VARIATION OF THE UNITARY PART OF A MATRIX*
RAJENDRA BHATIAD AND KALYAN MUKHERJEA

Abstract, The decivative of the map that takes an invertible mateis A to the noitary factor T
in the pelur decemposition A = TP i8 evaluated. The aame i3 done for the map that tales A Lo the
unilary fuctor ¢ in the QR decomporition 4 = QA These results lead Lo perterbation bounds for
these maps. Other applicationg of the method developed are discussed,
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1. Introduction. Let M{n) he the space of all n = n (complex) matrices; lot
GL(7} be tho group consisting of all invertible matrices and let Uln) be the subgroup
of unitary matrices. Fvery matrix A has a polor decomposition A = UP, where
' € U{n) and P iz positive semidefimite. The positive part P, written as |A[, is
umique and is cqual to {A%A)Y2, I 4 € GL{n) Lhen the polar parl 7 is also unigue,
sinee I7 = AP,

Let & : GL(n} — Uln) be the map F{UFP) = U, which takes an invertible ma-
trix ko its polar parl. Our firsl resule, Theoren: 2.1 below, gives an explicit oxpression
for the Fréchet derivative of this map, As corollaries we olitain the value of the norm
of this derivative with respect to any mnitarily invarient norm on Min), and then a
perturbalion bound for the polar part.

Anolher expression for the derivative of F' has been obtained by Barrlund [1).
Using this and sowe resulls on Hadamard products, Maghiag [12) has obtained the
perturbation bound {13} derived below, Our coordinate-free approach Lo these ques-
Lions is in line with some of our earlier work [3], [6], and [2, Chaps. 4, 5]. This
approach has two merits. First, it is adaprable to more general conlexla such as Lhe
KAK decomposilion in semisimple Lie groups. We do not pursme that direction in
this papor. Sccond, it works well for other malrix decompositions like Lhe OQIL [ac-
torisation and the Cholosky factorisetion, We illustrate this in later sections of this
paper. Results similar to these have been obtained by Stewart [13] and, more recently,
by Sun [15]. Hers vur approach clarifies some of the issues, imifies the work on these
different questions, and clearly brings out the similarities and the differences betweesn
them,

Wo will denote by i - ||| any norm on M) that is undlarily tnvaviant, i.e., a
norn that salisfies the condition ||| FAV ||| = ||| A || for all 4 € M(n) and 7,V £
U{n). Basic properties of such norms may be found in [2]. The singular values of
A will be denoted ax s1{A) = su(A) = -~ = 5,(A). The operator bound norm, also
called the spectral rorm in the numerical analysis literature, will be denoled by || - ||
and the Frobepsus norm by || - [|#. We have

|41l = #1{A),
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If T is a transformer, ie, a linear map on the space M{n}, then for any norm

[Ii - H o M{w), we define
IV = spg || TCXO] = X5 =1}

Weo will use some clemontary facts of calenlus on manifolds that the reader may
find in texts such as [Tl

2. Variation of the unitary part. Let T 1GL(n) be the tangent space to the
manifold GL{n) at a point 4 in it. Since GL(n) is an open subsct of M{r} we have
TAGL(1) = M(n}. This is & special instance of the correspondence betwesn s Lie
gromp and its Lie algebra. Here the Lie algebra corresponding o the group GL(R) ia
gl{rn) = M{n). The Lie algebra corresponding to the group Uln) is uln), the set of
all skow-Hermitian matrices. This s the tangent space to Uln) at the point . The
tangent space to Uin) at a point IF s TpUin) = I-u(n) = {US5 : 5 € uin)}. The
derivative of I at & point A = ITP of GL{n), denocted by DF(I7F), is a linear map
trom Min) to LF-uln).

Let kv denote Lhe space of all Hermitian matrices. We have h(n} = z-u(n). We
have a vector apace decomposition

(1) Min) = uin) + hin),

in which every matrix splits uniguely as

(2] X=5+1,
where

[ — X+ X+ X
() g 7 T s

z 2

Wo can now state our first madn result.

THEOREM 2.1. Let F: GL{n) — U(n) be the map defined ubove as F{UP) =
£, Let X be any eement of Min) and lel X = 5 4+ H be its splitting into skew-

Hermition and Hermition parts. Then the value of the derivative DF(UP) un the
tangent vector (£ X is given by

(4) DFUP)(UX) =20 f e getdt.
0

Froof. Let P{n) be the set of all » % n positive definite matrices. This is an open
subuet of the real veetor space L(n). Henco for overy P £ Pln) the tangent space
TpP(n) = hin).

Let ¥ : Uln) % P{r) — GL{r) be the map T ) = UF and let & be the
inverse map (U7 FP) = (U, P). Then writing & = (&, &,}, we have [ = &,

The derivative fh{{/, P} is a linear map with domain Ty Uln) + TePr} =
£ - uln) + hin) and range Min} = U7 - w(n) + U7 - h(n). By definition, this derivative
i3 evaluaied as

(5) DU, P)(US, H) = %{m{uefﬂ, P+ i)y =USP + UH
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for all 8 € u(n), FF € hin).

Now note that for small valuea ol §, P4+t H is positive for any H € hiv), and hence
we have &, (/P +IUH) = @ (U P} = . So the kernel of D@, {{7F) contains U - hin).
In fact, ker D®(ITP) = 7 - hin), since ® is a diffeomorphism from GL(n) onto
Uin) » P{n) and each of u(n) and hin) has half the dimension of M{n). S0 we need

to compute the value of D44 (17 F) only on tangent vectors of the form 075, 5 € u(n).
Let

{6} DRUP)US) = (ITM, N, M e uin), IV € hin).
Since ® = T}, we have using (5)
(7 U8 =D, PUMN)=UMP+UN.
We want to determine M from this equation. So, we must solve the equation
MP4+N=25
Taking adjoints we have
—-PM 4 N =-5
From these two eguations we obiain
{&) MF+ PM =125,

Thix is the faniliar Lyapnuov equation and its solution (zee [9], {107) i
)

(3} M= 2f e P ge—1Fay,
4]

Equation (4] now follows from (6) and {9). 0
COROLLARY 2.1, For every wundtarily invarient rorme || ||| on BDINY we hove

(10 IIDE@PY|| = [P7H| = 77 (A).

T
Proof. This lollows {rom {4) by a tamiliar argument that we repeat for the reader’s

convenience,
Since the norm is nuitarily invariaot, we have

{11) ||| DE{L PYIFX)

2
<2 f &7 867 dt.
L1}

Then, since ||| BCD||| < 13- UC|)| - 1D for all B, G, D, we have

W™ Sl <l - 111 - e~
< o~ 5|
(12) < eI

using the fact i[5 < ||| X
From (11} and (12} we olitain

ND# @ PY|I| = supy =1 PP PITX ) < 9,1 (A).
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Choosing X = of /||| FI]| one sces that this is actually an equality. O

Using the mean value theorom, we obtain from Corollary 2.2.

Coronnary 2.2, Let Ap and Ay be two clements of GL{n) with polar parts L7
il U7), respectively. Assuwme that the fine segment Alf) = (1 —8HA+14,. 02821,
Jointng Ag and Ay les inside GL(n). Then for every unilarily tnvariont novm

E o H -1 s i
(3) 1 - Talll < ma, HAG)™ 11140 ~ A

These statements can be expressed in ancther language by saying thal in any
unitarily invariant norm, the condition of the function F at any point A of GL{R} is
given by s71(A).

We should remark that the solution of {8) can also be expressed as o Hadamard
product [10], [11]; from this we can obiain estimates like ours either direetly or by con-
vorting this formula to the integral expression (9}, We have chosen the integral form
of the solntion because 1t might be uzeful in anabsing infinite dimensional problems
as well. An effective use of such inteprals was made earlier in [5].

4. The QIt decomposition. Every square complex malriz A can be writlen
ag a praduct A4 = QR where @ is unitary and & is upper triangular. If 4 is invertible
then so is B, FPurthermnore, we can choose the disgonal entries of I to be posilive and
with thiz added resiriclion this product decomposition ia unique lor every A € GL{R).
This decompaosition called the @R decomposition is extromely important in mumaericsl
analysis. Sce [14] for dotails.

We will now analysc the variation of the unitary part in this decomposition in
Lhe same wiy as lor the polar decomposition,

Let Birn) denote the set of all upper Lriangular mairices with positive diagonal
entries and Iet B{n) be the sot of all upper triangular matrices with read disponal
entries. Then bin) is a real vector space aud Bn) s an open subsel of it. 5o, the
tangent space TeB(n) to Bin) al aoy point A of it is the space b(n). (One may noto
hore that Bir} is o Lic group and bin) is its Lie algebra)

The QR decormnposition associates with every elanent 4 of GL{w) 4 unique ele-
ment J of Uln) and a unique element R ol B{n), Lev F @ GL(n) —— Uln} now he
the map F{QR) = (. Tho dorivative of F ot A = QR iz a linear map from Min) to
- U{n).

The subspaces uln) and b(n} are complementary Lo each other in Min) and we
have a vector space decomposition

{14} DI(n) == ave) + i),

This decomposition is not as familiar as the one in (1) and it has sowe diflerent
festures, If a maleis X splits as

(15) XuK4T

in the above decomposition then wo mnst have the following relations between Lhe
entries of these matrices

kyi=tmaeg; forall j, by = = forj =4, ky =y fori>=j

(16) t;; =Rew;; foralli, ty=ay+Fu forj=i f; =0 fori>j
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Whereas, in the case of the decomposition (1} the projections onto both the
components are norm-reducing for every unilarily invariant norm (just use the triangle
incguality), this is not the case for the decomposition (14}, Instead, we have for the
Frobening novm the following lemma.

Lenina 5.0, Let Py oand Py be the complementory projection operators in M)
cortesponding fo the decomposition (14), Then

{17) Pl = [Pl = V2.

Proof From (15) and {16) one can easily see that ||K|i3 < 2/|X||% aud |73 <
2||X|{%.. The first inequality becomes an equality when X = ['1j 3} tho scoond when
01
X=(0). ©
Remark 4.1, If instead of the Frobenius novin the operator norm is ased then

the norms of the projections P; and Py grow with the dimoension 5. To see this, note
that if X is Hermitian then

(18) T = 2A(X) — diag X,

where A is the tricagulor truneation operator, e, for any matrix 4, A(A) is the
malrix oblained from A by replacing the entries below the main disagonal by zeros.
It is well known that the norm ||A]) grows as log n, For example, if X is the n = n
Hermitian matrix whose diagonal entrics are zero and whose off-diaponal entries are
w = v/ —1/(i —j), then || X|| = m and [|A{X)|| = %lug r. (See [8, p. 39].) Oun the
other hand, |[diagX|| = HX||. So ||[Pe|| must grow at least as log n. Hence so must
17l

Returning to the map F{QR) = ¢}, let us seo how far an analysis similar to
the one in §2 takes ns. Now define U : Ulr)x Bi{n) — GL{n) to be the map
T, ) = QR and lel ® Le its inverse map $(QR) = (6, R). If ¢ is written as
& = (&, %) then F = &), The derivative D¥(Q, R) is a lincar map whose domain
is TgUin) +TiB{n) = Q-uln}+ bin), and whose range is M{n} = G-uln) +Q-Lin).
The derivative iz evaluated as

(19) DR, QK. T) = %[w[@.‘:ﬂﬂ R4 4T )emo = QK B+ QT

for all K € w(n). T € bin).

If R € Bi{n) and T £ bin) then for small walues of ¢, B4+ 1T is in Bin). DBy
the uniqueness of the QL factorisation, &) (QR + 1QT) = &,(QR) = . Hence the
space ¢ B{n) is containcd in ker24 (QAR). But, then countiug their dimensions we
can conclude that ¢ bin) = kerD®,(QR). So we need Lo compule the values of
M [ R) only on tangent vectors of the form QR K € uln). Let

(20) DO(GRIQK) = (@M, Y), where M £ uln), ¥ e bin).
Binco @ = 71, we have from (19) and [(20)

(21) QK = QMR+ QY.

To determine M from this we need to solve the equation

(22} MRE+Y =K.
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Here the similarity with the analysis in §2 ends. In (3) P and N were sclfadjoint, so
taking adjoints we conld achieve o major simplification by eliminating the redundant
variable V. We cannol do thal here. However, we can atill obtain an expression for
M from (22}, Rowrite this equation as

M+YR'=KR.

Note that M € u{n) and YR™! € bin). S0 M = Py(KE™') in the notation used
earlier. We have thus proved the following theorem.

THEGRFM 3.1. Let F: GL{n)-— WU{n) be the map defined as FIQR) = . Let
X be any element of M{n) and let X = K + T be its splifting in the decomposition
Min)= uln} + bin). Then the value of the derivative DF(QR) on the tangent vector
QX is given by

{23) DF(QR)(QX)=QPI(KR 1),

where Py is the projection operator in Min) projecting onto uin) along the comple-
mentary space bin).

Noto that the quantitios ocourring in the above formula can be explicitly computed
from the relations (16).

CoRoLLARY 3.1. For every matric A = QR in GL{n), we houe

(24) HDF(QR)||r < V2R = V21A7Y].

Proof. Use Theorem 3.1, Lemma 3.1, the unitary iovariance of the Frobening
norm, and the inequality ||ST||z < ||5]|#||T]| that is valid for any two matrices S
and 1 o

Using the mean value theorem we obtain the following corollary.

CoroLLary 3.2, Let Ay = QuRy and 4y = 1Ry be any two elements of GL(R).
Suppose that the fine segment AlT) = (1 — 34y + 1Ay, 0<4 <1, joining A ond Ay
lies entirely inside GL{n). Then

(25) 1Q0 = Qufle < v2 max A lido - Aallp-

We shonld remark that from {23) we could surely derive some cstimates for
|1 BF(QR)||| for any unitarily invariant norm. These would, however, involve |||Py|||
and for this we have good estimates only in the case of the Frobenius norm,

4., The Cholesky factorisation. A common feature of our analysis of the polar
decomposition and the QR decomposition is thal we replaced the study of the map
@, which takes a matrix to its factors, by that of its inverse map ¥. Thiz, being a
multiplication map, iz easier to bandle. A similar ides is vseful in the perturbation
analysis of the Cholesky [actorisalion.

Every positive definite matrix A has a nnique factorisation 4 = B R, where R is
an upper triangular matrix with positive disgonal entries. This is called the Chelesky
Jaciorization,

In our notation, we now have a map ¢ : P{n) — B(n} defined as ®(4) = R,
where B is the Cholesky factor of 4. The inverse map is T(R) = R*R. The derivative
DU(R) is a linear map from the taugent apace TrB{n) = b(n) to the tangent space
T4P(n) = hin). This derivative is evaluated as

(26) DY(R)T) = & [M(R+1T)}my = KT+ TR,
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for every T ¢ bin).
Now, for H £ h(n} let

(27) DE(A)H) =T, where T € bin).

Then since & = T, we must have

{28) R'I'+T"H=H.

To estimate |LD®{A)|||, we need to estimate T in terms of H and R. Rewrite (28) as
{29) TR V(PR =(R ) HE

Since T'R™! € b(n), we have from (29)

IR i < v—‘,iHl:R'}"lHR"lup < U—I,EHH' L2118 -

Since ||T||p < ||T'RT? Ri|, this gives

!.-‘
(30) Tl < :}Enﬁn R || E
From [27) and [30), we get

1 PP S
(31) || 2E(AY]s < EIIREI IB=H® = AT

1
—=||A
2l

Tor the map ¥, we could write from {26)
(32) HDWCR)||] = supyqy - [HRYT + 17 R]|| < 2||R]|,

for every unitarily Invariant norm.

Incaualities (31) and {32} can be used to write perturbation bounds for & and ¥
as before,

Finally, we remark that from results of 52 and 3, we can obtain some information
about the wariation of the positive part P in the polar decomposition and the upper
triangular part I in the QR decomposition.

MNote, In a sequel to this paper [4], the above analvsis has been carried further to
obtain perturbation bounds for several other matrix decompositions.
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