
Ann. Inst. Statist. Math. 
Vol. 47, No. 1, 99-104 (1995) 

A NOTE ON ACCELERATED SEQUENTIAL ESTIMATION 
OF THE MEAN OF NEF-PVF DISTRIBUTIONS 

ARUP BOSE 1 AND NITIS MUKHOPADHYAY 2 

1S tat-Math Unit, lndian Statistical Institute, 203 Barrackpore Trunk Road, 
Calcutta 700 035, India 

2Department of Statistics, University of Connecticut, UBox 120, 
196 Auditorium Road, Storrs, CT 06269, U.S.A. 

(Received December 20, 1993) 

A b s t r a c t .  The minimum risk point estimation for the mean is addressed 
for a natural exponential family (NEF) that also has a power variance function 
(PVF) under a loss function given by the squared error plus linear cost. An ap- 
propriate accelerated version of the full purely sequential methodology of Bose 
and Boukai (1993b, submitted) is proposed along the lines of Mukhopadhyay 
(1993a, Tech. Report, No. 93-27, Department of Statistics, University of Con- 
necticut) in order to achieve operational savings. The main result provides the 
asymptotic second-order expansion of the regret function associated with the 
accelerated sequential estimator of the population mean. 
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i .  Introduction 

Let 5 c = {F0 : 0 E @} be the class of natural  exponential  family (NEF) of 
distributions.  T h a t  is, $" is minimal NEF  of order  1 whose members  are of the 
form 

(1.1) Fe(dx) = exp{0x -I- c(O))A(dx), 0 ~ O 

where A is a sigma-finite measure on the Borel sets of R and the paramete r  space 
(9 consists of all 0 C R for which f exp(Ox)A(dx) is finite. It is well-known (see 
Barndorff-Nielsen (1978)) tha t  F0 has finite moments  of all order. For 0 C (9, we 
let # = #(0) = -dc(O)/dO and ft = #( int  (9) respectively denote  the mean value of 
F0 and the mean paramete r  space. We also write V(#)  for the variance function 
corresponding to (1.1). Let  us suppose tha t  the members  of the NEF  9 v have a 
power variance function (PVF) so tha t  one can write 

(1.2) v(;~) = ou~ *, , ~ 
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for some known constants ct ¢ 0 and 7. In what follows, we will write 

(1.3) ,g (,) = v ( , ) / ,  2 = o j, - 2 ,  

for the square of the coefficient of variation of Fo. 
This class of NEF-PVF is known to be a rich family that possesses many 

interesting properties. Bar-Lev and Enis (1986) have shown, aside from a repro- 
ducibility property, that all NEF-PVF's  are infinitely divisible with self generating 
property. It is convenient to identify the members of 5 c by their 7 values. The char- 
acterization of NEF by means of their variance function was initiated by Morris 
(1982) where he considered a subclass of NEF having a quadratic variance function 
(QVF) and showed that the NEF-QVF class consists of only six members, some 
of which are also members of NEF-PVF class. From Bar-Lev and Enis (1986), 
it is clear that the NEF-PVF family consists of many interesting distributions. 
See also Morris (1983) for other related details. Here we focus only on non-lattice 
members from the NEF-PVF family for which y ¢ 0. In this case, it is known 
that either ft = R -  or ft = R +. We will assume without any loss of generality 
that the support of (1.1) is [0, oc) and that 12 = R + with V > 1 in which case a is 
obviously positive. For a comprehensive discussion, see Bar-Lev and Enis (1986). 

Bose and Boukai (1993b) considered point estimation problems for # via ) (~(= 
n -1 ~-]i~=1 Xi) under the loss function 

(1.4) L~ = A(Jf,~ - #)2 + n 

where X ] , X 2 , . . .  are i.i.d, having a distribution Fo E iP, defined in (1.1). The 
associated risk is Rn(A)  = E(Ln)  = Acr2n -1 + n where a2 = a2(0 ) is the variance 
of the distribution Fo. The fixed-sample size risk is minimized if n = n* = 
A1/2cr. In the situation when 0 is unknown, Bose and Boukai (1993b) proposed 
a purely sequential stopping time N and the corresponding estimator JfN for # 
along with the second-order approximation of E(LN)  - Rn , (A) ,  that is the regret 
function. In order to review various aspects of sequential estimation, one may 
refer to Woodroofe (1977, 1982), Sen (1981), Martinsek (1983), Mukhopadhyay 
(1988, 1991), and Bose and Boukai (1993a, b), among others. 

It is, however, well-known that one by one purely sequential sampling schemes 
are operationally inconvenient. Hall (1983) came up with an acceleration technique 
of the original purely sequential process in the context of obtaining a fixed-width 
confidence interval for the mean of a normal distribution having an unknown 
variance, and that particular idea was later generalized in Mukhopadhyay and 
Solanky (1991). In the present context, for the Bose-Boukai (1993b) stopping rule 
though, I ( N  = n) and Jfn turns out to be dependent for all fixed n >_ 1, and 
hence the acceleration techniques of Hall (1983) and Mukhopadhyay and Solanky 
(1991) do not hold much promise. On the other hand, in Section 2 we devise 
an appropriate accelerated version of the Bose-Boukai (1993b) procedure along 
the lines of recent modifications from Mukhopadhyay (1993a, b) and provide the 
second-order expansion of the associated risk function in Theorem 2.1. We provide 
a brief justification of Theorem 2.1 in Section 3. 
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2. The acceleration technique 

Under the loss function (1.4), recall that  n* = A1/2cr where o 2 = a# ~. The 
purely sequential sampling process of Bose and Boukai (1993b) goes like this: 

One starts with X 1 , . . . , X , ~  for m _> 1 and then proceeds by taking one 
additional observation at a time according to the stopping rule 

(2.1) N = inf{n _> m :  n2a(n) >_ Aa2~n}, 

where a(n) is positive, nonincreasing and a(n) = 1 + a0 n-1 -~- o(n -1) a s  n ----+ 

0% a0 E R. Since P ( N  < co) = 1, one then estimates p by means Of XN. 
Observe that  N asymptotically gets near n*, in a sense to be made specific later, 
in approximately n* steps. On the other hand, we wish to accelerate the process 
by finally arriving at the same n* via sequential sampling part of the way first, 
followed by batch sampling in one single step. Such a modification will make the 
sampling methdology operationally whole lot more convenient as well as attractive. 

First choose and fix p E (0, 1) such that p-1 is an integer and start sampling 
with X 1 , . . . ,  X,~. Define 

(2.2) 
t = inf{n > m(_> 1):  n2a(n) >_ Ap2af2~}, 

N = p- i t .  

Observe that t estimates pn*, a fraction of n*, and then one determines N. 
At this step, one samples the difference (N - t), namely (1 - p)p-lt ,  in one sin- 
gle batch. In other words, X 1 , . . .  , X m , . . .  ,X t  is augmented by Xt+l , . . .  ,XN,  all 
in one single batch, and # is finally estimated by the corresponding )(N. One 
should note that the accelerated sequential estimation procedure (2.2) saves ap- 
proximately 100(1 - p)% of sampling operations compared with the full purely 
sequential scheme of Bose and Boukai (1993b), given by (2.1). The following is an 
immediate consequence of Lemma 1 in Bose and Boukai (1993b). 

LEMMA 2.1. Let s >_ 1 be fixed. Then as A ~ oc, we have for 0 < e < p, 
n*sP{m < N <_ en*} --+ 0 provided that one of the following holds: 

a) 7 > 2  a n d r e >  1; 
b) 7 = 2  a n d m > s / a ;  
c) 3' < 2 and m > ( 1 +  s ) ( 2 -  7) logn*.  

Here, N comes from (2.2). 

For 1 < 7 < 2, pc is a family of compound Poisson generated by a random sum 
of gamma variates. These distributions have positive probability mass at zero. See 
Bar-Lev and Enis (1986) for details. Condition (c) of Lemma 2.1 indicates that 
in order to handle the situation 1 < 7 < 2, one additionally needs an appropriate 
"growth" condition on the starting sample size m. The following results can be 
derived from Bose and Boukai (1993b) as A --* oo: 

(2.3) (t--pn*)/(pn*)l/2£]V(O,T 2) if m >  1; 
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( t -  pn*)2/(pn *) is uniformly integrable under the 

conditions of Lemma 2.1 with s = 1; 

(2.5) 
p__~ _ 1 1 

E(t)  = pn* + 2# ~ao - g7(7 + 2)v02(#) + o(1) 

under the conditions of Lemma 2.1 with s = 1; 

where ~_2 = (6#)-2V(p) = y~(p)/62 and 

(x) 

1 [62# 2 + V(#)] _ E n-IE[(S~- (I + 6)n#) +] 
(2.6) Y = 2 6# 

n = l  

with S~ = E i % l  X i ,  X + : max(0, x), 6 = 2/7. 
The results (2.3)-(2.5) merely verify the Assumptions A1-A3 of 

Mukhopadhyay (1993a). Hence, the following proposition easily follows from The- 
orem 2.1 of Mukhopadhyay (1993a). 

PROPOSITION 2.1. For the accelerated stopping time N given by (2.2), we 
have as A -~ c~: 

(i) n * - l / 2 ( N - n * ) ~ N ( O ,  T2/p) i f m  >_ 1; 
(ii) Under the conditions of Lemma 2.1 with s = 1, 
a) n * - l ( N -  n*) 2 is uniformly integrable; 
b) E ( N ) = n *  + p-t{2~-~ - ½a0-  1 7 ( 7 +  2)~2(#)} +o(1) .  

2.1 The main result 
The risk associated with )~N under the loss function (1.4) and the accelerated 

stopping time (2.2) is given by 

(2.7) R(A)  = E(LN)  = AE[(XN - #)2] + E ( N ) .  

On the other hand, the optimal fixed sample size risk is given by Rn. (A) where 
n* = {A2V(p)}  1/2, and one defines the regret 

(2.s) w(A)  = R ( A ) - R ~ , ( A ) .  

The following result provides the asymptotic second-order expansion of w(A).  

THEOREM 2.1. Under the conditions of Lemma 2.1 with s -- 2 + c with 
arbitrary c > 0, for the accelerated sequential procedure (2.2), we have as A ~ cx~: 

w(A)= + 4)+ ( i -  p)(p62)-l} + o(1) 

where y0 2 = V(#) /#  2 and 6 = 2/7. 
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When p = 1, the regret expansion provided in Theorem 2.1 reduces to that in 
Bose and Boukai (1993b) as expected. Let us denote the Bose and Boukai (1993b) 
regret as w* (A). Write p = 1/k  where k is an integer. Then, asymptotically one 
has 

(2.9) w ( A )  = w*(A)  + (k - 1)5-2y02(#) + o(1). 

In this case, the accelerated sequential procedure (2.2) saves about 100(k-1)k-1% 
sampling operations when compared with the full purely sequential scheme of Bose 
and Boukai (1993b), but this is achieved at the expense of the increase in the re- 
gret function by the amount (k - 1)5-2y02(#) up to the order o(1). Given some 
prior knowledge about the coefficient of variation v 2 (#), the experimenter would 
then "balance" the operational savings on the face of some regret increment. In 
the cited references one will however notice that the operational savings obtained 
through acceleration quite often outweights the slight increase in the regret func- 
tion associated with it. 

3. Proof of Theorem 2.1 

Along the lines of (4.4) in Mukhopadhyay (1993a) one obtains 

(3.1) E { A ( f ( N  - #)2} = Ap2E[( f ( t  _ #)2] + Ap(1 - p ) V ( p ) E ( t - 1 ) .  

In other words, one has with n~ = pn*, 

(3.2) R ( A )  = Ap2E[( f ( t  - #)2] + E( t )  

+ (1 - p ) n * { E ( n ~ / t )  + E ( t / n ~ ) }  

= E[L~] + p- l (1  - p ) E { ( t  - n [ )2 / t }  + 2(1 - p)n*, 

where 

(3.3) L ;  = A p 2 ( 2 n  - + n. 

Suppose now that one pretends to obtain a minimum risk point estimator of p via 
)(n under the pseudo loss function (3.3). Under this framework, the "optimal" 
fixed sample size is indeed n~ = pA1/2(r and hence the corresponding purely se- 
quential rule of Bose and Boukai (1993b) will coincide with t given in (2.2). Thus, 
under appropriate assumed conditions, one immediately obtains the following from 
Theorem 2 of Bose and Boukai (1993b): 

(3.4) 
1 

E(L~)  = 2n~ - ao + ~7 (7  + 4)u02(P) + o(1). 

Combining (2.3)-(2.4) and Lemma 2.1, one also obtains 

(3.5) E { ( t - n ~ ) 2 / t } = T 2 + o ( 1 ) .  



104 ARUP BOSE AND NITIS MUKHOPADHYAY 

Hence from (3.2), (3.4) and (3.5) we get 

1 
R ( A )  = 2pn* - ao + ~7(7 + 4)vg(#) + p- l (1 - p)T 2 + 2(1 - p)n* 

{1 } 
= 2 n * - a 0 + ~ , 2 ( # )  5 7 ( 7 + 4 ) + ( l _ p ) ( p 5 2 )  -1 +o(1) .  

The proof is now complete. 
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