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Abstract 

In this paper we propose a VLSI implementable architecture called Cube Connected Tree having advantageous properties 
of both tree and hypercube. This structure has a fixed low degree of nodes for any size of the network unlike the hypercube 
where the node degree is dependent on the size of the hypercube. The degree-diameter product metric [26] of CCT is low 
compared to that of a hypercube of comparable size. It overcomes the data congestion problem near the root of the binary 
tree by having multiple roots in the structure, thereby enhancing the I/O bandwidth of the system. The complexity of the 
VLSI layout of this structure has been addressed within the grid model of Thompson [12]. By using spare links and PEs, 
fault tolerance capabilities of the system have been enhanced. Easy programmability of this structure has been demonstrated 
by designing polylogarithmic algorithms for sorting and discrete Fourier transform. 
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1. Introduction 

Tree architecture has a number of good properties 
such as low degree nodes, efficient VLSI layout, 
fault-tolerance capability with a reasonable amount 
of sparing, straightforward mapping of algorithms, 
and easiness of routing data. Many real-life problems 

* Communicating author. 

require an array of input and produce an array of 
output. The performance of the simple binary tree 
architecture is severely limited by the constraint 
imposed by the congestion of data near the root 
processor [ll]. Though the hypercube has a good 
algorithmic performance for some of these problems 
it requires variable degree nodes dependent on the 
size of the hypercube. Requirement of large degree 
nodes is not a desirable feature from the point of 
VLSI implementation. Such a structure having cube 
connections and also having properties of trees might 
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prove to be a good VLSI architecture for parallel 
computation, as it retains good properties from both 
tree and hypercube. 

A number of architectures such as Orthogonal tree 
[4], Fat trees [9], X-tree Ill], Diamond network [29], 
Compressed tree [22], etc. based on tree structure 
have been proposed and studied in the literature. 
Other efforts have sought to exploit new interconnec- 
tion networks based on the hypercube topology. 
Cube-Connected Cycles [15] proposed by Preparata 
and Vuillemin can efficiently solve certain classes of 
problems. The Folded hypercube [24] by Latifi and 
El-Amawy is a standard hypercube with extra links 
that significantly increase the efficiency of the rout- 
ing algorithms and reduce the network diameter. The 
Twisted hypercube [23] is the standard hypercube 
where two or more edges are exchanged. The en- 
hanced incomplete hypercube [25] improves the per- 
formance of the incomplete hypercube by addition of 
extra links between pairs of nodes having unused 
ports. The Generalized Boolean n-cube [30] has many 
properties of the Boolean n-cube and has lower 
degree nodes. The Generalized hypercube and Hy- 
perbus [26] by Bhuyan and Agrawal based on a 
mixed radix number system results in a variety of 
hypercube structures for a given number of proces- 
sors. The Cube-connected-cubes [21] is a hypercube 
with each node represented as a cube. It was de- 
signed for the divide-and-conquer paradigm and in 
particular for distributed environments with heavy 
localized communication. The Crossed-cube [20] net- 
work has many of the properties of the hypercube 
but has a diameter only about half as large. Banyan- 
hypercubes [19] by Youssef and Narahari combine 
the advantageous features of both Banyans and hy- 
percubes and thus have better communication capa- 
bilities. Banyan-hypercubes offer an improvement 
over hypercubes in diameter, average distance, and 
embedding of hierarchical structures. The Hypertree 
[S] has some advantages of cube connections but 
retains many of the problems of the tree machine. 
Moreover, programming this structure seems to be 

complex for many parallel processing applications. 
Hence a new structure called Cube-Connected-Tree 
or CCT in short is proposed below which contains 
advantageous features of both tree and hypercube. 
This paper is organized as follows: Section 2 defines 
the architecture, Section 3 deals with its VLSI area 
complexity, Section 4 with fault tolerance issues, 
Section 5 with mapping of algorithms on it and 
Section 6 concludes the paper. 

2. Architecture 

N2-pruned full binary trees each with 2 log N 
leaves [N is a positive integer power of 21 are 
connected in the way explained below for construc- 
tion of an N X N CCT. A pruned full binary tree 
with 2 log N leaves is obtained as follows: A full 
binary tree with height = [log log N] + 1 is taken. If 
log log N = [log log N] then this is accepted as a 
pruned full binary tree with 2 log N leaves. Other- 
wise, the first 2 log N leaves from the left of this 
tree are retained and the remaining leaves are pruned. 
This will create a number of leaf nodes at a lower 
height. These leaves are also pruned and the process 
is continued till no leaves remain at lower heights. 
Illustrative diagrams for pruned full binary trees with 
4, 6, 8 and 10 leaves are shown in Fig. (1). 

These trees are connected through cube connec- 
tions via their leaves. N2 trees are numbered as 
0, 1, 2,. . . ) (N2 - 1) from the north to south direc- 
tion and their leaves are numbered as 0, 1, 2,. . . , (2 
log N - 1) starting from the leftmost leaf. Two trees 
would be connected by a cube link through the jth 
leaves if the binary representation of the numbering 
of the trees differs only in the jth bit position. Thus 
tree number 0 would be connected to tree number 1 
through their leftmost leaves, to tree number 2 
through the second leftmost leaves (i.e. leaf number 
l), to tree number 4 through the 3rd leftmost leaves 
(i.e. leaf number 2) and so on. When all such 
connections have been made, the resulting structure 
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Fig. 1. Pruned full binary trees with different number of leaves. 

is called a Cube Connected Tree. A pruned tree of 
height 11 + log log N] contains 
i=ll+log log iv] 

c [log N/2* *(i - 1)1 
i=O 

nodes and hence a CCT of size N X N contains in all 
i=l1+1og log N] 

c N2*[log N/2**(i-l)l 
i=O 

nodes which is 0(N2 log N). The number of cube 
links is N2 log N and total number of tree links is 

i= [log log Nl 

N2* c [log N/2* *(i- l)] 
i=O 

and hence the total number of links in a CCT of size 
NXN is 

i 

i=llog log Nl 

N2 log N+ c [log N/2* *(i-l)] . 

i=O I 

The diameter of this structure is 2(log N + 11 + 
log log Nl) and its line connectivity is two. The 
total number of nodes and links present in a 4 X 4 
CCT are 112 and 128 respectively and its diameter is 
8. The degree-diameter product 1261 metric of CCT 
is low compared to that of a hypercube of compara- 
ble size. Each PE in a CCT has a number of registers 
and some local memory. Each leaf PE has an addi- 
tional register for indicating data routing either 
through tree links or through cube links. Inputs and 
outputs are made through the roots of the trees. For 
an N X N CCT, simultaneously N 2 data items may 
be input or output through the roots of N2 trees. 
CCT creates a parallel computing environment along 
with a sequential host machine. 

3. VLSI layout 

Our CCT has all the characteristics suitable for 
VLSI implementation. It is regular and the maximum 
degree of any node in CCT is three. We give two 
layouts of the CCT under the grid model of Thomp- 
son [12]. The first layout uses a modified version of 
the H-tree. The H-tree [2,10] is a compact layout for 
binary tree. A binary tree of height h may be laid out 
using H-tree which requires HT(h) horizontal tracks 
and VT(h) vertical tracks where 

HT(h)=2*HT(h-1)+1 

if h is an odd number greater than 2 

=2*HZ’(h-2) +l 

if h is an even number greater than 3, 

VI-(h) = VT(h - 1) 

if h is an odd number greater than 2 

=2*VT(h-l)+l 

if h is an even number greater than 3, 
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and HT(2) = VT(2) = 3. The solutions of these re- 
currence relations are 

HT( h) = 2°‘+3)/2 - 1 f h is odd 

= 2(h+ *)I* - 1 if h is even 

andVT(h) =2 (h+ W* - 1 if h is odd 

= 2(h+2)/2 - 1 if h is even. 

To use the H-tree for laying out a CCT, the compact- 
ness of the H-tree is sacrificed to make room for 
cube connections. N * pruned trees each with 2 log N 
leaves are laid on the grid using the H-tree layout 
one after another in the north to south direction. To 
make room for cube connections, Xi:: “s N2i = N* 
- 1 vertical tracks are additionally created in the 
above layout as described below: 

Let VT(h) denote the number of vertical tracks in 
the H-tree layout of a binary tree of height h as 
assumed above. Let these tracks be referred to as 
1, 2, 3,. . . in the left to right direction. The number 
of vertical tracks in the H-tree layout containing leaf 
nodes is IVT(h)/2]. The number of leaves in a 
binary tree of height h is 2h and hence the number 
of leaves per vertical track containing leaf nodes is 
LN = 2 h/[VT(h)/21. The following algorithm gen- 
erates the required number of additional vertical 
tracks for laying the cube connections. 

j = 0; 
For i = 1 to VT(h), Step 2; 
M = c;~;;+L;LN - r2k; 

If j is even, Then insert M vertical tracks be- 
tween existing vertical tracks num- 
bers i and i + 1; Else insert M 
vertical tracks between existing 
vertical tracks numbers i and i - 1; 

j=j+l; 
End. 

Once these additional vertical tracks are created, the 
cube connections among the leaves of the pruned 
trees are inserted using these tracks as shown for a 

4 X 4 CCT in Fig. (2(a)). The number of horizontal 
tracks required for an N X N CCT is 

N*(4*2 ” ’ N1/2 - 1) if [log log N] is even, Oa Os 

and N*((8)0.5 *2ttOstOs N1/* _ 1) 

if [log log N] is odd. 

The total number of vertical tracks required is 

N* + 2*2t’Og’Og N1/2 - 2 if [log log N] is even and 

N 2 + ( 8)“‘5 * 2”‘s “s WI2 - 2 if [log log N 1 is odd. 

(4 

Fig. 2(a). Layout of a 4 X 4 CCT using H-tree. 
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(b) from the (i - 0th PE of the same level of the tree, if 
it exists. Nodes of successive levels of a pruned tree 
are placed on consecutive horizontal tracks. In this 
way, all the nodes of a pruned binary tree are laid 
out. All the N2 pruned full binary trees are laid out 
similarly keeping a vertical distance of unity be- 
tween the leaves of one tree and the root of the next 
tree as shown for a 4 X 4 CCT in Figure (2(b)). By 
using the increasing number of free vertical tracks 
available between successive leaves of the trees, the 
cube connections can be established among the N* 
pruned full binary trees through their leaves as shown 
in Fig. (2(b)). 

An N X N CCT requires N2(2 + [log log Nl) 
horizontal and 2 log N + (N2 - 1) vertical tracks 
for laying on a VLSI chip. Hence the area required is 

Fig. 2(b). Layout of a 4 X 4 CCT. 

N2(2 + [log log N1) * (2 log N + N2 - 1) 

which is of the order of N4 log log N. The length 
of the longest wire is N2(4 + [log log Nl)/2 and 
hence O(N2 log log N). 

Hence the length of the longest wire and the area of 
this layout are O(N* logo.5 N) and 0(N4 log”.5) 
respectively. 

An alternative layout without using the H-tree is 
given below. This layout requires 0(N4 log log N) 
areas and has O(N* log log Nl as the length of the 
longest wire. The pruned binary trees in the CCT are 
numbered in the same way as assumed in Section 2. 
In each tree, leaves are assumed to be in level 
number one and root at the highest level. The PEs in 
each level are numbered 0, 1, 2,. . . , from left to 
right. The PEs of a particular level of a tree are 
placed on the grid points of the same horizontal line. 
In general, the ith PE of level I is placed at a 
distance of 

k=2’-’ 

c ( 1 +2(2-‘-9-f 
> 

k=l 

4. Fault tolerant CCT 

Raghavendra et al. [13] suggested methods for 
enhancement of the reliability of a binary tree ma- 
chine by systematic use of spare processing elements 
under the assumption that the links are perfectly 
reliable but the PEs may fail. We have extended their 
schemes and applied it to the CCT. With the same 
assumptions, we consider fault-tolerance of CCT 
under four different schemes of redundancy and 
evaluate their relative suitability. The schemes con- 
sidered here are level sparing 1 (IS-l), level sparing 
2 (IS-21, performance degradation (PD) and com- 
bined (CBD). Two metrices, system reliability and 
reliability improvement per spare PE are used for 
this purpose. The first metric is more important from 
the point of performance and the second from the 
point of cost. 
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Fig. 3. Reliability of CCT under different schemes of fault- 
tolerance. 

Let us denote [I+ log log N] by L, [(log N)/ 
2’-‘1 by p. We assume that all the nodes are equally 
reliable and the reliability of a node is given by 
R = e-“, where A is the failure rate and t is time. 
The reliability expression (A) for a nonredundant 
N X N CCT (represented as NR in Fig. 3) may be 
expressed as 

1-L 

A c&N=* CP 
i-0 

In level sparing 1 scheme, one spare PE is used 
for each level of the pruned trees of CCT. Level i of 
each pruned tree of CCT has p original PEs and one 
spare PE. The reliability of this level for a particular 
tree is given by R p+ l+ RP(1 - R) +pCRP(l - R) 
where C is the coverage factor, i.e. the conditional 
probability of successful recovery after the occur- 
rence of a fault. The reliability of the system is the 
product of all such terms for levels 0 through L 

raised to power N2 since there are N2 pruned full 
binary trees in CCT. Hence the system reliability 
may be written as 
i=L 

RP+‘+RP(l-R) +pCRp(l-R))N2. 

Let this expression be called B. The number of 
redundant PEs required for this scheme is N*(l -l-L) 
and hence the reliability improvement factor per 
spare PE under this scheme may be written as 
B/(A * N*(l + L)). 

For a redundant CCT under level sparing 2 
scheme, one spare PE is used for each level of the 
pruned trees having k (k is an integer power of 2) or 
less PEs but for the other levels one spare PE is used 
for a maximum group of k consecutive PEs. Let us 
denote [p/k] by Q. The reliability of a level con- 
taining k or less PEs is given by cr = RPf ’ + RP(1 
- R) + pCRP(1 - R) where p I k. The reliability of 
a level containing more than k PEs is given by 

p=(R’+*+R’(l-R)+kCRk(l-R))’ 

+P-@+I +~P-ke(l _R) 

+( p - kQ)CRP-“Q(l -R)). 

The first factor is the reliability of Q groups of k 

PEs each and the second factor is the reliability of 
the remaining PEs in that level. For each group of k 

PEs one spare PE and for the remaining p - kQ PEs 
one spare PE are used. The reliability of the system 
is the product of (Y N2 taken over all levels contain- 
ing upto k PEs and PN2 taken over levels contain- 
ing more than k PEs. Hence the system reliability 
becomes 

i=j.s.t.(log N)/2j-‘,k 

l-I (R p+l +RP(l -R) 
i=L 

+PCRp(l - R))N2 

i=O 

* i=Fl(R 
k+l + Rk(l -R) + kCRk(l -R))“” 

c+c (Rr’-kQ+l +RP-kQ(l _R) 

+(p-kQ)CRP-kQ(l-R))N*. 
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Let this expression be referred to as D. This scheme 
would be requiring 

1 i= [1+ log( !?p, 

N2 1 c (p+l) 
i=L 

i=O 

+ c 
log N 

i=[l+lOg(- k N-1 

i=L 

(P+Q+1-$,,p)- CP 1 
i=O 1 

additional PES, where gd is the Kronecker delta 
function. Let this expression be represented by E. 

Hence the reliability improvement per spare PE un- 
der this scheme is given by D/CA * E). 

The performance degradation scheme uses one 
spare PE for each of the pruned trees of a CCT and 
hence a total of N2 spare PEs is used. For levels 
containing p PEs, there are u = [p/2] pairs where 
failure of one PE is tolerated. Reliability of a pair is 
R2 + 2CR(l - R) and reliability of all such pairs is 
CR2 + 2CR(l -R))“. The reliability of this level is 
CR2 + 2CR(l -R))” * Rp-2u where RpmZu is the 
contribution from unpaired PEs, if there are any in 
that level. Reliability of the system is the product of 
such terms for level 0 through L and then the whole 
expression raised to power N2, since there are N2 
pruned full binary trees in the CCT. Hence the 
system reliability expression may be written as 

i=O 

n((R2+2CR(1-R))U*R(p-2U))Ni. 
i=L 

Let this expression be called F. The reliability im- 
provement per spare PE is then given by 
F/(N2 *A). 

In a combined scheme, level sparing is employed 
for level number 0 to level number d (for some 
suitable d), and performance degradation for other 
levels near the leaves of the trees of the CCT. The 
contribution to the system reliability from levels d 

through L may be written as 

i=L 

p+l + RP(l -R) +pCR”(l -R))“’ 

and those of levels 0 through d - 1 employing per- 
formance degradation as 
i=d- 1 

n ((R2+2CR(1-R))U*Rp-2U)H*. 
i=O 

Hence the overall system reliability may be written 
as 

i=d 

RP+l+Rp(l-R)+pCRP(l-R))N** 

i=O 

x n {[R2+2CR(1-R)]U*R(p-2U))Ni. 
i=d-1 

Let us call this expression G. The number of spare 
PEs required under this scheme is N2(L - d + 1). 

Hence the reliability improvement per spare PE is 
G/(A * N2(L - d + 1)). 

In Table 1, we give the percentage of PE redun- 
dancy required under different schemes for a 25 X 2’ 

Table 1 

Percentage of processor redundancy and reliability improvement 

factor per spare PE for 2’ X25 CCT under different schemes of 

fault-tolerance 

Scheme 

Nonredundant 

Level sparing 1 

Level sparing 2 

Performance 

degradation 

Combined 

% Processor Reliability 

redundancy improvement 

0 0.0 

50 0.544E - 03 

50 0.0 

10 0.2OOE - 02 

50 0.544E - 03 
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CCT and the corresponding reliability improvement 
per spare PE. 
In Table 2, we give the reliabilities of CCT under 
different schemes. We assume that C = 1, h = 1, 
N= 16, K=4, and d=3. 
Among the four schemes of fault-tolerance for CCT, 
level sparing 1 and combined schemes provide the 
highest reliabilities. They have become identical in 
the plot of reliability against time as shown in Fig. 
(3). The level sparing 2 scheme ranks next to this. 
The performance degradation scheme ranks last. For 
binary tree, performance degradation and combined 
schemes provide nearly the same reliabilities which 
are much higher than those provided by the level 
sparing schemes. For CCT, the reliability improve- 
ment per spare PE is highest in the performance 
degradation scheme. Level sparing 1 and combined 
schemes provide almost identical improvements in 
reliability per spare PE and these are lower than that 
provided by the performance degradation scheme. 
For the binary tree, the reliability improvement per 
spare PE is highest in the performance degradation 
scheme followed by that in the combined scheme. 
The level sparing 1 scheme ranks next to the com- 
bined scheme and is followed by the level sparing 2 
scheme in terms of reliability improvement per spare 
PE for binary tree. 

5. Mapping of algorithms 

CCT is a multipurpose architecture and not tai- 
lored to any particular application. We demonstrate 
programmability of CCT by mapping bitonic sorting 
and discrete Fourier transform on it. Unless specified 
otherwise, all log used below stands for logarithm 
base 2. For these two problems, we assume that the 
number of data points is 2N2 log N and these data 
points are distributed among the leaves of an N X N 
CCT, one data point per leaf PE. We assume that the 
N2 pruned full binary trees of an N X N CCT are 
numbered 1 through N2 in the north to south direc- 
tion and the leaves of each tree are numbered 1 
through 2 log N in the left to right direction. Since 
there are 2 log N leaves in each of the trees of an 
N X N CCT, for all trees in parallel data may be 
broadcast from any leaf of the tree to all other leaves 
of the tree in O(log log N) time. Data may also be 
sent from any leaf j to any other leaf i of the same 
tree in O(log log N) time for all trees in parallel. 

5.1. Sorting 

We first discuss bitonic sorting on tree because 
this would be utilized for sorting data using CCT. 
We assume that the tree has N leaves and the items 

Table 2 
Reliabilities of 24 X 24 CCI under different schemes of fault-tolerance 

Reliabilities 
Time Nonredundant Level 

sparing 1 
LeVd 

sparing 2 
Performance 
degradation 

Combined 

0.000 .lOOOE + 01 
0.005 .1284E - 03 
0.010 .1649E - 07 
0.015 .2119E - 11 
0.020 .2722E - 15 
0.025 .3496E - 19 
0.030 .4491E - 23 
0.035 .5768E - 27 

.lOOOE + 01 

.9153E + 00 

.7051E + 00 

.4599E + 00 

.2556E + 00 

.1217E + 00 

.499OE - 01 

.1771E - 01 

.lOOOE + 01 

.8594E + 00 

.5499E + 00 

.2650E + 00 

.9724E - 01 

.2745E - 01 

.6017E - 02 

.1034E - 02 

.lOOOE + 01 

.2728E + 00 

.7164E - 01 

.1813E - 01 

.4422E - 02 

.104OE - 02 

.2361E - 03 

.5175E - 04 

.lOOOE + 01 

.9153E + 00 

.7051E + 00 

.4599E + 00 

.2556E + 00 

.1217E + 00 

.4990E - 01 

.1771E - 01 
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of the list to be sorted are distributed among the 
leaves of the tree, one item per leaf in the left to 
right direction. Two fields are attached to each data 
item in the leaves. They are: position of the data item 
in the sequence which is the same as the left to right 
numbering of the leaf PE containing the data item, 
and a flag indicating the next direction of motion of 
the data through the tree, up indicated by ‘1’ and 
down indicated by ‘0’. 

The computation takes place in a pipelined fash- 
ion and requires log N phases. Phase 1 merges N/2 
bitonic sequences each of length 2 to produce N/22 
bitonic sequences each of length 22. Phase 2 merges 
N/22 bitonic sequences of length 22 to produce 
N/23 bitonic sequences each of length 23. In gen- 
eral, phase i(1 i i < log N) merges N/2’ bitonic 
sequences of length 2’ to produce N/2’+’ bitonic 
sequences each of length 2’+ ‘. The last phase, i.e. 
the log Nth phase merges a bitonic sequence of 
length N to produce a sorted sequence. Merging in 
phase i(1 I i I log N) first utilizes N/2’ disjoint 
subtrees each of height i in parallel, then N/2’-’ 
disjoint subtrees each of height i - 1 in parallel and 
ultimately with N/2 disjoint subtrees each of height 
1 in parallel. Disjoint subtrees are obtained succes- 
sively by the logical removal of the root of the 
previous subtree. Thus by removing the root of the 
original tree, we get two disjoint subtrees of height 
log N - 1. Then by logically removing the two roots 
of the two subtrees of height log N - 1, we get 4 
disjoint subtrees of height log N - 2 and so on. 
These subtrees are referred to by numbers in the 
range 1 to N/2 from left to right. Roots of the 
subtrees behave in two different ways. Either they 
send the larger of the two data items to the right 
child and the smaller to the left child or they send 
the smaller data to the right child and the larger to 
the left child. These two situations are shown in the 
attached diagrams by horizontal arrows piercing the 
roots of the subtrees. These arrows are directed 
either left to right representing the situation where 
larger data goes to the right child and smaller goes to 
the left child or right to left representing the reverse 

situation. We now discuss how to set the arrow 
directions in the roots of the subtrees. In any merg- 
ing phase, say i, the roots of the initial N/2’ disjoint 
subtrees each of height i are programmed to have 
arrows directed left to right and right to left alter- 
nately starting from the leftmost subtree. Then we 
split the N/2’ disjoint subtrees of height i into 
N/2’- ’ disjoint subtrees of height i - 1. The roots 
of these N/2’- ’ subtrees will have arrow directions 
the same as it were with their respective parent node 
in the previous step, This continues till all disjoint 
subtrees each of height 1 are obtained. Then the next 
merging phase starts and the setting of arrows fol- 
lows the same pattern. The algorithm for sorting on 
the tree follows: 

DO for i = 1 to log N 
DO for j = i to 1 Step - 1 

DO in parallel for all N/2’ subtrees of 
height j each 

{Fork=lto2j-’ 
For Leaf PEs DO { 

/ * Leaves of the disjoint subtrees are num- 
bered separately by 1, 2, 3,. . . . in the left to 
right direction * / 

Set Direction = ‘1’; 
Set the position of data among 
the leaves of this subtree in a left 
to right numbering; 
Send the record from PE(L) and 
PECK + 2j-‘1 to the respective 
parents; 
Set direction = ‘0’ for the data 
received from the parent; 

1 
For intermediate PE DO 

t 
The received data from 
child is sent to its parent 
PE; 
The received data from the 
parent PE is transmitted to 
its child PE according to 
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Fig. 4. Sorting on tree. 
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Fig. 4 (continued). 
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the content of the location 
field; 

) 
For root PE DO 

1 
Set the direction fields of 
the two data records from 
its two children to ‘0’; 
Compare the data fields and 
if the data received from 
the left child is greater than 
that received from the right 
child and the arrow direc- 
tion of the root PE is left to 
right or the data received 
from the right child is 
larger than that received 
from the left child and the 
arrow direction is right to 
left, then exchange their 
data fields; 
Send these records to the 
children according to their 
location fields; 

) 
1 

END 
END 

END 

A snapshot of the algorithm is shown in Fig. (4) 
where the tree has 8 leaves. Data items moving down 
the tree are shown by encircling them. Uncircled 
data items are moving up the tree. In analyzing the 
algorithm, we note that phase i (1 s i I log N) uti- 
lizes N/2’ disjoint subtrees of height i in parallel, 
then N/2’- ’ disjoint subtrees of height i - 1 in 
parallel and ultimately N/2 disjoint subtrees of 
height 1 each in parallel. Computation for phase i 
requires 
i=l 

C (2i + 2’-’ - 1) 
i=i 

time steps which is equal to i2 + 2’ - 1. Hence the 
total time required for sorting on tree is 

i= log N 

2 (i2+2i- 1) 
i=l 

= (l/6)(2 log N + log N)(log N + 1) 

+2(N-l)-log N whichisO(N). 

We now use the above algorithm to sort 
2N2 log N data items using an N X N CCT. Let us 
assume that the data items are distributed one per 
leaf PE of a CCT. Initially, using the above algo- 
rithm, the data items of N2 trees are sorted simulta- 
neously, the data items of the 1st tree are sorted in 
increasing order, the data items of the 2nd tree are 
sorted in decreasing order and so on. This involves 
1 + log log N phases and requires O(log N) time. 
This will produce N2/2 bitonic sequences each of 
length 4 log N. Each bitonic sequence comprises the 
data items in the leaves of two consecutive trees in 
row-major way starting from the 1st tree. These 
N2/2 bitonic sequences each of length 4 log N are 
merged successively to form a single bitonic se- 
quence of length 2N2 log N. This will require in all 
2 log N - 1 merging phases. Ultimately in the (2 
log N - 1)th phase the single bitonic sequence of 
length 2N2 log N is merged into a sorted sequence 
of length 2N2 log N. In the ith phase (1 I i < 
2 log N - l), N2/(2’> bitonic sequences each of 
length 2’+ ’ log N are merged to produce N2/(2’+ ‘) 
bitonic sequences each of length 2i+2 log N. 

In phase i(1 I i I 2 log N - 11, simultaneously 
for N/(2’) groups: 

Trees 1, 2, . . . , 2’ are merged forming an increas- 
ing sequence. 

Trees 2’+ 1,...,2’+’ are merged forming a de- 
creasing sequence. 

Trees N2 - 2’+ 1 , . . . , N2 are merged forming a 
decreasing sequence. 
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Let us now discuss how to merge the data items 
of 2’ trees of a group comprising, say, Tree(k), 
Tree(k + l), . . . , Tree( k + 2’ - 1) to produce a sorted 
sequence. This group is first subdivided into two 
subgroups of trees: 

Tree(k), Tree(k + 11, . . . , Tree(k + 2’-’ - 11 
comprises one group and Tree(k + 2’- ‘1, Tree(k + 
2’- l + 1) , . . . , Tree(k + 2’ - 1) comprises another 
group. Each group contains 2’ log N data items. 
Items in the corresponding positions of these two 
groups are compared and exchanged if they are 
found out of place using the cube connections in the 
base of CCT. Simultaneously 2’- ’ comparisons can 
take place between two subgroups since there are 
2’-’ trees in each subgroup. At a time only one 
element of each tree (44) of a subgroup can be 
compared with the corresponding element of tree 
(M + 2’ log N) of the other subgroup. Since there 
are 2 log N leaves in each tree, all comparisons 
between two subgroups can be completed in dlog N) 
time. Comparison between corresponding elements 
of two trees are done through the cube link connect- 
ing these two trees. Next, each subgroup is further 
subdivided into two subgroups, each containing 
2’- ’ log N data items and the corresponding ele- 
ments between the two subgroups are compared and 
exchanged if they are found out of place. This is 
done simultaneously for all pairs of subgroups result- 
ing from the same group. This will also require 
@log N) time steps. Ultimately, we will reach a 
situation when each subgroup contains log N ele- 
ments and both the subgroups belong to a tree of a 
CCI. We then sort these two subgroups using the 
sorting algorithm for a tree as given above and this 
requires O(log N) steps. Merging phase i requires 
(i + 1) X O(log N) + O(log N) time. Hence the to- 
tal time required for sorting is 

i=2 log N 

iFl w + 1) x w% NJ + w% WI 

+ O(log N) which is 0(log3N). 

5.2. Fourier transform 

We assume that the number of inputs is 
2N2 log N and that these data points are distributed 
among the leaves of CCT in column-major way, i.e. 
the first N2 data items are distributed among the 
leftmost leaves of the N2 pruned full binary trees 
one item per leaf, the next N2 data items are simi- 
larly distributed among the second leftmost leaves of 
all the pruned full binary trees and so on. 

For 2N2 log N data points, we need to simulate 
2 log N + log log N + 1 ranks of N 2 log N butter- 
fly operations in each rank. We assume that during 
computation, appropriate power of (2N2 log Nkh 
primitive root of unity is available at the PEs. First 
2 log N ranks of butteffly operations are done by 
using the cube connections. For butterfly operations 
belonging to rank i, 1 I i I 2 log N, cube links 
connecting the ith leftmost leaves of the N2 pruned 
full binary trees are utilized. In each time step, these 
links can do N2/2 butterfly operations of rank i. 
But we need to do N2 log N butterfly operations of 
rank i, so to do all the butterfly operations of rank i, 
we need to use these links 2 log N times. To do all 
the butterfly operations of rank i, we have to succes- 
sively bring other columns of data to column i 
where the cube connections corresponding to rank i 
are available. This amounts to bringing the data from 
the leaves of pruned trees successively to the particu- 
lar leaf of the tree where the cube connection corre- 
sponding to this rank is available and this has to be 
done in parallel for all the N2 pruned trees. Using 
pipelining in each pruned tree, data from the leaves 
can be brought successively to a particular leaf of the 
tree for butterfly operation in time proportional to 
the number of leaves in each tree, i.e. in O(log N) 
time since there are 2 log N leaves in each tree. 
Assuming that the links are bidirectional, the column 
can be sent back to its original position after the 
butterfly operation in O(log N) time. Operations of 
rank i, 1 s i < 2 log N can be done in O(log N) 
time. So the time required for 2 log N ranks of 
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butterfly operations using cube connections is 
2 log N * O(log N) = 0(log2 N). The remaining 1 
+ log log N ranks of the butterfly operations are 
done by using the tree links of the CCT. For rank 
2 log N + 1, all the N2 log N operations can be 
done simultaneously utilizing N2 log N subtrees 
each of height 1, logically constructed out of N2 
pruned full binary trees. Each pruned full binary tree 
provides log N disjoint binary trees of height 1 each. 
For rank 2 log N + 2, all the N2 log N operations 
can not be done simultaneously because of conflict 
in using some tree links by two operations at the 
same time. So these operations are staggered over 
two time slots. In each time slot we use 
(N2 log N)/2 subtrees of height 2 each. Each 
pruned full binary tree provides (log N)/2 disjoint 
binary trees of height 2 each. Thus, for rank 2 log N 
+ 1 + log log N, we use N2 binary trees each of 
height log log N for log N times to complete all the 
butterfly operations of this rank. In general, to com- 
pute butterfly operations of rank 2 log N + i where 
1 I i 5 1 + log log N, we need to use disjoint trees 
of height i for 2’- ’ times. The time for this step is 
proportional to i2’- ‘. So the total time required for 
computation of butterfly operations of these 1 + 
log log N ranks may be written as proportional to 
the sum of the following series: 

mance for ascend/descend type of computation by 
mapping the problems of sorting and Fourier trans- 
form. Though for these problems the performance of 
CCT is lower than those of hypercube by a logarith- 
mic factor, CCT has the major advantage of having a 
maximum node degree of three compared to size 
dependent variable degree nodes in the hypercube. 
The degree-diameter product metric of CCl’ is low 
compared to that of a hypercube of comparable size. 
Having low node degrees in a network enables one 
to construct larger and larger sizes of network using 
the contemporary VLSI technology. When the num- 
ber of nodes in a hypercube is very large, it would be 
impossible to implement the network in VLSI be- 
cause of technological constraints. Moreover, the 
data routing is simpler in CCT than in hypercube 
because the number of directions in which data may 
be sent from a node is two in CCT (through cube 
links or tree links) whereas it is a logarithmic func- 
tion of number of nodes in the hypercube. We have 
also shown how to make it fault-tolerant by suitable 
use of spare PEs and links. Hence CCT is a potential 
parallel processing architecture for VLSI implemen- 
tation. 
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