
Microprocessing
and
Microprogramming

ELSEVIER Microprocessing and Microprogramming 41(1995) 273-288

On synthesizing cube and tree for parallel processing

S.K. Basu a, J. Datta Gupta b9*, R. Datta Gupta ’

a Computer Centre, Banaras Hindu University, Varanasi-221005, India

b Electronics Unit, Indian Statistical Institute, 203, B.T. Road Calcutta-700035, India

’ Department of Computer Science & Engineering, Jadavpur University, Calcuna 700032, India

Received 13 April 1994; revised 19 July 1994; accepted 12 May 1995

Abstract

In this paper we propose a VLSI implementable architecture called Cube Connected Tree having advantageous properties
of both tree and hypercube. This structure has a fixed low degree of nodes for any size of the network unlike the hypercube
where the node degree is dependent on the size of the hypercube. The degree-diameter product metric [26] of CCT is low
compared to that of a hypercube of comparable size. It overcomes the data congestion problem near the root of the binary
tree by having multiple roots in the structure, thereby enhancing the I/O bandwidth of the system. The complexity of the
VLSI layout of this structure has been addressed within the grid model of Thompson [12]. By using spare links and PEs,
fault tolerance capabilities of the system have been enhanced. Easy programmability of this structure has been demonstrated
by designing polylogarithmic algorithms for sorting and discrete Fourier transform.

Keywords: Parallel architecture; VLSI layout; Tree; Hypercube; Parallel algorithm, Sorting; Fourier transform

1. Introduction

Tree architecture has a number of good properties
such as low degree nodes, efficient VLSI layout,
fault-tolerance capability with a reasonable amount
of sparing, straightforward mapping of algorithms,
and easiness of routing data. Many real-life problems

* Communicating author.

require an array of input and produce an array of
output. The performance of the simple binary tree
architecture is severely limited by the constraint
imposed by the congestion of data near the root
processor [ll]. Though the hypercube has a good
algorithmic performance for some of these problems
it requires variable degree nodes dependent on the
size of the hypercube. Requirement of large degree
nodes is not a desirable feature from the point of
VLSI implementation. Such a structure having cube
connections and also having properties of trees might

0165-6074/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved

SSDIO165-6074(95)00015-l

274 S.K. Basu et al./Microprocessing and Microprogramming 41 (1995) 273-288

prove to be a good VLSI architecture for parallel
computation, as it retains good properties from both
tree and hypercube.

A number of architectures such as Orthogonal tree
[4], Fat trees [9], X-tree Ill], Diamond network [29],
Compressed tree [22], etc. based on tree structure
have been proposed and studied in the literature.
Other efforts have sought to exploit new interconnec-
tion networks based on the hypercube topology.
Cube-Connected Cycles [15] proposed by Preparata
and Vuillemin can efficiently solve certain classes of
problems. The Folded hypercube [24] by Latifi and
El-Amawy is a standard hypercube with extra links
that significantly increase the efficiency of the rout-
ing algorithms and reduce the network diameter. The
Twisted hypercube [23] is the standard hypercube
where two or more edges are exchanged. The en-
hanced incomplete hypercube [25] improves the per-
formance of the incomplete hypercube by addition of
extra links between pairs of nodes having unused
ports. The Generalized Boolean n-cube [30] has many
properties of the Boolean n-cube and has lower
degree nodes. The Generalized hypercube and Hy-
perbus [26] by Bhuyan and Agrawal based on a
mixed radix number system results in a variety of
hypercube structures for a given number of proces-
sors. The Cube-connected-cubes [21] is a hypercube
with each node represented as a cube. It was de-
signed for the divide-and-conquer paradigm and in
particular for distributed environments with heavy
localized communication. The Crossed-cube [20] net-
work has many of the properties of the hypercube
but has a diameter only about half as large. Banyan-
hypercubes [19] by Youssef and Narahari combine
the advantageous features of both Banyans and hy-
percubes and thus have better communication capa-
bilities. Banyan-hypercubes offer an improvement
over hypercubes in diameter, average distance, and
embedding of hierarchical structures. The Hypertree
[S] has some advantages of cube connections but
retains many of the problems of the tree machine.
Moreover, programming this structure seems to be

complex for many parallel processing applications.
Hence a new structure called Cube-Connected-Tree
or CCT in short is proposed below which contains
advantageous features of both tree and hypercube.
This paper is organized as follows: Section 2 defines
the architecture, Section 3 deals with its VLSI area
complexity, Section 4 with fault tolerance issues,
Section 5 with mapping of algorithms on it and
Section 6 concludes the paper.

2. Architecture

N2-pruned full binary trees each with 2 log N
leaves [N is a positive integer power of 21 are
connected in the way explained below for construc-
tion of an N X N CCT. A pruned full binary tree
with 2 log N leaves is obtained as follows: A full
binary tree with height = [log log N] + 1 is taken. If
log log N = [log log N] then this is accepted as a
pruned full binary tree with 2 log N leaves. Other-
wise, the first 2 log N leaves from the left of this
tree are retained and the remaining leaves are pruned.
This will create a number of leaf nodes at a lower
height. These leaves are also pruned and the process
is continued till no leaves remain at lower heights.
Illustrative diagrams for pruned full binary trees with
4, 6, 8 and 10 leaves are shown in Fig. (1).

These trees are connected through cube connec-
tions via their leaves. N2 trees are numbered as
0, 1, 2,. . .) (N2 - 1) from the north to south direc-
tion and their leaves are numbered as 0, 1, 2,. . . , (2
log N - 1) starting from the leftmost leaf. Two trees
would be connected by a cube link through the jth
leaves if the binary representation of the numbering
of the trees differs only in the jth bit position. Thus
tree number 0 would be connected to tree number 1
through their leftmost leaves, to tree number 2
through the second leftmost leaves (i.e. leaf number
l), to tree number 4 through the 3rd leftmost leaves
(i.e. leaf number 2) and so on. When all such
connections have been made, the resulting structure

SK. Basu et al. /Microprocessing and Microprogramming 41 (1995) 273-288 215

xx

\

Fig. 1. Pruned full binary trees with different number of leaves.

is called a Cube Connected Tree. A pruned tree of
height 11 + log log N] contains
i=ll+log log iv]

c [log N/2* *(i - 1)1
i=O

nodes and hence a CCT of size N X N contains in all
i=l1+1og log N]

c N2*[log N/2**(i-l)l
i=O

nodes which is 0(N2 log N). The number of cube
links is N2 log N and total number of tree links is

i= [log log Nl

N2* c [log N/2* *(i- l)]
i=O

and hence the total number of links in a CCT of size
NXN is

i

i=llog log Nl

N2 log N+ c [log N/2* *(i-l)] .

i=O I

The diameter of this structure is 2(log N + 11 +
log log Nl) and its line connectivity is two. The
total number of nodes and links present in a 4 X 4
CCT are 112 and 128 respectively and its diameter is
8. The degree-diameter product 1261 metric of CCT
is low compared to that of a hypercube of compara-
ble size. Each PE in a CCT has a number of registers
and some local memory. Each leaf PE has an addi-
tional register for indicating data routing either
through tree links or through cube links. Inputs and
outputs are made through the roots of the trees. For
an N X N CCT, simultaneously N 2 data items may
be input or output through the roots of N2 trees.
CCT creates a parallel computing environment along
with a sequential host machine.

3. VLSI layout

Our CCT has all the characteristics suitable for
VLSI implementation. It is regular and the maximum
degree of any node in CCT is three. We give two
layouts of the CCT under the grid model of Thomp-
son [12]. The first layout uses a modified version of
the H-tree. The H-tree [2,10] is a compact layout for
binary tree. A binary tree of height h may be laid out
using H-tree which requires HT(h) horizontal tracks
and VT(h) vertical tracks where

HT(h)=2*HT(h-1)+1

if h is an odd number greater than 2

=2*HZ’(h-2) +l

if h is an even number greater than 3,

VI-(h) = VT(h - 1)

if h is an odd number greater than 2

=2*VT(h-l)+l

if h is an even number greater than 3,

276 SK. Basu et al. /Microprocessing and Microprogramming 41 (1995) 273-288

and HT(2) = VT(2) = 3. The solutions of these re-
currence relations are

HT(h) = 2°‘+3)/2 - 1 f h is odd

= 2(h+ *)I* - 1 if h is even

andVT(h) =2 (h+ W* - 1 if h is odd

= 2(h+2)/2 - 1 if h is even.

To use the H-tree for laying out a CCT, the compact-
ness of the H-tree is sacrificed to make room for
cube connections. N * pruned trees each with 2 log N
leaves are laid on the grid using the H-tree layout
one after another in the north to south direction. To
make room for cube connections, Xi:: “s N2i = N*
- 1 vertical tracks are additionally created in the
above layout as described below:

Let VT(h) denote the number of vertical tracks in
the H-tree layout of a binary tree of height h as
assumed above. Let these tracks be referred to as
1, 2, 3,. . . in the left to right direction. The number
of vertical tracks in the H-tree layout containing leaf
nodes is IVT(h)/2]. The number of leaves in a
binary tree of height h is 2h and hence the number
of leaves per vertical track containing leaf nodes is
LN = 2 h/[VT(h)/21. The following algorithm gen-
erates the required number of additional vertical
tracks for laying the cube connections.

j = 0;
For i = 1 to VT(h), Step 2;
M = c;~;;+L;LN - r2k;

If j is even, Then insert M vertical tracks be-
tween existing vertical tracks num-
bers i and i + 1; Else insert M
vertical tracks between existing
vertical tracks numbers i and i - 1;

j=j+l;
End.

Once these additional vertical tracks are created, the
cube connections among the leaves of the pruned
trees are inserted using these tracks as shown for a

4 X 4 CCT in Fig. (2(a)). The number of horizontal
tracks required for an N X N CCT is

N*(4*2 ” ’ N1/2 - 1) if [log log N] is even, Oa Os

and N*((8)0.5 *2ttOstOs N1/* _ 1)

if [log log N] is odd.

The total number of vertical tracks required is

N* + 2*2t’Og’Og N1/2 - 2 if [log log N] is even and

N 2 + (8)“‘5 * 2”‘s “s WI2 - 2 if [log log N 1 is odd.

(4

Fig. 2(a). Layout of a 4 X 4 CCT using H-tree.

S.K. Basu et al. /Microprocessing and Microprogramming 41 (1995) 273-288 277

(b) from the (i - 0th PE of the same level of the tree, if
it exists. Nodes of successive levels of a pruned tree
are placed on consecutive horizontal tracks. In this
way, all the nodes of a pruned binary tree are laid
out. All the N2 pruned full binary trees are laid out
similarly keeping a vertical distance of unity be-
tween the leaves of one tree and the root of the next
tree as shown for a 4 X 4 CCT in Figure (2(b)). By
using the increasing number of free vertical tracks
available between successive leaves of the trees, the
cube connections can be established among the N*
pruned full binary trees through their leaves as shown
in Fig. (2(b)).

An N X N CCT requires N2(2 + [log log Nl)
horizontal and 2 log N + (N2 - 1) vertical tracks
for laying on a VLSI chip. Hence the area required is

Fig. 2(b). Layout of a 4 X 4 CCT.

N2(2 + [log log N1) * (2 log N + N2 - 1)

which is of the order of N4 log log N. The length
of the longest wire is N2(4 + [log log Nl)/2 and
hence O(N2 log log N).

Hence the length of the longest wire and the area of
this layout are O(N* logo.5 N) and 0(N4 log”.5)
respectively.

An alternative layout without using the H-tree is
given below. This layout requires 0(N4 log log N)
areas and has O(N* log log Nl as the length of the
longest wire. The pruned binary trees in the CCT are
numbered in the same way as assumed in Section 2.
In each tree, leaves are assumed to be in level
number one and root at the highest level. The PEs in
each level are numbered 0, 1, 2,. . . , from left to
right. The PEs of a particular level of a tree are
placed on the grid points of the same horizontal line.
In general, the ith PE of level I is placed at a
distance of

k=2’-’

c (1 +2(2-‘-9-f
>

k=l

4. Fault tolerant CCT

Raghavendra et al. [13] suggested methods for
enhancement of the reliability of a binary tree ma-
chine by systematic use of spare processing elements
under the assumption that the links are perfectly
reliable but the PEs may fail. We have extended their
schemes and applied it to the CCT. With the same
assumptions, we consider fault-tolerance of CCT
under four different schemes of redundancy and
evaluate their relative suitability. The schemes con-
sidered here are level sparing 1 (IS-l), level sparing
2 (IS-21, performance degradation (PD) and com-
bined (CBD). Two metrices, system reliability and
reliability improvement per spare PE are used for
this purpose. The first metric is more important from
the point of performance and the second from the
point of cost.

278 S.K. Basu et al./Microprocessing and Microprogramming 41 (1995) 273-288

0.6

g 0.5

z 0.4
Q
i 0.3
(L

0.2

0.1

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0035

TIME -

0 NR + Ls-1 . LS-2 A PO I CBO

Fig. 3. Reliability of CCT under different schemes of fault-
tolerance.

Let us denote [I+ log log N] by L, [(log N)/
2’-‘1 by p. We assume that all the nodes are equally
reliable and the reliability of a node is given by
R = e-“, where A is the failure rate and t is time.
The reliability expression (A) for a nonredundant
N X N CCT (represented as NR in Fig. 3) may be
expressed as

1-L

A c&N=* CP
i-0

In level sparing 1 scheme, one spare PE is used
for each level of the pruned trees of CCT. Level i of
each pruned tree of CCT has p original PEs and one
spare PE. The reliability of this level for a particular
tree is given by R p+ l+ RP(1 - R) +pCRP(l - R)
where C is the coverage factor, i.e. the conditional
probability of successful recovery after the occur-
rence of a fault. The reliability of the system is the
product of all such terms for levels 0 through L

raised to power N2 since there are N2 pruned full
binary trees in CCT. Hence the system reliability
may be written as
i=L

RP+‘+RP(l-R) +pCRp(l-R))N2.

Let this expression be called B. The number of
redundant PEs required for this scheme is N*(l -l-L)
and hence the reliability improvement factor per
spare PE under this scheme may be written as
B/(A * N*(l + L)).

For a redundant CCT under level sparing 2
scheme, one spare PE is used for each level of the
pruned trees having k (k is an integer power of 2) or
less PEs but for the other levels one spare PE is used
for a maximum group of k consecutive PEs. Let us
denote [p/k] by Q. The reliability of a level con-
taining k or less PEs is given by cr = RPf ’ + RP(1
- R) + pCRP(1 - R) where p I k. The reliability of
a level containing more than k PEs is given by

p=(R’+*+R’(l-R)+kCRk(l-R))’

+P-@+I +~P-ke(l _R)

+(p - kQ)CRP-“Q(l -R)).

The first factor is the reliability of Q groups of k

PEs each and the second factor is the reliability of
the remaining PEs in that level. For each group of k

PEs one spare PE and for the remaining p - kQ PEs
one spare PE are used. The reliability of the system
is the product of (Y N2 taken over all levels contain-
ing upto k PEs and PN2 taken over levels contain-
ing more than k PEs. Hence the system reliability
becomes

i=j.s.t.(log N)/2j-‘,k

l-I (R p+l +RP(l -R)
i=L

+PCRp(l - R))N2

i=O

* i=Fl(R
k+l + Rk(l -R) + kCRk(l -R))“”

c+c (Rr’-kQ+l +RP-kQ(l _R)

+(p-kQ)CRP-kQ(l-R))N*.

SK. Basu et al. /Microprocessing and Microprogramming 41 (1995) 273-288 279

Let this expression be referred to as D. This scheme
would be requiring

1 i= [1+ log(!?p,

N2 1 c (p+l)
i=L

i=O

+ c
log N

i=[l+lOg(- k N-1

i=L

(P+Q+1-$,,p)- CP 1
i=O 1

additional PES, where gd is the Kronecker delta
function. Let this expression be represented by E.

Hence the reliability improvement per spare PE un-
der this scheme is given by D/CA * E).

The performance degradation scheme uses one
spare PE for each of the pruned trees of a CCT and
hence a total of N2 spare PEs is used. For levels
containing p PEs, there are u = [p/2] pairs where
failure of one PE is tolerated. Reliability of a pair is
R2 + 2CR(l - R) and reliability of all such pairs is
CR2 + 2CR(l -R))“. The reliability of this level is
CR2 + 2CR(l -R))” * Rp-2u where RpmZu is the
contribution from unpaired PEs, if there are any in
that level. Reliability of the system is the product of
such terms for level 0 through L and then the whole
expression raised to power N2, since there are N2
pruned full binary trees in the CCT. Hence the
system reliability expression may be written as

i=O

n((R2+2CR(1-R))U*R(p-2U))Ni.
i=L

Let this expression be called F. The reliability im-
provement per spare PE is then given by
F/(N2 *A).

In a combined scheme, level sparing is employed
for level number 0 to level number d (for some
suitable d), and performance degradation for other
levels near the leaves of the trees of the CCT. The
contribution to the system reliability from levels d

through L may be written as

i=L

p+l + RP(l -R) +pCR”(l -R))“’

and those of levels 0 through d - 1 employing per-
formance degradation as
i=d- 1

n ((R2+2CR(1-R))U*Rp-2U)H*.
i=O

Hence the overall system reliability may be written
as

i=d

RP+l+Rp(l-R)+pCRP(l-R))N**

i=O

x n {[R2+2CR(1-R)]U*R(p-2U))Ni.
i=d-1

Let us call this expression G. The number of spare
PEs required under this scheme is N2(L - d + 1).

Hence the reliability improvement per spare PE is
G/(A * N2(L - d + 1)).

In Table 1, we give the percentage of PE redun-
dancy required under different schemes for a 25 X 2’

Table 1

Percentage of processor redundancy and reliability improvement

factor per spare PE for 2’ X25 CCT under different schemes of

fault-tolerance

Scheme

Nonredundant

Level sparing 1

Level sparing 2

Performance

degradation

Combined

% Processor Reliability

redundancy improvement

0 0.0

50 0.544E - 03

50 0.0

10 0.2OOE - 02

50 0.544E - 03

280 SK. Basu et al. /Microprocessing and Microprogramming 41 (1595) 273-288

CCT and the corresponding reliability improvement
per spare PE.
In Table 2, we give the reliabilities of CCT under
different schemes. We assume that C = 1, h = 1,
N= 16, K=4, and d=3.
Among the four schemes of fault-tolerance for CCT,
level sparing 1 and combined schemes provide the
highest reliabilities. They have become identical in
the plot of reliability against time as shown in Fig.
(3). The level sparing 2 scheme ranks next to this.
The performance degradation scheme ranks last. For
binary tree, performance degradation and combined
schemes provide nearly the same reliabilities which
are much higher than those provided by the level
sparing schemes. For CCT, the reliability improve-
ment per spare PE is highest in the performance
degradation scheme. Level sparing 1 and combined
schemes provide almost identical improvements in
reliability per spare PE and these are lower than that
provided by the performance degradation scheme.
For the binary tree, the reliability improvement per
spare PE is highest in the performance degradation
scheme followed by that in the combined scheme.
The level sparing 1 scheme ranks next to the com-
bined scheme and is followed by the level sparing 2
scheme in terms of reliability improvement per spare
PE for binary tree.

5. Mapping of algorithms

CCT is a multipurpose architecture and not tai-
lored to any particular application. We demonstrate
programmability of CCT by mapping bitonic sorting
and discrete Fourier transform on it. Unless specified
otherwise, all log used below stands for logarithm
base 2. For these two problems, we assume that the
number of data points is 2N2 log N and these data
points are distributed among the leaves of an N X N
CCT, one data point per leaf PE. We assume that the
N2 pruned full binary trees of an N X N CCT are
numbered 1 through N2 in the north to south direc-
tion and the leaves of each tree are numbered 1
through 2 log N in the left to right direction. Since
there are 2 log N leaves in each of the trees of an
N X N CCT, for all trees in parallel data may be
broadcast from any leaf of the tree to all other leaves
of the tree in O(log log N) time. Data may also be
sent from any leaf j to any other leaf i of the same
tree in O(log log N) time for all trees in parallel.

5.1. Sorting

We first discuss bitonic sorting on tree because
this would be utilized for sorting data using CCT.
We assume that the tree has N leaves and the items

Table 2
Reliabilities of 24 X 24 CCI under different schemes of fault-tolerance

Reliabilities
Time Nonredundant Level

sparing 1
LeVd

sparing 2
Performance
degradation

Combined

0.000 .lOOOE + 01
0.005 .1284E - 03
0.010 .1649E - 07
0.015 .2119E - 11
0.020 .2722E - 15
0.025 .3496E - 19
0.030 .4491E - 23
0.035 .5768E - 27

.lOOOE + 01

.9153E + 00

.7051E + 00

.4599E + 00

.2556E + 00

.1217E + 00

.499OE - 01

.1771E - 01

.lOOOE + 01

.8594E + 00

.5499E + 00

.2650E + 00

.9724E - 01

.2745E - 01

.6017E - 02

.1034E - 02

.lOOOE + 01

.2728E + 00

.7164E - 01

.1813E - 01

.4422E - 02

.104OE - 02

.2361E - 03

.5175E - 04

.lOOOE + 01

.9153E + 00

.7051E + 00

.4599E + 00

.2556E + 00

.1217E + 00

.4990E - 01

.1771E - 01

S.K. Basu et al. / Microprocessing and Microprogramming 41 (1995) 273-288 281

of the list to be sorted are distributed among the
leaves of the tree, one item per leaf in the left to
right direction. Two fields are attached to each data
item in the leaves. They are: position of the data item
in the sequence which is the same as the left to right
numbering of the leaf PE containing the data item,
and a flag indicating the next direction of motion of
the data through the tree, up indicated by ‘1’ and
down indicated by ‘0’.

The computation takes place in a pipelined fash-
ion and requires log N phases. Phase 1 merges N/2
bitonic sequences each of length 2 to produce N/22
bitonic sequences each of length 22. Phase 2 merges
N/22 bitonic sequences of length 22 to produce
N/23 bitonic sequences each of length 23. In gen-
eral, phase i(1 i i < log N) merges N/2’ bitonic
sequences of length 2’ to produce N/2’+’ bitonic
sequences each of length 2’+ ‘. The last phase, i.e.
the log Nth phase merges a bitonic sequence of
length N to produce a sorted sequence. Merging in
phase i(1 I i I log N) first utilizes N/2’ disjoint
subtrees each of height i in parallel, then N/2’-’
disjoint subtrees each of height i - 1 in parallel and
ultimately with N/2 disjoint subtrees each of height
1 in parallel. Disjoint subtrees are obtained succes-
sively by the logical removal of the root of the
previous subtree. Thus by removing the root of the
original tree, we get two disjoint subtrees of height
log N - 1. Then by logically removing the two roots
of the two subtrees of height log N - 1, we get 4
disjoint subtrees of height log N - 2 and so on.
These subtrees are referred to by numbers in the
range 1 to N/2 from left to right. Roots of the
subtrees behave in two different ways. Either they
send the larger of the two data items to the right
child and the smaller to the left child or they send
the smaller data to the right child and the larger to
the left child. These two situations are shown in the
attached diagrams by horizontal arrows piercing the
roots of the subtrees. These arrows are directed
either left to right representing the situation where
larger data goes to the right child and smaller goes to
the left child or right to left representing the reverse

situation. We now discuss how to set the arrow
directions in the roots of the subtrees. In any merg-
ing phase, say i, the roots of the initial N/2’ disjoint
subtrees each of height i are programmed to have
arrows directed left to right and right to left alter-
nately starting from the leftmost subtree. Then we
split the N/2’ disjoint subtrees of height i into
N/2’- ’ disjoint subtrees of height i - 1. The roots
of these N/2’- ’ subtrees will have arrow directions
the same as it were with their respective parent node
in the previous step, This continues till all disjoint
subtrees each of height 1 are obtained. Then the next
merging phase starts and the setting of arrows fol-
lows the same pattern. The algorithm for sorting on
the tree follows:

DO for i = 1 to log N
DO for j = i to 1 Step - 1

DO in parallel for all N/2’ subtrees of
height j each

{Fork=lto2j-’
For Leaf PEs DO {

/ * Leaves of the disjoint subtrees are num-
bered separately by 1, 2, 3,. . . . in the left to
right direction * /

Set Direction = ‘1’;
Set the position of data among
the leaves of this subtree in a left
to right numbering;
Send the record from PE(L) and
PECK + 2j-‘1 to the respective
parents;
Set direction = ‘0’ for the data
received from the parent;

1
For intermediate PE DO

t
The received data from
child is sent to its parent
PE;
The received data from the
parent PE is transmitted to
its child PE according to

282 S.K. Basu et al. / Microprocessing and Microprogramming 41 (1995) 273-288

4 5 6 7 8 1 2 3

t=o

45761832 5 6 8 2

&&g&&
t=1

L 7 3 1

t=6

L5763812

t=7

t= 8 L 56 7 8 3 2 1
t=9

5 6 7 3 2 3 6 7 2 1

Fig. 4. Sorting on tree.

S.K. Basu et al. / Microprocessing and Microprogramming 41 (1995) 273-288 283

b 3 6 5

t= 16

L 3 2 1 8 5 6 7

t =18

2 & 6 8

t = 22

b 3 2 8 5 6

t =I7

bfi
3 1 5 7

t= 19

21436587

tz23

1 2 3 A567 8

t =25

Fig. 4 (continued).

284 S.K. Basu et al./Microprocessing and Microprogramming 41 (1995) 273-288

the content of the location
field;

)
For root PE DO

1
Set the direction fields of
the two data records from
its two children to ‘0’;
Compare the data fields and
if the data received from
the left child is greater than
that received from the right
child and the arrow direc-
tion of the root PE is left to
right or the data received
from the right child is
larger than that received
from the left child and the
arrow direction is right to
left, then exchange their
data fields;
Send these records to the
children according to their
location fields;

)
1

END
END

END

A snapshot of the algorithm is shown in Fig. (4)
where the tree has 8 leaves. Data items moving down
the tree are shown by encircling them. Uncircled
data items are moving up the tree. In analyzing the
algorithm, we note that phase i (1 s i I log N) uti-
lizes N/2’ disjoint subtrees of height i in parallel,
then N/2’- ’ disjoint subtrees of height i - 1 in
parallel and ultimately N/2 disjoint subtrees of
height 1 each in parallel. Computation for phase i
requires
i=l

C (2i + 2’-’ - 1)
i=i

time steps which is equal to i2 + 2’ - 1. Hence the
total time required for sorting on tree is

i= log N

2 (i2+2i- 1)
i=l

= (l/6)(2 log N + log N)(log N + 1)

+2(N-l)-log N whichisO(N).

We now use the above algorithm to sort
2N2 log N data items using an N X N CCT. Let us
assume that the data items are distributed one per
leaf PE of a CCT. Initially, using the above algo-
rithm, the data items of N2 trees are sorted simulta-
neously, the data items of the 1st tree are sorted in
increasing order, the data items of the 2nd tree are
sorted in decreasing order and so on. This involves
1 + log log N phases and requires O(log N) time.
This will produce N2/2 bitonic sequences each of
length 4 log N. Each bitonic sequence comprises the
data items in the leaves of two consecutive trees in
row-major way starting from the 1st tree. These
N2/2 bitonic sequences each of length 4 log N are
merged successively to form a single bitonic se-
quence of length 2N2 log N. This will require in all
2 log N - 1 merging phases. Ultimately in the (2
log N - 1)th phase the single bitonic sequence of
length 2N2 log N is merged into a sorted sequence
of length 2N2 log N. In the ith phase (1 I i <
2 log N - l), N2/(2’> bitonic sequences each of
length 2’+ ’ log N are merged to produce N2/(2’+ ‘)
bitonic sequences each of length 2i+2 log N.

In phase i(1 I i I 2 log N - 11, simultaneously
for N/(2’) groups:

Trees 1, 2, . . . , 2’ are merged forming an increas-
ing sequence.

Trees 2’+ 1,...,2’+’ are merged forming a de-
creasing sequence.

Trees N2 - 2’+ 1 , . . . , N2 are merged forming a
decreasing sequence.

SK. Basu et al. / Microprocessing and Microprogramming 41 (I 995) 273-288 285

Let us now discuss how to merge the data items
of 2’ trees of a group comprising, say, Tree(k),
Tree(k + l), . . . , Tree(k + 2’ - 1) to produce a sorted
sequence. This group is first subdivided into two
subgroups of trees:

Tree(k), Tree(k + 11, . . . , Tree(k + 2’-’ - 11
comprises one group and Tree(k + 2’- ‘1, Tree(k +
2’- l + 1) , . . . , Tree(k + 2’ - 1) comprises another
group. Each group contains 2’ log N data items.
Items in the corresponding positions of these two
groups are compared and exchanged if they are
found out of place using the cube connections in the
base of CCT. Simultaneously 2’- ’ comparisons can
take place between two subgroups since there are
2’-’ trees in each subgroup. At a time only one
element of each tree (44) of a subgroup can be
compared with the corresponding element of tree
(M + 2’ log N) of the other subgroup. Since there
are 2 log N leaves in each tree, all comparisons
between two subgroups can be completed in dlog N)
time. Comparison between corresponding elements
of two trees are done through the cube link connect-
ing these two trees. Next, each subgroup is further
subdivided into two subgroups, each containing
2’- ’ log N data items and the corresponding ele-
ments between the two subgroups are compared and
exchanged if they are found out of place. This is
done simultaneously for all pairs of subgroups result-
ing from the same group. This will also require
@log N) time steps. Ultimately, we will reach a
situation when each subgroup contains log N ele-
ments and both the subgroups belong to a tree of a
CCI. We then sort these two subgroups using the
sorting algorithm for a tree as given above and this
requires O(log N) steps. Merging phase i requires
(i + 1) X O(log N) + O(log N) time. Hence the to-
tal time required for sorting is

i=2 log N

iFl w + 1) x w% NJ + w% WI

+ O(log N) which is 0(log3N).

5.2. Fourier transform

We assume that the number of inputs is
2N2 log N and that these data points are distributed
among the leaves of CCT in column-major way, i.e.
the first N2 data items are distributed among the
leftmost leaves of the N2 pruned full binary trees
one item per leaf, the next N2 data items are simi-
larly distributed among the second leftmost leaves of
all the pruned full binary trees and so on.

For 2N2 log N data points, we need to simulate
2 log N + log log N + 1 ranks of N 2 log N butter-
fly operations in each rank. We assume that during
computation, appropriate power of (2N2 log Nkh
primitive root of unity is available at the PEs. First
2 log N ranks of butteffly operations are done by
using the cube connections. For butterfly operations
belonging to rank i, 1 I i I 2 log N, cube links
connecting the ith leftmost leaves of the N2 pruned
full binary trees are utilized. In each time step, these
links can do N2/2 butterfly operations of rank i.
But we need to do N2 log N butterfly operations of
rank i, so to do all the butterfly operations of rank i,
we need to use these links 2 log N times. To do all
the butterfly operations of rank i, we have to succes-
sively bring other columns of data to column i
where the cube connections corresponding to rank i
are available. This amounts to bringing the data from
the leaves of pruned trees successively to the particu-
lar leaf of the tree where the cube connection corre-
sponding to this rank is available and this has to be
done in parallel for all the N2 pruned trees. Using
pipelining in each pruned tree, data from the leaves
can be brought successively to a particular leaf of the
tree for butterfly operation in time proportional to
the number of leaves in each tree, i.e. in O(log N)
time since there are 2 log N leaves in each tree.
Assuming that the links are bidirectional, the column
can be sent back to its original position after the
butterfly operation in O(log N) time. Operations of
rank i, 1 s i < 2 log N can be done in O(log N)
time. So the time required for 2 log N ranks of

286 SK. Basu et al. /Microprocessing and Microprogramming 41 (1995) 273-288

butterfly operations using cube connections is
2 log N * O(log N) = 0(log2 N). The remaining 1
+ log log N ranks of the butterfly operations are
done by using the tree links of the CCT. For rank
2 log N + 1, all the N2 log N operations can be
done simultaneously utilizing N2 log N subtrees
each of height 1, logically constructed out of N2
pruned full binary trees. Each pruned full binary tree
provides log N disjoint binary trees of height 1 each.
For rank 2 log N + 2, all the N2 log N operations
can not be done simultaneously because of conflict
in using some tree links by two operations at the
same time. So these operations are staggered over
two time slots. In each time slot we use
(N2 log N)/2 subtrees of height 2 each. Each
pruned full binary tree provides (log N)/2 disjoint
binary trees of height 2 each. Thus, for rank 2 log N
+ 1 + log log N, we use N2 binary trees each of
height log log N for log N times to complete all the
butterfly operations of this rank. In general, to com-
pute butterfly operations of rank 2 log N + i where
1 I i 5 1 + log log N, we need to use disjoint trees
of height i for 2’- ’ times. The time for this step is
proportional to i2’- ‘. So the total time required for
computation of butterfly operations of these 1 +
log log N ranks may be written as proportional to
the sum of the following series:

mance for ascend/descend type of computation by
mapping the problems of sorting and Fourier trans-
form. Though for these problems the performance of
CCT is lower than those of hypercube by a logarith-
mic factor, CCT has the major advantage of having a
maximum node degree of three compared to size
dependent variable degree nodes in the hypercube.
The degree-diameter product metric of CCl’ is low
compared to that of a hypercube of comparable size.
Having low node degrees in a network enables one
to construct larger and larger sizes of network using
the contemporary VLSI technology. When the num-
ber of nodes in a hypercube is very large, it would be
impossible to implement the network in VLSI be-
cause of technological constraints. Moreover, the
data routing is simpler in CCT than in hypercube
because the number of directions in which data may
be sent from a node is two in CCT (through cube
links or tree links) whereas it is a logarithmic func-
tion of number of nodes in the hypercube. We have
also shown how to make it fault-tolerant by suitable
use of spare PEs and links. Hence CCT is a potential
parallel processing architecture for VLSI implemen-
tation.

Acknowledgment

2’xl+ 2l2 + 2’x3 + . . .

+ 2’Og log “x(1 + log log N) .

The sum of the above series is (2 log N) *
log log N + 1. Hence the total time required for
fourier transform of 2N2 log N data points on a
N X N CCT is O(log2 N) + O(log N log log N),
which is 0(log2 N).

The authors would like to thank the anonymous
referees for their thoughtful comments on an earlier
version of this paper which helped enhancement of
the quality of this presentation.

References

6. Conclusion
[ll K. Hwang and F.A. Briggs, Computer Architecture and

Parallel Processing (McGraw-Hill, 1984).

[2] J.D. Ullman, Computational Aspects of WSI (Computer
Science Press, 1984).

We have demonstrated that CCT is an efficient [3] CD. Thompson, Fourier Transform in VLSI, IEEE Trans.

VLSI architecture and has polylogarithmic perfor- Comput. (11) (Nov. 1983) 1047-1057.

SK. Basu et al. / Microprocessing and Microprogramming 41 (1995) 273-288 287

[41

151

El

[71

Bl

[91

m

ml

WI

1131

1141

t151

[161

1171

I181

[I91

ml

D. Nath, S.N. Maheshwari and P.C.P. Bhatt, Efficient VLSI
networks for parallel processing based on orthogonal trees,
IEEE Trans. Comput. C-32 (6) (June 1983) 569-581.
A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and
Analysis of Computer Algorithms (Addison-Wesley, 1974).
C.D. Thompson, A complexity theory for VLSI, Ph.D The-
sis, Department of Computer Science, University of Califor-
ma, Berkeley, 1980.
G. Bilardi and F.P. Preparata, An architecture for bitonic
sorting with optimal VLSI performance, IEEE Trans. Com-
put. C-33 (7) (July 1984) 646-651.
J.R. Goodman and C.H. Sequin, Hypertree: A multiprocessor
interconnection topology, IEEE Trans. Comput. C-30 (12)
(Dec. 1981) 923-933.
C.E. Leiserson, Fat-Trees: Universal networks for hardware
efficient supercomputing, IEEE Trans. Comput. C-34 (10)
(Oct. 1985) 892-901.
E. Horowitz and A. Zorat, The binary tree as an interconnec-
tion network applications to multiprocessor systems and
VLSI, IEEE Trans. Comput. C-30 (4) (April 1981) 247-253.
A.M. Despain and D.A. Patterson, X-Tree: A tree structured
multiprocessor computer architecture, in Proc. Pifrh Com-
puter Architecture Symp. (April, 1978) 144-151.
C.D. Thompson, Area-time complexity for VLSI, Technical
Report, Division of Computer Science, University of Califor-
nia, Berkeley, Jan. 1984.
C.S. Raghavendra et al., Fault tolerance in binary tree archi-
tectures, IEEE Trans. Comput. C-33 (6) (June 1984) 56%
572.
M.C. Pease, The indirect binary N-Cube microprocessor
array, IEEE Trans. Comput. C-26 (5) (May 1977) 458-473.
F.P. Preparata and J.E. Vuillemin, The Cube-connected cy-
cles: A versatile network for parallel computation, Commun.
ACM (May 1981) 300-309.
C.H. Sequin and R.M. Fujimoto, X-tree and Y-components,
in: VLSI Architectures, B. Randell and P.C. Treleaven, eds.
(Prentice-Hall, 1983) 299-326.
G. Bongiovanni, Two VLSI structures for the Discrete Fourier
Transform, IEEE Trans. Comput. C-32 (8) (Aug. 1983)
750-753.
R. Duncan, A survey of parallel computer architectures,
IEEE Computer (Feb. 1990) 5-16.
A.S. Youssef and B. Narahari, The Banyan-hypercube net-
works, IEEE Trans. Parallel Distributed Syst. 1 (2) (April
1990) 160-169.
K. Efe, The crossed cube architecture for parallel computa-
tion, IEEE Trans. Parallel Distributed Syst. 3, (5) (Sep.
1992) 513-524.

[21] J. Wu and M.M. Larrondo-Petrie, Cube-connected-cubes net-
work, Microprocessing and Microprogramming 33
(1991/92) 299-310.

[22] S.Q. Zheng, Compressed tree machines, IEEE Trans. Com-
put. 43 (2) (Feb. 1994) 222-225.

[23] S. Abraham and K. Padmanabhan, An analysis of the twisted
cube topology, in Proc. 1989 Int. Conf on Parallel Process-
ing, Vol I, 116-120.

[24] S. Latifi and A. El-Amawy, On folded hypercubes, in Proc.
1989 Int. Conf on Parallel Processing, Vol. I, 180-185.

[25] H.L. Chen and N.F. Tzeng, Enhanced incomplete hyper-
cubes, in Proc. 1989 Int. Conf on Parallel Processing, Vol
I, 270-277.

[26] L.N. Bhuyan and D.P. Agrawal, Generalized hypercube and
hyperbus structures for a computer network, IEEE Trans.
Comput. C-33 (4) (April 1984) 323-333.

[27] D.T. Barnard and D.B. Sillicom, Pipelining tree-structured
algorithms on SIMD architectures, Information Processing
Letters 35 (1990) 79-84.

[28] E. Schwabe, On the computational equivalence of hypercube
derived networks, in Proc. 2nd Annual ACM Symp. on
Parallel Algorithms and Architectures (July 1990) 388-397.

[29] N.S. Woo and A. Agrawala, A symmetric tree stmcture
interconnection network and its message traffic, IEEE Trans.
Comput. C-34 (8) (Aug. 1985) 765-769.

(301 C.S. Yang, S.Y. Wu and K.C. Huang, A reconfigurable
modular fault tolerant generalized Boolean n-Cube network,
Microprocessing and Microprogramming 32 (1991) 589-
592.

[31] S. Srinivas and N.N. Biswas, Design and analysis of a
generalized architecture for reconfigurable m-ary tree stmc-
tures, IEEE Trans. Comput. 41 (11) (Nov. 1992) 1465-1478.

Swapan K. Basu received the M.Sc
degree in Physics from the University of
Calcutta, India in 1977 and the M. Tech.
degree m Computer Science from the
Indian Statistical Institute, Calcutta in
1981. He has submitted his doctoral the-
sis to the Jadavpur University, Calcutta
in 1994. Presently, he is teaching Com-
puter Science at the Banaras Hindu Uni-
versity, Varanasi, India and working on
a university level text book on parallel
and distributed processing under a sup-
port from the University Grants Com-

mission, India. His research interest is Parallel Processing, archi-
F%ururt; and algorithms. He is a member of the Computer Society

288 S.K. Basu et al. /Microprocessing and Microprogramming 41 (1995) 273-288

J. Dattagupta received the BE. Tel. E.
and P.G. Dip. in Computer Science from
Jadavpur University. She received her
M. Phil. degree from Bnmel University,
UK. She had also received her PhD
degree from Calcutta University, India.
She was a Visiting Scientist at G.M.D.,
Bonn, F.R.G., during 1983-84. She is
currently Associate Professor of Indian
Statistical Institute, Calcutta. Her re-
search interests are fault diagnosis, in-
terconnection networks, parallel process-
ing and VLSI layout.

R Dattappta received the B.E. & Tel.
E, M.E & Tel. E and PbD degrees from
Jadavpur University. He had also re-
ceived a PhD degree from Bnmel Uni-
versity, UK, where he was a Common-
wealth Scholar during the period 1974
to 1977. He was a Visiting Scientist at
GMD, Bonn, FRG during 1983-1984.

He is currently Professor and Head of
the Computer Science and Engineering
Department, Jadavpur University, Cal-
cutta, India. He is a Fellow of the Insti-
tute of Engineers (India), Senior Mem-

be;,f IEEE, Computer Society (IEEE) and Computer Society of

His research interests include VLSI, parallel processing and
microprocessor-based system design.

