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1. Introduction

In 1953 Hoffman and Wielandt [13] proved what has now hecome one of the best-
known matrix inequalities. The aim of this paper is to obtain an infinite-dimensional
version of this inequality. '

Let A be an n x n complex matrix. An n-tuple {8, ..., %} 18 called an enumeration
of the eigenvalues of A if its elements are the eigenvalues of 4 each counted as often
as its muitiplicity. The eigenvalues of (4* 4)*? are called the singular values of A
and are denoted as 5, (A) = sa{d) = - & 5, {A). We will use the symbol || 4] Lo denote

what is often called the Frobenius norrt in the matrix theory literature and the H ilthert—
Schmidt noym in the operator theory literatire. This is defined as '

n 1/2 : .
| Al =(tr 4* A" =[ e Sfifl]] g (1)
=10 _

The Hoffman—Wielandt inequality says thatif A and Barenxn normal matrices
and if {xy,...,%,} and {f1.---; f,} are enumerations of their eigenvalues, then there
exists a permutation w on # symbols such that

n 1/2 : .
l:IZ lmf_ﬁnmlz] = "'A_B.ilza » & : (2)

=.1

Now let # be a complex separabie infinite-dimensional Hilbert space. 1If an operator
4 on # is compact then the spectrum of A is a countable set of complex numbers
with O as the only limit point. All nonzero points in the spectrum are gigenvalues of
A with finite multiplicity. The point 0 may or may not be an eigenvalue of 4, and if
it js its multiplicity may be finite or infinite. By an enumeration of the eipenvalues of
4 we shall mean a sequence {%;,%3,. ..} whose terms consist of all the eigenvalues
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of A each counted as often as its muitiplicity. By an extended enumeration of the
eigenvalues of 4 we shall mean a sequence {w\,4,,...,} whose terms consist of all
the nonzero eigenvalues of A each counted as often as its muitiplicity and the term
0 repeated infinitely often.

The singular values of 4 are defined as before. Now they are infinite in number. If

0 12
.IAlfzzz[Z sf{A)] < o0 . (3)

=1

the operator 4 is said to be in the Hilbert—Schmidt Class and the collection of all
such operators is denoted as ./,

A bijection x of the set of natural numbers R onto itseif will be called a permutation
of N,

The following two theorems are infinite-dimensional analogues of the Hoffman—
Wielandt Theorem: :

Theorem 1. Let A and B be normal Hilhert—Schmidt operators and let {o,,2;,...} and

{A1:P2,...} be enumerations of their cigenvalues. Then for each £ =0 there exists o
permutation w of N such that

o 12
|;Z :'-'xi'_ﬁ;;r_i]iz] =|A—-B|;+e (4)
=1 . )

Theorem 2. Let A and B be normal Hilbert—Schmidt operators and let {cx’i,a“z, o~ and
(B, By} be extended enumerations of their eigenvalues. Then there exists a

permutation n of W such that

1,2

' L; Iﬁi—ﬁ;mfz] <[4~ B|;. | (3)

It seems essential to either add an ¢ as in Theorem [ or to extend the enumerations
as in Theorem 2. This point will be discussed in § 2 after the theorems have been proved.

In the special situation when 4 and B are Hermitian our Theorem 2 has already
been proved by Markus [16], Friedland [12] and Kato [14], each of whom proved
generalisations of this in different directions. Another rather special case was
considered by Sakai [18].

The Hilbert—Schmidt norm is one of a family of norms called Schatten P-TnOTIMS.
These norms are defined as : -

o 1 . '
I4fl,= [ _Z'i S?[A]] Log p<oo (6)
Al =3, (). | - )

The class of operators for which || 4], is finite is an ideal .# p inl the space of compact
operators which itself is denoted as .# . Basic facts about these norms may be found
in several standard texts such as [19].

A problem of much interest in perturbation theory has been that of obtaining
analogues of the Holfman—Wielandt inequality for all these p-norms (and for the -
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larger class of symmetric norms). See [3] for a detailed discussion. In both the finite
and the infinite dimensional cases this problem has been solved completely when
A, B are both Hermitian (se¢ [27, [14), [15} [16]) and when A is Hermitian and B
s skew-Hermitian (see [1], [201) When A and B are both unitary this problem has
been solved only partiaily: sharp analogues of the inequality (2) are known only for
the values p=1 and p = o and good bounds are known for other values. (See 21,
[51, [7], (8], [10]) But when A and B are arbitrary pormal operators a sharp
analogue of (2) for any value of p other than 2 has not been found even in the finite-
dimensional case. See [6] and [7] for the kaown results when p= oC.
In this direction we shall prove:

Theorem 3. Let A be a Hermitian and B a normal operator, both lying in the Schatten
class #, for some 1£p< 0. Let {o) ...} ond (B By} be extended
enumerations of the eigenvalues of A and B. Then there exists a permutation 7 of ™
such that '

! o e
[Zlﬁ—ﬁ@ﬁ <ph-tyA—B|,  H1<p<2, ®)
i=1 =oal ;
and
o0 Atie . .
[Ehﬁ—ﬁ@# <pi-ln|A—Bl, f2€p<®, 9)
i=1 N 2

In the finite-dimensional case, the inequality (9} for the special case p = o0 has been
observed earlier. See, e.g., [3. P- 112]. For other p {hese results seem to be new even
in this case. :

3 Proofs and remarks

The proofs of Theorems 1 and 2 are both built upon the finite-dimensional case. In
the first this involves a straightforward approXimation argument, in the second some
more intricacies.

Proof of Theorem 1. Label the eigenvalues of 4 and B as &,,,,... and Bi,fas.-- 10
such a way that '

EREL -7 T '|ﬁ1|3|iﬁz]3 . (10)

Then choose orthonormal bases i, 4z,.-- and vy.0y,... for M so that
a0 o0
A=Y guut, B= ) Pwol (11)
i=1 i=1

Since A and B are both Hilbert-Schmidt operators, given any 5= 0 we can choose
a positive integer r such that

i ot < 8%, i 1B* < &% (12)

i=rt+1l i=r+1
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50, if we define operators A, and B, as

ﬁ:‘uiv?? : (13)

[~

A= Y auu?, B, =

im] i

1
then,

”1‘1-"'AF|'3£5-. =EIEB—Br|I255~ (14)

Now consider the linear space spanned by the vectors Uy, and vy,..., v, together.
This is a space of dimension s where r < 5 < 2. Call this space #¢,. The operators
A, and B, both leave 5#, invariant and vanish on its orthogonal complement. Let
Wis-.., W, be an orthonormal basis for #, in which wy=u; for j=1,2,...,r. Then
Awp=ow for 1 <j<rand A,w;=0for r+ 1 €< s. Define a normal operator 4
on #; by putting Aw;=a;w; for 1<j<s Then nole that

¥

g

lA,— A 2= ¥ ja Pt (15}

J=r=1

By a similar construction we can define a normal operator B, on , which has
eigenvalues f,,...,#, and is such that

|B;—B,l:<8. . (16)

Now apply the Hoffman—Wielandt Theorem to the operators A, and B, on the finite-
. dimensional space #,. This gives a permutation = of the set {1,2,...,s} such that

Z |'Ij_ ﬁﬂmiz = "-"1': = Bs”i (IT}

i=l
Now extend this permutation = to all of N by defining 7(j) =/ if j=>s Then the
inequalities (12}, (14), (15), (16) and (17) together give

2 lay— B P < (14— Bll; + 46 + 457,

=1
Since § was arbitrary this proves the theorem. : [

Proof of Theorem 2. Once again label the eigenvalues of 4 and B as in {10). Define

extended enumerations {e}, {f:} of eigenvalues of A and B as the two sequences
whose terms are '

Boima =0 =0, i=1,2,..,,

ﬁrzi_,].:ﬁ[g 'i?lzll=':l’ i=1,23|.1-. . 1 ':I.S:l
By a slight modification of the argnment used in proving Theorem 1 we can find a
sequence ¢, of positive numbers and a sequence 7, of permutations of & such that
L =B < A Bi2 + 22, . (19)

and _ _ : S
lime, =0. : : (20)

;
€
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To see this adopt the same notations as in the proof of Theorem 1 up to the inequality
(14). Now let o, be any subspace of dimension 1 = 2r which contains all the vectors
15y lysU1yee ., 0y The Operators A and B, both leave 3, invariant and their
restrictions to this space have eigenvalues o, B i=12,....0 So, by the Hoffman—
Wielandt Theorem there exists a permutation m, of {1,2,...,n} such that

o= B, 2 <14, — B, < (14— Bl + 29"

i

Extend the permutation =, to all of N by putting z,(f)=jilj>n and define &, via &
to get (19) and (20). Let

v=nt, B=L2.. (21)

We now construct a permutation = of N that will satisfy (5). To do this we will
describe a procedure that defines and its inverse v by successively assigning values
to w(1), v(1), (2}, v(2)... . At the same time a subssquence of the sequence {m,} of
permutations defined in the preceding paragraph is chosen. The procedure is described
below in the form of an algorithm. This has {wo Steps o and f to be run alternately
and in each of these three mutually exclusive choices have to be made.

Fori=1,2,...,do

» Look successively at the following three options, do as instructed, then go to £

M (void if i =1). If i = v(j) for some j < i define w(i) =]

(IT) If the set {m(:n=1,2.. .} is bounded let j be the minimal number which
occurs infinitely often in this set. Define w(f) =j. Replace [r,} by a subsequence,
denoted again by {r,}, such that now n, (i) =] for all n. '

(ILL) If the set {m,(i}:n= 1,2,...} is unbounded let j be the smallest even number
which has not yet been called ={k} for any ik < i. Define (i) =Jj. (Note that
in this case Jﬂ B = 0 and we have defined win suchaway that f, = 0.)

f Look successively at the following three options, do as ipstructed, then go back -
to ¢ with i+ 1 in place of i :
(IV) Tf i = ={j) for some j <i define v{i)=J-

(V) If the set {v,():n=1.2. ..} is bounded let § be the minimal number which
occurs infinitely oftet in this set. Define v{f) =j. Replace {v,} by a subsequence,
denoted again by {v,}, such that now v,(ij=j for all n. This also gives a new
subsequence of {m,} if we put @, =¥, 5 ¥

{IV) If the set {v,{ikn= 1,2,...} is unbounded let j be the smallest even number
that has not vet been called v{k) for any & < i. Define v(i)=j. (Note in this
case we had Im &, = 0.and we have defined v in sucha way that o, = 0).

'We claim that the permutation 7 defined above satisfies the ineqilality (5). For this
it is enough to show that for every positive integer N we have B

hi
S jo,— Bl < | A= BI3- . 2

i=1
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Let Oy ={m,,m;,...} be the subsequence of the original sequence {x,} obtained after
running N steps of & and § in the above procedure. We will sphit the set {1,2,...,N}
into three disjoint subsets 5,,5,; and 5; by separating indices according to what
happened to them in the above algorithm. These sets are defined as

8§, ={it1 € i< N,Ix_e®y such that n{i)=x_ ()}

Note that if ieS, then by (IT) and (V) in the above construction n(i) = n,,(i). for all
T E Py

8, ={i:1 < i< N,n(i) was defined by (IIT) above}.
Note that

ﬁ;m.—l:mﬁ =0 iHies,. (23)
S.={i:]l i< N, i was defined as i = v(j) for some j < i by (VI) above}. Note that

op=lim o 0y =0  ifieS,. (24)
Now for any element m, of @, we can use the above splitting to write

N

Y= fplt= Tl —f P+ L P+ ¥ I8,
=] =52 =8y

izl

2 z 2
|:[EE |'x£ ﬁ;n{|}| T Z |‘x = xntr}l £ z mvn{ﬂ(i}i ﬁt{iil :l
1

E im |: |mf 'ﬂ:lm[ﬂlz} g z {lﬁﬂillz vn{ﬂmi ﬁlﬂﬂllz} (25}

iEqa

As n— <o the last two sums in (25) go to zero, since both are finite sums of terms

going to zero. The limit of the three sums inside the square brackets can be writien
as

lim Z fett — [

e n-.{!'.l'

This is bounded above by

lim Z 12— Bl
Hence, the inequality (22} follows from (19) and (20). ' =

The difference between the finite-dimensional and the infinite-dimensional case
arises because of the fact that the unitary orbit of an operator 4 defined as the set
{UAU*:U unitary} is closed in the former case but not always in the latter. The

following simple example illustrating this phenomenon was prnwded to us by Peter
Rosenthal.
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Example. Let A be the normal operator given by

)
Forn=1,2,....let

1 | 1
An=diag(£:1:_:---1"1_'5__:"'_'1-'-)
n 2 n—1n+tn+2

Then each A, is in the unitary orbit of A. However, A, converges (in the Hilbert—
Schmidt norm topology) to B where

B= diag(ﬁ, 1, 151, e )
i

and B is not in the unitary orbit of A. By the same argument we can find a sequence
of operators in the unitary orbit of A which converges to a diagonal operator having
arbitrarily many zeroes on the diagonal.

One way to interpret the inequality (2)is that it gives a lower bound for the distance
hetween the unitary orbits of two diagonal matrices. In the infinite-dimensional case
such orbits are not closed. 5o, we should seek a lower bound for the distance belween
their closures. Such a bound is provided by Theorem 2.

The other, more standard, interpretation of (2) 1s that it gives an upper bound for
the distance between the eigenvalues of two sormal matrices. This distance is a metric
on the space of unordered n-tuples of complex nurnbers. More precisely, consider
the space C" with the Buclidean norm |[1Y;. Let IT, be the group of permutations on
n indices. For xeC" let x(r) be the vector whose coordinates are obtained by applying
the permutation 7 to the coordinates of x. Calling two such vectors equivalent let X
be the equivalence class of x. Let £ — C/I1, be the space of such equivalence classes.
Then this is a metric space with the metric - ' '

[

A= diag(l,

d(%, §) =min [|x —y{@ 2.

Since the eigenvalues of an nx n matrix are known only up to a permutation it
is natural to identify them with a point in the space ©". The inequality (2) then gives
a bound for the distance between the gigenvalues of two normal matrices 4 and B in
terms of the distance between 4 and B. Now when A i3 a Hilbert—Schmidt operator
we have to replace the space C" in the above discussion by the space 1,. Let IT denote
the set of all bijections of the set of natural numbers onto itsell.

Consider the space I, = I;/T1. The eigenvalues of A can be identified with a point
in this space. We can now define for %, 7 in this space '

(%, 5) = inf |x— yio) .

_ However, the example given above also shows that this does not give a metric on
I,. It only gives a pseudometric. Indeed, given any x in [ We can find a y which has
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the same nenzero entries as x but arbitrarily many additional zero entries, and for
which d(%, 7) = 0. The quotient space ?2 /d with respect to this pseudometric is a metric
space. To identily this space let I, be the subset of I, consisting of vectors with
infinitely many zero entries, For each xel; let x"=(x;,0,x,,0,...}. Then x'el,. Let
% be the image of this point in [, = [}, /TI. Now define

(%, §) = mf [|x' — y'(m)]| 5.

It can be seen that this defines a metric on the space FIZ. 1t would be most natural
to use this metric to measure the distance between the eigenvalues of two Hilbert-
Schmidt operators. Theorem 2 is then seen to be the natural extension of the finite-
dimensional Hoffman—-Weilandt Theorem. :

Since ( is always an accumulation point of the cigenvalues of a compact operator,
in any case there is good reason to include it with infinite multiplicity in a count of
the eigenvalues.

Now we recall briefly some of the known results for the special class of Hermitian
operalors. Let 4 and B be n % » Hermitlan matrices with eigenvalues enumerated as
0, =y = 2a, and §, = f, = --- = f, respectively. Then we have

" 1ip
[Z |EIE'—£1';|F] \n{..”z"i"'B"p fﬂrlﬂpi G ) (26]

iml

This is a consequence of a theorem of Lidskii and Wielandt. See [3, Chapter 3]. This
theorem was extended to infinite dimensions by Markus [16]. If 4 is a compact
Hermitian operator associate with it a doubly infinite sequence {a ; jeM} satisying
the following conditions

(i] ml?]z?—'“;ﬂ,

I R

(11) if 4 has infinitely many positive and infinitely many negative eigenvalues then
the sequence {« .} contains only these numbers each repeated as often as its
multiplicity as an eigenvalues of 4 (0 is not included in the sequence in this case
even if it is an eigenvalue of A); .

(iti) if 4 has only finitely many positive eigenvalues then the sequence {« 4} contains
these repeated according to their multiplicities and an infinite number of zero
terms; and if 4 has only finitely many negative eigenvalues then the sequence
{m_;} contains these repeated according to their multiplicities and an infinite
number of zero terms,

With this notation Markus proves a‘result from which it foliows that if 4 and B

are compact Hermitian operators and if {0 ,} and {§, } are sequences associated
with them according to the above rules then ' '

oo : Lip )
.[_Zl{'xj—ﬁﬂ‘#Imqu,—ﬁ_j;?}] <||4-B|, forl<p< o, (27)
= .

This device of adding zeroes to make both the positive and the negative eigenvalues
of A infinite in number achieves exactly what our extended enumeration did, One
can easily see that the “optimal matching” of the eigenvaiues of 4 and B is achieved




T

o
Tl

TR AR

e " J: .

Hoffman—Wielandt inequality 491

by the pairing in (27). 1f both A4 and B have infinjtcly many positive and negative
gigenvalues then extending the enumerations by adding zeroes does not affect the
sums involved. So, for the Hermitian case our Theotem 2 is included in this result
of Markus. The p=2 case of (27) is also proved in Friedland [12].

Kato [14] has proved a similar result in the more general situation when 4 and
B are any two bounded Hermitian operators whose difference is compact. Let o{A4}
denote the spectrum of a Hermitian operator 4. An isolated point of o(A) is always
an cigenvalue of 4; if it has finite multiplicity call it a discrete eigenvalue. Let 0,(A4)
he the collection of all such points. The complement of g,(A) in a({A) is called the
essential spectrum of A and is denoted as 5, (). Eigenvalues of A that have infinite
multiplicity are in g (4) whether they are isolated points of g(4) or not. The set
b, lA4) 18 & closed subset of R and so its complement in R is a countable union of
open intervals I,. Kato defines an extended enmumeration of discrete eigenvalues of 4
to be a sequence {o;} with the following properties

(i) every discrete eigenvalue of A appears in this sequence as often as its multiplicity,
(i} all other points of the sequence {o;}, belong 10 the set of boundary points of the
open intervals [, mentioned above.

We should add here an explanatory note. An extended enumeration {a;} according
to the above definition need not include all the boundary points of ail the intervals
I, and those that are included may be counted as often as one wishes.

With this definition Kato proves that if 4 and B are Hermitian operators such
that A — B is compact then there exist extended enumerations {x;} and { §;} of discrete
eigenvalues of 4 and B such that '

ot i M
[2 :;,——ﬁ;!”J <|A—BY,for 1 £p= Q. (28)
i=1

j=

The result of Markus can be derived from this.

We should add that all the inequalities (26)—(28) are true for the larger class of
§YMMEtric Norms. :

Our Theorem 3 is proved using the above casults for the Hermitian case. We will
need the following facts. Let

« T-T* .
T= T1+iT2=T—Zi-+i- g (29)

be the Cartesian decomposition of any operator T. Then. _
I TIZ= 1T b3+ 1 Ta b2 | (30)
I Tyl < 1 THes | Tallo S U Thees . - (31)

If T is normal then the eigenvalues of Ty and T, are the real and the itjn:aginar;f parts
of the eigenvalues of T. We will use the Clarkson-McCatthy inequalities which say
that if T and S are in the Schatten class £, then

W T+ IS <A T+SE+IT =S5 for2<p<e. (3D
2-1(| T2+ [SI2) <N T+ SK+ I 7513 for 1< p<2. (33)



452 Rajendra Bhatia and Ludwig Elsner

See [9] or [19]. We will also use the elementary inequalities:
I+l <272 |x|P+¥")  for2<p< o, (34) :
|x +iylf < |x|" 4+ " forIgp<2, (35)

valid for all real numbers of x and y.
Proaf of Theorem 3. Let B= B + iB, be the Cartesian decomposition of B. We shall
apply the inequality (27) to the Hermitian operators 4 and B,. Let us represent

extended enumerations of eigenvalues of 4 and B in the form of doubly infinite :
sequences {«, ;} and {f } in which i

oy 2oy e 20, r_ysu_ K€
Rﬂﬁr_;Rﬂﬁz,}r—“';ﬂ, Rﬂﬁ_l-ﬂﬂﬂﬁ_zﬁ“‘ﬂﬂ,

In all summations the index j will run over positive and negative integers.
The case p=2 is specially simple. We have from (30) and (27)

[A—Bl=1A—B,|3+iB; |}

> LRy~ Refjl* + 3. (1m
F

=X lo;— B
;

which is the desired inequality.
The case p= o is equally simple. Use (31} instead of (30). For each j we have

|‘x_i_.||3j|2 = |'3"'_f_' Rﬂﬁj|1+ |Imﬁj[2
< [A—B, |7, + 18,13
§2||A — (B, +iB,) %
=2[|A=B|3.

For 2<p < oo use (32) and (34) together with (27) to get
2 :?ﬂ_r = Bﬁp = Z lx;— Re Bﬂp + Z |Im lﬂjlp
i i

<[A4A—BI7+1B,|5
<3{lA—B, +iB, |2+ [4— B, —iB, |’}
=7{lA—B*|?+ 14— 8|7}

which is the desired inequality.
For 1< p=2 use (33) and (35) together with (27) to get the result. u
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Sakai [18] has proved a rather special case of the above Theorem. He proves it
for p = 2 assuming that 4 and B, are both positive operators, In the special case
when 4 is Hermitian and B skew-Hermitian stronger inequalities for all p-norms
have been obtained by Ando and Bhatia [1].

We end with some remarks about results which can be easily proved using the
same ideas.

Hoffman and Wiclandt also proved an inequality complementary to (2). There
exists a permutation x such that

n 12
||A—m|z£[znx,-~ﬁ,{.-}|2] .
i=1

Such complementary inequalities for (4) and (5) can also be obtained.

Let (A%, ..., A™) be an m-tuple of pairwise commuting compact normal operators
in .. Then there exists an orthonormal basis ¢;, j = 1,2,..., such that each ¢; is a
simultaneous eigenvector for all A%, 1 <k<m. Let A%e, =1, 1<k<m The
points (A", ., 2™} in the space c™ j=1,2..., can be called the joint eigenvalues
of the tuple {A“F: ..., A" The set of these points together with the point 0 in C™
coincides with the Taylor spectrum and the Harte specirum in this case. See, e.g., [17].
In [4] and [11] it was shown that the Hoffman-Wielandt inequality (2) can be
extended to give or bound for the distance between the joint eigenvalues of two
commuting m-tuples of normal matrices. Following the same ideas our Theorems 1
and 2 can also be generalised to commuting m-tuples of normal Hilbert-Schmidt
Operators.

A version of Theorem 3 when A and B are not compact but A— B Is, can be
proved using Kato’s Theorem and the ideas of our proof Note that A—B=A—
B, —iB,. So both 4 — B, and B, are compact if 4 — B is. An extended enumeration
of discrete eigenvalues of B should now mean a sequence £8,} such that {Rej ;3 is
such an epumeration for B, in the sense of Kato.

n [9] the Clarkson—McCarthy inequalities are generalised to all unitarily invariant
norms. These can be used to obtain some results extending Theorem 3 to such norms.
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