980), Phllllps (1980) etc., may
be mentloned.

Sociologists have long been applying simultaneous equations models
in path analysis and multiple indicators analysis (Boudon, 1965, 1967,
1968 Blalock, 19703 Wiley and Wiley, 1970, Werts, Joreskog and
Linn, 1973¢ Duncan, 1975). Joreskog and Goldberger (1975) developed
ML and other procedures to anfwiﬂely approached MIMIC model (PMultiple
Indicators and Multiple Causes) bf a gingle lafent variables. The

model is as follows @

y)" - 05111;1 + veee + C(K xK + & - R PR (1-60)
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The latent variable y determineg D endogenous in‘icators as
* N
y.! = 81 y + 111:, ey ym = BH] y + 'le sasn (1.61)

The\disturbances are all assumed tc be mutually independent. Work along
this line of causal analysis may be found in Blalock,(19t_59) s Costner,(1969),
Zellner, (1970), Hauser and Goldberger, (1971), Hzuuser, (1972), Duncan
and Featherman, (1972), Griliches and Meson, (1972), Goldberger, {1972),

Joreskog, (1970, 1973).

1+13 Bayesian Methods of EVM's

A great impetus to the analysis of EVWM was given by the introduc—
tion of Bayesian methods. Zellner's book (1971, Chapter 5) contains an
excellent review on this approach. The problems of identification from
Bayesian angles have been studied by Dreze,{1974) and Kadane, (1974).
Following Zellner, (1971), Lindicy and El-Sayyad, (1968), and Lindley
and Smith, (1972); Florens and others, (‘!974) have developed a theory
for EVM estjma‘tionsrand inferences in a Bayesian ﬁamewofk.

To provide the Bayesian analogue of the ML results of the func—

tional form of EWM, Zellner employed the following pricr pdf @

X, a» B I cv)oca1T vee (1.62)
et R

with =< , 8, X <°°,0<cu, Gv<°°'

In practice prior pdf's for B and A (= 03 / GE ) must be

|

N . M
assigned. BSince B lies between b, and b, in the limit one may a

1
assign a beta pdf of the following form

0 <_Z § 1,
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where z = (8 - %1 )/({;2 - /‘81),a and b.are prior paramei;erg to be assigned
by the investigator, and Bla, b) denotes the beta function with arguments
a and b A may be taken to follow an inverted gamma distribution. In
hig illustration Zellner found this procedure to give d very good posterior
distribution which is more peaked, unimodel and the mod®L values are very
clogse to the actual values. He also studiéd-structural form of the EWM
from the Bayesian point of views

The study of Florens and others (1974)emphasised the use of
"uninformative'i prior distribution. They also obtained posterior
distributions (i)} through an informative prior distribution on the
inoidental parameters, and (ii) through an infﬁrmative prior distribue

tion on the covariance matrixe.

1.14 Miscellaneous

Testing and Inferences $ One may test whether two regression

lines have equal slopes where the variables under study contain measure-
ment errors, if errbr;varianceslare known. Lord (1960) did the same
using duplicate measurements of the predictor variable to estimate the
measurement error variancé. Stroua (1972) éompared conditicnal means.

‘and variances of the two sets of obsérvations following EVM where the

variances of the measurement errors are Known. Rogot's work was on -

morbidity rates of two groups. He compared the two groups in terms of

morbidity rates in the presence of errors of misclassification.

In a functional relationship Halperin (1964) showed how one
gets confidence interval for the slope ﬁarameter'which ig different

from that obtained by tmstatistic. Before that he, in 1961, dealt with
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confidente interval around estimates of the form Zliyi JA 8l %4 (where

Eli =0 and El? =1) in a structural equation set up.

Applications ¢ 4&n obvious application of EWM's is to the theory

of consumption function introduced by Friedman (1957). Attfield (1977)
tried this model where only grouped means are available to analyse the
impact of consumption. A related work is by Ware (1972) where he
assumed that only i-anks of the means are known. Applications can also
be found in Sibling Models (Griliches, 1979), in Geology (McInt:yTe and
others, 1966), in Management Sciences (Warren et al, 1974)+ There are
cases (eeg., dummy variables in case of detecting a desease correctly
or incorrectly) where regression equation contains binary independent
variable measured with error, Algner (197%) examined the problem of

getting a consistent estimator in this situation.

OtI;ers ¢ In a structural TM (with one IV aveilable) the ML
estimate is the median of the LS, Reverse LS and the IV estimé:{:'eﬁ if all
these have same sign (Leamer, 1978). Zellner tried the MELO (Minimm
Bxpected Loss) approach to structﬁral equations models with errors.

The article by Zellner and Park (1979) cénta.ins a review on developments
along this line. Kunitomo (1980) derived asymptotic cxpansions of the
digtributions of the ML estimator and the OLS estimator in a linear
functional relationship model where the ratic of the error variances

are assumed to be known. ML Estimotions in linear functional and
structural Telationships were also discussed in Villegas (1961),

Cléser and Watson (1973), Bhargava .(1977), Healy (1_980).
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14 ma,j be mentioned here that some good review articles on the

© topic of EVM'g already exist in the literatures Particular mention may
be made of papers by Durbin (1954), Madansky (1959), Gochran (1968),
Moran {1971). Griliches' (1974) review was mainly concerned with simul-
tancous equations Models  Goldberger {1972b, 1974) stressed recent
trends in rescarch in the area. Iarkipalle (1975) and Chaudiuri (1979)
also did some review work on this line. %iew work of the aunthor
(Pal +1980e) mainl;} ex;plores- the possibility of finding moment estimators

in the EWM's where the regressor is norr-normalj through critical

inspections of the past work along this linec.
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Chapter 2

CONSISTENT MOMENT ESTIMATORS OF RECRESSION
COZFFICIENTS IN THE STANDARD EVM

241 Introduction

| In many’econometric investigations, the errors in variables (EIV)
are not negl;gible (Morgenstern, 1963) and vitiate LS estimation of re-
gression coefficients (Johnston, 1972). Thus, examination of 25 series
relaﬁing to éational accounts by Langaskens and Rijckeghem (1974) showed
that the standard deviations of thg errors raqge@_from 5 to 77 per cent

of the average value of the corresponding variable.

The well~known methods proposed for handling the classical EIV
model (EVM) in regression amalysis suffer from serious limitations 3

(a) ML estimation reguires strong assumptions about the distri-
bution of the errors and also some knowledge of the cove~

riance matrix of the error terms.

(b) The technique of IV estimation is not always handy because
suitable instruments may not be availablé9 and in any case,
one can never check the assumptions that the instrument is
uncorrelated in the limit with each of the error termse.

The Wald Bartlett grouping methods as well as the method
due to Durbin (1954) tacitly assume that the errors affecting
the regressor.values are too small to alter their grouping

or rankinges

v

-

This chapter examiﬁés“thé pOSsibilities_of an approach made by
Geary (1942) and others -apparently neglected by later researchers. The
approach yields consistent and reasonably efficient estimators of regre-

ssion coefficients based on uni- and bi-variate moments of third or
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~
higher order which are computationally simple and need milder assumptions
than those mentionéd in (a) anad (b) above. It is assumed that the errors
in the variables are independent of their true values (see9 however,
latter

section 2.7). The case where they are dependent will be dealt with in /
chapters which consider the situation where errors in the vériables

are possibly correlated.

Section (2.2) specifies the tw0fvariable regression model under
investigation and reviews the work done by Geary and others. Section
(2.3) compares the asymptotic variances of six moment-based estimatoers
mentioned in section (2.2).’ Section (2.4) compares the asymptotic -
variance of “the moment-based estimator with the least asymptotic variance:ﬂ
with that of OLS assﬁﬁjng that the regressor is error free, under speci-
fic distriGutional assunptions. Section (2.5) compares the asymptotic
efficiencies of the six estimatorsrrelative to 0LS estimator assuming
that the regressor is lognormally distributed. Section (2.6) deals with
egtimators based on higher moments which would be useful if the estima=
tofs bagsed on third-order moments fail, because the distribution of the
'true regressor' is ,;ymmetric.' Section (2+7) extends these ideas to
the case of w > 1 regressors and briefly mentions the case where the

error terms are correlated. Section (2.8) makes some concluding observe-

tions on the limitations of the results reached.

2«2 The Model and Available Moment Estimators

Consider the following set of relations 2

s - i= 1y _2_; seegy 11 .o (2.1}

Y. = g+ 33X, + &
1 - at 1

‘where X and Y are true but non-observable magnitudes bf the regressor
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and the regressand respectively; @ and B are unknown parameters; and

- & is the dis;curbénce which is normally distributed. The assumptions of
the Classical Normal Llnea.r Regressa.on Model (Goldherger, 1964) hold
excepting that X is stochastic and fully inde}{e}xdent of ¢ . The observed

values of regressor and re‘gressand are

xs =]’{i + uy and ¥y = Yi + v | Sr L2720

where u; and v, are EIV's assumed to be independent of true values

and between themselves, e, uyv; are assumed to be éeria.lly’ i.ieds with

AN 2 .
. E(ui) = E(vi) = 0' V(ui) = Ui’ V(vi) = UV' -?3-'
and
E(oai) =I 09 ‘ v(ai) = 028’ ’ vi. l
Let us write for sample ;rsoments
1w o =z R
= - & - -
m () = 5% (= = %) (y; -¥)
and
/ .1 g xS
mrs(x,y) T Ty *j Yy
where
':'c.-:lzi “ang S'r:lz.y 2
n i n Ui

We may also write for simplicity |
mio(x ’Y) = mi(x) 9 moj(st) = mJ(Y) o
Correspondingly true moments will be denoted %‘s' g;s, ui(x) " or U,j(y),

ag the ca.se may bes - 4T e - R+ aader i

LS

"It is well-known that under certaln condltlons the sample moments

are consistent estimators of correspgnding‘true mc;ments which are functions
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of a . ﬁ . the varlances Oi 03, 02 and the true ‘mom'ents of X, If

only ‘the momen‘ts of the f:l.rst and the second order are cons:.dered, five-

elatlons are ob‘talned for seven unknown parameters, viZe,; oy B

"121, '03_, 082,‘ Wy (X) and uf{]{) [or n (X)J In fact, 03_ and 05

always appear in the form of c_\zr + 02, so that in effect we have five
relations for six unknown parameters. The first five equations consi-

dered by Imion (1951) are 2.1/

(i) .ﬁg(x) = ug(X), e
(ll) m{(y) = q + Bu (X) - ' ,
(119 8f(x) = Wy + o,

(iv)  m)(y)

)l Goy) = o) + 8.

052 + 2‘056 Ll;(x) + 82 u;(X) + ( Uz + 03 s

One may, then, include similar equations based on third=order moments,
if u and v are further assumed to be symmetrically distributed or rather
having zero thrid-order moments One can choose from the four equaiions

-

given below §
(vi)  my(x)
(vii)  m,(y)

[

- uB(X) oo

i

; g(}c),,

(viit)  my, Gey) = (D),

(1) " mp(ay) = 62 py®)

-

2= /‘ Itr.':.on agsumed -a functlona.l rela.tlonsh:l.p between X and Y so that
‘ X is non=gtochastic and o = Q. 'However, the introduction of

02 does not alter the plctu:re.
E
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Inclusion of any two of these equations introduces only one new
unknown parameter, namely u3(x). Drion used the equation for mB(x)

and mS(y) and solved the system of seven equations for the seven unknown

parameters to get AT % /m, (y)/m,(x) as an estimator of which
By = /503 B

that
is consistent under the mild condition/ plim m3(x),£ 0 /[ or simply

n .
uy (%) £07.
For each pair of equations from the set (vi) to (ix) we get a

gseparate set of estimators. Thus, for estimation of R we have six

choices 2

N\ N Fa _ /S _ .gig/
By = Tgz/Myps Bo = Ty/Mpys Bz = I]“21/”130

A A
é/moa/mm, 55“;*:.\ mO',’/m21’ B6=+ fm12/m30

A "
The choice of gigns for 84 and 55 can be based on the sign of any

N
Bg

one of the other four estimates. Obviously from eqs. (vi) to (ix) it

follows that each of the estimators is consistent if HB(X)‘£ 0.

N

B and??

However. for the estimators 61, Py Bs

we have to assume, in
additicn, that g3 O.M
The first three estimators may be regarded as basic estimatorse.

All other estimators, based only on moments up to third order, must be

functions of these three estimators. Thus,

/ A /: ) A
84 ’ th B ] . = + 1 82’ B = 21 83

2.2/ Durbin (1954).
2.3/ If g=0, OLS estimate Bo is a congistent estimate of g and the

asymtotic variance is 0(1/n) — like that of — and this can
be ugsed to test HO 8 8= 0 in large samplese. H%x-:everw g =0 ¢=>%
ang y are fully independent (in the present model) and one can

test Hy $8 =0 in finite samples using rank correlation methods

or through- the t=test for sample correlation coefficient assuming
conditional distributions of y given x to be normal.
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In fact We can find infinitely many consistent est mates forming weighted
aritimetic or geometric means of these estimators. More generally,

suppose
nAOMNA
= f ( 81’ 82’ 83 ),

&7

so that
A A A AN A
£(c By o8y o) = of(fys Bys By) for all o 0
and
£{1, 1, 1) =1

A : A A A :
then BS is consistent since B., 8, and B, are consistent. Note

i
that BScott's (1950) estimateuf/ can be shown to belong to this classe.
. A
It may be mentioned that only By out of the estimators men-

tioned above is a member of the class of estimators proposed by

Geary (1942).

2.3 Comparative Asymptotic Variances in the General Casge

Fach of the above six estimators under mild conditions have
agymptotic norﬁlal distribution. Asymptotic variances of the six esti-
mators can easily be obtained. If in addition u and v are normally
distributed the expressions for the asymptotic variances reduce to

the following $

7 B e e
2.4/ Scott proved that mo3 3bm12 + 3b M, b m30 =0 has a root

which will be a consistent estimator of 8 . But she does not give

any method to find out the particulaxr root which will be consistent.

Both Scott and Drion assumed that Gi = 0. But obviously if

cr: > 0 the approaches i‘émain valid; only the estimate of cvz now

catimates 03 + 082. However, Scott also agsuned that u and v

are normally distributed which is not necessary for the consis=
tency property. Symmetry of u and v serves the purpose.
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<
1]

_ ] 2183
R {(Cu+CE,z)(b2 1) + 4C C¢ + BC;+ 2C Co/+ 6.1

1
== L 2 2 2 2
vV, =R {(cu + CEJ)(bE 1) + 267 + 20/ C) + 20/ + 2C O/}
v.=8¢§ (c +c/)( -1)+802+603+4cc;+20f02}‘
3 u £ 2 u u u e E 1
2 = 2,243 2,200
v, =R {(cu + cE;)(b2 1) + 207 + SCL + Lo+ 3 c2r3
_ T 2 2
Vs =R {(cUL + cs,)(b2 1) + 0.5C + € C./+ 0.5C, C]
+ 4565 + 1,500 3
_ . 2 3
Ve =R {(cu +C.7)(by = 1) + 450 + 1.5C7 + C G/

P ) 2
+ O.BCE/ Cu + O.BCE/}
and for OLS estimator we have

/
v =8 [CibC +1=0C + cﬁ} +0,(1 + cu)3 7

where .
2 2 2 2 2 52
R =B2/(nb1), ¢, =9 / 9% CEI:G?’/GQ oY) = {03 +92)/(8 o)
and ¢ ;
2 4 Y-
b, = w0/ ogs b, =p,(X)/ 0y ana R’ =8 /in(14¢ )" 3

Three interesting specific cases may be investigated here.

Cagse 1 ¢ Cu = 0. Here OLS estimation is optimal. In this case

V<V, (Vg

3 Y

V5 <y

L
[

2 ¢Vy
The egquality between VO and V3 holds iff b2 - b1 = 1 =0, lee., if the
variable X takes only two distinet values. V1 to V6 are all equal iff

CS\' = Oo

Case 2 o C€,= 0. Here also we get straightforward inequalities

between V, to V, as follows o

1
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In genéfal we cannot say which ene of V1 and V, is larger. But there

are cases for which we can say something such as the following theorem 2
Theorem 2.1 &  V.<V, if b <4 + 50 + 402 + ¢
0™ 1 u u u

Proof. Writing g(b1, b2) = Vb/%} we can easily see that

./ ) .
max g(b,sby) ¢ 1<===> by < 4+ 50 +4C +Co Q.E.D
2
Ce’= 0 is the structural case where the regressand is free from ervor.
)

Hence reverse least squares yields MLE

A
by = Y%t

asymptotic variance of which is, in general
V., = (8%/n) /C1C b, +1=0C s+ %3 +C(1+Cs)° 7
7 € g 72 el g u £

”n . Al
The efficiency of 91 relative to BT' in the present case, is

B ’M/ce/ =0) =, /(b, - 1),

A

A :
Observe that thig is the efficiency of 83 relative to BO where

Cu = 0 (section 4).

Case 3 & Gu =0 =C (say). if Cu = C.s - the relative magnitudes of

the variances can be shown diagrammatically as under

Vv =VO

V/ﬂ : }%V =V
4\v/1

3
where '__ . 'means '<' .
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Here the MLE is

A
88 = 4+ /m m

=/ 0% 20 *

where the gign depends on the gign cof M, e The asymptotic variance

of @8 can be shown to be, in general

B2

} 4n(1 + ¢ )(1 +C)

¥

= [ (v, = 1) (0, = ¢d°
+2c /(2 + 0 )(1 + CE»)2 +20 (2+ 001+ Cu)2 T

which reduces, in the present case, to

v, =8%0(2 + 0)/(1 + )%
A ”~
B, relative to B is

So, efficiency of 4 g
(2+Cho,

A
B BJC =Cus=0C) = .
i ol = 2(1+0)% £(b,m1) + 20 + &0, 1

o b{/(bg - 1), for small C.

General Conclusion s If @rror in X is zero then use thé estimater which
A

invelvesthe highest powers of x, i.e., 83 (= m21/ﬁ30). If error in Y

is zerc then it is best to use 81 ( = mOﬁ/h12) where the y values have

the highest power. If the two relative errors are equal then use

i
ﬁi (= 3/ m6;7m30) which have egual influences of x and y.

General Case 3 CugJD, Cgrg'o. It ig clear that V& and V3 are

symmetric in the sense that

v,(C,s G ) = V5(C 5 Cs

i.esy from V, we get V, simply by interchanging roles of Gu and C./.

1 3

This is also true for V5 and V6. Moreover
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ij V vV, if ¢ c ii} V vV, i N
(i) 1 <‘ g if e/< g Pl (ii) 5 < 6 if Ce/ < Cu |
We als- note that if Cu > Gs" then V3 = max(v1, V2, en sy Ve); and

if Cu< Cef, then V1 = |jax (V1o Vz,r veey Vs)

A , .
244 Efficiency of 33 Where OLS is Valid ¢~

We have seen that if ¢, =0, 33 is the best among the six

N
noment estimators. In,order to study the efficiency of B, relative to

_ 3
the OLS estimator, we assume plausible forms for the distribution of X.
. A A
Asymptotic efficiency of 83 relative to BO, if OE =0, is
A ) .

0% = 0)= = il

(B, |02 = 0)/(b, = 1)
Observe that the efficiency does not depend on Ce” and is a function

of b1 and b2 only of the distribution of the true Tegressors

Lognormal Bistribution $§ Lex X ~ /\( By 02). For simplicity

take p = 1, since efficiency remains unaffected by change of y .

B ? o) . P 1) (WP )®

3] u 8 6 e

W+ 2w+ 3w

i I
where ‘w= exp(G%/z). Denoting E( 63 qi =0) by E(gz) we may present

few of the values computed §

1im  8(c%) =0, 8(0.01) = 0.042, £(0,1) = 0.263
o QP .
E(0.5) = 0.421, E(1) = 0.339, E(2) = 0.143
A "
Efficiency of 83 increases from zero to slightly over 0.42_reaching a

peak between o2 = 0.5 and 0.6 and then slowly decreases to zero.
It may be mentioned here that for empirical size distributions
of population by per capita household‘donSumptibn expéndifure estimated

for rural and urban India from different roundsof NSS~the fitted 1IN
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distributions have 2 in- the region'of (0:25, 0.5) corresponding to

Lorenz ratie in the range of {0.28, 0.38) (Roy and Dhar, 1961).

Gomma Distribution ¢ Let X'~ G{ o, p}. Putting a=1 to

simplify calculations, we find the efficiency of 83 as
E(p) = 2/(v + 3).
Efficiency 1s maximum, 2/3, when p= 0 and decreases t0 zero as D ... *,
Salen and Mount (1974) fitted Gamma distribution to personal
income deta for the United States for the years 1960-69, and found that
the parameter p lay in the interval (1.94, 2.51) so that the asymptotic

A
efficiency of 63 falls in the interval (0.365, 0.405).

2.5 Comparative Asymptotic Ifficiencies Where X NA( iy ‘le P

We now examine the comparative asymptotic efficiencies of

A A

A ‘
'BO’ 81,.“., 66 in the general case where neither Cu nor Cg/ is nece-
ssarily zero. We assume that X is lognormally distributed, which is
realigtic in engel curve analysis in many countries (vide Aitchison

and Brown, 1957, Bhattacharya and Iyenger, 1961, Roy andDhar, 1960,

Iyengar, 1967). It should be noted that if C £ 0, the OLS estimstor

A A
is inconsistent, while 81 to 86 are consistent.

Symbolically, let X ~ A (1, 02), and

Ei = Vo/vi = the efficiency of Bi relative to b e 2.%)

Obviously Ei ig a function of 02, Cu and C./. We calculated the

asymptotic efficiency of each estimator as defined in (2.3) for each

2

combination of values of 0%, Cu and C
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C_ t 0, 0,01, 8,02, 0,05, 0,07, 0.1, 0415, 0.2, 0.5, 1.0
Cof? Oy 04015 0405, 0415 042, 0.5, 1.0, 2.0, 5.0, 10.0

0‘2 : 0001, 0.05’ 0‘19 Ol2, O.3g 0!4, 0-5‘ 0.69 0079 0089 009,

1.0, 1.5, 2.0, 5,022

The results are presented briefly through Table (2.1) and Fig. (2.1).

(a) As could be expected, the ranking of estlma.tors is 1ndepen—
dent of 02, though the actual asymptotic efficiency is
influenced by 02.

(v) vhen s is zero, §1 ranks first. As C, increases (Cu Temain-
ing constant) ﬁs, é\4, %\6 and then @3 take the first rank
sequentially. ' Fig.od gives a broad picture of their rela-
tive positions for different combinations of Cu and C

(c) We must note that as 02 increases asymptotic efficiencies.
~of the six estimators approach equality and for 2> 0.7
the estimators are practically equally efficient.

{d) It is seen from the table that when Cefa,nd 0% are held

A
constant, the efficiency of the varibus Ri relative to OLS

does not always improve ag Cu increaseg. The ricture

wonuld of course be different if MSE were c¢onsidered.

2+95/ These velues of 02 correspond to LR's ranging from 0.06 to 0.89.
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e A
Asymptotic efficigneies of B, (i =1, 2, eesy 6)
with respedt to '50 for different values of

2 ‘
\ g=, C'I.l and CS‘

By B B3

6, Cus o O: 0\5 1.0 0u1 0.5 1.0 01 0.5 1.0

0.0 - i - - - - - -
0u1  0.22 0,40 0.34  0.25 0.42 0.34  0.26 0.42 0434
0 s 0.1 0433 0.32  0.21 0440 0.34  0.26 0.42 0.34
140 0,06 0.25 0,30 0417 0.38 0433 0.26 0.42 0.34
0.0 0.25 0.88 2,85  0.24 0.87 2.84 0,21 0.85 2.83
0.1 0021 0461 2.65 0423 0463 1.57  0.21 0461 1457
o 0ut1 0.37 125 0.19 0.5 0475  0.21 0.46 0.73
1.0 0.05 0,26 0.79  0.16. 0,29 0.53  0.22 0.42  0.54
0.0 0.17 0.96 3.86 0,13 0.91 3.83  0.07 0.76 3.68
0.1 0.15 0.82° 3.24  0.13 0.81 3.23  0.07 0.68  3.12
™ 0. 0.08 0,52 197 0412 0.58° 2.02 0,08 0.52 1.97
1.0 0.04 0.33 1e31 0410 0445 141 | 0.09 0.43 1.40
0.0 0,10 0.59 2.43 0.06 0,54 2.39  0.02 0.35 2417
0.t 0.09 0.55 2422  0.07 0.5 2,19  0.02 0.34 1.9
1 005 0.06 0.40 1.63 - 0.06 O 1.64  0.03 0.30 1.53
140 0.03 0.27 1420  0.06 0.34 1.26 0.05 0.27 1430

contd....ﬁ/-
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) 5 %
c, O 061 *+ 0.5 1 11.0 0s1 0.5 1.0 0s1 045 1.8
R R R A e
0.1 0.25 0.42 0.34 0424 0441 0434  0.26 0.42 0.34
00 0.5 0,20 0440 0434 0416 0,37 0.33  0.25 0.42 0.34
1.0 0e16 0437 0,33 0,10 0.33 0.32 . 0.23 0.41- 0.34
0.0 0.24 0,87 2.84  0.25 0.88 2.85 0.22 0.86 2,84
0.1 0423 6.63 157  0.23 0.62 1.57  0.23 0.62 1.57
%1 4.5 0419 0s44 0.73 0415 0.42 0,72  0.22 0,46 - 0.73
140 0415 0438 0453 0,10 0,34 0.51  0.21 0.42 0.54
0.0 0.13 0491 3.82 0,16 0.95 3.85 0410 0.85 3.77
0.1 0e13 0481 3.23  0.15 0.83 3,24 0,11 0.76  3.19
. 045 0s13 0459 2,02  0.12 0,57 2,01  0.12 0.57 2.09
140 0u11 0ud6 1edi 0,08 0.42 1438 0412 0,47 142
0.0 0.06 0.52 2,38 0,09 0.58 2.42 0,04 0.46 2.31
0.1 0.06 0,50 2,18 0,09 0.54 2,22 0,04 0.44 2412
e 045 0,07 0442 1465  0.08 0,43 1.65  0.05 0,38 1,61
1.0 0,07 0436 1.27  0.06 0.34 1.26  0.06 0.34 1.26
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In table 2.2 we present some typical situgtions in Engel curve

analysise

M
Teble 2.2 ¢ Efficiencies of B (i =1, 25 sesy 6) with

regpect t f; s typical situations
° E - v '
Cu o) 2 Ef r'L\ (‘\ %?ficjn en%,y Of {3\* @
1 2 3 4 5 6

0.5 0.306 04391 0.411 0.389 0357 0.409

0.4 1 0.209  0.359 0,403 0.347 0.292 04394
2 0,108 0,314  0.399 0.278 0,200 0.376

0.05
0.5  0.341  0.409  0.424 0.407 0.383 0,422
0.5 1 0,250  0.378  0.411 0.370 0,324 0.404

2 0.140 04340 0.404 0.310 0.238 0,388

o
N

Fige2e1s Showing best estimator for different
SOML e Loy Ol O alll U e
w. . £
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246 Istimation Via Cumulants ¢

We firs't give some results 6n hivariate cumilants which throw up
a gseries of estimators of B8 including some of those proposed earlier.

Let K(m,n) or.Km’-n(X,Y) denote bivariate cumule;.nt of order (m,n)
of the join‘I; distribution of (X,Y) 3 /(m,n) denotes the same quantity

for (x,y)——/ The follow:.ng theorem was proved by Geary (1942) 3

Theorem 2.2. Suppose (u, v) is jointly independent of (Xg Y). Also
suppose that u is 1ndependent of ve Then

A

A /
8 K (c1, c2+1)/K(c.1+1, 02), c

it

’ and 02> 0,

is a consistent estimator of B if K(o,I + 1, 02) £ 0.

The only ea;timaﬁor of this ‘type based on cumuiants of order three
is K112/ 1(\2/1 f o B i AT on e above, u and v are symmetrically distribu-
"ted then there exis.t two more estimators via cumulants of order three,
namely, |

A, N, W ATAYS
Kos / Ky  and Ky /X

which are consistent undexr the same condition. O‘Dserve that K./. = uij
for i + j = 3. Hence these estimators are nothing but ocur }[;\1 ’ %2 | ~nd
5 congidcroed in scction 2,2,
Bvidently, our method of” estimation via third=order cumulants
fails when X is symetfric y distributeds For a symmetric distribution
of X, provided K 4_(}{) ;4 0, estimation via fourth-order cumilants is
possible. In general, the following results follow ;‘rom properties of

curmlants listed in appendix?

26/ Properties of cumulants are stated in the appendix (2.1).
‘ v _
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(1) Forr> 2
x"(0,r) =g (1, = 1) + K _(v).

Yow, if v is symmetric and r is odd (2 3) then Kr(v) = 0. Hence
E?= £V109 r)/ £>k1, r - 1) is consistent if'K(1, r - 1),% O.

(2) Similarly, if u is .symmetric and r is 0dd ( 23) then
g: /I:Z\/(r - .1, 1)/';{8/(1', 8 ic consistent if K(r, 0) £ 0.

(3) If u is normally distributed then Kr(u) =0 for r 23,
Hence 'é\:%/(r v i)/ Q/(r, 0) is consistent for any r2 3 if
k" (z, 0) £ 0.

(4) If v is normally distributed then Kr(v) =0, for r 2 3.
Hence '{’3\=§/(0, r)//I‘CV('I, T -~ 1) is consistent for any ri 3 if

{1, =1) £ 0.

In particular, in addition to Geary's estimators via fo
cumulantse we may have two more consistent estimators if we Agsume that

u and v are normally distributed. ‘
N P A/ A
(3, 1)/ ¥/(4,0)  ana ¥'(0, /%1, 3)

both estimators being consistent if XK(4, O) ;é O. YTor the second esti~

mator we must have in addition 8 £ O. .

2«7 Some Extensions and Corments 2

We may consider the case of m regressors each subject to error
besides the regressand, making the same assumptions as in the previous

gections. OQur model is

Y=gyt 31}{1 + eeee Bmxm + e cee (2.4)
xi =Xi+ui l--"19 2—, csey I XX (205)

= Y+ v ese (2.6)
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Suppose

- - ik e . i

Y::Y""Y and Xi =Xi‘*Xi, l=19 2; essey Ty
and similarly

/ - / - .

y=y-y a'nd xiﬂxi-xi', l=1’ 2, ey m;

v and ui's are assumed to be symmetrically distributed.

Then g
m
S se
E(y x;- )= 2 83 E(xj. Xiz), i=19 2, teney I,
5=1 ’
Hence
AB::B
where
- : - /2y
A= ((aij)) with a5 = E(xi Xj)’
/
g = (B.lv 829 o--:Bm)v
and
7 s jen 2
B'= (B(y'x[%), «eer BG/X)).
c N ALA ' A A
e s B =4 B is consistent provided that | A{ £ O, where A and B

are consistent estimates of A and B.

In many empirical studies we must relax the agssumption that u and v
are independent. We may take (u, vj to be bivariate normally distributed
with unknown correlation coefficient P. Interestingly enough, our estima=
tion procedure does not differ at all in either way. Both sets of assump=
tions give us same estimate of 8 . Thig is due to the peculiarity of
bivariate normal distributio? which says fhaf Kij(u, v), for i + j > 2,

is zero. The multivariate extension of the problem of correlated errors is
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also similar. This is dee to the fact that marginally each Uy is

normally distributed and each pair (ﬁi, uj) is bivariate normal.

The method of estimation via cumlants originally introduced by

_ Geaxry may be looked upon as application of the IV method; instruments

W from x and y itself. As for example, the three third-order
cumulant estimators may be viewed to have instruments 21( = y'lz),

22( = xy') and 2,3( = x’/z) respectively.

2.8 Conclusion =

Mhis chapter examines the possibilities of moment/cwmllant based
estimators of the kind first propoged by Geary. It proposes some new
estimators of that class which have smaller asymptotic variances in some
specific situations. It also compares the asymptotic efficiencies of
various estimators based on third~order cumulants and finds the best
estimator in thet " .class in different regions of the parametric space
assuming lognormality of the regressor which is realistic for some
economic data, eeges in the Engel curve analysis. Efficiencies of these
estimators relative to OLS have been investigated.

.As soon as errors affect cobservations on the regressor, compariscn
of the variances of these six estimators ( ?3\1, sy é\é) with the variance
of the OLS estimator ( @O) does not seem to be justifiable on the grouhd
that the OLS estimator is biased and inconsistent. So the two MSE's should
be compared and since the- @i's (i =1, 2 ...,”6) are consistent, the
eff iciency of the gi's relative of ){3\0 based on the MSE criterion goes

to infinity as n» = .
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The choice of one out of the class of estimators mentioned in this
chapter ?ﬁi:difficult in many situations, because this requires estimation
of the variance of every estimator. It ig well=-known that standard errors of
eatimators of curmlants generally inorease-with their order (Madansky, 1959,
Geary, 1942). Hence one should not take higher-order cumulants when
estimation is possible by taking lower-order cumulants. So if X is
asymmetric ( us(X) ﬁ 0} one should base the estimate on cumulants of order
three. The assumption that ua(X) A0 is very importantf@n this case.

If X is symmetric nor~normal (so that Ka(X),é 0) then onefshould use

fourth=order cumulants.

Geary admitted that this method is inapplicable if is normally

distributed. In fact, if all the cumuwlants of order three or re vanish,
then one can conclude that either (i) the variates X and Y arc inde
cr (ii)rthey are normally distributed. It may be recalled that if
(%, ¥, uy vs €) are normally distributed, then the parameter, 8, of
this model is not identifiable (Reiersol, 1950).

The assumption of .independence of true and error qomponents may
sometimes be inappropriate. Many economic variables like income or
consumer expenditure are seasonally affected and if the reference period
of the enguiry is short (say, a ﬁonth preceding date of interview) then
the error components are likely to be dependent on the true components.

This problem is considered in Chapters 4 and 5.

In general, methods of tackling econometric problems with errors in
variables should depend heavily on what is known about these . errors. To
reiterate Morgenstern (1963) ¢ 'As long as theory has not been sufficiently
developed to cover the complicated cases of many simultaneous sources of

ergor and their shifting nature of interdepcndence,; one must proceed on an

heuristic and common sense basis'.
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Property 2

Property 3

Property 4

Property 5

Property 9

”e

83

Appendix 2.1 2 Properties of Cumulants

Curilants are invariant under changes of origin, except
the first (Kﬁ = u{ e

If the variate values are multiplied by a constant C, K,.»
is multiplied by C¥.
The cumulant of a sum of independent variables i the sum

of the cumilants of the variables.

K, (r > 3) =0 for normal distribution.

The bivariate cumulant K_ , (e
42 G 1
independent random varisbles is zero.

>0, ¢, > 0) of

2

If (u, v) is independent of (X, Y) then

X (X+u, Y+v) = K, c2(;\<,Y) + K

L (u,v).
L . 1 °

19 ‘2\
Kc1’02(X1, a+bX2) equals a + be1902(x1, X,) if
C

e, =0ande, =1, and b 2 Kc

x,, x.) otherwise.‘
1 2 C, } 2

19
Any odd ( > 3) order cumulant of a symmetric distribus

tion is zZero.

For a bivariate normal distribution, the bivariate

curmlant Kc1, . =0 if c, + c, > Ca
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Appendix 2.2 § - Derivation of Asymptotic Variances

= ug(x) + ug(u) = uz(x}
= (XJ Buz(m— B, (u)
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CHAPTIR 3
OPTINUM CROUPING ESTIMATORS IN THE STANDARD TWO-VARIABLE EVM

3.1 Intro (iuc‘_tipn

-

A. Wald (1940) suggeS%ed a grouping Jme’thod for estimating the
slope of a'straight line re;gréssion where theﬁ:'regr'essor X is subject to
orrors of observation. His method consists in dividing the observations
(x., y), i =1, 25 eeesy N, into two equal groups according to the
order of x; ta, The centre of gravities of the two groups in the sdatter
diagram arc 'then Jo:med by a straight lineto get the desired 510pe
estimator.

Later Bartlett (1949) proposed as aﬁ improvemenf upon this method
a three-group estimatore Here the scatter dlagram is divided into three
equal groups accord:l.ng to the order of x:L 83 and the m:.ddle group is
neglected for est.una.tlon of slope (8), isce, the centre of grav:.tles of
the two extreme groups are 301ned by a gtraight llne to get the estima~-
tor of B (8ec alsc Nair and Shrlvastava, 1942 and Nalr and Baner joe,

1943 ). Symbolically,

S ‘— . e bB = = = it ssso (3 1)
. X —— x‘i | - et s

where (y1, x.) and GQ’ X, ) are means of the flrst a;nd last 33—5 per
cent observations. In the case of Wald's estmata‘r (%w) they consist
of first and last 50 per cent obsemfatlons, J..e._,:_ the?.mlddl‘e' group

congists of no cbservation.

Eroa B W
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These grouping estimatoré‘i'l/ have two disi{inct advantagcs over
the DLS estlmator. F:.rst, they are very s:unple and hence convement from
the view po:.nt of appllcatlon. Second, they can allow f or errors in the
regressor to a certain extent ¢ If the ranking of xs 's is the same as
that of the underlying values (J& g} then these estmlators are conslsten‘t.
It is -‘t;rue, however, that there is some loss of efficiency if LS method
ig valid (i.e., the regressor is free from crrors). For the case of
equispaced X-values, Barlett showed that his method based on threc equal
groups is optimal ‘within the clags of three-group egtimators and hence
more efficient then the Wald estimatoT.

Later, Theil and Van Yzeren (1956) suggested that the extreme
groups should cach contain 30 per cent of the observations {i.cu,

P, = 0.3, P, = 0.4 and p3 = :O.Eg where P = propo?'tion of observations
in the ith ordinal group). They got this result by assuming X, the
regressor variable, o follow a Bete~distribution. They found that
these ace approximately the optimum proportions of observations in the
three groups. The primwn proportions were determined by minimizing the
gsampling variance of the slope estimator which is propo:tional to

1/8(x,) + 1/F(x ) .
V = 'S ] a=sn (3-2)
(%, = x) vy

‘ ¥ = X
where X1 —;F-'(X—)-tf) tf(t)dt, o

1
-_F(X_T f 1£(t)at,

R

and (1) = _(_T tP'1 (1-t

T RS reﬁiesen‘ﬁs“dénsity

3.1/ These ave in fact Instrumental Variables estimators (See Johnston,
1972) .
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function of X and.F(.) the corresponding distribution functién, and
X1 and X2 the upper and lowerulimits, respecfively, of ghe_fifst and
the third groups. However, the only pairé of parameter Q@lueé (p, @)
considered by them were (1.5,71;5)9 (2, 1.5), (8, 8), (10, 4); the

- 3/2

corresponding skeﬁness coefficient (71 = i3 /p,a where i = rth
central moment) baing O, = 0422, 0y = 0.46.242/ Theroptimum efficiencies
vis—a-vis OLS ranged from 0.826 to 0870 and the efficiencies for fhe
suggested grouping were almost equal ranging from 0.809 to 0.870,

The motivation for the present study is the need for allowing
for transitory (seasonai) elements in the regressor and regressand in
Engel curve analysis. In Engel cuxrve analysis the explanatory variable,
viZey POr capita ihcome and total expenditure are clearly positively
skewed and they are often féﬁnd to be lognermally distributed Qﬁitchison
and Brown,‘1957, Roy and Dhar, 1960, Bhattacharya and Iyengar, 1967,
Bhattacherya and Chatterjee, 1971, Iyengar and Jain, 1974, Jain, 1977)
or sometimes gamma (Salem and Mount, 1974). Since, in these situations
the regressore(x) is quite différent from those considered'b& Bartlett
(1949) and Theil and Van Yzeren (1956), the grouping recommendea by
Theil and Van Yzeren is not likely to be efficienf in such cases. ~

Researches by Theil and Van Yzeren (1956), Nair and Shrivastava
(1942), Neir and Bancrjec (194%) have created the imﬁkession that in
most cases the 'optimal' grouping is obtained if t@gnthree,gTOupé corr

tain equal mumber of x=values. & careful gerutiny, however, shows that

3,2/ Both Bartlett (1949) and Theil and Van Yzeren (1956) considercd
the classical set=up for two-variable linear regression where x
is free from errors. The same approach i's followed in this in=
vestigation alsc. ‘ . -
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these 1nvestigations hardly corsidered any skewed distribution of X. Most
of the distributions considered by them, e.z., Normal, Uniform, Traingular
etc;; are not realistic for many situations.' Only Gibsom and Jowett (1957)

studled, among ‘other types, two particular forms' of gamma dlstrlbutlonéL2{

The aim of this investigation islto find optimal groups for log-
normal an& gaﬁma type dist¥ibﬁtiéns‘of X for a wide range of parameters,
covefing gituations_likely to be énéountered in Engel curve analysis.
Here it‘may belmenfiéned that Salem and Mount (1974) found thé skewness
coeffiicients and the coefficients of Kurtosis (v2 = u4/u§ - 3) to lie in
the ranges (1.3,:1.4) and (2.4, 3.0) corresponding to the empirically
found values Qf‘fhé parameter r in the range (2.0, 2.5). TFor the empi-
riqai sige distfibutions of ﬁopulafion bf per—capita household consumption
expendit;re estimated foi'rural and urban india from successive ;ounds
ofl the National Sample Survey (NSS) the fitted lognormal distributions
seem to have 02 (the variance of the loéarithms) in the range (0.25;
0.50) corresponding to Lorenz r&tio (&) betwedn 028 and 0.38 ( Roy and
Dhar , 1960 ); Corresponding ranées of skewness and Kurtosis coefficients
are (1.75, 2.94) and (5.90, 18.51) respectively—still highér than those
found by Salem and.Mount. More recently Almed and Bhattacharya (1972)

found it to be three—parameter lognormal the third parameter belng the

threshold parameter.

33/ The probability dengity function of gamma distribution is
f(x) = —-—— x“’-’_"*“é’”X/ S e ) <x - >0y >0
: /rxr Ye e 3 '
- The parameter ¢ is & scale-parameter\and does not matter in the
choice of optimal oups. The other parameter r is important.
Gibson and Jowett %r957) chose the values 1 and 4 for this

JEEOE | UL AV
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In section 3.2 we find he optimum proportions of the three-group
procedure when the regressor follows a lognormal or gomma type distribu~
tion. It is found that for commonly occuring distributions of regressor
values the optimum proportions differ considerably from those recommended
by Bartlett, Theil and Van Yzeren. Roughly speaking, the optimal alloca~
tions are about P, = 0.4, P, = Ced5 and 93 = 0.15. Urouping estimaters
hagsed on such groups ma& be apprecizbly more efficient than the Bartlett
estimator or the Theil and Van Yzeren estimator (Pal and Bhaumik, 1979).

In the section 3.3 of this Chapter we extend the sane idea to
‘the case corsidered by Lancaster (1968} where the disturbance term is
neteroscedastic. Lancaster considered the following set-up with

heteroscedastic disturbances &
ar — & + D 3 T Z '] e w -
Yl }?}Xl 519 1 Ts 2y s 1 (3 3)

where « and 8 are parameters 1o he estimated. The standard

Gause-Markov model is assumed except that

SRS, » e
V(E_“_Li) - ?\}{i 7 7\>O eve (3'4)

where A and p are constants. The case D = 0 reduces the situation to
homoscedasticity and in this case the CLS estimators are BLUE. Though
p may take negative values, it is plausible to assume p to be greater
than zero. Katona and others (1954) found the standard deviation of
savings within each of several income classes to be proportional to
the average income of each class. Goldberger (1964) also found p,
which may be called the degree of heteroscedasticity, to be about 2

in the savings-income relationship. Lancaster (1968}, however, found
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p to be,approxiﬁately equal tc 145 in the compary divident payments
and company profiit relationship.

The BLUE's of the coefficients in this model are those given by
Generalized Least Squares (GLS); these are the same as OLS estimators
obtained from (3.3) after dividing throuéh by the appropriate power of
X. The interest mainly centres on estimating 8., since the parameter ¢
is eagily estimated once we egtimate 8.

Lancaster examined the efficiencies of the three estimatbrs of g
vié., the LS estimator, bL,kIald‘s estimator bw and Bartlett's three—
group gstimator with equal number of observations in each grgup bB, rela=
tive to GLS estimator 9:5 Lancaster assumed the regressor X to follow a
two~parameter lognormal distribution /\(n, 2 ) where E(log X) = g
and V(lpg:X)‘=702. He foun? some interesting results from his studys

(i) As expected, the efficiency of OLS estimator relative to
GLS estiﬁator monotonicélly decreases as p increases from zero. As
against‘thjs, Wald's and Bartlest's esfimator attoin maximum efficiency
when p is  near 1. | .

(i1) For moderately high coefficient of variation of X and with
high value of p grouping estimators become superior to OLS estimator.
Lencaster concludes ; "Our results suggest that in additon to its
well=known computional simplicity, the grouping estimator performs
better fhan OL8 in the presence of héteroscedésticity af a type which

the scanty evidence suggests is common with economic data" (Lancaster,

1968, p.188).
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In scection (3.3) we find the optimum allocations for the three=~

group estimator in Lancaster's set-up assuming X to f@liorw' lognormal or

 gemma distribution,
visr._e'.-vi;s GLS estimator is compared with those of OLS, Wald's and
Bartlett's estimators. Here again., the optimal a2llocations are fa.f from
“those suggésted by Bartlett and Theil and Van Yzeren. As expected, the
alloecations depend heavily on p'. "'"Fdi{'hig'h‘ values of p, the optimum-
\falues of Py and P, are ne?arly tlle reverse of the optimum valugs for
i;ile homoscedastic case. In any case, the efficieney can be considered
enhanced by use of optimal groups iﬁsfe&d of equal or nearly elqua'l
groups {Sil et al, 19811). It ar.lso discussed t'he results and shows

their relevance to problem with errors—in~variables.

3«2 The Homoscedastic Gase

Given a distribution of X, one can'comparé different allocations
of the observations into three groups usi»ng the expregsions ffor V‘,given
in equation (3.2). It is eagy to see _the;t the ratio of V=values i"or
two such a;llo;:a:t;'.ons is invariant under a linear transformation of X.
The comparisons for the gamma distribﬁtion can be done for a fixed
value of the scale parameter c¢; and those for the thiee—pa;pameter

lognormal for fixed values of T {the threshold parameter) and .

Lognormal ¢ X ~ AN(t, u, 02)

We take T = 0 and pu= 1. For different values of 02 in the
range {(0.20 = 0.65) we found the optimal proportions in the three groups
and the correéponé‘ing efficiencies of Bartlett typé estimator relative

to OLS estimators The results are summarized in Table 3.1.
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regressor X ~ f\(., g

110

Lorenz ;E‘Erfi.ciencv vig=a=yis OLS
g2 rTatio ¥ y Wald Bart- Opti= Approximations
(IR) 1 2 Py Pz lett mum to optimum
0.4 p,=0.4
p3=0.1 | p3=0.‘| 5
0.20 0.25 1.52 4435  0.35 Q.17 0.54 0.68 0,77 0.72 0.72"
0.25 0.28 1475 5.90 0.37 0416 0,51 0;66 0.76 | 0.73 0.73
0030 0430 1.98 7.71 0438 0,15 0,50 0.63 0.76 0.74 0.74
0,35 0432 2421 9481 0.39° 0.14 0.48 o.éo 075 - 0473 0.73
0.40 0434 2445 12427 . 0.42 0413 0.46 0.58 0,73 0,72 0.72
0e45 0436 2.69 15.14 0e43 0.12 0.43 0.56 073 0.72' 0.72
0.50 0.38 2.94 18.51 0.43 Cu12 0.42 0,54 0,72 0,72 0472
0,55 0440 3,20 22,45 0.43 011 0440 0,51 0.71 0.0 0.70
0.60 0442 3,47 27.08 o.éﬁ 0.10 0438 0.50 0.70  0.70 0470
0.65 0443 3,75 32,53  0.44 0410 0.37 0.48  0.69 0469 0.69
. Y= ua/ ug/z,
sy, = (n/ wy-3
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Efficiencies of the optimal three-group method is found to be in
the range (0.69 = 0.77), whereas the efficiencies of Wald's and Bartlett's
equal=groups estimators are in the-ranges (0.37 = 0.54) and (0.48 = 0.68)
respectively. Clearly the,optimum a;location leads to a substantial
gain in efficiency oﬁéf Bartlett's procedure.

"A close look at Table (3.1) suggests that the following procedure
is nearly optimal in most cases § Toke the lowest 40 per cent observa=
-tionsrin the firsf group and the highest 10 (or 15) per'cent in the
last group and then joi£ the fwo centres of grafities in the scattér
diagram by a straight iine to'get the sloﬁe estimator. Compared to
the strictly optimal ailooatién this procedure éntails 2 loss of
efficiency not exceeding 5 pe¥ cent. The ﬁercentage allocation 40145115
seems to be the most advantageous in the light of the ¥esulté reported

below for the gamma distribution.

Gamma & X ~ Glc, T)

The parametor c. is taken to be te We calculated optimum group
proportions and associated efficiencies for the following values of p
(Table 3.2) 3

P = 1400y 1425, 1450, 1,75, 2.00, 2.25, 2.50, 2.75, 3.00,
3.25_3 305097 3.75, ‘4.00. }

Table (3.2) algo suggesté a practical procedure which is nedrly
optimal in most cases I Here the percentage of observations in the
three groups may be taken as 40840:20 or 40345315, The loss of
efficiency with either of the allocaticns 1s less thaﬁ.3 perlceﬁt in

all the cases considered in Table (3.2).
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Table 342 ¢ Efficiencies of different estimates where
regressor X ~ G(ey T )

¥

Torenz .  sx Efficiency vis=a-vis OLS_

r r?é;g . Y, By Py Wald ?a::— Opti= Aplgroxil-!;a_a.tions I
e IAm O OPLIIE
. ; p1=0.4 : p1=0.4
*\ p3‘=0..2 p3=0.15 1\

1.00 0.50 2,00 6.00 045 @,22 0.43 0.53 0.61 0.58 ~  0.58
1025 0.46 179 4:80 0443 0,19 0,49 0.61 0472 074 0474
1450 042 1463 4400 0440 0417 0,52 0.66 0.76 0475 0.75
1075 0040 1451 3443  0.40 0.17 0454 0.68 0,78 0.78 0477
2.00 0.57 1e41 3400  0.39 0.17 0.55 5e69 0479 0478 0.78
2.25 0.35 1433 2,67 0.38 0418 0.56 0,70 0,79  0.79 0.78
2,50 0.34 1426 2.40 0.38 0.18 0.57 0.71 0480 0.80 0.78
2075 ¢ 32 1420 2.18 0,37 J418 0.58 0.72 0480 0,80 0478
3,00 0,31 1415 2400 o.je 0.20 0.58 0.72 0,80 0.80  0.78
3.25 0.30. 1412 1485 0.36 0.20 0,58 0.73 0.80 0.80  ~0.79
5050 0429 1.07 1472 0.36 0.20 0,59 0.74 0480 0.80 0.80
2,75 0e28 1.03 1460 0.36 0,20 -0.59 "0.74 O._'80 df.eo 0.80
4400 0427 1.00 1,50 0.35 0,20 0.59 0.74 0.80 0479 0.78

* =”3/“:3>./2- i

w1, = (/15 ) =3 :
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We may draw some more conclusicns regarding Tables (3. 1) and (3 2).
EEficienCies of Wald, Bartlett and Optimum estimators decrease ag 02 for
loggormal distribution increases and T for gamma distribution decreases.
It should be noted that as ¢° increases the coefficient of variation (GV)
increaszes, but as r increases the coefficient-of varieﬁicn decreascs.
Hence OV and efficiency have trends in opposite directicﬁs to each other
ic both the cases. Efficiencies based .on approximate proportional allo-
cations to optimum, however, first increaee énd then decreaée for log~
ncnnal. But for gamma distribution these efficiencies more or less
increase as r ihcreases. Again, as CV increeSes p1 increases and p3

more or less decreases in both the cases.

%.,3 The Heteroscedagtic Casge

3.3,1 The Hgtimators and Their Variances

We considerlfhe neteroscedastic set-up defined by (3.3) and (3.4)
ag done by Lancester. Bartlett's estimatcr with eq&al groups can also
be improved here by taking optimum proportions-of cbservations in the
three groups. The optimum proportions are obtained through minimizing

the variance of the estimator

b=, - ?2)‘/(21 - %)) - ces  (3.5)

 where :
e 1 5 - 1
T - 2 X X, = — & X
1 iel 5 2 Py el 1
= 1 » . 1 5 i
Yot W28 Y. Yoop =t =1 Y.
1 o, 1€I1 1 ? 1, 18I2 i
I1= {1929.0.9 n1}’ :[2 = {n-"n2+19 rr"n2+2’ ceesg n }9
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X, Xé essy X being in incre sing order and n, and n, the number of

obgervations in the first and in the third groups. The sampling variance

of b is obviously .

(X 2) le 1 _'LEIQ
Now, following Lanpaster,'we assume thot X~A( p, 02) with distribution
fanction A(u, o). Iet A(S[w o2 =p, ana Al n, o) =1-p5

Then, for large samples

N i Xpd/\(}{)//\(s) e .f X" > aAX)/ {1 - A1) 3°

v{b) = =
i é xa AX)/ AS) = jxa/\(x)/ {1=-Nm17 2

n

To obtain optimum values of S and T or rather the optimum proportions

(3.?)

(— NA(8)) and 58 (=1 - A(T)) we varied S and T and found the values -
that minimize v(b). Comparing ¥(b) in equatlon (3 7) above with V(v )
in {3.11), V(bL) in (3.14) we find that p does not influence the
relative efficiencies of different estimators and hence its value was
fixed at 1 for this search for optimal proportions.

A similar procedure was followed to obtain proportions in the
three grdups and corresponding sampling variances assuming X ~7G(c, T)

with the following density

‘ r =1 —-cX N >

S(X) =¢ X e //(-r)g X >= 0, Cy T 0 soe (308)
Here algo the scale parsmeter c does not affect the relative effi-

ciencies of the different estimators, and so its value was fixed o

be 1«
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The BLUE of B8 is

- =Dy Dy L =Py 1D
m (LX) n (&) - ml (7, X )nf(x7T)

b = LA R ) (309)
P i,
& m;(XZ“P) m1(X By - m{fz(x1 By
7 P 1 L. -
L = = by T
where mH(X,I ’ X2) =L X1i }L2i’
5 i=
f( ‘I 123
n(X)= = 2 X,. etcs
1 Sl 11
The variance of this estimator is for large samples
A ' .
v(b,) = = — eee (3.10)
T EE) BT - P

Agssuming lognormality, the expression for V(bG) reduces to

‘ P F ‘12' P2 52
V(‘b ) = ?\_...._. I = . = sew (3011)
G n Lo+ 0.2 ( _1)2 0_2 -
e. P (e- - 1)
The OLS estimator is
oot 3, -%) (x, -F Y ]
i i 1 1
b = — eess (3412)
‘ =1 - :
n z =
4 (x; - X)
rf1$(X.-§)a
= B -+ 1 1 1 ;
a1 E(x, -%)°
i 1
which hag the variance (for large samples)
A ETPY - os()EGTPY 48P (X)BEP) 5 (50

V(b ) =
L ug(x)
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where 'P2(X) = E(Xz) - B (X). Assuming ¥ to follow a lognormal distri-
bution, e);pression (3.1’3)"beqomres‘ 3
2l goll 5 s pRen Sha o Dk
A %p o" ¥ o (1+2p) _ oP O

‘ s 5 _£€ : + 1) . (3.14)
n (eg P 1)2 e2 p+ o

V(bL) =

The variance of Wald's estimator can be found simply by putting

Als) =1 - T) =-;— in equation (3.7) isee,

v(b,) =

54>

. p) vee {3.13)
ELxaAR) < XA

The expressions for sampling voriances of bG and 'bL where X ~ G(1, r) are

/ V(bG, = % [{r = p) /(x) : > Ceee (3.16)
/-(I'-' P) /-(I‘ & Pt 2) -/_- (I‘+1"'"P)
and
'v(bL) " % —ﬂﬂi—li-( Pt p+ r) eee (3.17)

/Hx) =
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We calculated the efflOIanleS of different eétimutbrs
—= brs bW"bB (the equal three-group Bartlett estlmator) and b (the
optimum,jhxee-group,estlmathznfj vig=a=vis the GLS est%mator by
for different paremetric values of p and 52 when X naf“,u,lcz) or

of r when X N’G(c, r). The parametric values chosen are

p = 0.0, 0. 5, 1.0, 1 5, 2.0.

2 (vhen x-v/\(1, 62)) 1 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

on

r (when X ~ (1, 7)) 1.00, 1.50, 2,00, 2,50, 3,00,
N, e 3,50, 4.00.
The ranées of valuen of coefficient of variation (cv) ,Lorenz ratio (LR)
and skewness coefflclent ? \ = u}/ u”/z are (0. 47, 1 01) (0. 25, 0.45)
=and(1.52, 4.04) respectlvely"when o® of lognormal distribution varies
from 0;2 to 6.7. The correéfonding ranges are (0.25, 1.00), (0.27, 0.50)
%nd (1.00, 2:00) respectiveiy when r;of gaﬁma distribution fanges‘from‘
1 to 4; .
The results are summérized in;the Tables (3.3) and (?.4). Some

of thé.interésting‘conclusions emerging from the study are stated in

-the next sub-gsection.
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Table 3.5 ¢ Efficiencies of different estimators vig=a~vis

GLS estimator where X ~ A (.9 02).

2 o & #* S Optimum pro= Efficienc
e B N y‘l Lo portions vis—a-visyGLS

First  Third OLS Wald Bart— Opti-

- group group lett mum

0.0 0435 0.17 1.00 0.54 0.68 0.77

0.5 0.28 0.25 0.91 0.62 0,78 0.8

0.2 1.0 0,25 0,47 1.52 4.35 021 0433 C.71 0466 0,79 0,83
1.5 0.15 0044 0049 0162 0072 O-S‘-
2,0 0.09 ©.57 - 0,30 .54 0,59 0.82

0.0 0.38 0.15 1.00 0.50 0.63  0.76

0.5 8.29 - 0.24 0.88 0.62 0477 0.80

0.3 1.0 ©0.30 0.59 1.98 7.71 0.20 0.%6 0.62 0.67 0.80 0.83
1.5 Qa1 - 0.48 0.37 0.62 0,69 0.8

2.0 0407 T 0465 0.19 0.49 0.51 0.81

0.0 0442 0.13 100 0,46 .58  0.77%

0.5 0.29 0423 0.85 0.61 0.77 C.80

0.4 1.0 0434 0,70 2.45 12.27 0.18 0.37 0,55 0.68 0,80 0.83
1.5 010 0.53 . 0429 0.61 0.67 0.83

240 0,06 0.71: 0.12 0.46 0.46 0C.73

0.0 - 0.4% G 12 1,00 0442 0.54 0.72

0.5 0.29 0.22 0.82 0.61 0,76 0,79

0.5 1.0 0.38 0.81 2.94 18.51 0417 0.38 0.49 0.69 0,80 0.8
1.5 0.10 .57 0.23 0461 0.65 0.8

2.0 0,04 0477 0.08 0,42 0.41 0T

0.0 0.44 0.10 1,00 0.38 0.50 0,7¢

0.5 0.29 0.22 0.80 0.60 .75 0.79

06 140  0.42 091 3447 27.08 C.17 0.39 044 0.70 0.80  0.86
2% B - 0.08 0461 0.18 0.60 0.63 0,86

2.0 0.0% 0.83 0.06 0.38 0.37 0.7

0.0 Oudd 0.09 1,00 0.35 0.46 o.ti‘

0.5 C.29 0e21 0.77 0.59 0.74 O.T¢

0.7 140 0445 1.01 4404 38,94 0416 041 0440 04,71 0.81 0.8
145 0.07 0464 0.15 0.59 0.61 0.8

2.0 0.02 0.86 0.04 0.35 0.33  0.66

2
* y1=)/%/ug and ?2=(.u4/u§)~3


http://www.cvisiontech.com

119

Table 3.4 ¥ Efficiencies of different estima@ors vig=amvisg
GLS estimator where X ~ G(., r)

= : . 3 * Optimum pro=- Efficiency
N P e e ¥y y2 portions vig=a~vig GLS
First Third OLS Wald Bart- Opti-
group  group lett. oum
0.0 0.45 0.22 1.00,.0.4% 0.53 (.61
0.5 0.23 0.31 0u73 0,55 0.68 0.69
1.0 1-0 0050 1-0 2|OO 6-00 g - o - bl C
1.5 - - - - -
2.0 - - - = - =
0,0 0.40 Q.17 1.00 0.52 0.66 0.76
0.5 0.23 0.30 0.79 0.61 0.76  0.78
15 1.0 0,42 0.82 1.63 4,00 0.11 0.50 0.43 0.52 0.59 0.74
115 - - == g = _—
0.0 0.39 0.17 1.00 0.55 0.69 0.79
0.5 0.23 0.29 0.82 0.62 0.78 0,79
2.0 1.0, 0437 0.71 Me41 3.00 0.11 0.46 0.50 0.55 Q.64 0.78
15 0,03 0.70 0.24 0.37 0.40 0.72
2.0 — - - - - ol
0.0 0.38 0.18 1.00 0.57 0471 0.80
0.5 0.24 0.29 0485 0463 0.78 0.80
1.0 0434 0463 1.26 2,40 0412 0.4% 0.56 0.57 0.66 0.79
155 0.05 0.62 0.29 0.42 0.5  0.74
2.0 001 086 0.13 0,24 0.22 0.63
0.0 .36 0.20 100 0.58 0,72 0.80
05 0.24 0.29 0.87 0.63 0,78 0,80
1.0 0631 Cu58 1.15 2.00 0.14 0.42 0460 0.58 0.69 0.79
1e5 0.06 058 0e34 0.45 0450 0,76
2.0 0401 0.77 0e17 0429 0.30 0.69
0.0 0.36 0.20 1.00 0459 0.74 0.80
0.5 0.24 0.28 088 0.63 078 (.80
140 0429 0.53 1,07 1.70 0415 0.41 064 0459 0.70  0.79
TeD 0,07 0.55 0.39 0.47 0.53  0.77
2.0 0.03 0.72 0.20 0.33 0,35 0.71
0.0 0.35 0.20 1.00 0.59 0.74 0.80
0.5 0.24 0,28 0.90 0.63 0.79 0.8
440 1.0 0427 050 1.00 1.50 0.16 0.40 0.67 0.59 0.71  0.80
1.5 0,09 0.52 0.4% 0,29 0.56 0,77

/e 2
% 71 = p_B/ ug and Y2 = (114/ u2 ) = 3

## The cagen where »ffinienciar Ao mot Aot aoo oot Hiaps.


http://www.cvisiontech.com

120

3342 Discussion of Results

(1) The efflolenoy of the optlmum three—group estimator is qulte

hlgh, about 80 per cent, for most of the 51tuatlon covered in the study.

a

(11) As in the homoscedastlc case, the efflolenoy of the optlmum
three-group estlmator is often much hlgher than that of the equal-group
Bartlett estimator. Thls is found for both. lognormal and gemma type
dietributions of X The difference is in some cases between 30 anh
“40 per cent. The differenoe iﬁcreases ;ewgimoves eway from 1 (wheﬁ.X“‘.
is lognormal) and from 0.5 (when X is, gamma) However,, Bartlett's

estimator is generally more efficient. than Wald's estimater in both

the oases.éié/ .

(111) On the whole, the efflClenoles of the groeplng estimators
decrease as the coefflolent of varlatlon of X 1noreases._ Lancaster s
statement that ' the- efflclency of the estimators diminishes as the
variance ef the dlstrlbutlon of X—obsorvatlons 1nrreaees" is generally'
conflrmed.hero for lognormal dlstrlbutlon, though strictly speaklng 1t
is- the coefflolent of variation thCh determlnes efflclency. Since
when X ~ /\( pz, 02) effJ.cJ.ency does not depend on iy it depende
on- CV and it is wrong to relate 1t to varlanoe which 1nv01ves ;‘.: In
the case ef garmma, distribution our resglts show that the efficiencies

increase as the variance of X distribution increases. But here unlike -

1ognormal:the {V decreases as the vardiance increases.

- o
o

31/ Lancaster observed this when X is lognormal.

¥

e .
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{iv) The efficiencies of Wald's, ﬁartlett's and of the optimum

Y

three~group estimator are the highest near p = 1 when X is lognormal
3.5/

and near p = 0.5 when X is ZAImnma, ¢ ===

(v) As found by Lancaster, the efficiency of OLS estimator is of
course thg highest (=1) when p=0,; isce, when the dota are homos?edastic
and as p increases the efficiencj rapidly decreases for both the caoses. |
At some puint {p ~ 1.5). it becomes less than that of other grouping
estimators.

(vi) The bchaviour of the optimum group-proportions is quite
remerkable. The optimum proportions sterdily chaﬁge as p ohanges. 4s
p'increases, the first group proportion decrecases and the third group
proportion increases very rapidly. For p 2 2, at some point the first
group proportion becomes less than 10 per cent when ¥ is lognormal and |
loss than 5 per cent when X is gamméa. in those cases the third group
proportion becdmes very high (about 70 per cent or more in alﬁost all
the cases). The sum of the*two proportions is, however, more or less
conétant. Moreover, the proportions 4o pot seem: £0 vary much with 02
for lognormal or with r for gamma.

To conclude, given the value of p, the optiﬁum proportions are
fairly rcobust with respect to éﬁanges inr or 02. Hence if p is
approximetely known, optimum three-group procedure can be applied thch

is possibly much more efficient then Bartlett's equal three-group

322/ The efficiency of Wold's estimator is symmetiic around p=1 and 0.5
respectively. This c&n be proved theoretically, since the effi-

-oz(p-1)2 1
ciencies are proportional o e and

/(x4p) /(x=p+1)

. as A,
rassitrEcOCRewsk
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estimator and simpler than OLS and GLS estimator. The efficiency of this
optimmﬁ estimator is fairly hJ.gh throughout the ranges of parameters con-
sidered in the study. Unlike other grouping estimators, the efficiency
of the optimum estimator is about 70 per cent or more in almost all the
cases and in most of the caseé it is about 80 por cent.

Lancaster showed the superiority' of grouping estimators over OLS
estimafbor i‘n the heteroscedastic set-up for éome values of i). There is
one more reason why one should sometimes prefer groupiﬁé.estimators.

The distribution of X may be such that E(}'l‘l +p) or E(X2+P) does not
exigt whereas E(Xp) exists. Tl"iére may be trouble even with the BLUE

for V(bG) cdnta,in;; E(X-P) which also may not exist. An example of; the
latter type oc&.urs if X has a gamma distribution with crucial parameter
' P 'I‘he‘gamn‘a distribution is rsometimes 1;aken as a good fit for income
distribution (Salem‘ and Mount, 1-974) .

In thé eriors-irr-variables models lwith homoscedastic disturbances
0LS estimator has been proved to be inconsistent. The grouping cstimators
are consistenf if the groups are unaltered t;y the introduction of errcrs.
In the section 3.2 of this r-:hapter the problem of getting 0ptﬁﬁum grouping
estimators in the case of homosc.edastic ﬁstﬁbances has been discussed.
The azim of this study is to show how one can extend their procedure to
the present set=up to improve the Bartlett=-tupe estimators and obtain
optimum group pIOpbrtions with considerably higher efficiency.

I1f many types of distributions a;:_ising in pracfice are analysed
in this way, it may be pogsible to find a.relation beWeen the oﬁtimum
proportions andm the z;zle.a}s#les of skewness aﬁd kurtosis of the-

disgtributiorns. .-
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Chapter 4

ESTIMATION PROBLEMS IN MORE GENERAL EIV MODELS
PART X

441 Introduction

In this and the following chapter we try to get some consistent
estimators of the parameter B in two variable EVM when the assumptions
are relaxed in several directions =

(i) The conditional distribution of the error term u associated
with regressor X given X is allowed to have variance proportional to a
power of X which may be unknown;éil/

{ii) The errors u and v (the error associated with the regressand
variable) may be correlated (y;ﬁg,?al, 1977)

These relaxations are suggested;ﬁy empirical applications, €egey
those in engel curve analygis based on cross—section data. It may be
menticned here that such generalizations are often ignored in econonetric
literature. In practice they are very important and appear to be realis=
tic for many applicationz. The object of the study is to tacgkle problem
of estimating the regression coefficient in ETV models mere general than
those usually congidereds While the solutions have obvious applications
to engel curve apalysis,; the problem tackled is one of the classical
problems of econometric literature.

Liviatan (1961) considered the problem of EIV in the context of
engel curve analysis. The problem is specially important in India where
a great deal of work on engel curve estimation is based or National

Sample Survey (NSS) data on household budgets collected through the

4.1/ The homoscedastic situation is also considered as a special case
of this general model.
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Anterview methods The imterwiews are uniformly spread over the survey
period, usually one year, but any particular sampie household furnishes
data on consumer sxpenditure'for the reference period of last month, that-
is, the last .thirty days preceding the date of interview, As a result,
seasonal variation is supsrimposed on between houscholds variation 6f «
total expeénditure (x) and item consumption (y). Conceptually, in engsl
curve analysis one 'is interested in the relationship 'between the stable
-Qr permancnt component (X and Y) of these variables, whereas in common
practice one regresses the observed value y on the ol?served value x.. One
thus faces a typical EIV “problem where the errors in the two variables
are Likely to be correlateds Bhattacharya (1967) cites two Instances
-suggesting that the usual LS regression approa.ch ma.y be giving serlously
biased estimates of engel elasticities in Indiae .

In sslving the estimational problems arising in these more genéral
set ups, we have frequently assumed that X is lognormally distribduted.
This is very realistic in engei curve analysis (EEE.E! Aitchigon and
Brown, 1957; Bhattacharya and Iyengar, 1961; Ahmed and Bhattacharya, 1972
Tyetiger and Jain, 19743 Bhattacharya, 197 8). "The distribution of n given
X hag somgtkimes been assumed to be norfial and sometimes to fo‘llén:r
Pearsonila.n type IL distribution; the latter may be ngte 1oga.ca.l since
x = X+ is neces:aa.rily 2 On Partzculaa: aﬁt&ntion has, been given to
moment eatima_tqr_:s but ML e_stima.tiog has a.l.so been’ attemptedq

The OLS estimator ¢f the Ea:axﬂeﬁex_-lg_ in the standard two-variable

-

EWM has the limiting value 5
[a 2%

A X‘ 3 .V' 4 : + -
n [+ -] A # " [a R v
B x u 3 Y
which is not equal to 'B ¢« Clearly, consistent éstima.tion of B would

be possible if one had a consistent- estlmate of ﬂg

xorf" ,2/"0

Once we f:l.nd such a consistent est:.mate, e get the consistent est:.mate i

-
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of B as
2
7 7 X . 21 . .
B = 8, ® 5 if n~y is estimated consistently
2
.8 = if 0 is estimat istentl,
= 8 2 {}2 i o 1S es imated consistently
X u
>
“u 22
= BL (1 + (T:Er——ﬁ) if “u/ "y is estimated consistently
X

In the present chapter we consider only the observations on x
ViZQ, X,], Kzg ssaey xn, genera.‘ted. as

xi =Xi + ui, T 1, 2, sswg I e (4:2)

where Xi is the true value and ug the error. We examine the possibility

of estimating separately the parameters of the distributions of X and u.

Clearly, the separation is impossible unless some assumptions are made.
Qur attempt is to get some useful results making relistic assumptions.
These resulis are utilized in the following chapter where we consider
bivariate data and tackle the problems of two variable EVM.

Th equation (4.2) we asswne that X,'s are i.i.d. and u, given X,

ig distributed such that

(1) Blu,|X,) =0  foralli =1, 2, ceouy n cee (4.3)

(1) Vlu,|%,) = azxz for all i = 1, 25 eeey 0 ee (4a8)
' where a and b are positive constants.

and (iii) E(ujz.rﬂl}(i) =0 forall i=1; 2; seey eee (405)
and T = 1, 2; 35 sssee etc,

The special cases b=0 and b=2 are of particular interest. Observe
that in the case b=0, X and u may be assumed to be independent of each
other. The cagse b=2, i.c., where the standard deviation of the error
term is proportional to the magnitude of X has already been referred 4o
by Friedman (vide section 1.5, Chapter 1). It can also be shown that
if X is stretched from zero to infinity as in lognormal or gamma distribu-
tions and if x, the observed variate, is always positive then b must be

equal to 2.


http://www.cvisiontech.com

126

Thaorem 4.1. In the model defined by equations (4.2}, (4.3), (4.4)
and (4.57. if the absolute valne of u given X does not exceed X (so that no
x is negetive) and if X is distributed from O to infinity, then.b must be

eq_ual to 2.

Proof. Since thé absolute value of u.giyven X.is less 8, fhan 0%0,

-»qual *E'ﬁ X_J, Semen 2o Lsmromyodl sk '*‘?. »{'J'LI 'hi of ousw r"m: Lofdodzwta al
+¢ 142 . - 2~b
od Jauw d ety ‘).4.1}{:.%" Hor‘ah }L. =—‘}§r\=~::z&:\,r Qg f c.;.."er % YE heen

If b 22, by taking X sufficiently large and if b <2, by teking X s@ffi~ . ¢
ciently small, we get a.2=0, which is unacceptable. Hence b=2. G+E.D.

In fact, therc is another justification f‘or taking b=2 which can
bé seen from the following theorem. i

Theorem 4.2. Suppose that in the assumptions of theorem (4.1),
the assumption on V(v %) is replaced by

V(LE‘:) = ao - a1X + eenes + a.ka can (406)

where 2y a1', veey 8 aTe constants. Then

ao=a.1 =a3=......=ak=0anda2> 0.

Proof. By the same argwment as stated in the proof of theorem (4.1),

we have
2

1 = b4 2
3’0 % a1X+<~.X +oeens + 20X £ X

Ta.klng X Sufflclently snal we p-et ao e Oy so, .

Te

T & b 2 g >l T o -
) ot A ¥ ol e

" k-1
or 3.1-: a;2x+n--ln--+ akx < X

aX +.a X2 Foene akxyﬁ x o SRR RO A

Applying the scme argument one gets 2, = 0. Hence

AKX * aoveen F ak}{k“1 £ X

. i k=2
oT a2+33k+....4akx S‘l,
a a,), :
or —i";-"— + IQ-’B + aseo (fO}’.‘ X> O)

X X
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Now take X sefficientiy large and get 2y = 0. Continuing this
way we get a3 = seees = ak_1 a, = 0. a22>0 follow since variance ig
always positive if & 1s degenerate. Qe Ee Do

Although bﬁ 2 15 theoretically impossible in the circumstances
considered above, in practice we may not find X to be very small or
very large, as assumed in the proof; in the sample data. So, we may not
always confine ourselves to b=2 only. We shall in fact see what hapfens
if we take b te be some other specific value. ‘

In the next section the method of moment estimation of different
parameters of the univariate model has been discussed. In the section
(4.3} we derive the p.def. of the observed variable x for models with
different distributional assumptionsand obtein the MLk equation for one
particular model of interest. Section (4.4) discusses moment estimators
for the particular model. In section (4.5) the results of some Monte-
Carlo experiments for one model are presented. One set of moment esti-
mators is found to be highly efficient in this case. The concluding
section (section 4.7) discusses the possibilities of other momeht esti~
mators which are computationally simple. Appendix (4.2) examines one

interesting model which is proved to be non-identifiable.

4+2 The Moment Estimators of Univariate Models

442,71 The General Set—up

We have the following moment equations from the model (4.2) to

@.5) = .
Bx) = B(x) =, (say) ver (426)
E(xz) = E(Xz) +;a2E(Xb) u2 '(eay) ves (447
B0) = BOOY + 32200 = i) (say) o (448)

and so0 On.
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4

To estimate parameters of the model we raplace u;, (r= T19290eas )

by the corresponding sample moments m;‘, (r =1, 2, eeees), and set

n = B(x) oo {429
mg = E(Xz) + aQE(Xb) o eee  (4.10)
m3 = B + 32°E5(x"H) eee (4417)

If we assume X to follom-I a two-parameter lognormal distribution
Alu, rr2) and b to be known, then the three parameters u, nr2 and a2
may be estimated by method of moments using equations (4.9), (4.10),
and.(.4.11).4;2/ If we want to tackle the more general problem where b
is unknown, we may assume u given X to follow some standerd distribution,
say normal, and add another equation setting mﬁl “ egual to E(x4) ;to the
equations (4.9) to (4.11). If‘u,fX is normal, it has an infinite range
and, in principle, x = X+u can be negative. That is why we avoid this
assumption in the grea_ter part of this chapter. Though we shall discuss
here the problem of finding solutions for the case b=0 and b=2 only,

the case where b is known but different from O or 2 may be tackled in

a similar mammer (vide subsection (4,2.5)).

4e2.2 Case 1 2 b =0

In this case, assuming X ~ A( s 02), the equations (4.9) to

(4.11) reduce to

1111/1‘ = exp(ll+"2/2) cee (4012)
m;‘ = m;2 exp("’z) + 3.2 tee ' (4-13)
m; = m’;} exp(}nz) + 3a2m; ale (4.14)

Substituting a of (4.13) in (4.14), we get,

A ! 2 :

f=nP7 - 7w lal = £(), (say) .e.. (4415)

4,2/ FExcept in section (53), X hog been cssumed to follow. a lognormal
distribution throughout 'th.%%’etels: Subsection (4.2.§) discusses

ssibimoCRowasithaasionsing & waleEiRET BIaREEd it EoR Er SVISION F

m
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Theorem 4.3. It is possible to get pogitiﬁe solutions for ~2

and a° from equations (4.12) to (4.14) if m; > 0, the third central

o B VWS
moment m3> 0 anad @3 < (mg/'m1 )=

Proof, f(nz) is an increasing function of ~2 for 2 > 0, since
2 2 "
£/(n?) = Bm‘{}e" (e°T = 1) >0

Now,

f(0) —--2:111’3 + 3m”m§ = 2mj|/{ (mQ/- m1/2) +‘m;/2 P> o,
and

/ v /% L
- f{0) = - + = > .
3 ( ) m3 3m m, + 20 my 0 (by assumption)
Hence the possgibility of getting a solution w2 > 0 follows from the

figure (4+1) given below.

£(6%)
ng
f(o)'i
Figo 4.1

Again rearranging (4.15), we get

2 2
A 3 blad - 7 P /2
my - m” e = 3@1 (m2 m© e )
or B
8&(”2) = g2(62) (say) for a2 = %

We know that &, ("2) and gz(ﬂz) can intersect at one point only (figure

(4.2)). Both g, G } and gg(” ) decrease as o increases. To .ensure

must havg
a?> 0, we / o (0 ) g, ("T ) >0, ieCe, g1( ) and g2(n } must intersect
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in the first quadrant only, Now since gi(O') > ga(O) (because mg > 0),

the condition reduces to
=1¢ -1
or o© 2 > & .(sa,y}
2 1 -
gi(ﬁ;‘f

g,(3)

0
-—-" 3
Figo 4.2
Now s
. ,,2 \
g1(“2) =0 =>--%— =
A m ]
1
2 1 o
or =3 Togl ;;3 L
1 : !
Similarly, P’
m
2
82(“2) =0 =>g, = log ( -;2-3- )
2 3 ¥
Conditich for a® >0 in therefore
fa m/
2 1 B
—~ea )y > &+ 1
Log ( WE U ( 73 )
g 3 P 1
m/?*"
or ny < -3" .
3 tom
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Combining the two conditions for a.2> 0 and nr2 >0, we get

. w. 3
v / - /3 /’ 3 -g-—
3y wy = 2’ < uy < (*ﬂﬁ) ’(4.16)
These conditions are not inconsisitent,; since
uy, . 3
sl et D 27
3m1 m, 21111 < (\ m_; ) R
because g
j 2
B mird o il g A2 / / :
wy? = 3m" m + 2m)” = (u, m ) (w;, + a2y o,

It also follows fram the proof that the feasible solution is uniques QeE.De

4e2.3 2 Cage 2 s b =2

In this case assuming X ~A(y, n2) , the equations are

m/,I = exp(n+ 12- ﬂz) ‘ eee (4.17)
m{: 1‘11‘1/2 (1 + 8.2) exp(ﬂe) ) . see (4-18)
m’?: m1/3 (1,+ 5&2) exp(}f‘z)-- eee (4419)
From (4.18) and (4.19), we get,
n’ o
a2 = TG~ =0 LV 1 ( i - 1)
m) exp(a?) 7 mf exp(3°)
: 2
e B o 3 PP P s (40)

Theorem 4.4 ¢ We have unique feasible solutions for 2 and a.2

from equations (4.17) to (4.19) under the same conditions as stated in

the theorem (4.3).
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Proof ¢ g/(n‘z) = 6111;m/2 'E’XP-.(Z'T?)I - 61!1‘.;3 %?(3“2)

-a.'— ) 2 Ve /2 .
I g/(OZ) =0 ﬁeﬂ =m2/m2 . ‘

Let, 80*2.=m§ / m{z
5 2
4 == &l " < 0.
%o 1
v =

So,  Max g(r?) = &(~"?) = (g /m] )> .
02—'> 0y l ‘
If 6°< 62, them glo?) >0, | ees (4021):

2 #2 2
since g/(cz) = 619;3 2" (¢ =-e 75

‘ 2
Again, since a = g/ (m,;z e” ) =,.

2>O %)c‘?{ ﬂ*,z aes (4022)

a
- Prom (4.21) and (4.22) it follows thHat for -bl"ie‘ solution rr2 to
be positive m; must lie between g(0) and g(n 2) /see figure 4.3 7,
/e n /D e VAW EVARY
or 3n(1m2 211'11 < ms ((1112/111‘l ) :
or m'3)0 and m.; ((n/a/m{ )3.

The conditions are the same as in the case where b is taken to be

ZETO. Q.E.D,


http://www.cvisiontech.com

133

m/
3
g(b)
: N
0 — ‘
2
. °¥2 P >
Fig- ‘4o3

We may now make some cbservations on the conditions for feasibi-
5

lity of the solutions @

(1) mg > 0 is to b2 expected, since X is lognormal which is a
: odd
positively skewed distribution and alléorder raw aoments of u vanish.

(ii) mg < (m-g / m: )3 * After some manipulations the condition

becomes
m, m, 3 m,, 2
== 4 (=) [ 3 ==
mi3 m/2 m/2
1 1 -

In case of two parameter lognormal distribution we have the

equality ¢ ...
m ‘ 'm' 3 I, 2 '
25 = (5 (55 .
It m
2 1 1
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Since we are adding a variate, odd order moments of which vanish, to a

lognormal variate both m1 and m3 remain unchanged while the variance m2
4

is increased. So the above inequality is expected to hold in practice.

4.2.#: Case 3 8 D =0 and X ~ A(Qs Py 02 )
In some situations a more appropriate assumption on X may be
that it follows the three-parameter logndfmal distribu%ionA (CHET nz),
where 8 signifies the threshold wvalue (Armed and Bhattacharya, 1972,
L ) ]
Jain, 1977). But the model, then, becomes very difficult to tackle.
So for mathematical simplicity we shall assume b=0O.
In this case we estimate four parameters, na.niely,- e, U, 62,
and 55.2. Hence we need four moment equations. But 4th order moment of
: assumption
X involves 4th order moment of u, so that a distributionaléof u becomes
necessarys We assume 1t to be distributed normal with mean zero and
variance a.2. So our model becomes 3
x = X +u |
' D
X ~ A(Q, p, g O )

eee (4423)

To eliminate @ we take central moments. Now
x-E(x) ={ X - E(X) 1 + u, !
/
where the distribution of X = E(X) is same as that of X - 8(x"),

X" being distributed A ( n, 02). Denoting central moments of the
population by e and of the sample by n, r= 2, 3y «..s, ete., We

arrive at the following equétions g
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ny(x) = 62 (& = 1) + a2 e (ha)
ms(x) = c?(e02 - 12 ( e02 + 2) veo (4.25)
m(x) = cf(e02 —1)3(e3ﬂ2 + 3e2“2 S e 6)

= 3ch(e“2— 1§ P02 oo (4.26)
where o, = oH* 972 |

1
The equation (4426) may be written as
| 2 2 % 2 |
m4(x) - Smg(x) = Cf(en - 1)3 (93' + 392 + 62" 4+ 6) auu (4e27)

Eliminating c, from (4.25) and (4.27), one gets,

4 2
HB(X) (er"I + 2)4

3

2 2( 3 2 2 2
: {m4v.(x) 3m, (x)3 (e” -—_1.)(630+3ng63_°_+6)3

From {4.25) and (4.27) it is evident that both.m3(x) and m4(x); Bmg(x)

=] f( 0'2) 9198Y e e (4-28)

are positive.

Now, f(oz) strictly decreases from o to O ‘as ~% moves from
O to . (This can be seen by tdking derivatives and limits)éizz So
for a given s,amplé we may set mg(x)/{mﬂr(x) - 3mg(x) }3 equa_l to f(ﬂQ).
and get a unique estimate «§2 of rvz and hence unique estimates for p
and a® from (4.24) and (4.25). subject to the following conditions which
are likely to be fulfilled if the model is &errect and if n is suffi-

L

ciently large o

(i) m (X) > 0 B}
(31) my(x) = 3mj (x) >0
s
(iii) m (x) (e - 1) > 0.
& can now be estlmated using m (X) =6 +50

1

2 a2
4e3/ Qi&ﬂ_l - ELE; (e +2)3 (ez‘1 +4e® +3) .o
resé : "\2 f ‘z” “\2”2Llébﬂ2 - €\4
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4.20.5‘ uIX ~ PII (-X, X, lTl)

For later use in connection with bivé,ria’_ce problans, we present
here some results for the case where u|{ follows the perfectly symmetrical
Pearsonian type II distribution in the range =X 'Eo'-x with p.defs (vide

Eﬂ.dertoﬁ; 1953! P086"89) .

m .
p(u}X)dn =X 1Km (1—u2/X2) dus =X <u (X, T ewes (5429)
where K, = 'B_-‘t (m + %—, 15 Y = B (m+1, m+1). 2—%1

I

We may .safely assume m > O since errors near zero are likely to be more
probable than errors near + X. Clearly, the mean is zero and all odd ordex

moments about zero vanish. The 2 [th order moment is

35 (\éié:il <K ehad i
“21{ (ufx) (2m+z) (2m+5) eeee (2m+2K+17 | pr | e (4.30)
Sp ec:lf ically, )
by (a ) = X5/(2m3) -
apd

(e ) = %Y {(m3) (2me5)1,
‘Clearly, m>O0 <=>a’ <1/3, since here a® = 1/(2n43) in the expression
B1?) = a%m(x9).

-+ In fact,; the above result that m >0 (==> a2_<_1/3 may be genera=
lizede That is, for any gr}'i_modalr smrmletric continmious distriﬁution of
ulx from -X to X, we have 3231/3. It is assumed that the p.‘d.-f,. hlod
creases monotonically from O at =X to a maximum value ja.'!; 0 and again
decreases monotOmcally to 0 at X (vide Appendlx 4a1)e

The model is easily .,ackled as before once ve recognize it as a

iy

special ca.,se of the general madel described by (4.2) $o (435) with
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b=2 ank a° = 1/(2m+3), e aticre can use the equations (4'.17.) o (4.19).
The assumption on specific d_lstrlbutlon of u[X pade a.boye enabléus to
utilize higher order moments, and hence fit more elaborate models. For
example, take u_p( to follow a Pearsoman type II distribution in the
range ( =cX, cX), where ¢ is a positive constant. We mey take the first
four moment equations to estﬁ.-zzaa.te the parameters. Another possibility
is to assume that X follows a three parameter lognormal distribution.
The assumption on u{X to follow thils particular distribution that .it is’
Pearsonian type II has one more advanta.ge. We not only can go to higher
order moments, but also take fractional moments (i;e., mome;ntsnbf‘fra.c,‘-
tional power). In section (4.4) we discuss how the fractiopal-moinents
can be utilized and 1'a.‘tker discuss the MQnté;Camlo results car_f'ied out

for these moment estimators along with ML estimators.

44246 The General Case t b =b_ and 0<b_ <2

In this case
1 2
Ve I+ *é-
m, = e

\

2 -b + :.l.. b2n2 e

mg = m1/2 e" + 329 " < e (4.32)
2 2

-/ 2 .2y b 2

my = mff o7 4 3131;(1115 - m; e" ) e 7 = fb(a‘)? 837 eee(4433)

& s

We assume that the moments mfl", mQ/, mg amc%_m3 of x é,re aElJ_.'positive.

We then prove some results about the behaviour cﬁ‘ the function
fb( 02)- 7
Result 1 3 a2>0 iﬁ"mg - n? e“2> 0 or r1'2< '“*2 E l;g ( m,z,z Yo

4 m‘i
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Proof: Use equation (4.32).
Since a2 >0 iz a neceéséry condition for our purpbse, we shall

#
henceforth investigate the properties of fb(rr2f‘ for ﬂ2< 7 onlye.

| | aan% | >0 if b2
- Result 2 @ — '
9~ =0 if b =2
12 . o*2 2 |
<0 if b >2
: 6fb(rr2)
Result 3 5 - 5 2 0 if b2 O which is already assumed.
: or ”2=0 '
Result 4 3 £ .(o°) > £, (a?) iff b >b, for ¢ a2,
—_——t b1 b2 1 2
2
an (e 2, ¥ ' :
Result 5 ¢ ——— >0 for a"°C and b. 2.

" an2 |
The behaviour of the function fb(”z) for different b,

as evident from the abowe results, is drawn in the. diagram (4.4).

%

. fb(oﬁl)__:} :

i ; |
e ad
{
O 4 ()

: ] m
(. 1
it
i
|
i i

2 . :
Y 02'/‘31 . 02"--" 5

fad & wederf]
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e

Solutions for rv2 mustbe sought in the interval (O, log -;2-2-) to

. ‘ m
ensure a > 0. ﬂﬁsnce,'if b £ 2 we have unique solution for 2 i£1
o, 3
- 2
1,00} ¢ mf < (=)
; m1

or (i) ms > 2e
/
m, 3
and (:1.1\ m & (__2__)
30
1
Observe that the conditions thus arrived at are same ag that of the
special case where b =0 or b = 2.

If b »2 then there may not be any unique solution. However,

b>2 is quite unlikely.

4.3 The Derivation of tke p.def. for x and the
Maximum Dikelihood Equations ' '

For the \sake of convenience, we reformulate the model defined by

equations (4.2), (4.3) and (4.4) as

.
x; = X4, =X (14 }-(-i- ) =%,(1 + u;) | e (_4.34)

Also assume that b=2, Note that E(ug_/_lXi) and V,(u‘j’_ [Xi) (r-az) do not

‘depend on X « We shall assume that X and u/ are independent. Notationally,
if we assume that X hag a dlS'tI‘lbu“thn function ¥ and density function f
and 4’ ‘has o sympetric and unimodal density funmetion g,l then

P(c) =P( x& c)_

1

P{X(1+u) <c'}

1!

f PIX (1 +0)< ex } £(X)ax

=§°Piu’< &= 13 (&
=g So) & ' eee (4.35)
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Specific distributional ~ssumptions for u #nd X may now be made
to get the distribution function of x.

Model 1 ¢ U~ PI;[. ( -X, X, m) i.e., u/N PII("'Tg 19 m)

glu’) = Km(j - u"%)™ where K =B (n+1, 15)
1 if %>x
[y C -
. G(X 1) = %-1

From (4.35), we have,

P(c) = ’P(x_<_c)
<3 R C =9 - _
= z rx)ax + I/z. ( ff A Km(1e{r?) S av) f(X)ax

F(X/2) + f K(1-v) ( J'/ f(X)dX) av

+

)dv'

= J' K (1-v ) F( e
Writing x for c }
P(x) = :1 K (1= 2)m F( -;J-c—)dv | e (4.36)
X)) = 21 m ' v . . see .
1 ,
3 p(x) = J‘_1K (1-v2) f('v'-ifl') ;:":_T dv

= 4, K (1-9)" (14)™? £

)dv ) T ..". (4037)
Putting f = 1-‘-;-‘-’- , '

v+l

2" (1=t)" 2’“%1 ‘t“;'1 f( 5’:——)2&

Ot

plx) =K

¥

. il
o ) ¥ #, }
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Taking o different transfomation, one gets,

p(x) = Km(2x)m I

9 m+1

The rth order moment about ZEro is

y
by

E(x") = E xF (1 +0)F

E(Xr) E(1+u” )r since X

E(xT)

5(x) { % 2

-(-1(1——-) dt

. 0. ,
B(x*) J_K (- ) (14

1 A /
I, B (1=a)" (14

E(x) K pemtT+ B(m+r+1, m+1)

(4.39)

LR N

}

and u” are independent

) el

)I"H.Tl du/

2m+r+1 i;m+::- ( 1= t)p at

4ed
L/ . {4.40)

To find the likelihood funciion we assume X to follow a lognormal

distribution with parameters j and n2. Symbolically, let X~ /\( He 02)

‘h)f’

with distribution function A (X[ yal

the likelihood function is

n
L=T] »(x)
or i=1
n
log L = 3 logp(x,)
i=1

) and dené'ify function ?\(X !'u s O 2) .

(4.41) |

(4.42)

4ot/ Aterhatively also from the density function, one gets,

t m
Bx") = 2% km J 1 (ge)”
P P T
="K s ,
1
= B(E) 2P x. £
o
V‘,{ffr\ . (,211'14'1'4'1

Rlpvgrg |

{ C};o i £(x/2w) ax} &
17 &) @@ tar

wm+r (1_w)mdw

rn-l-‘*,\‘.‘
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We maximize log L with respect to ., rr2 and me Taking partial

derivatives and eyuating them to zero, we get,:

8 log L _ o
oy 5 o
! JT} 5 ) log X &X
' g B x/z B : '
or 1 =; b ene (4-43)
....-1 a0 X m
?\(X) 4 1
'rx 2 Xm+1 \1 2X) &
G éocg L = 0 p
= ?\!X! ( 2
1= 55 ) (QogX - p)° &
2 _1n ¥/2 .
or =—1‘; -21 ) N & T seve (4044)
i= (X! i o
Ixfo mrr U= 30) &
and & lgmg L 0
or =— I
2
k=0 (K+m+1) (K-Hn'i‘g')

iy J_)_(-I..x_:.i_)m

X,
) i
n x/2 Xm-t—1 log (4 - X
oo - veee (4025)
nl= oo “oe .
x /2 Xm+1 (1 - X ) e
- 2-—(103)( —u)
where A(X) = ——— o
\/E'HUX |

4.5 -~ lcg Km = log\/fmﬂi - log‘/1m+3;2i + log\/t17‘25 since
=/ o1} /) / /7 (m+3/2)

° BlogK ( 1 o0 1 001
Voai = ol Y 4 e I gm—= 3 &)
om m+1 K= K+m+1 K= K
09 =
sy o T 1 eb o wd)
m+3/2 - Kim+3/2 Yomr] K
o0
=%‘ ¥ 1
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Model 23 o ~ (O, a2) 8

.o |
=1 L T e

: P(x) =

O 3
1 e
8
:N]
]
(1]

=)

and p(x) = €3}

i acat Rl
X

] fE)&X  .ov. (4.46) |

———

1
= 3

O
V2 ] aX
From this or otherwise we have

Bx) = EX)
) = (1 + a%) 3(x2)

andso on.

4ed  Qther Moment Estimators of Model 1 3

Since the sampling variance increases very rapidly as the order
of the moments increases, it may be advisable not to utilize moments of
order wmocc than 2 if we can avoid them. From this point of viewy the
moment estimators suggested above may not be the most advantageous ones.
Since, however,; the nunber of parameters to be estimated is 3 or 4, we

/by method of m/oments. I we make distributional
need some sample moments other than m, and m, for estmationz_asswnptions

1 2
on )X, such as ufX ~. PII(-X, X, m), we can use m; where r is fractional
like 0.5 or 1.5 {say). In the set up given by Model 1, one can take

any three of such moments with order r not exceeding 2 and solve the three

equations for three unknowns. One can even allow r fo tend to zero and

take
T
1 oox=1 _ 1 B
nE lim rﬂ__nElogx._long
-0 o

where G is the geometric mean of x. We will call this the moment of


http://www.cvisiontech.com

144

order zeéro although mé =1. Leb us write m; for the eguation ba:sed on
the sample moment of order r in the estimation by method of moments.

Obviously for r = 0, we take

n

mf;(log x) = B(log x) E(log X) + Elog (1+ u ) }

K(1 - ) log(‘l+u)du

1
‘ .:;

‘I

=0 /2 "
=;{+J‘__l K(1-u) [u—-—"—-——..]dn

'

: ! 1 w2 /4
p o k (1- ’2) { -+ B &’
-1 0 .
‘ =p - z Bop o y/(2r) L ees (4.47)
L r=1 '

where b, (u } = K 22u1+2c+1 B(m+2r+1, mk1). ' Below are reported the
results of Monte=Carlo study where ML estimation were compared with
various types of mreth'od of moments estiﬂlators, including some where the

order of moments used was fractional or zZerc.

4.5 The Monte-Carlo Results

The Monte~Carlo é‘cperiment was conducted to compare ML estimators
and various moment estimators for model (1) of section (4.3) of this
chapter. For th:l.s purpose, 50 samples of lundred o‘z:servatlons each were

generated. for x values assumlng, the parameters (- u, 02 , m) to be '
(15 045, 2). Since
x =X(1 + u/‘)

and X and u’ are independent; the samples were generafed for X and u/

separately., . The digtribution of u’ is
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¥*
pll<a® = 1 K, (1-n?) af
‘L},*
=K, I (1 + v - 2 au
#5 %%
‘u ok u” _ 2 ‘
= [L +‘I+5 5 23 3 _7
3 *5
__15 "“__211 u
e TR /

Trs for PH(’—‘I i 2) , TERlon rumbers w‘ere converted into u’{‘ values
using explicit expreésion for distribution function of u . Generation
cf X values was not very difficult since (log X=1)/y0.5 is standard
normal and tables of standard normal deviates can be found in many
books (The Rand Corporation, 1955, Wold, 1955-);.

For each sample we computed the following estimators of (|.L, 02

s M)
(2) ML estimators
(0} Moment estimators uzing equatlons 3

(i) m: (log x), w, and m’

1 2
A Y /
(i1) m’ 50 T and my,
(11i) m"5, mj and m;
(iv) m 759 m"l’ and mé
i /
(v) m 50 T and e

The likelihood equations (4,45) sy (4.44) and (4.45) were solved
through iterative process. Given the initial values Moo ﬂg, and 10, 5

s M., and m_, one can

2 3

which can be estimated from moment equations mf‘l
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straight find by and ﬁf « To find m, we substitute U _, ”i and m in the
right hand side which equates them. This again needs another iteration.
Since left hand side of (4.45) is a monotone function of m, there exist

a unique m which equates thems - The proof for the donvergence of the main
iterative process, could not be founa oute However, in the Monte-Carlo
study the process converged for all the 20 samples. The initial values
for (u, 02, m) were taken to be (1, 0.5, 2), the true values of the
population parameters. For some of the samples the initial valueg were
taken to ge different to see whether they converged to the same solutione.
The process was stopped ag soon ag it was found that the absolute value
of the successive solutions for | and ﬂ2 were less than .001, which was
taken to be the criterion of convergence.

For solving the likelihooa equations the integrals were computed
by trapezoidal rule, after computing ordinates at intervals varying from
.01 %0 10 depending on the second order differences of the densitiess
The method of moments is far more expeditiouse. To solve the likelihood
équations one must make use of electronic computer whereas the moment
equations can be solved much more easily, though here also we need to
use iterative process. Congidering the amount of time it takes, ﬁe

covered only 20 samplesfor ML estimation. The results are summarized

in Tables b4.1) and (4.2).
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It is merely a coinciderce that the bias of ML estimate of 4 has
been so0 small. Otherwise, if we compare the MSE's they don't seem to
differ very much, at least between a and b(i). Biases as well as MSE's go
on increasing as we go down in the table.‘ Observerthat in the moment
equations m; and mg have been taken common for all the. procedurecs.

The third equation with moments of fractional order (or zero order,
i.es, the mean of logarithms) have been taken differently for different
setse As one goes down in the table this power increases. The effiw
ciencies of the estimators by b(i) method is not much less thaé those

of ML estimators. Considering the difficulties one faces in solving

likelihood equations it is advisable to adopt the procedure b(i).

4.6 Concluding Observetions

The officicncies of different set of moment estimatérs may be
compared with that of ML éstimators for other mpdels also, Simplicity
of moment eétﬁmators should be stressed while comparing the efficicncies.
© Time and cost considerations_may prove t0 be ﬁrohibitive for ML estima=
tione

In the above Monte~Carlo cxperiment, we coulé as well take the

following two sets of moment estimators o

(i) m;, mg and.mg

(i1) m# (log x), mé(log x), mg (1o0g x)

The set (m{} mé} m;) would obviously give very low efficiency as can be

predicted from the above tables But, procedure based on (mg, mg, mg)


http://www.cvisiontech.com

150

does not assume any distribution for u [{. Regarding the sccond procedure
one should note that

s (log x) = K3'(10g x), , ‘ | ) .
where K, denotes the third order cumilant. If X ~ Aluy ) ana
ulX ~ Prg (~X, X, m), then log X and log (1 + %—) are independent.

Tius one gets

K (log x). = K; (log X) + s (iog (1+ 2 ))

ty (Qog X) + iy (1eg (1 +3))

iy (108 (1 + P).

iy (1log (1j + %)) is a function of m only (say f(m))e So, given the

' sé.mple estimatel of u3 (log x) one can easily estimate m. If the¢ table
of values f(m) corresponding to m is at hand; this procédure gives a
simple way of estimating me The other two parameters can easily be
estimated by taking m; (1og x) and m'g(log x). The use of m'l/ (Log x)
an«i m2 (log x) is very officicnt especially for small values of a2.
This idea, though.very promisirig, could not be pursued further, since

this came into view after analyzing Monte-Ca.rlé results.
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Appendix 4.1

Let u be a random variable distributed symmetrically about zero.

Theoren A4.1‘ * If pedefs of u increases monotonically from zero

at =1 to a maximum valuc at O ang again deccreases monotonically to 0O at 1
then V(u) <) -;- .

Proofs

D p(u)
/‘ \\f/
B/ T L T B
. y i
A_f AN } 2
- @ . 0 c 1

As in the above diagram, consider another random variable v which
follows a uniform distribution from =1 to 1. Let us suppose that the two
density functions intersaetat points -:c and ¢ (c >O); From symmetry and
the property of pedefe it follows that ¢ 3

The area of the segment A/ B/ T/
= The area of the segment 'I'/LD
= The area éf the segn-ént DLT

The area of the scgment TAB -

=Ag Say.
!1 -u2 (u)du S g
-1 %P 50
1
=7 v o) -1 @
-

1
! 2£u2{p(u)--1§}d:u

I

22112{‘1)(11)-%} du+2}u2{p(u)—3§} du
c

< 26% -2c% =0 0.E.D.
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Appendix 4.2

The Problem of Identification in an Univariate Model

. It has alrecady been mentioned that if ulX N'N(b, 2%) (so that if
u and X are independent) and if X~ N( p, ﬂz\)' then the ini)déi x=X4u -
is not identifiable if only x's are observeds We shall now show that
if in the same model u and X are not indepgi%ldent; to be more ﬁ{ecise,
1 i

if u’X ~ N {0, a2 Xz) then also the model is not identifiable. In

particular, the paramecters a2 and o are mnot identifiable. The moment

equations in this case are

[} o | _. . eme (A4o1)

m/ =

| .
m; = u2 + o )';(1 + a2) _ ees. (A4,2)
my = (0 4 3uf) (1 + 39 cer (80.3)

From the symmetry in the right hand side of (A4.2) and (54.3) one can

easily verify that if (a12, 6_]2) ie a solution of (az,. n2) then
2 - 4 .

1. 2 2 . : g
( T 2 M } is a solution of (a?, 02). But-this is not a proof
o

of identifiability. To prove that the model is not idént‘ifiable, we
derive the pedefe of x to be

2 1
- x _ A (o2
> > 00 y 232 (X 1) I 2 (X-U)
p(x[a,c)—..—. i o 1 20

Wa}c \/é‘ﬂ'n
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he Likelihood function (a2, ¢2) is the product of n such inte
grals with x = Xys Xps5 eevey X oo Let (af, ﬂf) be the true value of the

parameters, then

Thoorem A4.2 § The likelihood function L(af, 0'12) = L4, 82 03,

i 2 2 2 2
Proofs write (_;%_, ay n ) instead of (a“, ~ ) in (A4,4)

i
and get : '
42 2
. K=l
> - 2 (% 1) Ao
01 o '2 o0 2 1 ‘ 2a1u
p(x'-=-2-,a1u)-_— ;e e 0 s, ax

g —_—
B X,/ 2-”-61 X \/é'l-',‘a1 1

Put t =X/u , dt = gx/p

(t=1)
52 - 2 X - 2
"o p( _l 2 2y _ .1 23,4 1 s ’“F/(2"1)
e P\X 2 ) = I—oo e e dt
\ /21 a1t \/2'|'T fT_1
utwo=s x/t, aw = =(x/t 2), dt.:--}‘c—iE w2
- e (£ 4q) - Ge)®
2 i 922 2n°
‘.‘ P(I ‘—é— u) J LA ] e i 1 e 1 -t Gw
%4 =, X

1
~ == (E- )2 - L(x-p)
=i 1 1 2y
= j Wt =] e d}{
=°0 ZTFHX \'/ETTq
= P (X/au12, 02)0 QQE.DD

We are getting the same density of observed x's frr two dlfferent

set of parameters. Hence the model is not identifiable,
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Chapter 5

ESTIMATION PROBLEMS IN MORE GENERAL EIV MODELS

PART Il

5.1 The Bivariate FIV Model

Aé a contimaation from the prévious chapter here we d‘i‘d‘..s:cuss".t';he
estimation problem of some bivariate models with EIV's through' moments
only. Except in section (5.;), the true regressor variable X has been
assumed to follow a two parameter lognormal distribution throughoﬁt

this chapter. . .. _;
To see how the estimation problem arises in the bivariate set-up,
let us consider the linear model

Y, =a+B8X +e5 - 1=1;2; seuyny | eees (5.1)

i

where Xi and*—Yi.a.re true but ﬁo;rr-éb“s.ex:va.ble magnitudes of regressor and
regressand respectively;“ja‘ :&ind B are mﬂ;ﬁowj;fj:arametéré to be estimated -
from datas ey is the disturbance assumed to be independent of other

variables not involving €y and

,E(ei) =Og V(E:i) = ”g; ‘,l 3-19 2, eoeng Il :o.. (5.2)

The regressor X, is" stochastic. The observed values of the regreséor

and the regressand are re:spectively, X5 and ¥ with

xi.sxi+ui ‘

=Yi-+ Ve ﬁ

~vee (543)

¥

where u, and v, are EIV's with zero means and variances 0121 and 03
respectively. They are also uncorrelated with the true components

Xi and Yo All variables are assumed to be ieiede for i =1, 2, ceey N
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The above model , assuming that u's and v's are not necessarily
independent of cach other, leads to the following expression for the

limiting value of the OLS estimate of g

R Bfﬁ + Cov (uy v)
5 BL = plim BL = 5% : a0 (5'4)
N Vo ot
X u

where Cov {u,v) iz not necessarily zero. If one assumes a linear

dependence between the two errors, i.e.,
¥y 1= hui + Vs Rty L)

and if one makes the usual agsumptions of classiczl linear regression
nodel for (5.5) (Goldberger, 1964, p.162) excepting that u; is stochastic,

then one gets

o, R}EE” éh ’ '
tot h
¥ 5
z_é_T B+ T—Q?\ c eee (5.6)
oyt @ oy + o

So, 8L is the weighteafavgi?ge of 8§ and A, so that the OLS estimate
will not be consistent unlesé\either qi = 0y which is contrary to our
assumptions, or f = A, which is unlikely (Rao and Miller, 1972, p.181).
Similar problcms‘ariSe if nonlinear equations, such as semilog,
hyperbola etce, commect X and Y in place of (5.1).

From (5.6) it is clear that consistent estimation of B is
possible if we have coﬁsistent éséimates of 'ﬂi, *i and A. In the

previous chapter we have tackled the problem of finding consistent
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estimates of ﬂ% and ni from the assumptions on x, vizZe, x1,x2,...., X 9
by the method of maments and also by the method of ML under the following

agsunptions
(1) Bag) =0 i e o a
axP®

0

(11) ®(u?[K)

1

(111) B(’|X)
and  (1v) X A1, )

for usual moment estimation, and

() wfx ~ Py (=X, X, m)
(22)) B AL i D
for fractional moment and ML estimatione Under further agsunptions
consistent estimation of b and a2 is possible in the same situation.
We shall ncw see how we can make use of these results in bivariate
problems (such as those arising in engel curve agalysig) for estimating

B8 (znd A) from observations (xi, yi), i= 15 25 eees;p I

In the next section of this chapter we discuss how oné may get,
by method of moments, consistent estimates of paramcters for different
algebraic forms of the relationship between the true values. The results
are based on the assumption that X is lognormally distributed. Other
distributional forms can alse be handled in the same marmer. 'Some
results further assume that the crrors in the regressor follpws a
Peargonian type 11 éisfribution.' Section (5.3) attempts to get consis—
tent estimates of parameters without making any distributional assump—

tions about the true regressor. Here however, the relationship between


http://www.cvisiontech.com

W

the true values is assumed to be linear. The concluding section points
out some limitations of the results obtained and-By makiﬁg some sugges—

tions for further work along this line {(vide Pal, 1977).

5.2 Betimation Assuming Specific Distributions for X and u

_Ag done in the previous chapter we first assume some specific
values for b (= C and 2). Later on, we tacklc the problem for the more
gencral case, where b is specified but has some other values., It should
be recalled that b can be estimated from the observations Xy Xpo esey X,

While the approach is guite general, the concrete results are generally

based on the assumption of lognormality of X-values.

5.2+1 The Case Whore b =0

We shall consider three algebraic forms of the regression of
YOHXU
linear ¢ Here equation (5.1) is appropriate. The moment

equations are

' 2
m11 = B uz(x) + Aa ces (5-7)
m21 B B UB(X) = Bﬂ}(x) . eee (5.8)
P2 ® B0 = 6550 see (5:9)
m03 = BBIJ.B(X) e BB”B(X‘) T (5-10)
m30 = HE(X) = HE(X) ‘ “o-o (5011)
where n ) 5
1 _o_=i
iy = 'ﬁxzz G = %) G =¥ )
with 0
GICRadb op & asvate melked'
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Hence, we get the same set of estimators of B as thoge in the cage
where A = 0 (vide Ghepter 3), since equations (5.8) to (5.10) do not

contain A. The three "pagic!! estimators are

A s} A mj = m,
8y = o : oo B =g 2' and B3 =E'J'°

Observe that contrary to what is implied in the section heading no dis=
tributional assw?tions about ¥ is necessary to estimate g and other
paremeters like ”B(X)' But for estimatioﬁ of N from (5.7) distribu-
tional assumption would be neededs A being different from zerc the
comparative efficiehcy of the estimators will of- course be different

from those where A=O.

Hyperbola & Here the relationship concerning the "ti'ue ‘compo=
nents is
Y=g +B /% +¢c . . eee  (5.12)
We also make the assumption that X ~ A (Ll 5 ﬂg). The 'followiring noment

equations may be used in this case ¢

m, = B Cov (X, 1)+ LG
it = B ZEOV (X2, l ) al 2E(X.) COV(X' :l ) -_-7. .'.'.. (5.14)
21 X X :

S0, ' ~ T~ : .

M =] “
and,

A AN

A= { m11— - B Cov (Xg }1? ) } /g 2 [ w & L eee (6.16)

Tt is not difficult to estimate Cov (X, & ) and Cov (x2%, ) as ve
already know the estimates of parameters; g and w2 ‘from the corres—

ponding univariate model.
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Semilog ¢ The semilog_equation’ié
Y=o+ B log X+ &~ sse (5-17) l
The assumptions involved are the same as those in previous cases The

moment equations are

. 8 Cov (X, log X) + Aal oo (5.18) -

11

and m

o1 g {Cov (x?, log X) - 2B(X) Cov.(X, log Xk eee(5.19)

B can be estimated from (5.19) exploiting the lognormality of X and the
estimates of p and n2. Then A 1s obtaincd from (5-18) uging the egti=-

mates 8, %2 and Cov. (X, log X).

5¢2¢2 The Case Where b=2

Again we consider three algebraic formse
Linear $ Assuming b=2 the following moment equations may be used

to estimate B 3

9

(]

8u, (%) + Aa® B(x2) | coe (5.20) “

myy = B fug(X) + 22 Cov (X2, X)} + A. 222 Cov (X2,X). ee (5.21)

One can solve (5.20) and (5.21) to get B as.

2 2
2, Cov (X°,X) = By ;(X )}

: by il (BRzo
2u,(X) Cov (x%x) - B(x?) { ng(0) + 22 Cov (x2,%)} )

To estimate B , we substitute estimates of Cov (X2, XKW uz(X), EKX?)

and ”3(&)" bl ENELIRIE

Here it may be noted.that if we estimate B by OLS method, then

~ Bu_(X) + Kni
8, = plim 8 =— . eoe (5.23)

Nes o |, u2(X) +

2 1

By u, (x) =N a

or B = L 2 2 * K (5.24)

1,{X)
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B, u,(%)
Tf A= 0 then B = _?T;Kﬂ_— which is nothing but the case
where Gov (u; v) = 03 and in thet case we estimate B from (5.20) only.
Of covEe, we take the estimate of uZ(X) from the corresponding unive~

riate model.

Hyperbolz ¢ The moment equations to be used are

o Bcov (X, ) + Aa® B(x?) ' C eee (5.425)

11

B { Cov (XE, %-2E(X) cov (X, ;—{) + a2 Cov (XE, %)}

i

Mg

+Ae 22°Cov (X, X2 . eer (5.26)
Solving (5.25) and (5.26), we get,
on._ Cov (X, X9 = 0, Bx?))

11
B = eee (5027
5 covi, %) Gov (X, X2) = BXx°) { cov (%5, ;T)

- 28(X) ¢ ov(X, }J{-) + a% cov (%%, }“1(_') I

Semilog ¢ Here also we take the same moment equations and get,

i

m A Cov (X, lOg X) + 7\&2 E(Xz) LR (5'28)

11

and n 8 f cov (%2, log X) = 2E(X) Cov (X, log X)

21

|

+ a2 Cov (Xz, log X} 1 + 27\a2 Cov (X, X2) eee (5.29)

The solution for 8 is

. on , Cov (X, x%) - .y E(x?)
= - ese(5.30)
2 Cov (¥, log X) Gov (X, X2) - B(x?) Cov (X%, log X)

~ 2B(X) Cov (X, log X) + a° Cov (X%, log X) }
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5243 The Case Where b £ 0 or 2 %
In this section we assume that b is known apriori or is estimated

from the univariate model. We may take & more general algebraic form

Y =g+ Bf(X) +te, . . l ) vee (5031)
which becomes gtraight line, ‘hyperbola and semilog as special cases. The

same moment equations. give

M

B8 gov (X, £(X)) + na® B(xD), ‘ vee (5.32)

B 8 Cov (X2, £(x)) - 28 B(X) Cov (X, £(X))

21
-+ 27\&200\7' (X, Xb) -+ 328 C ov (Xb, f(X)) se e (5.33)
which has the solution

. 2Cov (X, Xb) - m

m E(Xb)
- 1 4 N Cr
i 2Cov (X, £(X)) Cov (X, xb)_’_ - Bx) { Gov (x°,£(x)) S
- 2E(X) .éov(X » £(X) ) o+ ,3_&1.2gov (Xb, £f(X) 1 |

Observe that putting b=0 or 2y we get the expressions for B given
earlier,

The other three third order moment. equations give

nsy = 0y 00+ 3a2Cov (X, 1) wee (5035).

m, = 851 €ov (X, £5(x)) - 28 (£(X)) €ov (X,£(x))}
+2pnPlov (68, £(X)) + 2220y (B, K) ... (5.36)
, @nd my, = B 2113 (f(’x)ﬂ)ﬂz'-; 3éxéa2 C,;Qv (r;(xl), Xb). ees (5437)

Special cases where b=0 or b=2 or where £(X) is X, log X, org(- are

obtained in a straightforward mahner from these equations. One may take
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the heln of these eguationg also in cstimating 3 for specizl cases, but
the golution may be more difficult: and further, the efficiencies of the

resultant estimators may be lower.

5¢244 Other Moment Equations Assuning ulX “'PII (-x, X, )

So far we have not assumed anything specifically about the digtri-
bution of u given X except for its symmetry around zero (or rather that
odd order moments vanish)e. Below we illustrate how the assumption of a
gpecific distribution of uJX may be helpful in some cases.

Let us take the case whers b=2 and suppose that we are to estimatc
a.semilog équation. We assume that

ujX ~ Prg (=X, %, m).

The pedef. of thig distribution is

p(u)an = X7 K (1-u?/%" au, =X Su <X, vee (5.38)
where K_ = 7 @+ g, 32—) =3 (m +1,m+ 1277, wow,
=X +u
=% (1 + wZ)
=X (say). eee (5.39)
if

¥ and v/ are independent of each othegéu]x follows the Pearsonian type IT

digtribution gpecified above. Again,

(1= )% (1-u))>
-2

E(ujlog ﬁﬁ = Eiu/(—(1—u/) - - enees )}
A2
- B [’ (=) + S50 L"gu e
VLAY IO VLY
= -E{I("—u/) 'f'g1Tu-L' + (‘T?HL .9 00 }+ E{(‘I—u/)Q + ‘(1_211—1 +ll.}

ot N oL,
cem G0 G e 0t

/13

RCONCER RN CSNE IR D IR orn
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b, (u”) u4({1/ ) b))
= e\_f.2 “* 3.4 + 5.6 + enss w ol sea (5-4—0)

and E(u log u"/]X)' = IE}(QJ log u‘:.
We know that

ugK(u/X) = o350 eossss (2K=1) ' | “eee (5.41)

(2n+3) (2m45) ves (2mt2KHT)

Boy

ince m can be estimated from the ux_iivaria.te model, can be estimated
consistently. Instead of the following equation

m,, =8 Cov (X, log X} + A, a® B(x%), ees  (5.42)
we may use the equation

m,, (log x, y) =8 ¥(log X) + A E( u log u’), s (5.43)

2 + n2/2 2
Cov (X, log X) is simply a° eV and V(log X) = ~° assuming
X ~ A( ey rsz). After substituting estimates of E{u log u’), a,2,
Gov (X, Log X), V {log X) etce, in (5.42) and (5.43) we can easily solve

them to get consistent estimates of 8. and A.

5¢3 Estimation Without Distri"nutj.‘onal Assumption on X i

In this section we arrive at- Sgott!s (L1950)\ estimate under a more |
general set=up than that assumed by her. ),Like Scott,‘we need noit.make
any distributional assumption about the true regressor. Moreover b may
take any value and this value may be ﬁzilcnown.r Ve write'do;n all the

moment eguations of the linear model up to order three for the sake of

convenience,

wg =B e (5
m61 = g-!-ﬁ E(X)“" : . ' ‘ eee (5045)
m,, = u (X} + ézﬁixb? ' U R ees (5026

v o .
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m, = Bu(X) + nal BxYY) e Tleds £5.47)
My, = 62u2(x) + na? E(Xb) + uz(w) + ue(ﬁ) ees (5.48)
R R sl {5ep)
gy = Sus(0) + a2 (e 0 i, T 45.50)
m1-2 = B2u3(X) + az)\ (7\ + 208 )B sse (5051)
g5 = Bsua(x) N 3;%2 - ees (5.52)

where B =Gov (Xb X) = 'H‘(Xbﬂ) - E(Xb) EX). ‘v;fe have nine equations
to solve for ten unkmowns, namely, E(X), @ B s ilg(x) As by a2,
uz(w) y R (S), and u,;(X) However, uz(w) and u2(g) appears only once
and in the form of uz(w) + uz(e Ye So in effect; we have nine equa-
tions to solve for nine unknowns. The following theorem reaches the

sane result as Scott's, but, does so under a general set=up.

Theorem 5.1 ¢ Under the set~up defined by (442), (4+3), (4.4),

(445), and (5.1), (5:2), (5;3)-and (5+5)

>

-:-1- 2{(y -y)-d(y -x)} 5 '
i=1 ;
wherey =~ % y; andx= -~ & x;» hes a solution & which is a
i=1 , i=1

consistent estimator of g

Proof 3 The proof is cbvious since

. 2 3 M/
pllm ] {m03 - 361[112 + 36 m21 g mso }’ = 0 QeEeDe

I «» 0

2:1/ For the genera,l form Y=g+ Bf(X) + & , we have
- 3gu,, + 38°0,, = 87m,, = B IE(X)X} + 3’ Cov (X°,£(X)-K3_7
oz T 282 21 = 930 = B3 '
+ 2a%8% covt X%, £(X)-X3 + 3Bn%2 Cov § £(X)x, X3,
and this vanishes if £(X) = X.
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Scott proved the same thing under the following assumptions, which
are uhduly rgstrictive :

(1) wyle) =0

(iij u and v are normally distributed and independent of eath others
(ii1) u and v are independent of their corresponding true compo-

| nents (X and Y); and

(iv) X is nornormal.

The major limitation df this estimaticn procedure is that it does
not specify which solution is fo be taken in cage. there are more than one
real solutions. However, one can always check the feasibility conditions‘
of it using equations (5.42), (5-43) and (5-44) by sceing for which solu-
tion the estimates of uz(g) + uz(w), az, uz(X) etc.s are positive. But
more than one solution may satisfy these checkse. FExistence of only one

feasible solution would of coursc make the situafion very smoothe

5.4 Concluding Remarks

One major limitation of the results in this chapter is that the
egtimators are obtained by method of moments and nothingris known about
their efficiency viswa~vis ML and other optimal estimators. It has not
been possible to apply ML method for solving the problems.

In some applications, e.g«, in engel curve analysis, the algebrzic
form of the regression equation may be different from the three covered
in this chapter. While the algebraic form is not altered by the presence
of EIV's some work may be necessary to evolve procedures for choice of

algebraic form in the presence of HIV's. Also, work like that reported
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in this chaptér must be done for other important algebraic forms (e.g.,
double~log relation). When estimators have‘been:found for all the major
engel curve forms, the situﬁtion will be ripe for an application‘to
empirical budget data. Moreover, for a given algebraic form one can
take different types of moments td get more than one consistent esti-
mates of B and thus again it creates the problem of choice among the
different estimates.

Household budget data are often available in a grouped form and
further work would be necessaxry to édapt the momentlestimators reported
iﬁ this chapter for purposeé of application to such grouped data.

‘ Throughout the chapters 4 and 5 except in the last section of
chéptei 5 the distributionzof X has been aséumed to be lognOrmal. Some
other distributions, eegZey. Pareto, Gamma, Log—logiétio étc.,‘may be
appropriate depending on the specifid situations- The moment estimators
will then have to be changed accordingly and sﬁhiiar approach can be
taken in those situations.  The assumption on‘the”disﬁriby#ion.of'u
given X, that. it foilows a Pearsonian type II‘distribution, is also
subject to criticisme It is necessary to see how robust the moment
estimates are due to changés-in the distributional'assumptions_on X,

u given X or the distrubance term e .
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Chapter 6

A

SOME FURTHER RESULTS FOR THE STANDARD TWO-VARIABLE EVM

6e1 Introduction
In this concluding chapter we present some results of a misce-

1llaneous .nature on statisticai inference in the standard two=variable
“EVM (vide Pal, 1980a)s We first give some comments on the estimator
proposed by Kzila (1980). Next, the standard EVM where both the error
variances are known 2 priori has been treated with a view to getting an
improved estimator by pooling the two earlier known estimators both of
which are consistent. Lastly, we congider the estimator due to .

Boudon (1965, 1967, 1968) in the .context of EVM and discuss how Boudon's
estimatorroén be improved further. The three problems discussed in
this chapter may seex to be discomnected. However, in all the thfée
cases we are trying to estimate the same coefficient of the EWM. In' the
first case, that is for Kaila's estimator, no othe; additional informa=
tion is availables In the-second case, two items of additional infor—
mation are available, vize; the values of qj, . the variance of the
error associated with the regressor and 03,‘ ihe variéncé of the

error associated with the regresgand. In the thirad case, more than one

additional information in the form of IV's are available (vide Pal, 1980a).

6.2 Remarks on Kaila's Estimator ' . =

In the standard EVM (vide Ghapter‘1”'Seoticn“1;4) the limiting
values of the OLS slope estimator ( b =m, 1/m ) and of the reverse
LS slope estimator ( b =m 2/'mﬂ) are related as

b1 <B < b2 (assuming 8> 0 e
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: A ' X% ‘
where b1 and b2 are the limiting values of b‘l and b2’ respectively

A
(see Chapter 1, Section 1.7). Hence an appropriate averaging of b‘l

A ‘
and bz‘ might lead to a satisfactory estimate of 8. Gini proposed

the arithmetic mean in this contexts
Recently Kaila (1980) proposed a new method of estimating g
where "..... the best slope is defined as that which lies between two

A A
extreme glopes b " and b2 and for which the percentage deviations

from {';heir respective minima of the functions L(y) and L(x) are equal,

- i _ 2 _...l_.. 2 1
where L(y) = f(a +B xg yi) , b(x) = Bz %(Ot+ B‘xi -yl)

Kaila showed that the "best'' glope is thus given by

{Bk = \/ L*(Y)/ L*(x) o | eves (601)

# *, :
where L (y) and L &) are the minimum values of the functions L{y)

A

- A
"and L{x) corresponding to the slopes b1 and b2 reapectively.

" A
It ig interesting to see that bK is nothing but the geometric

‘mean of the two extreme slope estimators.

A LTI

b= JU(y) /()

bzzﬂi.{b(x--) (Y'Y)} J

2 b (x-X)-(yi-y)}

C A (a2 RN SRS
by (B) mpo = 2y my '.'Tmoz_ 2

— =y E -

Dy Bag = 2y + Mgy
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I m
Now, substituting -1 for b1 and for % we get,
20 11 '
NN O g T W A
K 20 Moo Ty
. S ) ‘
Hence, by = 31 b, . ere (642)

Now we may compare the new estimator with the conventional esti-
A A A o A
mator bA’ the arithmetic wean of b_] and b2. The bias of bK is
asymptotically

B(%K)m_{ -S—[rf— """ )+rur-rrv[-(r/-r) /4_7 ees (643)

retaining terms up to second 'éé‘greé in qrﬁ and T v{. - The asymptotic bias

A
of bA is, up to the same order,
A 2
B(by ) 5L (x/mr) +x2 7 oo (600)

Hence BY( g il = BT g ) 8—2(1- /=~ V- ¢ )2+4r r / (6.5)
k& A K & 8 ‘v wey u v Tu s e

retaining terms up to order three. The above difference is positive,
ZEro or ne:g‘a:ttive according as rv/ is greater than, equal ’co or less
than T . Similarly, comparing the twc asymptotic variances we get
(vide Appendix 6.41)

Kk (r + r,f)
Wby - V(B B—u— Lo 1) (xim 2 )+ 3x, - v,] cee(626)

where B, (= |_14(X)/ ug(}{)) is the coefficient of Kurtosis. Thus,

v( 4 b ) - v( b ) 7 0 (in large samples) according as

Y

2
I'v// T % .= _BQ_'-_2 . ore (6.7)

It may be mentioned hé:ce ‘that the X-distribution in Fngel curve analysis

(e-gr»., Fougch ORI NSRS ""“"‘81 Frpiidnsrdd dealbistlse i tusloNDEres
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as well as very peaked so that the Kurtosis coefficient is more than 10
in most of the cases.
Comparison of ‘'mean square errors' (MSE's) Teduces to the

comparison of biases in large samples. It may be noted that, in general,

N

A .
both bK and bA are inconsistent.

If an g priori estimate for qi// ci/(z Ny say) is given and
if u, v and g are normally distributed, then the MLE for B is known

to be (Lindley, 19475 Madansky, 1959)

) A A . A B ~ 5

(A%, b -'1)+\ﬂ7\b e = 1)+ dA by
A 1°2 102 1 (6.6)
6)\- PN - LE NN -

A
Obviously bA corresponds to

2 : . '
AA = % (/_8 /_B) - . N sansw (6!9)
o1 T
. A
whereas bK corresponds 10
e = —,;—L-%— ' core (6.10)
‘ b1 2
so that .
A |
= e )| D
R

Hence RK - hA ¢ 0 in thelimit. Otherwise also it is obvious that
Kaila's estimator corresponds‘to a lower A than the conveﬁtionalxesti-

A ; i .
mator bA' On the whole, any slope estimator intermediate between

A

A
b1 and bé is optimal for some A and not optimal for others. Discu—

psion of themerits of any such estimater (like Kaila's) cannot be made

in the absence of any a_priori knowledge of the magnitude of A.
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He% Ectimation of B Where Both Error Variances are Known

In theilast section we discussed some problems of estimating 3

where neither 02 nor 02/ (= 02. + 0‘2)-' is kno-wn a .-I;-:'Lori 1If, on
u v v £ : 2 priori. 9

the ¢ther hand, btoth 05 and 03, are known a priori, then we have
A Al

two estimators 81 and 82 defined in chapter 1 section 1.8. The

problem can be looked upon as a problem of overidentification, since *

2
the knowledge of only one of & and oi/ is necessary in this case.

If we define a pooled egstimator as

= A A
A, =2 B +(1-a)82

a
. - 3 3 L3 A
and find out 'a' so.as to minimize the variance of 8a’ then the optimum
. A A~
estimator thus obtained is obvicusly better then 81 and 82 s sSince
they are members of the above considered class.

g A
Now the asymptotic dispersion matrix of { 81; 32 ) is

(6) L ; 6
v 61) ] "'1:1"‘ I'u + I‘v/ + I‘uI‘v/ + 2I'u aroo ( 012)
A 82 ) Ep)
V( 82) ~ T(IU. + I'v/ + I'urv/ + 2I'v/') cee (6.13)
AN 2
cov ( 8, 8,) :_g—(ru LEIEEX ) cee (6418)

2 2 2 - 2 2
where T = Gu,/ oy and r /= ( ol + 08)/TB oy )+ Hence the

optimum *a' is

a’ = r // (I + r 1) n ‘ ¥ g vy (6015)
A 2 . 2 2 2 2

where T = C‘u % (mZO - O'u) and T s = ( o +0] ,)/(mOQ PO e Y.

A
The optimum B, is then

? A + ;‘ %‘ i
A ;
o u_2 eee (6.16)

BO - A
T /+ T
v u
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’ A
The asymptotic variance of 84 is

V(.%O ) v ﬁ;'(ru +T S+ rurv/) o | ess (6,17
Madansky (1959). éuggests the use of all available information for
reducing the sampling variance, but did nc'\t actually propose any pooled
estimatér for this problem. He writes (p. 179) '
"The case in’ which both 05 and c;‘; are known is an over=‘ r
identified situation (since only knowledge of their ratio is
necessary for identifiability). In this case, it would seem
reascnable to use all the available information in the hope of
achieving a small.variance of the ;estima.te of g '
He then generalized the model assuming Cov (u, v/) ;40 (v/z v + &) and
found the MLE of 76 to be

A A A~ '
BM = i B'] 62 . see (6018)

I gov (u, v/) =0, we get

2 r +xr_/
A ) : .
Wy ) e B vz 25700 vee (6419)

A - , g A
BO - ig the optimum among the class of linear combinations of

A ~ A . 5 )
[31 and 82, while BM does not fall in this class. So it is necessary

"R ~
to compare the variances and MSE's of BO and BM

estimator is superior. Obviou_sly, when Cov (u, v’j = 0, agymptotic

to judge which

variances satisfy 'the following inequality 3
;A g AN S

since (rﬁ + rs/) /2 > r, T,/ WhenCov (u, v7) # 0 we have,
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A B2 g r + rv/
V(BM):'—IT‘ru%rV/ﬁ— \/rr/(r +rv/-2)
| _prr /]’ e (6120)
u v :
. . A
where P is the correlation coefficient between u and v7s ¥( BM) is the
smallest when P is + 1 as it is expected.
For £ £ 0, we get asymptoticaily

B(§@ ) ~ szrurvx/( 1+ pyr T /) eee (6427)

2 e
A D :
V(BO) ~ —Lz’ lfBgﬂ) P ru::V/(ru--rV/)2 + (ru+rv/)3 + r'arv/(ru+rv/)2

n(rusﬂ:v,/)
-2p/I‘I'/(I‘+I‘f -41‘ p/rrvj(r-r /\(r+r /)

2 2 2 |
+ P T T,/ (53;u 3rv/ &urvg)} eeo (6.22)
Terms of first degree in Ty and T,/ digappear in the cxprossion
A~ A
v(g)) - V(BM ) iece, terms of order two or above in r_  and r_, remain.
0 u v
But the bias is of the order two, bias squared contain terms of degree
_ A
four or more in T, and rv,/. Hence the effect of bias of BO is negli-
A rup "
gible so far as comparison between MSE‘s of BO and BM are concerned

A ~
for moderate values of ne. Comparison between Bo and BM dofs not lead

A

to one clear—-cut answer. When P =0, BO is obvicusly better. When P ;é 0,

% is inconsistent, but agymptotic bias is very small, Here the diffe—

- A
rence between the agymptotic variance of BO

' A A
short, for moderate values of n, BO may be preferable to BM' For

A .
and BM iz algo small. In

is recommended, though the actwal difference

' A
large values of n, By

between the MSE's may not be large,
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. The motivation behind- introducing this example 1s to demonstrate
that there may be a way out of an overidentification problem viz., the
introduction of a more general model. However, much depends upon how

usefully the model is generalized.

6.4 Remarks on Boudon's Estimator and Further Improvements

In this section two IV methods of consistent estimation of the
slope parameter in a two variable EVM are discusseds One of them is
based on ideas from Boudon (1965, 1967, 1968) and Goldbergerwiiﬁjo) and
is a modification of Boudon's method ﬁhich was primarily proposed in a
different context. 'Béth the method leads to optimum estimators in the
sense that the estimators are derived by minimizing asymptotic variances
witﬁin.some classes bf consistent estimators. -If is also shown that the
two approaches leaa to the same consisteht estiﬁator and the common
estimator coincides with Theil's (1958, pp.347-351) two-stage-least~squares

(2sL8) cstimator.

£.4.17 Boudon's Setrup

Boudon (1968, pp«209=211) considered the following relation
\ _

To= B o i=1;2) eennym eee (6423)
where Ki's, i =1, 2; saey n are explanatory variables; @ is the para-
meter to be estimateds and‘-Yi and Xi are measured from their respective
mesns. The standard assumptions of CLS regression are made throughout,
excepting that the Xi's may be stochastic. There are, in add}tiOn,

observations on some auxiliary'stochastic variables, called Instrumental

Variables (IV‘S) denoted Z,s Zys wesss Zys also measured from their
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respective means and assumed to be independent of the error terms.
Throughout this paper observaitions on Xi's and zi‘s are assumed to be
independently drawn from the same population.

For every IV’zj we have the relation
ZY¥zy = Bzij + Bea o, 3= 1 25 avey K ves (6424)

from which 8 can be estimated consistently (since plim ‘lZg Zj = 0)

n., o
using
LYz
A .
CIRrLT )| 3
BJ"_ EXZj g :}'—-19 29 -uugK. s o0 s (6-25)

We witl assume that the IV's are stochastic.

~
In general, the basic estimators Bj for different j wiil not
coincide. Boudon proposed a pooled estimator which can be derived by
ninimizing the expression

2

= 3(ZYz. = BEXz.) veo (6426)
J J d
with respect te 8« The solution is obviously
A D(Kz) (%Yz)
BB = —d al 2 * soe (6.27)

b 2
(2 Xz,
; ( zJ)

A 3
This is a weighted averageof the Bj's with weights proportional to
A B :
(= sz)z. The estimate ﬁB is not invariant under unegual scale
changes of IV's. Thus, if we multiply only one of the IV's by a cons—

tant which is different from fone keeping the others unchanged we get

A .
a different estimate BB' To remove this difficulty, let us minimize

6¢1/ Unless specially required, we shall omit the subscript which
ranges from 1 to ne
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a diffcerent quantity @ in place of Q s

*' M A 5
d'. . LB N J -
Q ( & -8)° g “ (6.28)
A

where dj = weight of B:i

.(EXZ.)E

S —— | S
.

Obseﬁe that the weights are now unitfree'so far as the IV's are cor-

cerneds The revised esti;nator turns .out to be

£ a4 B

S d, )

*‘é - il 3
R T d.
J J

eee (6429}
i (ZXZ)kEYz )/(Ez ‘

JE{ (EXZj) / (Ezj)‘}

Goldberger (19’?0) examines Boudon's estimator and points out that the
conventional LS‘ estimator (LSE) of B is BLUE and hence preferable to
Boudon's estimators The revised estimator also is inferior fo‘ LSE for
the same reasons . If, however; we introduceA errors in the regreé.so:c-
observations, the sitvation becomes completely different. . Goldbcreger's
claim, that the LSE is better than Boudon's eétima,tor, ‘ceases to be
valide 'The LSE is, in general, inconsistent while Boudon'g estimator
is consistent., |

In the next subsection we reformulate the whole model bringing
in EIV's and propose an alternative approach for estimating g . The
subsection (6.4, 3) deals w1th yet another method of estimating g~ cons:u.s-

tently and shows that the two' a.pproaches lead to the same estlmator. The
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s

subsection(,é\‘d]-‘gi)\ shows that the common estimator can be a.rx"ivéd at if
‘one follows Theil's éﬁgg'estidn ‘of _applying 25LS m'ethold; (Theil, 1958,
Dp.347=51) for tackling the EVM 1n a situation where more than oné v
are available. The last subsection concludes the chapter by pointing

out how one of the approachcs may be generalized and how onc can utilize

the overidentified restrictions by generalizing the\model.

6¢4.2 The First Approach to HEstimation of B

N . i
Let us assume that we observe xs and ¥ in place of Xi and Yi’

respectively, where

: i
7

x, =X, +1u
i

i 19 29 LN n- 'Aogo (6.30)

yi '-'-'Yi’+ Vig V i 19 2, seesg Il see (’6:31)

The EIV's u and v are i.ied. random variables with mean zero and vari=
ances 05 and 03 respectively. It will be assumed that the IV's

are independent of the u's and the v's. Our rcgression equation is -
\ 2

Y, = G + e is1, 2 sln TSy wee (6:32)

i

The EIV's are also independent of the errors-irmequation £. . A -
€.
consistent estimator of B is J/

3((zxz) (3 z. % 22 N .
gR ) 32 ¥ 3)2 y g) / 3‘) ) L (_6.33)
S i ((E xzj) /s 23 )

This is a weighted average of the basic estimators

Ly . ' | |
% =-——-I-}— 9 32 19 29 so e K. e e (6‘34)
Exzj ~ ' '

6.2/ In Bougon's approach the regressor itself was included in tho set
of I{'se In the EVM this would destroy the consistency property
of . .
R
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In his discussion on Boudonfs est.hnato\r Goldberger meﬁtion%d,:that the
asymptotic varié.noe éf @B may not be smva.ller than that of every basic
estimator %j' This 1s because the gj's may be positively correlated
among themselves and hence minimization of @ loses its significance. The
same -;t'emark applies to ‘ER in our cases In these circumstances, we may
~ seek that linear ccm‘pina.tion of ﬁj's for which the asymptotic variance

is minimum. We therefore consider the class of linear combinations

8a) = zaj"é‘. = B (say) e (635)

such that

Sa. =1 see (6-36)

Brery member in the clasg of estimators defined by (6+35) and (6.36) is

-

consistent and so is the optimum egtimator derived by minimizing the
, . =
asyrptotic variance of B(a) subject to Eaj = ts The optimum a ig

(see. Appendix 6.2)
‘ A - _ i
2 = ¥ o - -o- . (6. 37)

¥ e’ W =t e
where go is a2 column vector of estimated coefficients of a_l R

in (6.35); W is the KxK cstimated asymptotic covariance matrix of the

bagic estimators,; iecey

e (B, | e (6439)
where W, = Gij/ ( ESEiAng )., = ..... (l6.39)
where Q. = 1; Tz Z'j,' - .... t6.40)

xJ n 1 6*
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and ¢ is a K x1 column vector odnsisting of . one's only. This leads

to the- 0ptitnum estimator f or., Bas . . §
8y = % v - S oo (6442)
elW e

The estima.terof the agymptotic variance of the above estimator .is

*

13
¥V, = S AN oy (4 e (6043)
1 (e!wr 1e)

The expression (6.42) can be simplified to some extent. Define

a diagonal’' matrix AKxK; the. jth diagonal element -of which ig

a. = I5] cew (6-44)

Let © be the dispersion matrix ";f Zes eesey Zye

A A
Hence ) W=AZA . | ase (6.,451
N & LD S =
N .I'~ W 1 =A 1 4 1 A 1 k sew (6:46)

A
The estinator BO 1 may now be gimplified as

, i
f e A b ees (6447)
X

where Qx is thé ‘éolumn irector of eatimated covariances of

. Fon "
Zys Tpy a0y Ty . .@ach with x and Uy is the same for y.
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"

Tf Bj's are uncorrelated among themselves, right hand side (RHS)
of (6.47) reduces to’the RHS &f (6.29), i.e., By, becomes By ensuing
validity of Goldberger's comment and the approach.

6.4.3 The Second Approach

There is yet another class of estimators which will be discussed

in this subsection. Let us first subject the IV's Zys Boy eesy B to

K
~ S

a linear transformation ard obtain a new get of ivis 21 s 35’. eveny ZK as

K .
3 n=am B E = ssesy K cee 48
Z'J - ql.]_zl 9 3 =1, 27’ isisl | | (6.48)
such that
. A o

(1') ?zjl zli “":'O f.r J ﬁ 1 LR N J (6049)
and . ;

(ii) :;,‘: zgi =1 for all j, 7 eee (6450)

Our new class ef consistent estimators can now be;defi_ned as

sy( 2c,2]) g '
é\(c) = L P 1 : ‘ “ae (6051)
' 5x (e, 2) . ..
J J 3

A
where Sy J =1y 2y eeses K, are any real constenmts such that g {c)
A )
is defined. We may minimize the asymptotic variance of 8 (o) with \

respect to cj',s (see Appendix 6.3) ana get the optimum ¢, to be,

3

apart from a constant of proportionality, which does not influence 3 (c):

* 1 h ' ’/ L - L "
¢, = -—3% Xz, 'Yl 6. 2
J n J ( > )
o 1 il L NG
= n N ij 5 N qu 5 g . . olo (6.53)
Since plim 1 % vy, = 0, plim o = plin +Zxz? so that o cén
n J J n J J

Now oo n., %« n_ o
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be replaced by 1-Zx23/w1thout affectlng asymptotlo propertiess Thns,

o

the optimum estimator in the class B (c) is
';\ s( ﬂxz’)( Eyz/)

By ‘
z (E XZJ) e

g 0‘2 o LN ) (6.54)
Phis expression may be compared with (6.27) and (6.29), noting that
/2

2z, ="l Hie
b)Y 3 . J

e * ‘
TPo simplify {6.54), let Z, Z denote two matrices with row vectors
and -
of observations oxlzj'séﬁransformed z;'s for j =1, 2, esey Ko

Write
Z* =%, Q, @ nonsingular eee (6.55)

*/ *

7 L ' i
Since 2 Z = IKxK’ Z'Z is proportional to ‘E. and since 777 = (QQ/) 1,

A -
we have & g (a”) 1, Hence,
; .
g . x/Z% Z*r
02 (x/ﬁ%) (Z*/x)

/z ggL 7’ y
X 4/ QQ 1 x
ANy A
g’ 2 GV
= A A_ 5 e s (6.56)
6° 51 & S -
X X

The expression.(6.56) ig same as the expression (6.47).
..
. §91 = Pop

The two approaches discussed above thus lead to the same cgnsistent_
estimator which has optimal properties demonsirated above and which is

: A A
clearly asymptotically more efficient than any of 81, sesey @K&.j

N
%
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6e4e4 The 2SLS Approach

Theil (1958, pp. 347-351) suggested the use of 25LS method of
estimation for tackling the EIV model, "'Zf'lr'iémﬁ{é{:—héd may be explained
briefly in texus of the follow1ng model where the symbols have their

usual meanlng H

'y — Bx +€/\9 LY N ) (6-57)
X '-"-'X + U, erae (6.58)
and ‘e/=.f{3u + v +‘g eos (6.59)

x and e/ are correlated with each other. Thatis why the OLS éstimator
of. 8 is not consistent. Theil suggested that we estimate X from a
multlple regression on 21 ’ 22, seesy Iy and then regress y Qﬁ ;C\ to get
a LS estimate for 8. Such 25LS method of est:.matlon is usually applied
to smultaneous equation systems where some of the i-egressors are corre—
lated with the disturbance term in the same equations Bven though our
model is net atypical simultaneous equation model, Theil's idea of
2SLS estimation seems to be applicable and possesses many desirable
properties,

‘ To estimate x frouf Zy Ty eeeey Tpy consider '-the linear

equation
= Zp + u/ 000(60:60)
with usual éssumptions and where Z c‘onsists of column vectors of observa-

tions for each 'Zj‘ The estlma.ted p is

p-(ZZ)1Z/

and hence the estimated’ x is’
A . - r
X = Z(Z/Z) 1 Z/]C oo (6062)

e (6o61)
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The 28LS slope estimator is then

A VA AR Gl Ay
Bpgrs = K X)Xy
7 2’2y 2y
' 2(z'2)"" 7’x
;A
gra=t g

= == A
_3}52_1:_ % ...f (6.63)

And thus we see that the optimum estimator obtained by two
approaches in subsections {6.442)and(6.4.3) coincides with Theil's

28LS estimator.

6ede5 Discussions

The first approgch may be generalized to the case where mumber of
regressers is mere than one (say m). Each basic eétima£o¥ is then & vec—
tor obtained Ey regressing yzj on x1zj,»..., xmzj. It is not, however,
clear how one can generalize the second approach in thaf directione.

In social_sgience‘literature the problem discussed ih this chapter
is named as 'multifie indicator" problém. This arises only in over—
identified models. ‘Though many. attempts have been made (vide for example
Joreskog, 19703 Wiley and Wiley, 19703 Fisher, 1966; Wert, Joreskog and
Lirn, 19733 Blalock, 1970 etc.) to find a satisfactory solution to over—
identification problem, this subject is yet to reach a satisfactofy
level. For our particular example 25LS seeams to‘be the only answer
Justified from different angles two of which have been cited‘in this
chapter.

We can of course utilize the overidentified restrict}pns in
generalizing the model. At some stage in the process of generalization
we shall reach a just—identified model which allows a ML solution.

This, however, may lead one to a diffiéult situations. The success in

+hja anproach Aepends on how efficiently the generalization is made.
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Appendix 6.1

]

o) + & =@ ()

n,{x) u ]
82f~12(x) (1 + T ) "l'”""‘""‘f 2K .\,w s

uz(y)
(Xsy') = 8u2(x)(1 + P Vi'u kY I)
u22(xsy) = K22(xsy’) + KZO(X’y) KOZ(X"V) + 2K.|1(Xsy')

= K22(Xsy') + UZ(X)(HT ) 8 pa(X)(”H'I‘ /) + 28 uz(X)(1+p\/ruI‘v,)2

=B u‘;(x)(:a rr)+ B W)z T+ 32u2(x):c + 20° 32},‘2(3{) -

uav
+ 48 puz(X) Ve
._Buz(x){B +ru+rr +r +20 rr,+4p /rur ,}
u31(XQy) = K31-(xey), + 3K (x,5) Kﬁ'(x,y) '
=BK4(X) + BuS(X) 8(1 + ru) (1 +0p »‘/ru.rv,)
B ua(X) Byt 3+ 3P/ T +3m T}

fl

ny5(¥) = BUG00) € B, 4 3, h 3P REL + S PVEFL

u4(X) = u4(X) + 6u2(X) UE + u4(u)
2 iy S 2
= B0 T By g e oy B
u4(y) = 4 ug(X) {' B2 + 6rv{ + 31-3,}
1 2
Vi) = 50w~ byl

i

2 D ) Ll g P . . -
b5 (X) , A
2 , 2
- /EBZ-‘ 1)+4I‘u+2ruj, et
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4 2x) ' |
Vimg ) ‘B—;i—/(-l’eé =) H b o+ 2::3}, j | -
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Appendix 6,2

Our problem :Ls to mlnm:Lze the asymtot:.c varla.nce of@(a) sub ject
to La, =1 where B(a) = Da, B Gons:.der '
A I
V =242 Ww., + I a.a.@..-)\(za_—ﬂ,
13 lféJ i3 13 ER
where A is the lagrangean multiplier and wr.j is the asymptotic covariancer

~ o
between B. and B. « Taking partlal derivative of V with respect to a;

and equa'tlng it ‘to zero, we get
" K A
2a.vw., + 2 b aw..=A=0 ¥i
i'ii j,éi=‘l Joij

Adding over all i,

A
2W§=7\e

A AN
or &

1l
|
=

Substituting the above expression in 2 ay = 1 we get
by ) .
A
¥ o '%e"w 1 m=

l\>|>-')

= (e’ W 1 e)-1
W
)
Hence9 - = 7—:19— . ‘ . .‘ 0 , i,
e W e : _ :

or

Now (i,3)th element of W is

i
9 i

L XZ, Exz.,

i J

n( Ezi e’) (Ezj g)

Zyz. zyz_.l
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ij R

='1£ plim (where &' = g+ v - gu)
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l xl
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Appendix 6.3

PR ~
g : Ecj(Zyzj,.
02 Bcj( gxz:}"-)
Bgc.(EXz/) + re.f ZE*Z-,)
. J -d *
- == =03 (s = E+V)
3‘303(2}&23 )+ e (Suzl)
J J
tc.(zuz’ ) -1 20.(25*'2./ ) Ze.(zuz? ) -1
=gf1+ 3( 41/) + “( =1+ - Tl
A ZXz! c. Xz e (2x=]
263 j ZC4NE ) 3 5
se.(zuz?) se.lx ezl ) Se.(Buz?)
N B | h J e | i
- 6{1 ( P * LA RN } + ( p : ( P +ocoo}
SelxXe. Zc.(EXz, e, lnXz” :
3 5) ) 3 5

Hence, asympiotically
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e.l8 Xz}
&l e
*® s /
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+ ki J L) J 3 PR
( 2%z . x.’
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~ = 8 lim n § } +—p11.mn{—'] }
= % b P

Ecj(Eij) zc(zxZ) a
(neglecting terms of higher order)
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Tno . 1 ’ 2
plim { Ecj(EEXZj)}
: 1
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2 2 o'/ *2 © : v
& B % Z%C 3t % 4.0 ag
H (Ec o 4 )2
: - J Xj
z c, o A
1 2 2 *#2 %:°1 %1
= n (8 vt % ) 2
' (ze, oZ)
= L Oy

Taking partial derivatives and equating it to zero, assuming

that the variance-covariance matrix of 3z’ is I, one gets

=3
: (] 0'( ‘

Hence fhe eétimate of o is proportional to 1; L Xz 1’ or asympto-

e 1 o .
tically to = Z‘-.zi, since

A % =
plim = z:uzi.-O

N % : : L
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