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Abstract--In this paper we describe a new approach to computing the Euler characteristic of a three 
dimensional digital image. Our approach is based on computing the change in numbers of black compo- 
nents, tunnels and cavities in 3 x 3 x 3 neighborhood of an object (black) point due to its deletion. The 
existing algorithms to computing the Euler characteristic of a 3D digital image are based on counting the 
numbers of all k-dimensional elements (0 < k < 3) in a polyhedral representation of the image. Our approach 
can be modified for (6,26), (18,6), (6, 18) and other connectivity relations of grid points. A parallel 
implementation of the algorithm is described using the concept of sub-fields. 

3D digital topology Betti numbers Tunnels 
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1. I N T R O D U C T I O N  

Three dimensional (3D) digital images result directly 
from laser range scanner, computer aided tomography 
(CAT) and magnetic resonance imaging (MRI) devices. 
Indirectly, computer vision algorithms generate 3D 
digital representation from 2D images and camera 
calibration information. The study of 3D digital topol- 
ogy is an important aspect of 3D image processing. 11-4} 
Topological information is useful in object classifica- 
tion, thinning and skeletonization of objects, ¢5-7) seg- 
mentation by parts, {s} and many other problems. Most 
of the publications on digital topology deal with bi- 
nary images. In this paper we concentrate on the 
problems of computing the Euler characteristic ofa 3D 
binary image. The Euler characteristic is an important 
topological feature that may be used in pattern classifi- 
cation. It is also interesting to study the behaviour of 
the Euler characteristic in a 3D digital space. 

Several publications on computation of the Euler 
characteristic of digital image are found in the litera- 
ture.~9-12} DyerS1 t~ proposed an interesting algorithm 
for computing the Euler characteristic of a 2D digital 
image from its quad-tree representation. In reference 
(9), a recursive algorithm is proposed for computing 
the Euler characteristic and other additive functionals 
of a n-dimensional digital image from its array repre- 
sentation. Bieri "°~ modified their previous algorithm 
for computing the Euler characteristic and other addi- 
tive functionals of a n-dimensional digital image from 
its n-tree representation. In reference (12), Voss pro- 
posed an interesting approach for computing the Euler 
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characteristic of an object in n-dimensional homo- 
geneous grid. 

In this paper we describe a different approach and its 
parallel implementation to computing the Euler char- 
acteristic ofa  3D digital image from its array represen- 
tation. While other algorithms work on the number of 
all /-dimensional elements; 0 < i <  n in a polyhedral 
representation of a digital object, our algorithm is 
based on finding the change in numbers of black 
components, tunnels and cavities in 3 x 3 x 3 window 
of a point due to its deletion. In Section 2, general 
definitions and notations related to 3D digital topol- 
ogy are presented. Theoretical aspects of the Euler 
characteristic as well as a recursive equation for its 
computation are discussed in Section 3. In that con- 
nection a simple expression for the number of tunnels 
in 3 x 3 x 3 neighborhood of a point is established in 
Section 3. An efficient algorithm to compute the 
change in the Euler characteristic in 3 x 3 x 3 neigh- 
borhood of a point due to its deletion is described in 
Section 3. In Section 3, a parallel algorithm is proposed 
to compute the Euler characteristic of an image. 

2. G E N E R A L  D E F I N I T I O N S  A N D  N O T A T I O N S  

At first we present a few definitions related to 3D 
digital topology frequently used in this paper. We 
consider 3D cubic grid ~3~ to represent a 3D digital 
image. In subsequent discussions, points refer to 
digital grid points unless stated otherwise. We follow 
the conventional definition of e-neighborhood or a- 
adjacency of points, where a~{6,18,26}. Two non- 
empty sets of points $1 and $2 are said to be a-adjacent 
if at least one point of S t is a-adjacent to at least one 
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point of S 2. Let S be a non-empty set of points. An 
~t-path between two points p, q in S means a sequence of 
distinct points p = Po, P~ . . . . .  p, = q in S such that p~ is 
~t-adjacent to p~ + ~, 0 _< i < n. An ~t-path Po, P ~ . . . . .  p. is 
an at-closed path if Po is a-adjacent to p.. An ~t-closed 
curve is an ~t-closed path n such that every point of n is 
or-adjacent to exactly two other points ofn. An ~-closed 
curve with more than three points is called a non-trivial 
~-closed curve. Let no,~t~,...,n . denote n +  1 non- 
trivial ~-closed curve. We say that they are indepen- 
dent if there exists no n~ such that 

~i ~ U 7~j 

Two points p, q ~ S are ~-connected in S if there exists an 
~-path from p to q in S. An ~-component of S is 
a maximal subset of S where each pair of points is 
~-connected. 

A 3D digital image p is defined as a quadruple 
(v, ~, fl, ~ ). Here v is the image space which is a set ofall 
grid points (i,j,k) where i,],k are integers and 
imi" ~_~ i ~ i . . . .  Jmin < J < J . . . .  k,,~, <_ k < k,,°~. In other 
words, v is a set of all cubic grid points in a finite 
rectangular parallelepiped. Also, ~ is the set of black 
points in ,~. In addition, 0t-adjacency and fl-adjacency 
are used for finding :t-components and fl-components 
in ~ and v - ~ ,  respectively. Note that v - ~  denotes the 
set of white points in /~. In this paper we consider 
26-adjacency for black points and 6-adjacency for 
white points. Obviously, a 26-component of ~ is 
a black component of ~ while a 6-component of v - ~  is 
a white component of ,~. Since v denotes a set of grid 
points in a finite rectangular parallelepiped, we can 
define both interior and border of v. A point p e v is an 
interior point of v if all 26-neighbors ofp are included in 
v. Similarly, a point p~v is a border point of v if all 

26-neighbors of p are not included in v. The set of all 
border points of v is called the border of v and is 
denoted as v*. A border point of v is called a 6-border 
point of v if it has exactly five 6-neighbors included in v. 
A cavity in # is a white component  of # surrounded by 
a black component.  According to our convention for 
v a cavity may be defined as a white component  of 
/ containing no border point of v. 

Shrinking is a process of sequential transformation 
of black simple points to white in an image as long as 
the image contains at least one black simple point. 
A point is a simple point if its binary transformation 
does not  change the image topology. See references (6, 
7, 13) for more on simple point. 

In the following discussions, ~U(p) is used to denote 
the set of 27 points in 3 x 3 x 3 neighborhood of 
a point p including p itself. The set of points of JV'(p) 
excluding p is denoted as ~V*(p). Note that ,U*(p) is 
the border of JV'(p). We classify the points of X*(p )  
according to their adjacency relations with p. 

(1) An s-point is 6-adjacent p. 
(2) An e-point is 18-adjacent but not 6-adjacent 

top.  
(3) A v-point is 26-adjacent but not  18-adjacent 

to p. 

Nomenclature of the points of Jff(p) is explained in 
Fig. 1. In Fig. 1, E, W, S, N, T, B denote east, west, south, 
north, top, and bottom points, respectively. Similarly, 
TE denotes top-east point and so on. Let x =  (ko, kl, k2) 
be an s-point of JV(p) where p = (/o, 11,12) i.e. Dki- l~l = 1 
for some i and kj = l i for all i ~ j .  We define surface(x, p) 
as the set of points (too, m~, m2)~ ~+'(p) such that m~ = k v 
It may be noted that a surface(x,p) contains exactly 
one s-point of o,V(p). Let x = (ko, k t, k2) be an e-point of 
.t"(p) where p --- (1o, 11,12) i.e Ik~ - l;I = 1 and Ikj - ljl = 1 

/ / / , ' 1  
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Fig. 1. Nomenclature of the points in 3 × 3 x 3 neighborhood of a point p. Clockwise from top-left corner-- 
neighborhood representation; back vertical plane; middle vertical plane; front vertical plane. 
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for some distinct i,j and k h = I h for h # i, h # j .  We 
define edge (x, p) as the set of points (too, m 1, m2) ~ ~Ar(P) 
such that m~ = k~ and mj = k r It may be noted that an 
edge(x, p) contains exactly one e-point of ¢~'(p). 

Two s-points a, be  vff(p) are called opposite if they 
are not 26-adjacent. Otherwise, they are called non- 
opposite s-points. Let a, b, c denote three non-opposite 
s-points of x/if(p). Then we define the following two 
functions. 

e(a, b,p) = qlq¢~'*(p) and 6-adjacent to a, b; 

v(a, b, c, p) = qlq ~ ~I~*(P) and 6-adjacent to e(a, b, p), 

e(b, c, p), e(c, a, p). 

For example, if a, b, c denote the points N, T, E in ~4~(p) 
then according to the above definitions e(a, b, p) and 
v(a,b,c,p) will denote the points TN and TNE, re- 
spectively. It may be noted that e(a, b, p) is an e-point 
while v(a, b,c,p) is a v-point of ,¢(p).  

3. THEORETICAL DISCUSSION 

The Euler characteristic of a polyhedral set S = ~,3, 
denoted as ~((S) is defined by the following axioms. (a~ 

(1) x(S)= 0 ifS = ~b; 
(2) ;((S) = 1 if S is non-empty and convex; 
(3) for any two polyhedra X and 1I, x ( X u  Y)= 

x(X) + z(Y) - x(X r~ Y). 

For any arbitrary triangulation of a set S, thc value of 
x(S) is equal to the following alternating sum. ") 

z(S) = number  of points in S - number of edges in S 
+ number of triangles in S - number  of tetra- 
hedi'a in S. 

The Euler characteristic of a polyhedral set S = ~ 3  is 
also equal to the number  of connected components in 
S minus the number  of tunnels in S plus the number  of 
cavities in S. ( a J For example, the Euler characteristic of 
a hollow cube is two since it has one component,  one 
cavity and no tunnels; the Euler characteristic of the 
border of a rectangle is zero since it has one compo- 
nent, one tunnel and no cavities. A component  of a set 
S is defined as a maximal connected subset of S and 
a cavity in S is a component  of ,~t3-S surrounded by 
a component  of S. Although it is quite difficult to define 
a tunnel in S, the number  of tunnels has some precise 
definition in ~3. The number  of tunnels in a polyhedral 
set S c ~3  is defined as the rank of its first homology 
group. O'1'*) On the development of the Euler charac- 
teristic see references (15, 16). 

An analogous definition of the Euler characteristic is 
introduced for a digital image p which is denoted as 
~(;~). To do so, each digital image is associated with 
a polyhedral set C(A), defined as a continuous analog 
of p )  s} The Euler characteristic ;((,~) of a digital picture 
is defined as Z(A)= 7.(C(P)) -") We use the following 
axioms to compute the Euler characteristic of a 3D 
digital image. 

Axiom 1. For a 3D digital image ~, the Euler charac- 
teristic Z(~) equals the number of black components 
minus the number of tunnels plus the number of cavities 
in ~. 

Axiom 2. Let p = (v, 26, 6, 95) be a 3D digital image and 
let p ~ 95 be a black point in ~. Under this assumption, the 
Euler characteristic of /~ is equal to the Euler character- 
istic of(v ,26,6,95-  {p}) plus the change in the Euler 
characteristic in Jff (p) due to the deletion of p. 

Both Axiom 1 and Axiom 2 are important  in our  
approach to computing the Euler characteristic of 
a 3D digital image. While Axiom 1 is motivated by 
above discussion Axiom 2 is discussed by other 
authors. "'17) Let us consider a 3D digital image 

= (v, 26, 6, 95). To compute the change in the Euler 
characteristic in 3 x 3 x 3 neighborhood of a point 
p we define two images in X ( p )  as follows. 

~ ' ( p )  = (X(p) ,  26, 6, ( W ( p ) ~  95) - {p}) 

.fi/(p) = (~'(p), 26, 6, (Jff(p) c~ 95)• {p} ) 

Thus, ~ ~(p) and ~'(p)  are two 3D digital images with 
image space as X(p) .  Moreover, p is always white in 
J/ '(p) (i.e. p is deleted) while p is always black in ,~(p)  
(i.e. p is added!. For  any other point of Y(p ) ,  its color 
in X ( p )  and X ( p )  is the same as that of corresponding 
point in p. Therefore, the change in the Euler charac- 
teristic in 3 x 3 x 3 neighborhood of a black point 
p due to its deletion is equal to the Euler characteristic 
of ,(,'(p) minus the Euler characteristic of ~.~(p). We 
then define the following recursive relation of 
;((v, 26, 6, 95). 

t l)  X(v,26,6,95)=0 ff95 = ~b; 
(2) for any point p~M, X(v, 26, 6, 95) (1) 

= y.(v, 26,6,95 - {p}) + Z(~4>(p))- Z(~(p)) .  

From Saha and Chaudhuri  17) we state the following 
results on ~4>(p). 

(1) ~.~(p) contains exactly one black component;  
(2) .¢'(p) contains no tunnel; 
(3) ..~'(p) contains no cavity. 

Hence, ;((~'~(p)) = 1 - 0 + 0 = 1. Thus our work boils 
down to the computat ion of the Euler characteristic of 
.~(p)  which then leads to the estimation of the numb-  
ers of black components,  tunnels and cavities in ~ ( p ) .  
Definitions of cavities and black components are well 
established. Moreover, it follows from the structure of 
~ (p) that .~'(p) may contain at most one cavity that 
occurs only when all s-points of ,~ (p )  are blackJ 7} 
Here we provide a formal definition of the number  of 
tunnels in .,i"(p). 

Number of tunnels in ~;'(p) 

It follows from the discussion by Kong et al. (3J that if 
a 3D digital image/~ = (v, 26, 6, 95) contains no hollow 
torus then the number  of tunnels in the image equals to 
the number  of solid handles. Let us consider an image 
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= (v, 26, 6, 2 )  where 2 ~ v* (in other words all black 
points lie on the border of the rectangular parallel- 
epiped v). Since the set of black point in ~ is a subset of 
the border of a rectangular parallelepiped it cannot 
contain a hollow torus. Otherwise at least one of the 
interior points must be black. Thus, the number of 
tunnels in/~ is equal to the number of solid handles in 
the image. Again each solid handle leads to an inde- 
pendent non-trivial 26-closed curve in its shrunk ver- 
sion. Moreover, # can contain at most one cavity that 
occurs only when all of its 6-border points are black. In 
that case all black points of/~ are 26-connected and 
also # cannot contain any solid handle i.e. p cannot 
contain any tunnel. In a shrunk version of p, each 
simply connected black component (i.e. a black com- 
ponent containing neither a cavity nor a tunnel) leads 
to a black point that has no black 26-neighbor. Thus, 
we have the following results for a 3D digital image 
p = (v, 26, 6, 2 )  where 2 ~ v* and its shrunk version is 
/~'= (v, 26, 6, 2 ' ) .  

Result 1. ~ can contain at most one cavity that occurs 
only when 2 '  consists of  all 6-border points of  v. In that 
case the number of  tunnels in p is zero. 

Result 2. When p contains no cavity, the number tun- 
nels i n / t  is equal to the number of  independent non- 
trivial 26-closed curves in 2 ' .  

Result 3. When /t contains no cavity, for any point 
p ~ 2 ' ,  /f ~/*(p) c~ 2 '  contains exactly two 26-compo- 
nents then we can find a set of  n independent non-trivial 
26-closed curves {rto, n ~ . . . . .  rC~_l} in 2 '  such that 
exactly one of them contains p and I I  ~- ~n. = 2 '  (i.e. 

k - / i =  0 t 

there exist no more independent non-trivial 26-closed 
curves in 2') .  In other words, removal of  p from 2 '  
removes exactly one independent non-trivial 26-closed 
curve from 2' .  

In ~ ' (p) ,  p is the only interior point of the image 
space ..C(p) and p is always white in ..(~(p). Thus, 
in ~ ( p )  all black points lie on the border of .  ~'(p). 
Hence, ~ ( p )  belongs to the class of images discussed 
above. Again, the set of s-points of . ,((p) is the set of 
6-border points of. ~"(p). Using Results 1-2 we state 
the definition of the number of tunnels in • ( l p )  as 
follows. 

Definition 1. The number of tunnels in ~,('(p) is zero 
when all s-points are black (i.e. ~ (p) contains a cavity), 
otherwise the number of tunnels in ~9"(p) is equal to the 
number of independent non-trivial 26-closed curves in X; 
where X is the set of black points in a shrunk version of 
• ~(p). 

Using Definition 1 we develop a simpler definition 
of the number of tunnels in ~,~(p) as follows. In a previ- 
ous publication trt we have established the following 
theorem for the existence of tunnels in • i'~(p). 

Theorem 1 . .  t~(p) contains no tunnel iff the set of  white 
s-points is (>-connected in the set of white s-points and 
e-points. 

We use the following notations necessary for future 
development. 

2(p): the set of black points in Jr(p);  
Ws(p): the set of white s-points in .h~(p); 
We(p): the set of white e-points in jl~(p); 

W~e(P): Ws(p)u We(P); 
~.~'(p): a shrunk version of Jl~(p); 
2 '(p):  the set of black points in jl~(p); 
W',(p): the set of white s-points in Jim'(p); 
W'e(p): the set of white e-points in ~"(p) ;  

W'se(p): W'~(p)~ W'e(p); 

Proposition 1. In Y ( p ) ,  i f  two opposite s-points are 
white and other four s-points are black then the number 
of  tunnels in X (p) is exactly one. 

Proof. Let (a,d),(b,e),(c,f) denote three distinct unor- 
dered pairs of opposite s-points of JC'(p) and let a, d be 
white while b, e, c, f be black in Jl~(p). In that case all 
e-points and v-points are simple points of .A~'(p) [see 
Saha et al. t6'7'13) for the characterization of simple 
point]. Thus, a shrunk version of ~?r (~b) contains the set 
of black points {b, e,c , f} .  Now b, c, e , f  is one and only 
independent non-trivial 26-closed curve of black 
points in the shrunk version of jt~'(p). Therefore, ac- 
cording to Definition 1 ~l~(p) contains exactly one 
tunnel. []  

Proposition 2. In ~fr(p), if two non-opposite s-points 
x , y~  Ws(p) are not 6-connected in Wse(p ) then trans- 
formation of the e-point e( x, y, p) to white removes exact- 
ly one tunnel from jr(p) .  

Proof. Before we enter the proof let us develop some 
necessary background. Let (a,d), (b,e), (c, f)  denote 
three distinct unordered pairs of opposite s-points of 
• ~(p). As mentioned earlier shrinking is a process of 
sequential deletion of black simple points. Let 2~(p) 
and W~(p) denote the set of black points and the set of 
white s-points and e-points, respectively in Jff(p) after 
the completion of ith step of the shrinking process of 
• t ( p )  (at each step single black simple point is deleted). 

Let p' be a 26-neighbor ofp. We define a 3D digital 
image as follows. 

~-,(p, p') = (~4r (p'), 26,6j~_ ~(p) c~ ~•~ *(p')); 

Thus ~&2(P, P') is a digital image with JP(p') as the image 
space and the set of black point as 2~_ l ( p ) c ~ * ( p ' ) .  
Now p' is removable at ith step of shrinking iff p' is 
a simple point in 2~_ ~(p). Using the characterization 
of simple point by Saha et. al. t6'7'13)it can be inferred 
that p' is removable at ith step of shrinking iff 
2~_ ~ (p) c~ ~*'*(p'} contains exactly one simply connec- 
ted black component (i.e. a black component containing 
no cavity or tunnel). By definition of shrinking we have 

~ ( p )  ~ 2 ,_  ~(p), and 2~_ ~(p) -  2~(p) = {q}; 

where q is deleted at ith step• Also, 

if q is a v-point then W~-~(p) = W~e(p), 

otherwise, W ~  l(p) ~ Wise(p), and 

W~e(p)- W~; l (p)=  {q}. 
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Now, we enter into the proof. Two non-opposite 
s-points x, ye  W,(p) are not 6-connected in W,,(p) im- 
plies that the e-point e(x, y, p)~ ~(p). Using Definition 
1 we can establish the proposition by showing that 
removal of e(x, y, p) from ~it'(p) removes exactly one 
independent non-trivial 26-closed curve from ~'(p).  
For that purpose we shall first establish that x, y are 
not 6-connected in W',~(p). If this is not true, let us 
assume that x, y are 6-connected in W'~(p). Since, they 
are not 6-connected in W,~(p) but are 6-connected in 
W',e(p), there must be some i such that x,y  are not 
6-connected in W~- t (p) but are 6-connected in W~(p). 
If this is true then ~ _  a ( p ) -  :~(p) must contain an 
e-point or an s-point. 

At first we consider the case that ~ _  , ( p ) -  ~ ( p )  
contains an e-point, say e(a, b, p). Since, x, y are not 
6-connected in W~- ~(p) but are 6-connected in W~e(p) 
i.e. W~- ~ (p) u { e(a, b, p) }, each 6-path between x, y in 
W~,(p) contains e(a,b,p). Again a 6-path in W~(p) 
between x, y through e(a, b, p) must contain the points 
a, b (no e-point of ~ ' (p )  is 6-adjacent to e(a, b, p) and a, 
b are only s-points which are 6-adjacent to e(a, b, p)) i.e. 
a, b ¢ ~ i _  ~(p). Since the 6-path between x, y in W~,~(p) 
contains a, e(a, b, p), b, without loss of generality let us 
assume that x is 6-connected to a and b is 6-connected 
to y in W~Z l(p). Now, according to our assumption, 
x is not 6-connected to y in W~- ~(p) which implies that 
a is not 6-connected to b in W~- ~ (p). Thus, both the 
sets {e(a,c,p), c, e(b,c,p)} and {e(a, f ,p) , f ,e(b, f ,p)} 
intersect with ~ _  a(p). Otherwise, a, e(a, c, p), 
c,e(b,c,p),b or a,e(a, f ,p) , f ,e(b, f ,p) ,  b will lead to 
a 6-path in W~- t(p). Now, the set of black points in 
A/'~(p,e(a,b,p)) is a subset of {v(a,b,c,p), e(a,c,p), 
c, e(b, c, p), v(a, b,f, p), e(a, f ,  p), f ,  e(b,f, p) }. This is be- 
cause 

~ -  alP) ~ ~*(P) ;  

~/'*(p) c~ ~I/*(e(a, b, p)) = {a, b, v(a, b, c, p), e(a, c, p), 

c, e(b, c, p), v(a, b, f ,  p), 

e(a,f, p), f ,  e(b,f, p)}; 

and 

imply 

o r  

a, bq~ '~ i _ l(P); 

,~i- I(P) ~ ~U*(e(a, b, p)); 

J'-*(p) n ~"*(e(a, b, p) ) - { a, b}; 

~ i -  1 (P) c~ ~.~"* (e(a, b, p)) c { v(a, b, c, p), e(a, c, p) 

e, e(b, c, p), v(a, b,f, p), 

e(a,f, p),f, e(b,f, p)}. 

Now, from the set of black points oL ?'i(p, e(a, b, p)) we 
can find two non-empty subsets (:~_~(p)c~ 
JV'*(e(a,b,p)))~{e(a,c,p),c,e(b,c,p)} and (~_l(p)c~ 
~*(e(a ,b ,p) ) )n{e(a , f ,p) , f ,e (b , f ,p)}  such that no 
two points, one from each subset are 26-connected in 
{v(a,b,b,p),e(a,c,p),c,e(b,c,p),v(a,b,f ,p),e(a,f ,p), f ,  

e(b,f,p)} and hence they are not 26-connected in 
a smaller (or equal) set ~ i_  l(P)c~ ~4r*(e(a, b, p)). Thus, 
the black points of.Ari(p, e(a, b, p)) are not 26- connec- 
ted and hence e(a,b,p) is not a simple point in 
X~ (p, e(a, b, p)). Contradiction!! 

Now, let us consider the situation that ~ _  I ( P ) -  
• ~(p) contains an s-point say a (a 4: x; a # y). Thus, 
every 6-path between x, y in W]e(p) contains a. Again, 
a 6-path in W~e(p) from x to y through a must contain 
one of the following two types of sequences. 

Sequence 1. b, e(a, b, p), a, e(a, c, p), c 
(here, b, c are non-opposite). 

Sequence 2. b, e(a, b, p), a, e(a, e, p), e 
(here, b, e are opposite). 

Following the same approach as above it can be shown 
that ~ _  l(p) n.A/'*(a) is not 26-connected for both the 
sequences. In other words a is never a simple point in 
.f/~(p,a) which leads to the same contradiction as 
above. 

Hence, x, y are not 6-connected in W',e(p). Since x, y 
are non-opposite s-points of .4r(p), we can rename 
three distinct unordered pairs of opposite s-points of 
J~(p} as (u,v), (w,x) and (y,z). Since x ,y  are not 6- 
connected in W',e(p), we infer the following three 
results. 

(1 t e(x, y, p) ~ ~'(p); otherwise, x, e(x, y, p), y will lead 
to a 6-path in W'~e(p). 

(2) {e(u,x ,p) ,u ,e(u,y ,p)}n~'(p)  4: ~b; otherwise, 
x, e(u, x, p), u, e(u, y, p), y will lead to a 6-path in W'se(p). 

(3) {e(v,x,p),v,e(v,y,p)} c ~ ' ( p )  ~ q~; otherwise, 
x, e(v, x, p), v, e(v, y, p), y will lead to a 6-path in W'se(p). 

It is easy to show that ~'(p)n./f f*(e(x,y,p))~_ 
{v(u,x, y ,p),e(u,x,p),u,e(u,  y ,p) ,v(v,x,  y ,p) ,e(v,x,p) ,  
v,e(v,y,p)}. Now every two points of {v(u,x,y,p), 
e(u, x, p), u, e(u, y, p) } are 26-adjacent and the same is 
true for {v(v,x,y,p),e(v,x,p),v,e(v,y,p)}.  Again, 
~'(p)c~{v(u,x,y,p),e(u,x,p),u,e(u,y,p)} and ~ ' (p )~  
{v(v,x,y,p),e(v,x,p),v,e(v,y,p)} are two non-empty 
subsets of ~'(p)c~JV'*(e(x,y,p)) such that no two 
points, one from each subset are 26-connected in 
{v(u,x, y ,p) ,e(u,x,p) ,u,e(u,  y ,p) ,v(v,x,  y ,p),e(v,x,p),  
v,e(v,y,p)} and hence they are not 26-connected in 
a smaller set ~'(p)nJff*(e(x,y,p)) .  Thus ~ ' ( p ) n  
. f* (e(x ,y ,p) )  contains exactly two 26-components 
~'(p)n{v(u,x ,y ,p) ,e(u,x ,p) ,u ,e(u,y ,p)}  and ~ ' ( p ) n  
{v(v. x, y, p), e(v, x, p), v, e(v, y, p)}. Therefore, according 
to Result 3 removal of e(x,y,p) from ~'(p) removes 
exactly one independent non-trivial 26-closed curve 
from .~'(p). 

[] 

Here, we state the definition of the number of tun- 
nels in. ~'{p) which is one oftbe most important results 
of this work. 

Theorem 2. The number of tunnels in ~ ( p )  is one less 
than the number of 6-components of W~(p) in W~(p) 
when W~(p) is non-empty. Otherwise the number of 
tunnels in ~ ( p )  is zero. 
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Proof. The "otherwise" part of the theorem when 
W~(p) is empty (i.e. all s-points are black) follows from 
Definition 1. To prove the theorem for W,(p) ~ cb we 
use the method of induction. Let n denote the number  
of 6-components of W~(p) in W,~(p). It follows from 
Theorem 1 that for n = 1, ~ ' ( p )  contains no tunnel. 
Now, we shall show that for n = 2, ~ ( p )  contains 
exactly one tunnel and for n > 2 removal of one tunnel 
from ~47"(p) leaves exactly n - 1 number  of 6-compo- 
nents of W~(p) in W~(p). 

For n = 2, two situations may arise. They are classi- 
fied as follows. 

Case 1. W~(p) contains exactly two opposite s-points 
which are not 6-connected in W~(p), 
Case 2. W~(p) contains at least two non-opposite s- 
points which are not 6-connected in W,~(p). 

By Proposition 1, ~ ( p )  contains exactly one tunnel 
in Case 1. For  Case 2, let us consider two non-opposite 
s-points a and b which are not 6-connected in W~(p). 
Since a, b are not 6-connected in W,~(p), the e-point 
e( a, b, p) is black i.e. e(a, b, p) e ~(p). Using Proposition 
2, removal of the e-point e(a, b, p) from ~(p)  removes 
exactly one tunnel from ~('(p). Again removal of 
e(a, b, p) from :~(p) leaves W,(p) to be 6-connected in 
W~(p) u {e(a, b, p)}. Thus, Jc~(p) contains exactly one 
tunnel. 

To prove the induction part, let n > 2 6-components 
of W~(p) in W,~(p) be Wt, W 2 . . . . .  W,. Let us consider 
that the theorem is true for n -  1. Using Proposition 
2 we need to establish following two statements to 
prove this theorem for n. 

tl) there exists an e-point e(a,b,p)eJB(pl such that 
the s-points ae  W~ and be  Wj for some i :~j. 

(2) the number  of 6-components of ge'~(p] in 
Wse(pjw{e(a,b,p)} is n -  1. 

Since n > 2, let us consider three s-points a e W~, b e W 2, 
ceW~. Then at least two s-points among a,b,c are 
mutually non-opposite. Let us consider that a,b are 
mutually non-opposite. Moreover, a,b belonging to 
different 6-components of W,(p) in W~(p) they are not 
6-connected in W~(p). Thus the e-point 
e(a, b, p)~ W,~(p) i.e. e(a, b, p)e~(p). Also, none of the 
points of W~(p) except a, b is 6-adjacent to e[a, b, p). 
Thus, W 1 w W 2, W 3 . . . . .  IV, are 6-components of W,(pl 
in W,(p)w{e(a,b,p)}. Hence, the number  6-compo- 
nents of W,(p) in W~(p) u {e(a, b, p) } is exactly n - 1. 

[] 

From the above theorem the corrollary given below 
immediately follows. 

Corollary 1. The number of tunnels in , ~ (p) is indepen- 
dent of the color of v-points. 

The Euler characteristic in 3 x 3 x 3 neighborhood 

Here, we develop an efficient algorithm to compute 
the change in the Euler characteristic in 3 × 3 x 3 
neighborhood of a point due to its deletion. For that 

purpose we shall first establish a few interesting prop- 
ositions on the numbers black components,  tunnels 
and cavities in X(p) .  Let components (X(p)),  tunnels 
(~(p)) ,  and cavities (X{p)) denote the numbers  of 
black components,  tunnels, and cavities in jl?'(p), re- 
spectively. To compute components  (X(p)), tunnels 
(~'(p)),  and cavities (X(p) )  we use following two 
important  and useful properties of X(p) .  

Property 1. Let x be an s-point of Y (p) and y be a point 
in surface (x,p). Then for any point qeJV'(p), q is 26- 
adjacent to y implies that q is 26-adjacent to x. 
Property 2. Let x be an e-point of ,¥'(p) and y be a point 
in edge (x,p). Then for any point qe/JV'(p), q is 26- 
adjacent to y implies that q is 26-adjacent to x. 
Proposition 3. I f  an s-point x is black in J~(p) then 
components (Jl?'(p)) is independent of the color of other 
points of surface (x,p). 

Proof. Let S denote the set of black points in .A~(p) 
and let y ~ x be a point in surface (x, p). To establish 
the proposition we shall show that the number  of 
26-components of S - {y} and that of S u  {y} are the 
same. If this is not true then one of the following two 
cases must occur. 

Case 1. None of the points ofS - {y} is 26-adjacent to 
y. In other words, the number  of 26-components of 
Sw {y} is greater than that of S - {y}. 
Case 2. Two or more 26-components of S -  {y} are 
26-adjacent to y. In other words, the number  of 26- 
components of S -  {y} is greater than that of S w {y}. 

By assumption x is black i.e. x e S - { y }  and 
yesurface(x,p) i.e. y is 26-adjacent to x. Thus, Case 
1 never occurs. About  Case 2, let us assume that two 
points q, r e S - { y }  belong to two different 26-com- 
ponents of S - {y} and q, r are 26-adjacent to y. Since, 
q, r are 26-adjacent to y they are also 26-adjacent to 
x (by Property 1). Thus, q,r are 26-connected in 
S - { Y} by the 26-path q, x, r. Hence the contradiction 
that q, r belong to two different 26-components of 
S -  {y}. Thus, neither Case 1 nor  Case 2 may occur 
and hence the number  of 26-components of S -  {y} 
and that of S ~ {y} are the same. 

[] 

Proposition 4. I f  an s-fioint x is black in , ~  (p) then the 
number of tunnels in .4r (p) is independent of the color of 
other points of surface (x,p). 

Proof. According to Corollary 1, the number  of tun- 
nesl in J ' ( p )  is independent of the color of v-points of 
.~(p). Thus, to establish the proposition we shall show 
that the number  of tunnels in Y ( p )  is independent of 
the color of e-points of surface (x, p). Let S denote the 
set of white s-points in o~(p) and let S' denote the set of 
white s-points and e-points in ~ ' (p) .  Let y be an 
e-point in surface (x, p). According to Theorem 2 the 
number  of tunnels in ~;'(p) is one less than to the 
number  of 6-components of S in S'. We shall show that 
the number  of 6-components of S in S' - {y} is the 
same as that of S in S'u{y}.  
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It may be noted from ,4r(p) that no two s-points are 
6-adjacent and also no two e-points are 6-adjacent, 
Thus, a 6-path of s-points and e-points must be an 
alternating sequence of s-points and e-points. Hence, 
a 6-path of s-points and e-points between two s-points 
through the e-point y must contain two s-points of 
Jff(p) which are 6-adjacent to y. Moreover, it follows 
from ~ ( p )  that ~r(p) has exactly two s-points which 
are 6-adjacent to y. By assumption x is black i.e. 
x ¢ S' u { y} and y e surface(x, p) i.e. y is 6-adjacent to x. 
Thus, there exists no 6-path in S 'u{y}  between two 
white s-points through y. Hence, two s-points of S are 
6-connected in S' u {y} implies that they are 6-connec- 
ted in S' - {y}. Also, it is obvious that two s-points of 
S are 6-connected in S ' - { y }  implies that they are 
6-connected in S'w {y}. Hence the number of 6-com- 
ponents of S in S ' -  {y} is the same as that of S in 
s'~{y}. [] 

As described earlier, the number of cavities in ~ ( p )  
may be formulated as follows. 

c a v i t i e s ( ~ ( p ) ) = ~ l  if six s-points are black; 
otherwise. 

(2) 

Thus, cavities(,~'(p)) is a function of s-point configur- 
ation. According to Proposition 3 and Proposition 4, 
components(X(p)) as well as tunnels(~" (p)) are inde- 
pendent of the color of the points of surface(x, p) when 
the s-point x is black. We define a surface (x,p) as 
a dead-surface of ,At(p) if the s-point x is black. A v- 
point or an e-point is called an effective point of JV'(p) if 
it does not belong to any dead-surface. Using Proposi- 
tions 3, Proposition 4, equation 2 and these definitions 
we state the following corollary. 

Corollary 2. With a known s-point configuration of 
~C(p) the change in the Euler characteristic in 3 x 3 x 3 
neighborhood of p may be computed from the effective 
point configuration of A /  (p). 

Proposition 5. I f  an e-point x is black in ~.~'(p) then 
components(X(p)) is independent of the color of other 
points of the edge (x, p). 

Proof. Using Property 2 the proof is similar to that of 
Proposition 3. 

According to Corollary 1, equation 2 and Proposi- 
tion 5 we see that components(X(p)), tunnels(~(p)),  
cavities(~4~(p)) are independent of the color of other 
points of edge(x,p) when the e-point x is black. An 
edge(x,p) is defined as a dead-edge of ~,H(p) if the 
e-point x is black. A v-point is called an isolated point if 
it neither belongs to a dead-surface of ~ ( p )  nor it 
belongs to a dead-edge of Jff(p). The following corol- 
lary is a straight-forward consequence of this defini- 
tion. 

Corollary 3. Let y be a black isolated point of J~(p). 
Then {y} is a black component of ~"(p). 

The corollary given below follows from Proposition 
5 and Corollary 3. 

Corollary 4. Let all the six s-points of J/-(p) be white. 
Then components(Jr(p)) is equal to the number of 26- 
components of Be(p) plus the number of black isolated 
points of ~P(p) (where Be(p) is the set of black e-points of 
.+~(p)). 

Now we shall describe all possible geometric classes 
of s-point configurations. Two configurations belong 
to the same geometric class iff one can be transformed 
to the other by three dimensional rotation in multiples 
of 90 ° about different axes (with p as origin). Possible 
geometric classes of s-point configurations and corre- 
sponding number of effective points (n,) are as follows. 

Class 0: Six s-points are black (n e = 0). 
Class l: Five s-points are black (n e = 0). 
Class 2: Two pairs of opposite s-points are black 

( . ,  - -  0 ) .  
Class 3: One pair of opposite s-points and two 

non-opposite s-points are black (n e = 1). 
Class 4: One pair of opposite s-points and another 

s-point are black (ne = 2). 
Class5: Three non-opposite s-points are black 

(n e = 4). 
Class 6: One pair of opposite s-points are black 

(n e = 4). 
Class7: Two non-opposite s-points are black 

(n~ = 7) .  
Class 8: One s-point is black (ne = 12). 
Class 9: No s-point is black (n e = 20). 

After finding the s-point configuration of a point 
p e ~  we can compute the change in the Euler charac- 
teristic in 3 x 3 x 3 neighborhood of p from the con- 
figuration of effective points only. It is easy to note that 
the maximum value of components(~'(p)) is "8" and it 
occurs only when all v-points of Jff(p) are black while 
all other points of X ( p )  are white. The maximum 
value of tunnels(A%(p)) is "5" that occurs only when all 
s-points of Y ( p )  are white while all e-points are black. 
Also, maximum value of cavities(.~(p)) is "1" that 
occurs only when all s-points of X ( p )  are black i.e. 
s-point configuration belongs to Class 0. Hence, the 
maximum change in the Euler characteristic in 
3 × 3 x 3 neighborhood can be easily accomodated in 
single byte. Thus, after finding the s-point configur- 
ation of .V(p) we consider one of the three cases given 
below to compute the change in the Euler characteris- 
tic in J./'(p) due to the deletion ofp. 

Case 1. (s-point configuration belonging to Class 0-2) 

Here the number of effective points is zero. Thus we 
can at once know the values of components(Jt~(p)), 
tunnelsL~(p)), cavities(Y(p)). These values are as fol- 
lows. 

Class 0: components(J~(p)) = 1, tunnels6A~(p)) = 0, 
cavities(X(p}) = 1; 

Class 1: components6A~(p)) = 1, tunnelsG~(p))= 0, 
cavities(,~'(p)) = 0; 

Class 2: components(oA?(p)) = 1, tunnels(~4~(p)) = 1, 
cavities(Jl%(p)) = 0. 
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The change in the Euler characteristic in ~,V(p) due to 
the deletion of p for Class 0, Class 1, and Class 2 are 
- 1, 0,1, respectively. 

Case 2. (s-point configuration belonging to Class 3-8) 
Here we use a look_up_table. Since different s-point 
configurations may belong to the same geometric 
class, we consider an s-point configuration basel (a set 
of black s-points) for each Class i. Let Class i has n~ 
number of effective points. An ordered set EFO (basel) 
of these n~ effective points is defined as 

EFO(basei) = {e o, el . . . . .  e,,} 

An effective point configuration for the s-point con- 
figuration base~ is denoted by a n~ bit binary number 
wherejth bit denotes the color of% The look_up_table 
needs 2"' entries i.e. 2"' bytes. Each entry needs one byte 
which contains the change in the Euler characteristic 
in ~ ( p )  due to the deletion of p. Only one look_up_ 
table is needed for all s-point configurations belonging 
to the same geometric class. To illustrate the fact let us 
consider an s-point configuration ? belonging to Class 
i such that 

? = Rot(#, base~) 

where Rot(#, base~) is a function that generates a set 
from base~ such that the j th element of the set is 
obtained from thejth element of base~ after the rotation 
# with p as origin (here, # is a sequence of rotations 
about different axes in integral multiples of 90°). Then 
the same look_up_table may be used for the s-point 
configuration ? with its ordered set of effective point 
EFO(y) as 

EFO(?) = Rot(#, EFO(basei) ) 

Case 3. (s-point configuration belonging to Class 9) 
Here, a straight-forward application of the look_up 
table described in Case 2 needs 22° bytes. Thus, we 
modify the form of the look_up_table. Let X be an 
ordered set of all e-points of JV(p). According to 
Corollary 4 components(X(p)) is equal to the number 
of 26-components of X c ~  plus the number of black 
isolated points of JV'(p). Also, tunnelsC(:(p)) is com- 
putable from the configuration of X according to 
Corollary 1. Here, cavities(X(p)) is always zero ac- 
cording to equation 2. Let Y be an ordered set of all 
v-points of iV(p). A look_up_table is used where each 
entry contains two bytes and the ith entry corresponds 
to the configuration value of X as i. The look_up_table 
needs 212 entries i.e. 8 kbytes. For ith entry, j th bit of 
the first byte informs whether j th point of Y is an 
isolated point while the second byte contains 

1 - the number of 26-components in X c~,~ 

+ tunnels(,~(p)). 

To get the change in the Euler characteristic in 
3 x 3 x 3 neighborhood a one byte word w is gener- 
ated to denote the configuration of Y. Then the number 
of l 's in the bitwise 'AND'  between w and the first byte 
gives the number of black isolated points of ~.¥(p). The 

change in the Euler characteristic in 3 x 3 x 3 neigh- 
borhood is calculated as 

the value of the second byte 
- the number of black isolated points. 

The Euler characteristic of digital image 

In Section 3 we have described an efficient algorithm 
to compute the change in the Euler characteristic in 
3 x 3 x 3 neighborhood of a point p that occurs due to 
the deletion ofp. Using this algorithm the Euler Char- 
acteristic of a 3D digital image may be computed 
according to equation 1. A parallel implementation of 
the method is possible using the concept of sub- 
fields/1 s) The parallelization is based on the following 
concept. 
If two points p, qe~¢ are not 26-adjacent then 

X(v, 26, 6, ~ )  = ;((v, 26, 6, ~ - { p, q} ) + X(.~(p)) 

--X(.ff(p)) + Z(~/'(q))-  Z(.ff(q)). 

Maximum parallelization of the algorithm is con- 
ceived as follows. Eight sub-fields 0 o, 01 . . . . .  0 7 are 
defined in v as follows 

O1= vw{(2 x i + f , 2  x j + g , 2  x k +h)]i,j,k = 1,2 . . . . .  

f ,g ,h~{0,1)  and 22 x f + 2 1  x g + 2  ° x h=l}  

such that two points p, q~O~ are never 26-adjacent. 
The Euler Characteristic of a 3D digital image can be 
computed in eight steps and at each step the algorithm 
uses the following equation 

Z(v, 26, 6, ~ )  = Z(v, 26, 6, • - O/) 

+ ~ x(x(p))- x(.~(p)) 

where Z ~ o , ~ t  (~'~(P)) - X(X(p)) can be computed in 
a parallel manner. 

4. DISCUSSION 

As mentioned before, the existing approaches to 
computing the Euler Characteristic consider an n- 
dimensional digital object as a polyhedron composed 
of n-dimensional homogeneous structures. In those 
approaches the Euler characteristic of a 3D digital 
object p is defined as 

E(/O= ~ (--1) ~ x C  k 
k=O 

where Ck is the number of k-dimensional elements in 
the polyhedral representation of p. 

Our approach to computing the Euler Characteristic 
is based on computing the numbers of black compo- 
nents, tunnels and cavities under a specific connect- 
ivity relation. It is possible to extend the approach for 
different connectivity relation of grid points, say (6, 26), 
(6,18) or (18, 6) connectivity. As described in Section 
3 a massive parallelization of the algorithm is possible 
using the concept of sub-fields. 
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It is easy to note that in the worst case the computa-  
tion of the change in the Euler characteristic in 
3 x 3 x 3 neighborhood of a point p d u e t o  its deletion 
needs the configuration of all the 26- neighbors of p. 
The fastest approach (in worst case sense) needs 
a look_up_table with 226 entries. Each entry of the 
look_up_table needs one byte and the complete table 
needs 64 mbytes. In the worst case our approach is 
nearly as fast as the fastest approaches (see Case 3 for 
Class 9) while our average time is much faster (since, 
our approach overlooks a lot of points for Class i; 
0 < i < 8 as described in Case 1 and Case 2). Another  
important  aspect of our approach of computing the 
change in the Euler characteristic in 3 x 3 x 3 neigh- 
borhood of a point p due to its deletion is the storage of 
the look_up_table which is 2 1 + 2 2 + 2 4 + 2 " + 2 7 +  
212+2 x 212 bytes i.e. 12 kbytes only. 
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