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Afesiract — Imprevement & odeterioration for a repairable
system are sudied, n parthonler n teromy of the effect of ageing
ova the distribution of the time to first fallure under & non-
homogeneous Poisson process. For a repairable system undergo-
ing minimal repair, the optimal replacement tive under the age
replacement policy & discussed.

i. INTRODUCTION

The performance of a repairable system can be better or
worse with the passage of fime. A repairable system improves
(deteriorates) with time if the times between two Successive
repairs tend to get larger (smaller) in some sense. Ascher &
Feingold [I] defined systemn improvement {deterioration) in
terms of orderings between interarrival times (fimes between
successive failures). However, their definitiom is valid ooly
under the assumption of s-independence of these interarrival
times. Ebrahimi [8] and Deshpande & Singh [7] defined system
improvement {deterioration) by considering the entire history
of the system, They compared the conditional mter-arrival tmes
through several known partial and complete orderings [6,7] be-
tween probability disttibutions,

We consider a system with minital vepais, fe, the failed
system is restored to a condition which is the statistically the
shme as ity conditon just prior to failure. Most repairs involve
the replacetent of only 4 very small fraction of a system’s parts.
A gystem subject i mirdmal repair can be modeled by an NHPP
(L 1.

Secticn 2 defines improvement (deterioration) of the system
by comparing inter-artivel times through a few partial and com-
plete orderings betwean prohability distributions, then it derives
some results and connections thereof, Section 3 detormines the
cptimal replacement time under age-replacement policy

(wherzin items are replaced at failure or at prefixed time) for
& sysiem subject 10 minimal repair,

Novarion (Statistics)

S(n)  arrival time of faiture ;1 = 1,2,...
Xin} imterarrival time between failores n—1 & oy n =
N(r)  number of failures in [0.f]

Felx) F glx).rylx) [pdf, Sf, failure rate] of X
gv{x),Cr{x)(pdf, Sf] of ¥

ex(x) mean residual life of X: [[*F y{eu) du]/F y(x)
ax(x}) Var{X—zx|X>x}, the vadance of residual life of X.
B ordered real numbers: if there is only 1 number, then

5 =X(1)
X{ns,_peootry X(m), given S{&) = 5, fork = n—1,....1L

Acronyms’ & Nomenclature

MRL  mean residual-life

NHFPF non-homogeneous Poisson process

MELF mean residual-life functon

DLR, TLR [decrcasing, incrcasing] likelihood ratio:
Srlx+ 1) ify(6) is [non-increasing, non-decreasing] in
tforallx =0

DFR, IFR [decreasing, increasing] fzilure rate: »(x} is [non-
increasing, non-decicasing] mx forallx = 0

DMRL, IMRL [decreasing, increasing] mean residual lile:
elx} is [non-increasing, non-decreasing] in x for all
xz0

DVRL, IVRL [decreasing, increasing] variance of residual
life: o°(x} s [non-ingreasing, non-decreasing] in
forall x = 0

NDWVRL, NIVRL net [decrcasing, increasing] variance of
residual life; ¢*(z) [=, =] o%(0) for all x = D

NWU, NEU pew [worse, hetter] than used: F {x+¥) [=, =]
Fix)-Fiy) forali x,y = 0

NWUE, NBUE new [worse, better} than used in s-expects-
tiom: exfx) [=, s]ex{0} toralle = 0

NWUFE, NBUFE new [worse, better] than used in failure
rate: r{x) [=, =] r{0) forallx =0

8%, X85 g(x) is [star-shaped, anti-star-shaped] if g(x)/x
is [increasing, decreasing] for all x = 0.

Notation (Logic)

X%y xs latger than ¥ in likelihood ratic ordering:
Frix}/gy(x} i5 non-decreasing inx forall x = 0

"The singular & plural of an acronym are always spelled the same.
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xFy X is lurget than ¥ in failure rate ordering: ry{x) =
relx) forall x = 0

X is larger than ¥ in stochastic ordering: F(z) =
Gele) forallx = O

X is larger than ¥ in mean residual life ordering:
egfx} =z ey(x) foraullx = 0

Xis larger than ¥ in s-expectation ordering: E{X} =
E{Y}

X¥y
xBy

-

x2¥ Xis larger than ¥ in variance of residual life arder-
., ing: o}tx) = of(x) forallx = 0
X = ¥ Xis larger than ¥ in variance ordering: o3(0) =

ap(0)
x4y xis larget than Y in initial failure rate ordering:
{0 = rpt0),

Other, siandard notation is given in *‘Information for Readers
& Authors™ at the rear of each issue,

ASFURpTTons

1. Repair times are negligible.

2.850) = X(h =40

3. The repair function does cxactly what it is assumed o
do — neither beter nor worse, In particulsr, repair never
darnages anything. -

Definitions

1. Mirdmal repair: The failed system is restored o a con-
ditien which is the statistically the same as ils condition just
priee to failure; i, if the system fails at time ¢ and underzoes
minimal repair, then the 8f of the repaired system is .F"_x“%
(I+X3/F g1, (0), and the system is modelled by an NHFPP.

2. Age Replacement Policy: A unil is replaced {with a like-
tew unif) upon failure orat a specified age, whichever comes frst.

3. [E=LR,FR, 5T, MR, E, VR, ¥V, r(0)] E-Imprewing
{ Deteriorating): A point process {N{r): ¢ = O} consisting of
imterarrival times X{1}, X{2}, ... is E-improving (-
deteriorating) f X(jis,_ ... 0} =% (=) X(iis;_0.0) for
every j = { = | and every 0 < &y <. < 5y, with atrict
inequality for at least ane pairing of interarrival times.”

1. IMPROVEMENT & DETERIORATION

Fhuhimi (8] and Deshpande & Singh [5] defined sysiem
improvement (deteriorstion) by comparing the conditional in-
tererrival times through ST, LR, FR, MR, E orderings between
probability distribucions. Other partial ordetings of distributions
and their comresponding relationships arc available in the
literature [6,7]. Definition 3 covers improvement (deteriora-
tion) of a repairable sysiem through other partial orderings,

*Most repeirs involve the replacement of unly 5 very small fraction
of 4 syslem's comstituent parts,

*The eyuality will hold in each case for » homageneous Paissan pro-
cess {HPF), becauss it is neither improving hor deteriorating.
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2.1 General Case

The cffeet of ageing of X( 1) on improvement {deteriora-
tion) of the system undergoing minimal repairs at failure is
discussed i thegrem 1.

Theorem 1. The stochastic process {V(r): ¢ = 0} generated
by a minimal repair policy, ie, by an NHFP, is improving
(deteriorating) —

a. in the VR sense iff F g, () is TVRL (DVRL).

b. in the ¥ sense iff .Fxm{x} is TWVRL (DVRL).

. it the r{0} sense iff F .y (x) is DFR {IFR}. |

Thus for 4 system wndergeing only minimal repair —

« improvement {deterioration) in the VR or ¥ sense is the same.
« improvement {deterioration} in the r(0) or FR or 5T sense
is the same [5].

In some situations, a system wndergoing minitnal repair
might mot be improving (deteriorating) monotonically, bt the
‘time after every repair up to the next failure’ can be compared
with the “time up to the first failure’. We show that improve-
ment {deterioration) defined by such a comparison is equivalent
to cerfain properties of the distribution of X{1).

Theorem 2. The stochastic process [N{f): ¢ = 0} generated
by a minimal repair policy iz improving (deteriorating):

Xin+1s,...5q)e{s1X(1).loralln = 1and for all 0

8 L Sy —

in the LR sense iﬁ-Fx“}{I] is DLR {ILR).

in 1he FR sensc i.l'[.fx“,[,t} is DFR (IFE).

in the 5T scose il Fm,(x} is NWT (WBL) [5].

. in the MR sense iff Fy j(x) is IMRL {DMRL).

in the E sense iff Fy; (x) is NWUE (NBUE) [5].
in the VR sense iff F gy, (2] is IVRL (DVRL).

. in the W sense iff Fy;,)(x) is NTVRL (NDVRL).

. in the r{() scose iff Fx[_]{x] is NWUER (NBUFR).
|

P e R e oo

In the compearisons of theorem 2, different orderings lead
tor different properties of the distribution of X(1). Comparisons
based on weaker orderings lead to suceessively weeker ageing
properties of the distribution of X(1).

2.2 Special Case
Motation

Ay ingensity of NOPP
Afr)y  mean of NHPP: [§ Ay} oy
Az ) Alr+x)—Al).

{M{r): r = 0} is a NHPP with intensity A (¢} and mean A{r}.
The improvement (deterioration) of the corresponding repairable
syatermn s discussed in terms of h(t).
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Theorem 3. The NHFP {N(r): 1 = 0} with intensity function
A{r} is improving (deteriorating) —

a. in the LR sense iff h(x+f)-exp[—AA(zr)] iz non-
decreasing (non-increasing) in v for all xt = 0.

b. in the FR semse il h{7} iz non-increasing (non-
decreasing) in ¢ for all ¢ = O.

c. in the r(0) sense if A(#) is non-increasing (non-
decreusing) in ¢ for all r= 0

d. in the stochaste senss (T Ad(m—0, ) = (=)
Adp—tyn4xifor 0= < &, andx = 0 [B].

c. in the MR scose iff exp[A (x+1)]- 5. expl—A{y)] dy
i non-de¢reasing (nen-increasing) in ¢ for oll .7 = Q.

f. in the F sense ilF exp[A{)]-Fexpl—A{¥}] dy is non-
decreasing {non-increasing) in ¢ for all 4 = 0. -

Theorem 4, Let IN{¢): ¢ = 0 } be a NHPP with intensity fanc-
tiem k(). Then,

Xin+l 6.5 2 (=) X(1), for0 < 5 <...< 5, —

a. in the LR sense iff A{x+r) -exp[—AA(z; 1)] = (=)
M) exp[—AL{z O], forall zx = O

b, i the FR sense iff A{x41) = (=) Ax), for all £.x
= {}, fe, A(¢} is concave (convex) for all r = 0.

¢, in the r{Q) sense iff A(z) = (=) M), forallv = 0.

d. in the stochastic sense iff A(#) is sub-additive (super-
additive) for all ¢ = 0.%

e. in the MR sense iff exp[A(x+0)] {55 expl—A{¥}] dy
= (=) explA{x)]-[Texpl—A(y)] dy, for all 7 = 0.

f. in the E sense iff exp[A(1)] - [Fexp[—A(y)] dy = (=)
[T expl—Alr)] dy, for ati ¢ = 0.
Proposition 1. Let A{z) be XS5 (S8}, then,

X(a+1; Spens) = (2) X(1), for every n = 1 and

0<5 <% 5

3. OPTIMAL REPLACEMENT TIME UNDER
AQGE REPLACEMENT POLICY WITH MINIMAL REPATR

Motarion

ki) operadonal cost of a unit operaring during |0,4), R{0)
=10

i axe @l which thers is; %) uoplanned teplacement, or
b} & major unrepairable breakdown, a r.ov,, & > L

£y cost of the repair/replacement ar I

T age at which there 15 a planned replacement

) cowt of the planned replacement at T

7 minff, T}

chlx)  cost of minimal repair i at age x

Fixy Sf of a new unit

A Muetion Adr} is sub-additive (super-sdditive) iff A(r+1) = (=)
Al +A{x) forall rx = 0.

M(t]  an NHPP with mean fonction fg-F ' (v) dF (¥
5 arrival-time j of M{1)
! implies grdinary derivative
&1} & (1) continuously differentiable functions on [0,e2);
@) = iy = 0; ¢" (1) = 0, " (¢} > O oo [0,e)
e ()
Dz -y — (1)
Savits [9] considerad a model with an underlying stochastic
process {R(r), 0= = [}, Under the age replacement policy,
4 planned replacement occurs whenever a [unctioming wnit
reaches age T,

D{r)
T}

Assummprions (Addidonal)

4. If an operating unit fails at age x, it is replaced by a
new unit with probability p, or minimaily repaired with prob-
ability g=1—p-.

5. Mty and { are s-independent. -

Then [4,10),
o ' - _
Sf{t} = G(1} = ﬂw“ poF N dF(::J] = Fplt),
1]

ME-]
Rit) = E chis). 0= =L

i=l

The long-run average cost-rate for such a system under age
replacement policy is:

HT) = lim {C(0/1} = A(TV/E{n},

-

T
Efy} = j Gy} dv.
4]

A(T)

2
e FlT) + e F (1) + j g-hi(yy-F~'(¥)
b

Fo(¥) dF(¥),
k{v) = E{cM (),
We determine the T that manimizes J{ Ty Iy using an op-
titnization lemtos [9].

Lemma 1, O = [R + ¢/, r = 0, R = 0, D{#) is
non-Jecrepsing (non-increasing) over [0,9e). Then,

1. T'(z} is non-decreasing (non-increasing) over [0, 50,
i. If 1) is non-decreasing and lim,_{T(¢)} = R,

(413

there exists at leasl one point ; < o which is a global
minimum of C(r). Such points are the only solution of:

I'ir) = R {4-2)
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The minimum of C(¢) subject to (4-13 iz C{g) = D), &
is any solution of {4-2). The global mirimum and hence the sol-
tion of (4-2) is unigue if D{7) is strictly increasing.

ii, if D(ry is non-decreasing and lim, ., {0} = R,
then €} is & non-increasing function of ¢, so that a
mmanimum of O occurs at ¢ = =, However, C1)
can assume the minimom vahue at all points ¢ € [w, o)
for some finite o

i¥. For the remaining cases, such as: a) the limit in (4-1)
i5 less than R, or &) 2{r} is non-increasing over [0, o),
then C{1) is a non-imcreaving function of ¢ and the
minimutn of C(¢) ocours only at § = @, -

3.1 Constant Probability for Replacement

Assumption: r.i,{}a} = Oy

AT = ¢, BTy + ¢ F (1
it

Elg) = | Fo(¥) dy,
Jd

J(T) = A(D/Ela}

g, = lgipl-qy + o
Compare J(T) & C(T) vsing lemma 1.
R=cy, y(T) = &-Fy(D)
r_
w(T) = Fol¥) dv,
A0
o = (gip)ca + 61—

Hence the conditions of lemma 1 are satisfied.

D(IY = re(T)-[eo + p-{er — g ~ &2)].

If rp( T} is & non-decreasing (non-increasing) function of T and
£; = &y + o, then INT} is increasing (decreasing) owver
[0,02).

limr_o{l' (N} = cp-lp-limp_uire(T)}-Efg} — 1] > o,

when rp{¥) — o, Therefore from lemma 1, the optimal
replacerment time T is finite and is the soluton of:

ot
e, (Th- Foiz)dz + F iy = cofee
Jo

g, [t) = p-re(7).

Example
Let F he Weibull with:

re() = E-h- () 1 A0, k=1L

The optimal replacenment Hme T i3 finite and s the sohtion of:

T . 5
prhAETE L expl—p O™y dy + exp(—p(A-TH)
Jo

= gy

The L.h_s. can be evaloated 45 an incomplete Gamma integral
whose values are readily available in the tables,

Remark: If Fis DFR and ¢y = ¢y 4 &, then the optimal
replacement time T, = o e, there should be no replacoment.

3.2 No Unpiznned Replacements {p=0}

The model, considered by Block et ai [4], is 4 generaliza-
tion of the minimal repair model [2,3]. Then [10],

a

T _
A =0 + j h(y)-F ~1y) dF(y),
1}

1

Fiy) dy.
o

= E{c!""*(y}} = . &*"(¥) poim(x:A(y))

M) 15 a WHPP with mean function A{r) =

Ay}

= cly)-expl~Aly) & ql¥il.

i

ATy = en + | eply)rexpl—A(¥)-Zplyd]-rp(y) gy,
o0

Efq} = T

The long run average Cost-rale is:
J(T) = A(TWT.

Compare J(T) with C{T) in lemma 1.
R =y,

'T

(T cpbyr-expl—A(Y T olF)]-relx} dy,

J0
¢{Ty = T.
Hence the conditions of lemma 1 are satisfied.
DT = (1) -exp[—ALT) T { TH ek T)
= exp[—A(D)-&o(N]-[eg{T)-re(T) + colT)-rr(D)
+ (N rp( D) - [A(T) gl Ty — AT(T)-E(T)]].
Example

Let the operational cost be constant: cp(f) = o

DT} = ars(Ty + (ep— 1) 7R D) -expl-A{T)-Tq)
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P(F) = exp[—A{T)-fql-[eg-Trp{T) + e0/] — e/

1]._'II£1‘“ {I"{Tj} > O3, for g > 1

Thus if F is IFR, then £2{ T} is non-decreasing over [0,=) and
hence, from lemmsa 1, the optimal replacement time T is finite
and ts given by a solotion of:
expl— ATy To] fep Tore(T) + ou/c gl

= [ig = gy {ea—1}] /e
If I¥T) is non-inereasing over [0,20), then T = oo,
For 0<¢<1, lim TN} = —qify < 0 < o
Hence for any F, the optimal choice is ¥; = ce. Thus in all
cazes, the best policy is never to replace a unit but to minimally-
repair it on failure, -

APPENDIX

A1 Proof of Theorem 1

a. I_‘J._II___Jf] U} EHL [E} -rsr-_| ..... & {”

o ':sz’)c sy bnt1] (x)

= (=) of (x)
LN 1 x.'r"_l......':lh]

forafl ¥ = Oand for all Q < & < ... < &,

= a%xm{:r+.;n} = {=)} u%x{._]{x-i-.i‘"_l}

forall x = Oand for al 0 =< 5,0, < 55

- U}xm (x) is & non-decrensing (mon-increasing) function
of x;

=+ Fyy 15 IVRL (DVRL).

b X G E(B XD

(o

0 = (=) of
E e 40 (=) Py g iat

torall 0 < 8 < .0 < &y
o by, ) = (2) aim}(.v,,_,y forall 0 < 5, 1 < ¥

- Fx{j] is IVRL {DVEL).

IEEE TRANSACTICINS ON RELIABILITY. WOL. 43, KO, 1, 1984 MARCH

1 )] :
c. ‘X-SJI_._]_ ..... :1(}} = [E }le._l IIIII ‘1{1:]

{0)

L= =
Ry ey O = (SdR,

forall O = & < ... < 5

s
= e i) = (S ) gy (S forall 0 < s < 8y

<> Fy, is DFR (IFR).

A2 Proof of Theorem 2
Observe that

PriXin+1) = x | S(m)=sn....5{1 =1}
= Pr{S(r+1) > x+45, | -'“n}=.in,....,5'[]]=.';1}
= Pr{S(n+1) > x+s, | S(n)=s.}
=PriX{1) = x+s5, | X(1) = 5.} forall 6, = sy, > ...
The proof of the theorem follows by further observing that

o S ix4s)
is given by ————
-'Irx.;n.....sl':“"'l:' B ¥ Fyiiy (5.3

T, (et L) (£) = Fggp X + 5ad:

[ 4

Fr, el X = Chg U+ sk

1

Fa, b1y )

- 1
o = apx{”{x + £.).

4.3 Peoof of Theorem 3
Observe that for 0 < &) <., < §,_7 < [

Pri{X{a} > x| 3{n—1) = £ 5{n—-2) = 5, _3....8(1)

= 5}

Prixin) > x| S5{n—1) =1}

x4
expﬂ ALY) dy]

expl-Alx+6) + AlD).

Hence

ra

+1
Jf’f:.sn—z..._.rlin}{'r} = Ax+1) exp[-*j Aly) ‘iJ']



BAGALTAIN: IMPROVEMENT, DETERIORATION, AND OPTIMAL REPLACEMENT UNDER AGE-REPLACEMENT 161

a. By definition, NHPP is improving (deteriorating) in the LR by
sense iff for ¢ > #, the ratio of Aix+r,) f:xp[*l Ay ﬂ’:r]
- — =t ={=)
EEN THi .
hx+iy) exp[—- ( Ay} dy}and AMa+i) :ﬁp[—-j h{w) dy}
w bl 1
"z+.‘3h i
Py 3 g : Oy
exp[ L ) dy] * Alx+e) :xp[--‘ LAY d}']
v E
non-decreasing (non-increasing) in x = 0, Pzt

cpoaz A r:ifv}

forall x = 0 and ¢, > #,

Axt+a) eapl —Alx+1)}
Mx+iz) expl—Alx+)]

: i i ,
kn sy (el = Alx+n) =(=) xt+n) forall x = 0and #; > #,

inx =9, - A} ismﬁ-inmsjng(nm—dmmsingj intforalles = 0.

hoz+e) _ W o{x+t)

= ¢ i - . decalii 1 i st
hix4+n) I = (=) hix+n) ¢. NHPP is improving (deteriorating) in the r(0) sense
- AMa+n) forallx = 0 ey @ S e g (O)
asguming that A’ (x) exists, for all f; = £,
] hir+4) i = e h) S(=) rpy, () foraliy > o,
BT ——t ={=) hx+H)—hir+
e [ln-g Mt ] ={=) hix+4) {x+13]

s hin) (=) Aalp) foralln > g,
for all x = (1,
<+ Alt) is non-increasing (non-decreasing) in £ forafl 1 = 0,

?x(x+!'] ) X ) [z+r-
Moty SUSTeRRy)  MMAy =) MOV g By definition, NHPP is improving (deferiorating) in MR sense
i v iffforallyy > pandx = 0,

foralix =0 . R
[ e
= Mx+i) exp{—i hiv) d_}'l 2
o] R )|
enp[ \ hiy} dy]
X1 v
=(=) Mx+s) exp[—{ Aly) d}*} - :
b [ onf- ] )
for all x = 0, =(<} "
: I+t l:.‘-ip[—j Aly) d}]
e hiz+1) exp{—\ A d}’} 2
wl

.m ::xp[—fh{u+r1}j. dir

uwd

is non-decreasing (nop-increasing)

=1
intfor all x = 0. expl—Alx+]]
This means that the conditivnal density function of X{#) is non- =
decreasing (mon-increasing) in r, the time of (n— 1™ faiture. I expl—A(u+i)] du

w I

=(=)
b. NHPP is improving (deteriorating) in the FR sense expl —A{x+8)]




= exp{A{c+s)] rﬁ exp[—A{u)] du is non-decreasing

o I+t
(non-incrsasing) in ¢ for all x, ¢ = 0.

E

& B[k, s (nt+1)] = j: [-[

I
() @} d

A

[ I+ 3
] exp[—[ Ay} dy + { Aiy) dy} dix
L] B

0 wik

expA (1] r exp[~Alz)] dz

Hepes fiom the definition, the result follows.

Proof of Thecrem 4

We shall prove 4. The proofs of the remaining parts follow

on similar lines as those for theorem 3.

5T 8T
d X, qle+l} = (=) X(1) for every ® = 1 and for

0 << .= .5

< exp{-Afr+s) + Als)} = (=) expf—\(n))
forull t = 0,

= A{f) is sub-pdditive (super-additive),

Proof of Propositon {
Congider fort = 0

exp] —A(i}} [m expl-A(y)] dy —rﬁp[—hml ey
w0 i

f
= exp{=A(1)} [ exp[—A(y)] dy
wt
= [1—exp{—A{#}}] Ewexp[—ﬁ-(}'}] dy

H
= (&) eap{—Alr)} E expl— {¥A () }re]
n
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n

= [ — exp{-A{rN)}]

Je

expl— (¥ A(r)) /4] dy

since —Jliy—} is non-inereasing (non-decreasing) in ¥,
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