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Abstract 

Given a set of points in multi-dimensional space, we propose a new definition for the neighbors of an arbitrary point P. 
The definition tries to capture the idea that the neighbors should be as near to P and as symmetrically placed around P as 
possible. In contrast, the conventional nearest neighborhood considers only nearness as the criterion for neighborhood. We 
propose an iterative procedure to compute the neighbors where the first neighbor is the nearest neighbor. The second and 
other neighbors are chosen so that at any stage the distance between the centroid of the neighbors and P is as small as 
possible. The centroid criterion takes care of symmetrical placement of the neighbors. One can use median instead of 
centroid to define the neighbors. The new definition is free from any user-specified parameter and can be used for pattern 
classification, clustering and low-level description of dot patterns. 
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I.  Introduct ion 

The concept of  neighborhood is useful and impor- 
tant in pattern clustering, computational geometry 
and image processing problems. Consider a set of 
points in R". The neighbors of  a point P can be 
loosely defined as the points in the "prox imi ty"  of  
P. Usually, the Euclidean norm is used to compute 
proximity. Thus, the neighbors of  a point P can be 
defined as the points that are nearest to P in terms 
of Euclidean distance. Such neighbors are called 
neares t  ne ighbors  (NN). 

However, the concept of  neighborhood should be 
such that (a) the neighbors are as near to the candi- 
date P as possible and (b) the neighbors sit as 
symmetrically around P as possible. The neares t  

n e i g h b o r h o o d  takes care of  property (a) only. Thus, 
NNs may not be symmetrical around P if the data 
set is not homogeneous in its neighborhood. To 
tackle the problem, O'Callaghan (1975) proposed an 
alternative definition of neighborhood in •2 with 
two constraints. One is the distance constraint, which 
excludes points further than a specified distance, say 
d, as neighbors. The other is the direction constraint 
which excludes points essentially behind other cho- 
sen points with respect to P. The direction constraint 
is imposed by an angle parameter 0. Thus, the 
definition is dependent on two user-specified quanti- 
ties d and 0, and the number of  neighbors obtained 
for some specified d and 0 may not be equal to the 
desired number of neighbors. Also, the approach 
does not provide any ordering scheme of the neigh- 
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bors. In addition, extension of the approach to data 
in higher-dimensional space is not a straightforward 
task. 

To obtain symmetrical neighbors that is data 
driven and free from user-specified parameters we 
initially considered Voronoi tesselation (Toriwaki 
and Yokoi, 1988). In this case, a data point P is 
enclosed by a convex polygon C(P) so that any 
point in C(P) is nearer to P than any other datum. 
Each polygon has a few neighboring polygons shar- 
ing common edges. The data enclosed by these 
neighboring polygons denote the first layer of neigh- 
bors of P. The second and higher layers can be 
similarly defined. If the user wants a specified num- 
ber k of neighbors, he /she  can start from the first 
layer and pick data nearest to P. If the first layer 
contains fewer than k data, then the second and 
higher layers are considered in a similar manner. 
However, the problem of the method is that its 
extension in ~ ,  n >  2, is computationally very 
costly. 

We propose a simple and intuitively appealing 
definition of neighborhood that does not need any 
user-specified parameter and can be readily com- 
puted in any multi-dimensional space. The algorithm 
is an iterative one where the kth neighbor is found 
using the k -  1 neighbors computed earlier. Exten- 
sion of the definition to object is also possible. The 
proposed neighborhood, called nearest centroid (NC) 
neighborhood is defined and its properties are dis- 
cussed in Section 2. A variant of the proposal named 
nearest median (NM) neighborhood is also stated. 
Possible applications of the proposed neighborhood 
are demonstrated in Section 3. 

2. Nearest centroid (NC) and nearest median (NM) 
neighbors 

The basic idea behind the nearest centroid neigh- 
borhood is as follows. Let P be a point whose k 
neighbors should be found in a set of points S o. 
These k neighbors are such that (a) they are as near 
to P as possible, and (b) their mean or centroid is 
also as near to P as possible. 

To satisfy the two conditions, we propose an 
iterative procedure where the first neighbor of P is 
its nearest neighbor, say R. The second neighbor Q 

is such that the centroid of R and Q is nearest to P. 
Note that the nearness of R forces us to choose Q to 
be near to P. Thus, if we compute the kth neighbor 
using the k -  1 neighbors chosen previously by the 
nearest centroid criterion, both conditions (a) and (b) 
are met quite well. The basic steps of the nearest 
centroid neighbor (NCN) algorithm are given below. 

Algorithm NCN 

Step l. (Initialization) S ~ So - P; T= ~J; j =  O. 
Find the nearest neighbor (in terms of Eu- 
clidean distance) of P in S. Let it be R 
(resolve tie arbitrarily). 
M a k e T = R ;  S ~  S - R .  

Step 2. j = j + l ;  For each point Q ~ S  find the 
centroid M of points in T U Q. Choose the 
point as Q0 for which M is nearest to P in 
terms of Euclidean distance. In case of a tie 
choose as Q0 the point that is farthest from 
the neighbor chosen in the previous iteration. 

Step 3. Make T = T U Q o ;  S ~ S - Q o ;  
If j =  k return. [T is the subset of k NC 
neighbors of P.] Else, go to Step 2. 

The concept is explained through one example in 
Fig. 1. Here the first neighbor of P, shown by the 
number 1, is the first nearest neighbor. The second 
neighbor is not the second nearest neighbor (which is 
B in Fig. 1). Rather, the algorithm tries to pick a 
point in the opposite direction (and with equal dis- 
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Fig. 1. An example of nearest cena'oid neighbors (the NC neigh- 
bors are numbered in increasing order). 



B.B. Chaudhuri / Pattern Recognition Letters 17 (1996) 11-17 13 

tance) of the first neighbor with respect to P so that 
the centroid is minimally away from P. Because of 
the centroid criterion, the chosen neighboring points 
sit all around P. Also, P being nearest to the 
centroid, acts as the unbiased representative of its 
neighbors. 

Clearly, unlike O'Callaghan's (1975) method our 
proposal is free from user-specified parameters. It 
can be computed inexpensively for data in any di- 
mension. More specifically, computation of one NC 
neighbor of any point requires at most N centroid 
and distance computations as well as N comparisons 
to find the minimum of the distances. Therefore, k 
NC neighbors of a point can be computed in O(kN) 
time. Note that k nearest neighbors of one point can 
also be computed in O(kN) time. 

On the other hand, Voronoi diagram computation 
is dependent on the dimensionality of data. In 2D, 
the Voronoi diagram and its dual Delaunay triangula- 
tion can be optimally computed in O(N log N). At 
higher dimensions, d >/3, the Voronoi diagram can 
be found from the convex hull in d + 1 dimensions. 
The convex hull in d dimensions can be computed 
optimally in O(N ta/2J) by the algorithm of Chazelle 
(1991). Thus the Voronoi diagram based neighbor- 
hood is computationally more expensive than the 
proposed approach. The Delauney triangulation 
which also defines the neighborhood can be com- 
puted in expected O(N 3) by solving a linear pro- 
gramming problem (Megiddo, 1984), although the 
worst-case complexity is much higher. Even O(N 3) 
is more than the complexity of our proposed algo- 
rithm. 

Instead of nearest centroid we can use nearest 
median to define the neighbors. We use the follow- 
ing definition for the purpose. 

Definition 1. The median point of a set of points S 
is the point whose coordinates are the medians of the 
respective coordinates of the points in S. 

If in Step 2 of the above procedure, M denotes 
the median of points in T td Q then the resulting 
neighbors may be called nearest median (NM) 
neighbors. 

NC and NM neighborhood for objects of finite size 
To extend the proposed nearest centroid neighbor- 

hood definition for objects of finite size (a) a defini- 

tion of distance between objects and (b) a representa- 
tive point for each object is necessary. The represen- 
tative points are needed to find the centroid for NC 
neighborhood computation. 

One may be tempted to use the centroid of the 
object as its representative point. But we did not 
consider the centroid for several reasons. The cen- 
troid may not be a point belonging to the object (e.g. 
for an annular ring). Also, the distance between 
centroids does not always reflect our intuitive idea 
about distance. For example, two concentric rings of 
different diameters would have the same centroid, 
leading to zero distance. Thus, the Euclidean dis- 
tance between centroids does not define a metric for 
the object distance. 

The Hausdorff distance (HD), on the other hand, 
is a metric for objects in space and we use it for our 
purpose. For two objects A and B the HD is defined 
as follows. For each point P of A find the Euclidean 
distance of the nearest point of B. Let the largest of 
these distances be d(A, B). Compute d(B, A) in a 
similar manner. The larger of d( A, B) and d(B, A) 
is the HD between A and B. 

For our purpose we mark the points P E A and 
Q ~ B so that the Euclidean distance between P and 
Q is equal to the HD between A and B. Let us call 
P and Q as Hausdorffpoints (HP) of A and B. In 
Fig. 2, P01 and Q0] are HP of objects numbered 0 
and 1 and so on. 

Let the object numbered 0 be the one whose 
NCNs should be found. The first NCN is the object 

& ~ Q "  o l  

Fig. 2. Nearest centroid neighborhood for objects of finite area. 
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Fig. 3. Representative points using (a) NC neighborhood, (b) Nearest neighborhood. (Line of unit length is shown at bottom right side.) 

whose HD from object 0 is the smallest. Thus, the 
object numbered 1 is chosen. To choose the next 
NCN, find HD of each object X (other than 1) and 
object 0 and mark their HP's  as Pox and Q0x. Find 
the centroid of  P01 and Pox, say Cox. Find the 
centroid of  Q01 and Q0x say, C 1 x. Choose the object 
for which Cox is nearest to C 1 x as the next NCN. 
Thus object 2 is chosen in Fig. 2. The process may 
be repeated to find any number of  NCNs. In general, 
to find the ( r  + 1)th NCN, the centroid of  the points 
Pol, Po2 . . . . .  Pot and Pox, say C0r x, and the cen- 
troid of  the points Q01, Q02 . . . . .  Q0r and Qox, say 
Crx, are found and the distance between Cot x and 
Crx is computed. The object X for which this dis- 
tance is minimum is marked as the ( r  + 1)th NCN. 

The nearest median neighborhood for objects can 
be defined in a similar manner as above if the 

centroid is replaced by the median of  the co-ordinates 
of  the HPs. 

3. Some  applicat ions 

The definition of  neighborhood can be applied to 
a wide variety of  problems. To demonstrate the 
relative advantage of  N C N  over conventional NN we 
consider two problems. 

The first problem is to choose a representative 
subset (RS) from a set of  data in multi-dimensional 
space. This problem was recently considered by 
Chaudhuri (1994) in the form of  choosing one out of 
each k data units. Briefly, the algorithm has  the 
following three steps. 
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Fig. 4. Representative points using (a) NC neighborhood, (b) Nearest neighborhood. (Line of unit length is shown at bottom right side.) 
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Fig. 5. Representative points using (a) NC neighborhood, (b) Nearest  neighborhood. (Line of unit  length is shown at bottom right side,) 

Algorithm RS 
Step 1. (Initialization) Find the density at each da- 

tum and order the data in decreasing magni- 
tude of  density. Let L be the ordered list. Let 
i +-- 1. Define sets S and S~ where initially 

S ~  So and Sr=O. 
Step 2. Choose the datum P that tops the list L as 

the ith representative datum. 

Make Sr ~ Sr U P. 
Step 3. Count the number of  data in the current S. If  

the number is less than k - 1 then stop. Else, 
from the current S find the k -  1 nearest 
neighbors of  the datum P which has been 
chosen in Step 2. Delete P and these k -  1 
neighbors from L and S. Make i ~ i + l  
and go to Step 2. 

{a) 

..:...: :':" ::.: 
. . ; - . . .  

. : .  

- : : . . .  

• . . :  : * . .  

"":':'i-::.~::-::.,. 
• . e t :  : : . .  

. . . . . :  ~ ' . ~ . . . . . . ~ . ~ - . . ' ~  . ' . - :  
. . .  : : : - w ' : ' .  . . . . .  ' 

• . .~ : . . ' : ' s  ' '~ " 

. : . . - ' : . ' ,  - . ~ : ;  

• ~ . . . . . . . . . . - . . "  . : . . - . ~ . . . . . : .  

; ~ ; ~ . i ' : ' - ' ~ i .  • . " : : . : z  . . . . . .  

• , ~ 6 .  ;-~ :-,~.... 
: -": i.'t ~..'..:!,i,:..:'.~ .:-" 

(b) 

:i.,..,. 
-.-:'.~ :!::.: 

• . : : : ~ . . . ' .  ~ .  

" . .  L ; p ' . . .  

: . e .  

.....,. _..~:-:::.j;..~.~ -.:~., ..,. . ' .  

-..~.:!~:.~..:.'-'. ::. 

..,.:-... • .:.i.f : ~" .. :..:" 
• . w . . . . .  

:' ~ . . . . .  . . . . . . . . : :  ." . :....'~,-','. 
.::.:.. .~,.i'J:"'.:,.. . . . ":'..:'. :" "." "" 

• ~ : 

?..-..;.~-- - - : . .  

Fig. 6. Representative points using (a) NC neighborhood, (b) Nearest  neighborhood. (Line of unit length is shown at bottom right side.) 
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Table 1 

Fig. no. Representation cost 

Using NN Using NCN 

3 85.8552 71.0064 
4 65.6734 35.2823 
5 60.6415 42.7742 
6 72.8988 18.4963 

S r is the set of representative points returned by 
the algorithm. The density referred to in Step 1 can 
be the probability density estimated by the method of 
kernels or by the K-nearest neighbor approach. 

To make a comparative study of NN and NCN we 
considered a few data sets shown in Figs. 3-6.  In 
Step 3, we computed the neighbors as NNs and 
NCNs. A cost of representation is defined as follows. 

For each datum x in the data set S O find the 
nearest representative point Px ~ Sr" The representa- 
tion cost is given by 

C= Y'~ d(x ,  px ) 
xE  S o 

where d(x, Px) is the Euclidean distance between x 
and Px- 

The cost computed for representatives found by 
NN and NCN neighborhood is called as C,n and 
C,c ., respectively. 

In the data sets of Figs. 3 -6  5% representative 
points using both NN and NCN were computed. The 
results are also displayed in Figs. 3 -6  where the 
representative points are shown by small dark squares 
while the C.. and Cnc n a r e  presented in Table 1. 
Note that C,c . is less than C,o in all cases indicating 
that NCN always leads to a better choice of represen- 
tative points. 

Given a homogeneous set of points in 2D and 3D 
space, we have a perceptual notion about the points 
lying on the border as compared to those of the 
interior of the data set. A low-level description of the 
shape of a data set can be made in terms of border 
points, interior points and stray or noisy points. 
Labeling of border, interior or stray points may be 
useful in clustering and related problems, On the 
shape of point patterns see (Zucker, 1979; Radke, 
1988; Zahn, 1971) as well as (Ahuja and Tuceryan, 
1989). 

Detection of the border points and the interior 
points of a dot pattern is not a straightforward job. In 

a previous paper we described an approach where 
the border points are found on the basis of density 
(Chaudhuri et al., 1994). But density alone cannot 
capture the notion of border points. One heuristic is 
that border points are not surrounded by other points 
in all directions while the interior points are. The 
present approach of border point detection is based 
on this observation. 

A point x ~ S O is said to be an opposite point of 
y ~ S O with respect to z E S O if x, z and y almost 
lie in a straight line, i.e., if 

d(x ,  y) 
I( x, Y) z = = 1 

d(x ,  Z) +d ( z ,  y) 

where d(x, y) means the Euclidean distance be- 
tween two points x and y. 

Fig. 7 shows that (x,  y)  are nearly opposite 
points with respect to z. Note that if x is an opposite 
point of y then y is also an opposite point of x with 
respect to z. l(x, Y)z may be called the degree of 
oppositeness of x and y with respect to z. 

Consider the k-neighborhood D around z. Let I z 
be the average of l(x,  Y)z; x, y ~ D .  If I z has a 
small value then z should be a border point in the 

I neighborhood. Intuitively, we make a threshold at ~. 
Thus, a point x ~ S is said to be border point if 

1 I x < ~. A point x ~ S is said to be interior point if 
1 

lx>~. 
Let m be the desired number of border points. 

The border point detection algorithm of a data set 
S = { X l ,  x 2 . . . . .  I n }  C ff~q i s  as follows. 

Algorithm BPD 

Step 1. Find the value of /x, for all i = 1 . . . . .  n. 
Step 2. Rearrange the points according to the in- 

creasing order of their value of I x provided 
1 Ix< ~. 

Step 3. Declare the first m ranking points as m 
border points, if they exist. 

x y 

I" . . . . . .  ,yl - - - I  
Fig. 7. Degree of oppositeness. 
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Fig. 8. Border points using (a) NC neighborhood, (b) Nearest neighborhood. 

Fig. 8 shows a data set whose border points are 
marked by small dark squares. Here m is 30% of  the 
total data. The border points defined by NCN are 
visually better than those defined by NN. This is 
because NC neighbors are picked all around the 
candidate point P ,  and it is convenient to detect if  P 
lies " i n s i d e "  the data or not. 

Detection of  border points and hence the shape of  
a dot pattern and their applications will be described 
in detail  in a separate correspondence. 

4. Conclusion 

A new definition of  neighborhood is proposed 
that captures the notion of  both proximity and sym- 
metric placement.  The definition is free from any 
user-specified parameter and its implementation has 
the same order of  computer complexi ty  as the near- 
est neighbors. For a point P the proposed NC 
neighbors have centroid nearest to P ,  making it an 
unbiased representative of  its neighbors. Two appli- 
cations are presented to show the efficiency of  NC 
neighbors over the nearest neighbors. It is expected 
that the proposed neighborhood definition will stimu- 
late further study and show improved performance in 
many other problems. 
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