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Abstract, The complete proofs of Krein's theorem on the spectral chift function and the
trace formula are given for 4 pairc of seli-adjoint operators such that either (i) their differance
is trace-class or (i) the differsnce of their resolvents is trace-class. The proafs, essentially
due to Krein, is based on Herglotz's theorem on the boundary value of the analytic functlicns
whose imaginary parl i non-negative on the upper half plane, and an almost optimal ¢lass
of functions are chtained [or which the trace formula is valid. Also an alternative method
based on Weyl-von Neumann's theorem for seli-adjoint operaters, avoiding the complex
function theoty and inspired by Voiculescw's work, is given for the firet case, Furthermors,
some applications of the spectral ghift function have been discussed.

Keywords. Spectral shift function: trace formula; Erein thaorem.

1. introduoction

Krein’s spectral shilt function and associaied trace formulas [9,18,19,20,30) have
heen of considerable interesl as an abstract mathematical statement as well as for
various applications. The original proof of Krein (see for example [207) uses analytic
function theory and we use the same in §2 and §4. Voiculescu [28] gave a proof of
the trace formula without using function theory for the case of bounded self-adjoint
operatars. We extend this method in §3 to a pair of arbitrary self-adjoint operators
with their difference trace-class, In the appendix we collect some ol the necessary
results from analytic function theory without proof as well as the definition and some
properties of the perturbation determinant. Section 5 deals with some applications.

Tn this article, # will denote the Hilbert space we work ing B{A), B () and
28 ,(#) standing for the set of bounded, (race-class and Hilbert-Schmidt operatars
respectively. We shall often have H and H, as a pair of self-adjoint operalors in #
with o(H), o(H ) their specira; p(HY, p(H ) their resolvent sets with R and R? their
resolvents and £, EY the associated spectral families. The symbols |-l [ [i1 and |-]j2
will denote operator norm, tracé norm and Hilbert-Schmidt norm respectively, while
Tr B will stand for the trace of a trace-class operator B.

In a finite dimensional Hilbert space the problem is easy to state and prove.

Theorem 1.1. Let H and Hy be two self-adjoint operators in 4 finite dimensional
Hilbert space 3. Then there exisis a unique real-valued bounded function £ such that

(i) &1)y=Tr(ES—E,), AcR.
) [E(hdi=Tr(H —Ho)

§19
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(iti) for @eCt (),
Trle(H)—-p(H )] = J&'{i}f{i}di- | (1.1)

Furthermore, £ is a constant in every real open interval in p(H)n p(H ) and has support
in [a, b}, where a=min{inf o(H),inf o(H)}, b= max{supo(H),supoc{Hy)}.

V) If H—H,=<|g>{g| witht =0, |g|| =1 {we have used Dirac notation for rank
one operators), then & is a {0, 1}-valued function. More precisely, £(4) = 0 X (4 for
r disfoint intervals A;C R, 1<r<n

Progf. In fact, we define £ by (i) Then £ is & bounded real-valued function with the
stated support property. We only prove {iii), (iven the support of £, the integral on
the right hand side of (1.1) is over a finite interval only. By functional calculus,
Trlo(H) — @(Hy)] = ~ Jo(dEd) = — A2 +_fqﬂu] (A)dd, and the result
follows. That ¢ is constant in every open real interval in pHYnp(Hy)is a consegquence
of the definition of the spectral families.

Let v, €. €4, and p S, <y, be the cigenvalues of H, and H
respectively. Then since H — H,; 15 positive rank one, it is a consequence of the
minimax principle for eigenvalues [14] that 2, <y, € 4, ,(1<j<n—1)and 4, €

From this it is clear that if ,;=1;,,=4._,=--=4;,, for some j and s, then
W;=piey ==y, =A;. This and the expression (i) for ¢ leads to;

‘f()} = Ej: lxu‘l.,,,j](e‘l}a :
where weset . .(4) =0 for those j for which i, = u,. L

The next corollary follows easily from the theorem.

COROLLARY 1.2

For teR, Tr(e™" — ¥ = jt [ ™ E(1)dJ.
In an infinite dimensional Hilbert space, the relation £(1)= Tr(ES — E,) will not

make sense in general because E':' — E, may not be trace-class. Next we give a counter
example due to Krein [18] where H — H pisrank oneand yet E, ~ E is not trace-class.

r
Counter example. Let 3 = [*[0, c0) and L= — % be the differential operator with
X

D(L}=Cg(0,o0). It is known that L has several self-adjoint extensions depending

upon the boundary cenditions on the mrrespondmg differential equation. Of them
choose two, namely b, and A as

Fe:f and " areabsolutely continuous,
D(hy)=

fre#and f{(H=0
and

D) = { fes#: {and j” are absolutely continuous,
ffes and f(0) =



g e o i s e Bt e e,
—t
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Note that both h, and k are positive operators. Onpe can compute the spectral families

Foand F, of h, and h respectively by solving the associated ordinary differential
gguations and get for A=0 '

"[.:-]1'"?

Fx, )=~ ] sin tx sinty dt
.y
and 12
iyt
D Fxy) = [ costx costydt.
W0

Let HD={hﬂ+I‘}‘1 and H=|[h+I}". The Green's functions associated with
(hg+ 1)t and (h+ ! are

Golx, ) =¢e"" ginhx, x=<%¥

e *sinhy, xZY -
and 13)
G{}C, }'} =g’ coshx, X =¥

e *coshy, x=2V

respectively. Then H—H, =1§]1ﬁ} {_L,f:], whete (x}= \ﬁe“ so that |yl =1 Let
= 1— Then E9=1—F) and E, = [—F, are the spectral families of Hy and H
1+ 4 L 4 "
respectively and
: gin A0 )
E“{x‘ }?jl - EE: f_:'f-, }1} = F?."r.xr J"} o F.J.[x: }'} : {_ z.frﬂ] =T %‘jﬁ_'i—?"]_"_ Ii]' 4}

Note that E - EE is not trace-class since the Hilbert-Schmidt aorm

nc. P i1
j‘ sln ‘\’I‘_J].{_xt.y_}dxd}l

o _§(x +}')1

. |

J j (B () — ESf ) dy = QI j

._.[:.u & 120, equivalentlyil 0<u<l,
o if A=0, equivalanﬂ}fi[ p=L

HE, = E{ were trace class, then since its integral kernel (1.4) is continuous, we could
evaluate the trace {see D- 523 of [16]) as:

=]
Tr(ES - E,)= JD (B — E,)x, x)dx
T Ja 2x
|
£ if 0<p=<land
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In §2 we shall define Krein's spectral shift function ¢ when the difference of H and
Hy 1s trace class, and in remark 2.7 {iv) it will be shown that £ in the above example
is precisely the expression (1.5) though EY —E is not trace class,

Here we mention some other authors who have also dealt with this subject, in
particular Clancy [10] and Kuroda [17]. There is also the interesting approach of
Birman and Solomyak [8] using the theory of double spectral integrals, also developed

by them. They obtain a trace formula of the type (1.1} for a function class somewhat
larger than what we have described in §2-4,

2. Spectral shift function and trace formula: the case of trace—class perturbation

It this section we shall establish the existence of the spectral shift function and prove

the trace formula (1.1} for a large class of functions under the assumption Ve, .
The following theorem concerns the first assertion, (see also [207, [257, [107).

Theorem 2.1 Let H and H o be two self-adjoint Operators in # such that V= H — H e
.. Let A(z) = det(] + VRY), forImz = 0, be the perturbation determingny (see appendix
Jor definition and i3 properties). Then there exists a unique real valyed LYR) - function
¢ satisfying

(i) :(,u% lim Tmln i+ iy (2.1)
(i) Jﬂm EDIE IV, | eaa=Tey
o i
(i1} ]nﬁ{zj:J‘m %dl for Tmzs0,
(iv) Tr[Rz—-RE}z—-J‘:C H‘f_{i}}zm for Tmz 0,

Proof. Let V be self-adjoint, rank one, Le. V=1lg3{gl, t #0 and |g| = 1. Then for
Imz (),

o _n2
M) =1+1(5.R0) = 1 +-.:f5’ L] (22)

A=

In the fnﬂuﬁ.fing by In we mean the principal branch of the logarithm function.

a2
If Tmz>0, then by (2.2), f"Imﬁ[z}:(Imz}J‘%:!&g[l'T:}t} or equivalently
—2z

0<(sgn) IminA(z) <7, where Sgnt= 1 [ according as v > or <0, Since A(z) is
analylic and has no zeros there, G(z)= (sgn1)ln A(z) is analytic in the upper half-
plane {zeC:Im z = 0} and, by (2.2), |G(z)| = G(—l)

asIm z~+ 0. S0 by theorem A1
Imz

there - exists a4 non-negative function fef! Eiven by ﬂ'{}i,]:-]— hm ImG(i + ie) for
ﬂ:c-a-l]—

almost all 1 such that

(sgnT)inA(z) = G(z} = i ,—{—jidﬁl,
cwA—2Z

P T e R P PSR!
L

Ayl

e ke
i
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Set () =(sgn7){(A). Then by theorem A.5 (i) and the above relation one obtains

Tr(R,— R%) = ~~i1naiz:~: =] ) Ejfﬂ ;b 23)

since the integral in the right hand side converges uniformly in z for Tmz =& >0.
Using the resolvent identity R, —R; = — R, VRO and the fact s —lim, . VR, =
s —lim _ ipR{ = — !, one gets YR, — Ry}~ V in &, -norm a5 J— 07 (see lemma

8.23 of [1]). Since eL!, an application of dominated convergence theorem then
yields :

. _ T v2Tr(R. — RS
= Tr V = lim 3 Tr(R,, — R}

1 et
: e} 2 -2
— —lim J LAy [ ER)di. (24)
y—rom —m{f-_i.y}z w — 3@ _ ;

So by (2.4}

o ™

) |r:-{.=.1|m=r RaL=Gsgnd | | eMdi=GsnryT=ld =[Vis

Next, let Ve®, and write P’=Ef=LrJ|gj}{g.| with Eﬁllf_rl <, |g;1= 1 for each
i Set for k=1,2,....H=Hy+ v 2H, + 1 ol y<e) RE=(H,—2)"" and
A, (z} =det(I +(H, —H,_, JR¥™ ). Then, as before, for each k = 1, there exists a real
valued function &eL! such that J& (4)di=r1, and [|1€,()|dd =|7,|. Define E{A) =,
= | E{4); the right hand side converges in L'-norm since el < This also

shows that £e L {I). Note that £ is unique gince each £, is. Moreover

a

)m eodis ¥ r 1ak(ft)~.da=ﬁ T
J—m k=1 w

az =1
and

o =1

[ gy =) J‘ £ (Ayda = %, pp= TEW
o —a k=1 =0 k
This proves (i),

By theorem A.5 (i}

k
indet(] + V,R?) = ¥ InA[z)
jm1

& '[5,1{ E:j! {J.{,l}} {A—2)""

, A

As k— oo, the right hand side converges Lo [%-l d4 for Imz # 0, whereas by the
— I

continuity property of determinant (see theorem A.3 (ii)) the left hand side converges

to In A(z) since V,— V in &, -norm and det(I + V, RE] £ 0 for Imz # 0 and all k. Thus

we get

mA(z) = r S g (2.5)

s o E



824 Kalyan B Sinka and A N Mokhapatra

which proves (iii), The property (i} Inlldws from theorem 13 in [27].

By theorem A.S 1) and (2.5) we have Tr{Rz—Rsz—f (_Q(AJ? dl by
She o

differentiating inside the integral of (2.5), which is allowed since second integral

tonverges uniformly in z for Imz> =0 _ &=

Next we study the class of functions ¢ for which ©(H) ~ o(Hy)e®, and the trace
formula (1.1) holds. For cxample, let (i) = e for fixed tem Note that for ¢ £ 0

e bF itHp t
e_—_g_ - _T'E.:'JH-;J‘ dsp—Hla I pisd! {2‘6}
i 0o

on D{H,). Since 5 e~ b gl o strongiy continuous and sjnce Veds,, it follows
by lemma 8.23 of [17 that s—ve” iMool ie @ continuous. This means that the
Riemann integral exists in #,-norm, the left hand side of (2.6} converges to ¥ as
t~+0in 4 -norm and we have the estimate:

!

| .
i < V. (2.7)
1

i itH g
. ‘ g g, .
Therefore @(H) — w(Hy)ed,. Tt is also clear thatt—-— — _ jca @ -continuous
it

E:-';:H _ EHHQ

it

map,

lrace formula for p(l) = &i**
ffunctions wil] be established.

Lemma22, Let A beg self-adjoint operator in H, 50 that ¥, = (4 — A —-z)"1 EH ()
Jor Imz 0. Then jor any e #0 und ge

(1) f *ii/"uli{fi—f:'-—I'f:fJ"igll""=5'r_.’45!“ll[yrl1
. =" 4z |
(ii} '_ I—Jr-?h‘:'f'“.-sgﬂziiﬂﬁ+IBT"}I|9|£2
Proof. Let {F,} be the spectral family of 4. Then by functional caleulus and Fubing’s
theorem,
™ . ] ™ dl F qllz
J dili[A—-A—-ia]‘igl[zzj‘. d;{J — KT
- = —m_{.ﬂ_";l-.]z"l'ﬁz
= = di
= | arer | S
f_m i F g .,—m'[#—;-]z_‘l'ﬂ'z
= niel 7% g2
Similarly, '
& di = i = (w?+1)
e L 8 '|2=J Tl dlE gt T
J.WH;HH H) _m].+,ﬂ.?-,f_m IF,g (f—2)% 4 g2

-

. i 2 !
__j dr'!_F#g”zJ _ W+ 1)d =
- = 2P+ &2 (1 4 22)

' r AL TR T TR
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from which part (ii) lollows since the integrand is dominated by

7] Y- 12 ¢
2u- :,4:] + A5+ }] 2 2 - :2_2_....2_. (2.8)
[p— AP+ 1+ 4% 1447 {e— A+
]
Let oeC(R) be bounded. For &> 0, define

- o)

tEs] —= du. 2.9)
@.(4) EJ_m{p:—l}z e (

Remark 2.3. If @ and @, are as above, then it is sasy to see that for any self-adjoint .
operator 4, p(A) and @4}, defined by functional calculus, are bounded operators
and @ (A) converges strongly to @A) as e—G

Theorem 2.4, Let H and H, be two self-adfoint operators in # such that
V =H — Hyed®,. Let = C(R) be bounded and ¢, be given by (2.9} Then

() @) =@ (Hy)eH,.
(i) If furthermore peC () and o' is bounded, then

E—* ol

lim Tr{p(H) — ¢ (Ho)} = J‘fp’{l}ﬂf.]dﬂ,

where £ is the function given by theorem 2.1.
Gily I also @ (I — q,(Hy) converges in &, -norm 4s & 0, then the (race formfula
(1.1) holds.

Proof. Let £ > 0 be fixed. Then by (2.9)

L e
m:{'H] - @g{Hn) =% Jd# EP(A}Im(RM . REHE)' (2.10)
s
Since ¢ is bounded, for part (i) it suffices to show that T, {4) = IIRH:-BI—RL e
LA(K;d4). We give the proof of positive sign only, the other case being simlar.
Let V=1%% 1,lg,> {4, with Z%, It | < o0 and {g, } an orthonormal set. Then the
resolvent identity R,— R®= — R_ VR leads to the estimate:

IR,— R, < ¥ Inl IR, 9. (R24,11l4

= . It IR I R3g, .
=1

Setting z = A + iz and integrating both the sides of the above inequality with respect’
to-2 and using Schwarz's inequality and lemma 2.2 (i) we obtain ;

J d. "R:. |-£='"Rg+:'a I

< Y Il f AANRS 0, I IR 48 |
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i ® YI[ = 1/2
% Z [Tkl {J‘ d}"R.?-mgk”z} ][ {. d’liIRJ‘.+Inyk flz}
k=1 L —m o —on
=(mfe)| V1,.
Assume ¢ o be bounded and continuous. Then by (2.10), theorem 2.1 (ii1} and

integration by parts we get

Tt (i, () — ¢, (Ho)} == r dde(A)Tr{lm(R, ., — R}, )]

Tl_x
1= = E(updu }
= - {i,, j' I Tmem
Ej—m ,qﬂ{ }{mj—a:l[ﬂ_-’l_fa}z
] = i l”” i
=—— di — - e —
mf_m PP A
£ , o '. ' A=+ =
o] gz
n - [J”_A'} + e A= oo
A L o {4
+= da e
J '*”“}J_x.m-wﬂz
Mote that qa(}.}J.U: —E{'“}— di—0 as |i|-+ 0 by dominated converzence
—:l:-II:‘I':I_“‘{'}z_!-*E;z I g

theorem. Hence the boundary terms in the above vanishes, und thus

Te{p, ()~ g,(H,)} =" J T | —0 g,

g

LA —m{-u'_‘;l'}z_;‘gz.
[ g Efu) .EJ‘W __ oA ]

J‘-m % w{ﬂ _m{#—i]EHZdﬂ
= J dp(® (),

which converges to J @ (p)E0dp by dominated convergence theorem since

{P.;Uii—rqor[#} fc-zl; overy u (see theorem 13 of [27]) a8 e=0 and is bounded by
; skl dA
suple’()| |- | — =5 , . )
(" & [.”) w) it 1Al This proves i)
Yand g i o) converges in @, a5 6+, then it converges to o(H) — (1, ) since

¢ i and o (H } converge strongly to o(H 1
formula fu]iuwsﬂfmm part {ii), Rl R R tfﬂaﬂ

As a corollary of this theerem we obtain
COROLLARY 25

Let H, Hy and £ be as in theorem 2.1 Then for each (e, o e"‘.”ﬂ =&, and
=i, =ty

- ¥ I‘x
Trie"¥ _ gitHoy _ frJ e E(2)d),

=

h—.—__

(2.11)
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Progf, Let te® be fixed. Then the first part follows from (2.7). Set @(4)=¢"*. Then
@,(4), given in (2.9), can be easily computed: ()= e We". Cleatly ¢ satisfies the
hypotheses of theorem 2.4, and ¢ (H) — ¢,(Hq) = e~ — ") converges in &,
10 e — gt a5z 0. Thus the result follows from theorem 2.4 (iii). [

A function « on [ is said to be in Krein class X if @ is given by

. e Eiil_ 1 .
Ay = J = v(de}+ C (212)
I

for some constant C and complex measure v on R. Note that such a function is
necessarily continuously differentiable and the derivative is the Fourier transform of
the measure v 1.€.,

-

@' {A)= | e v(df).

u

Tt is also worth observing that o(H) and @(H,) are not necessarily bounded operators
(see remark 2.7 (ii)) though defined on D(H)= D(Hy).

Theorem 2.6. Let H, Hg and & be as in theorem 2.1, and peX’. Then g(H) — @(Hq)e®,
Le ]
and Tr{@(H) — p(H,)} = J @' (A}E(A)dA

" ¥}

Proof. By functional caiculus

S EI:H:.

p(H}— p(Hy) = J = — v(dt), (2.13)

-

where we have observed that by the discussion following the proof of theorem 21

and estimate (2.7), the integral in (2.13) exists as a &, -valued Bochner integral (page
30 of [5]). Tt also follows that

Ny - o)l <1 V1s rm vI(ds) < oo,
and we have by (2.11)
Tr{p(H)—p(Ho)} = J‘m %—"’ D e(ent — i)
=r %fzr A

- J ) cu.w}r by (dr)

oo

= F DD

o =

i gl o 2oy
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In the above the change in the order of integration is justified since

[

@ o
J dLED] | |vide < .

)
Remark 2.7 (i} If supp v does not contain 0, then pedf” is a bounded function. On
; ; it - . 1=
the other hand if we set w{dth = dir)de or =£—<’,’{t}dr (with C=0or = 2 f f[r]dz
b 25 o

respectively), where { e (), the Schwartz class of smooth funciions of rapid decrease,

and { its Fourier transform, then @lit=4or ={[i} respectively.
|

e
If

and by (2.7), o (H) — o(H plcan beextended o whole of J# as 3 trace-class operator.

{iti) Let J be a real open interval in pH)Np{Hy), and let psCF(J), the class of

smooth functions with compact suppert in J. Then by [unctional caleulus
@(H)=(H,) =0, and hence by the trace formula in theorem 2.6,

(ii} Since = | Hf i, o{H}is well defined on D{H}=D(H,) for peux,

[ @ (ANl = 0 (2.14)

tor all peCP(J) =¥, Since dell, it follows that ¢el: (R), and hence & can be
thought ol as a distribution on J. Then the equation {2.14) can be viewed as pr=0

for all @eCT{J} where £ iz the distributional derivative, By a standard theorem in -

the theory of distributions {see p. 103 of {12]) € is constant in J. Furthermore if J
contains a neighbourhood of either + o¢ or -- oo, then ¢=0 ae on J since by

theorem 2.1, (i) [E(AYda
where a = min {infe(H,), infe{H)} and b = max{sup o(H,), sup a{H) .

{iv)] We would like to g0 back once again to the counterexample in § 1 and observe
the curious fact that the “formal expression” for Tr(Eﬁ' —E_} coincides exactly with
the boundary value of the argumert of the perturbalion determinant in this case.

Z || ¥ly < eo. Thus, Supp ¢ lies in the interval [a, b],

(4172
Using the notation of section 1. we see that (£21, ) = Ef (1 -+ o2}~ dx with

0
p=(1-+2)"" Thus for Imz#0,

The last integral can be ey

aluated using the caleulus of residues (see for example
[26]} and this vields

) b

Afz) = ;([—z—) o (2.15)

N LR
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and

.
E(g)= lim - arg A{p +is)

gD+ T

l if 0 <1
wm <

5 H

=0 i wue[011.

(v} Tn some applications [13), H _ H, may not be trace-class but e et gifinngg

trace-class for some t >0 (with H and Hg = 0). Such a case can be treated by the
results of this section, Let A=e" ", B _ oo gp that 0 < 4, B< [ and assume that
A - Bedd,. Then by theorem 2.1 and remark 2.7 (iii) one has nelt[0,1] such that

i
j In(|dp < e —e ¥, and
0

™1

J n{p)du=Tre ¥ —e™ ™). (2.16)
0o

By setting u=e” "0</< o) and ()= —nle™*)in (2.16) we have

.
J ENe A< e —e7 N,
0

and

=]

gAye *da="Trle ~H_ g~ Hoy,

0

Consider the function g =y for pe[0,1] and > 7. Since g is C2[0, 1] function
with g"eL! [0, 1], we can [ind a function Gest such that G(u) = g(u} for all pef0, 1].
Thus

Tr(e™™ — ¢~ = Tr[(e ™) — (e 7™Y]
e o>
=j < nludp = "“'I e HE(hydA. (2.17)
s Ay 0

{vi) More gencrally one can use the formula (5.7) and the invariance principle of
scattering theory to derive the trace formula. As in [23] a real valued function W on
J, an open subset of R, is said to be admissible if J =5 J, where J, =(w,,f,) are
disjoint, N finite or infinite, and (i) Y eLl (), (i) ¢ =0 or < 0 on each interval
{e,. f,). Then one has ; :

Theorem 2.8. [23] (invarience principle). Let y be an admissible function on J, H and
H, be selfadjoini operators such that o(H), o(He)l = T and that at each boundary point
of J either y has a finite limit or both H and Hy do not have point spectrum at that
point. Suppose furthermore H — Hg e@,. Then Q. (y (H),w(H o)) exist, are complete and

Q_ (6 (P (H,) =0, (HHo)Ey (Ho) + Oz (H,H)E, (Ho)




a30 Kalyan B Sinha and A N M ohapaira

where J, (respectively J 2} is the union of those intervals on which W' =0 (respectively
W' < Q).

Then using (5-4)-(5-7) one gets in the spectral representation of Hp:
E(s H, Hol = sgn(f ()£ (A w(H), W(H)). (2.18)

The relation {2.18) can be turned around to give a definition of £(4; H, H,) when
H — H, is not trace-class but rather w{H) — y(Hg) is trace-class. It is also clear then
that y({2) = e~"(1 > 0) is an admissible function for every ¢ >0, and this gives the
example in {v). ;

Now, if y is an admissible funetion such that Y(H) —w(Hy)ed, and ¢:R—R be
such that @ow ™! (note that W exists) is again an admissible function, then writi ng

-fP(H}—ﬁﬂ[HnJ=ﬂﬂt-¢"_1f¢(fﬂ}—@ulﬁ’_lfhﬁ'{Hu}L one has formally (by using (2.18)
and a change of variable ;¢ = WA

Trie(H) ~ o(Ho)l = | &(mw (H), g (H o))~ iuydy

]

= | S H Ho)(wap Y (b ()sgny' (A))y'(7)|dA

w»

»
= [SU5H, Hy)p'(A)dl.

3. An alterpative proof of the trace formula

Here we give a functional analytic proof (following Voiculescu [287) of the results
in §1. The strategy is to reduce the computation of Tr(e" — ¢Ho) to that of
Tr(e™ — gHom) for suitable finite dimensional approximations H, and H, , of H
and Hj respeetively and then apply theorem 1.1. We begin with a few lemmas which
are extensions of Weyl-von Neumann result (see lemma 2.2 of p. 523 of [16]).

Lemma 3.1, Let 4 be o self -adjoint operator in w, fe# and £>0, K a compact set
in R. Then there exist a prajection P of finite rank in % such thar

(i} [(I— Pl pj, < uniformly for teK
1) (i — Pif) <e.

Proof. Let F() be the spectral measure associated with
Choose 2> 0 such that i = F{—a,al)f

2k—=2-n 2%—p .
I<k<gn, set Ft=F( g, and note that F, F =5, F, ¥ F =
H k=1 .

F(-aa]. We also set g,;={Fxfﬂ|ka.!| if Ff #0

] otherwize.
Ag,eF . Let P be the projection on to the sub-

: _ M—p1
that dim Po#" < n. With 4= "0 1 it i easy 1o verify that
n

the self-adjoint operator A.
| <& For each positive integer r and

h

Then g,eD(A) and
space generated by {g,,...,4,} so

TR Tl ) | M e i s,
¢ ey T
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X {2k — m)frla ) 3
({4 —2)all”™ = [ (4 — LN (g < lafny’s
o [{2k—n--2yinla
and
h & ,
1T — P) APul> = '|1| S (1, o)l — P Ageh® < (a1l
k=1
for e and hence
I — PYAP]; < aj/n.
Thus
alt) = I — P)e™ Py = I~ Py — NP>
r‘l: )
= i{I—P) j S iAdsP
a
< J ((f — PYe** P, | AP+ (I — Py AT — PYR I~ PYAPl;}ds
Q
rt
<720 J 2(s)ds + Tal/n (3.1)
il

for |t] < T. We can solve this Gronwall-type inequality (3.1} to conclude that

2(f) < (Tae*) Jn < (Tae® D) /.

On the other hand, ([ — PYF(— & d1f ==y WS 1T~ P13, =050 that [|(1 — P} =
(I — Pyl —F(—a,al)fli <& |
Lemma 3.2 Let H and Hg be two selfadjoint operators such that V=H—Hg @8 positive
| = 1. Then given any & =0, there

and of rank one. Set V=11g7 (gl with © >0 and ha!
exists a projection P of finite rank such that for all t with [t| < T.

@ |{I—Pgl<s II—-Pe""Pla<a I — Preeg | <25,

@) |7 — PYHPJ; <e(l +7), (e — eE™)(I — P, < 2T
(i11) “PI[E“ Ho _ f_fﬁPH"'F]P |l1 < 2T, HP(E"H i GirPHP]P“ L5 gl T(1 + 1),
(iv) |Tr{e"" — ") — Tt {P('TER — HoPypl| < Te[t(4 +6) + 2&].

Proof. Given e>90, ¢ and H,, we construct P as in lemma 3.1 80 that the first (wo
conclusions of (i) are satisfied. The third one follows from the first two trivially. Since
(I—PYHP =( —P)H P+l — P)g>{Pgl, the first part of (i) follows from the
estimate of lemma 3.1 and (i). Now

(e — eI — P, = liT J. |8 gy (1 — PePglds ],
0

i |
<t J (1 — PyeiHog | ds < 2T
.
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This easily leads to the fact that

{1 - Py _ €0 Pl < 2Ts,

For (iii) we observe that

Il
.l PI{EMI" _E E!;PHqP}Plil _\‘_.;‘J‘ |il Pei[t—s]Hr_.{I _ P;lffﬂfi's”r“FPh ; dS

0

I _
ﬂf VB ™0 — Py, i1(F ~ PYH, P I.ds

o

and an application of {i})

and the estimate in lemma 3.1 gives the result. A similar
computation and the est]

mates in (ii) give the second result in (iii).
I+
Finally since ™ —gitHo| <. _I|Je’f“sl“g}@“‘”’*g[||'LdsﬁrT, it follows that

- s D
o eHuem and we have by (i) and (jij)

&)
|r|_-l.{eitH - EE:HU:I s Tr{P[HErPHP — EI’IPH;-..F}P}[

5; |_|P{Eim _ EE[FHP}PIiII + l-!P{EEIHa _ EHFHUP]Ph 1

™~ ey~ Py, 41 pyeien _

e:‘:H.f.JPhlI
S Te[x{d + gy + 26,

Now we are ready to prove the main theorem of this section,

Theorem 33, [ o H,
race-class. Then thape

() Trie"™ — gthtay _ itfe**E(A)da,
(il JE(A)dA=Try, fletndi< vy £y
(iii) for every fumction e (defi

be a selfadioint eperator and H = H

otV with V self-adjoint
EXISIS 0 uRique regl-

valued function & in LY(R) such that

ned in (2.12)), P(H) - o(H,)eB, and
TrfﬁﬂEH}'—ﬁﬂfHuJ}=J @' (A}E(A)dd,

(1¥) the fimetion 1 (4--z)71 (with Im z #0} belongs to the cluss 2 and hence

TriR, —R%y= — ﬂ;&—z}“!m}di_

al

Proaf. At first we let V= Tlgsdgl, > O, gl
(iv) of lemma 3.2 as: there exists o
Pog—g strongly and

= L. Then we re

Phrase the conclusion
sequence P of finite

rank projections such that

TI'{E“H _ E,_I:Hn} = lim TI[PM[EE'"’" _ HI:HU_,,,]Pml [32}

| st

where o, = P HyP_ and Hm==PmHP,,,, and the

i
-

tonvergence is uniform in ¢ for
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|t| < T. Note that by construction P # < D(H,)=D(H) and hence both Hy . and
H_ are self-adjoint operators in the finite-dimensional space P, . Next we use
theorem 1.1 (iv) and corollary 1.2 in the right hand side of (3.2) to get a {0, 1}-valued
L!-function &, such that :

o

Tr[P, (e!tin — etHom)p, ] =it J dUE (Ndi. (3.3)
Hence - _
Trigt® — e*fe) =it lim f | e E L (A)dA, {3.4)

the convergence being uniform in t. It is easy to see from (3.3} that

jamwdi = lim %'rr [P (c"%m — efttem) P, ]
t—0 &

= .
i lim—l- ( Tr[P, e mp VP, eoHomP ds

=0l Jg

:Ter V-Pm: . ESLS}

since - etfin gitHom are norm continuous in Py, 4 and P, VP, is rank one. Thus
JEn(Ddi=1| P gl?>rt({l —g? by lemma 3.2 (i) and setting p,(A}=(z| Pl
[a&m(A)di for every Borel sct AS R, we have a family {u,,} of probability measures
by (3.5). Also note that by (3.4) the family {fi.(6)} of their Fourier transforms converges

1 ; . . :
to fi{f) = — Tr(e*¥ — &) uniformly in ¢ in compact sets in [®4{0}. On the other
it

hand £ (0)={t/| Pogi®) [EfA)di=1 for all m and a calculation identical to that

in (3.5 shows that lim _ p()=t"Tr¥V=1= ((0),- by definition. Thus by

Levy-Cramer continuity theorem [22], there exists a probability measure p on 2

such that p, - p weakly ie. [@(A)dp, ()~ oAy dpu(i) as m— o for every bounded

continuous function ¢. ; :

Let A=(a b]< R and let {¢,} be 2 sequence of smooth functions of support i

1 .

(a — -b +1] such that 0< @, <1 and ||xs— @,/ =0 as n— where j, is the
n n

indicator function of A; Choosing a subsequence if necessary and using the bounded

CONVergence theorem, we have

lim lim |eo,(A}dg, ()= lim j¢p.[3}dﬂiﬂl = ulA}
Thus : ' .
g i "
p(A) = lim lim 5 Jfﬂn[l}fm(l)dﬂ«.
nrom—oo TPyl

~Lim tim '-qu"{i]ﬁm(i]_dﬂ.

To—m m=—mx

<itlim(p—at2m=rb—a)

LR
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since 0 & (<1 for all m and all 4. This shows that

du(l . ;
and we set A = r-—-;—;/-j. Then £ 15 a non-negative L' function and we have that

A(2) = fe"*du(l) = T He" E()dA and hence

# is absolutely continuous

Tr(e _ iy _ f SE AL 3.6)

Also dividing both sides of (3.6) by it and taking limit t > 0 agip (3.3} we conclude that

[t0)aa=Teverso

J

» Ihen we interchange the role of H and H;, and write
d obtain as above a non-negative

i
Tr(e"0 . gty J éyid)di
and

L

AAdA=Tr(- V)= — Ty V=0,

Defining &(}) = — #{A) we get that relation (3.6) is valid for all ¥ rank one with some
real-valued L-function £ 7

Now let Ve, and let V= Eﬁlfﬂﬁﬁ(ﬂf be its canonical decmmpusit_iun with
IV, =22 jz)< oo and i1l = 1. We write for k= 1,2, .H,=H, + Tt

. )
gl=H,_, + 7,09, 2 <g,|- Then we have 4 real valued L'-function &, such that

Tr{a"”f“ s EE:H,C— V=it fﬂ“*fkfil d;;_‘

Jfk(ﬁ~lldxl=rn and jlik[—'”ldl:j']:kl'

el

Set {(= ¥ &0 then by the aboye relations (|5(A)|dA < B2, 12, (2)) dj =
k=1

£ ded=| Vil; and thus ¢ js

a real-valued L' function apg e
L -norm. Therefore

converges in

it (e‘”f{ﬂ]dﬂ. =it f J‘e”’"{k{ﬂjdi
o k=1

= 3 Tr(ehm_ gom

ke |

= lim Tr(ehe __ s oy

k= n

— TrlalH
= Tt{e"¥ . gltHoy,

P

lon T ol

el it b

A ol

iy o

e e
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since.
- LY r - «
e — %), =i 3. rjf e g5 Ce™ g 1ds))
J=x+1 " Jo
az
<ty Y |tl—0 as k-—rcc.
j=k+1
Also

qujd1= $ J‘ijwdzﬂ § o =TrV.
R=1

k=1
This completes the proof of (i) and (ii). The proof of part {iﬁ} follows as in theorem 2.6.
frd

. . —1 .
For {iv) we just note that (A-2}"" + e | o w(dt) with v(de) = — ity ¢ (the” 7dt,
v it

according as Imz = 0, where g, are the indicator functions of the intervals [0, o)
and (— o5,0] respectively. =B

4. The trace formula: the case when the difference of resolvents is trace-class

In this section we shall follow essentially the methods of § 2, but for the case when
the perturbation V is not necessanly of trace class but is such that the difference of
reselvents R_— RY is trace-class for some z€ p{H) N p(H,) It is not difficult to see
that if R, —REEQI for some such z, then it is so for all such z and hence we shall,
in this section, take z =i as the reference point and assume that R, —R]e#,. Also
it is worth noting that in L*(R*), il Hy= - A and V is the multiplication operator
by a function. Vel?(R*)n L (R®?), then R, - RPed® | (sec p. 546 of [16]).

Ho +I =I+2iR} and U= g—-‘i =1+2iR, so that U—U,=
a—f —i

2i(R,— R%)edk,. Tf we also set U-U,;=U,T then it is clear that T is a normal

Eal

trace-class operator and I+ T is unitary. Let T= Z leg J,){gj.l be the canonical

i=t
decomposition for T with |g,[|=1and1+17;= explift), —m< #, < Then it follows

We set U, =

that
.o o . ﬂll!z | g2 :
= E_'ﬂ"lzl:—r]—']f-?ﬂé— |71
jgt % j; sin(f/2) 721 ’
E r
=T < | (4.1)
. ‘Sinﬂ ,
since > 2/x for 0< @ < /2. Thus the determinant
i

Ales)= det[(U — ) (Up — )11 = det[1+ Uy T(Ug —~ @) 7]

is analytic for |@| < 1 and has no zeroes there (see theorem A5 (ii)). Next we obtain
the Krein's spectral shift function in this case essentially following the same route as
in §2.
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Theorem 4.1, Let R — RYe®, and U and U, be defined as above. Then there exists
a real-valued function & on B such that

() S+ 22)" el (),

o

(i) J‘h [E(A(L+ A7) dA < (m/4)] T'Ihand_[ -

= a0

EA 4+ A= ""Indet(I+ T),

_21

(i) (1) =nlz) = . lim ImIn [exp( - % Lf: ﬂj) ﬁ{pa“‘]:‘, with e = (4 +i)(1—i)~1,
=t i

7T st
(iv) Tr(R,— RY) = —j {(A—z)72E{A)dd for Imz #0),
Furthermore, £ is unigue up to an additive constant fumetion.

Progf. Atfirstlet Tberank oneie. T =1lgh Wiwithl+ 1= (—n<8<n), |lg|=1.
Then

Aw)=det[I+1|Uug> ((UX ~ D) 'g|]1=1 + (g, UglUg— @) g)
= lx ;
= g2 [ms{i—?ﬁ} + isin{ﬁfljj 1—+-C?d|| F (g |2], (4.2)
€% —

where Fg is the spectral family of the unitary operator U,. Thus

i 2

; 1 2
R e (] W et LGV SR G

where we have set w = pexp(iff), 0 € p < 1; and hence (sgn &) Im[e” *2A(w)] = 0 or
equivalently 0 < (sgn 6)-Tmin[e 2 A ()] < n Since Afw} is analytic in the interior
or the exterior of the unit circle and has no zeroes there, In A{w) is also analytic there.
Therefore by theorem A.2 there exists a real-valued .1 [ — m =] function n(x) such that
Infe ™2 A(ew)] = Reln{e~®2 A{0)] + % J - (e des,
: elﬁ e {II'J

-f

Now A(0) =det(UU; 1) = det[U (I + TYU '] =det(f + T) = & by theorem A.3 (v),
so that Rein[e7?A{0)] =0 and we have

InA(w) = i0/2+ f by
2 et

Yoo e

n{ohda. _ _ (4.4)

We also know from the theorem A2 that 1) = ilim Ls Iminfe™ %2 A(pe*)] and |

J‘1 #(eyde = 2TmIn[e™ 2 A(0)] = 6. (4.5)

Equation (4.3) implies that 0 < (sgn8)() < 1 and therefore

"

J |n(a1|dcc={sgnmj

=

-

n()da=(6] h (4.6)
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In the general case, T=% (e —Nig;<g,}as before, and write U, = U, _ {1 +7;
g2 <) =12, ...}, Since 7 ¢ — 1 and since (9;,9,) = 3 1t is casy to see thal
gach UJ ; is unitary and that,

; Uj= Uuu +Tllg1><gll}“ + rﬂﬂz)(ﬁzl}u +Tj|gj> <gj.|}|
j".
= Ug(r + *;1 Tﬁiﬂ&)(?,tll)

and therefore U, — U~ U - in 4, -norm as j— . As in the last paragraph, let
n{t) be the real L![ -, n]-function for the pair {Uj U,_ % with U, —-U,_ =
t,U,_,'g,> (g;l. an operator of rank one. Then we have from (4.4)-(4.6):
- ol i N
ImA {w)= e’ + L j Eo n o) der
2 a

ir ___
_.I,!E,

=

0 (sgnd)y j[m}. g B j 7 (cdde = B, (&7

J1mwwﬂ%
where A {w) = det[{U; —a)(Uj-1 = @)t 1.

Set #(w)=E52 7). It follows gasily from (4.7) that the series converges in
L[ — 7, x]-norm and defines an L'-function # and we have

& -

| Mmhéﬁ(WWﬂM=E%ﬁaﬁh

=l —-n i=1
_Mu—u,l, =nIR— R
_E.l - ﬂlli_ﬂj S L B
and

J n{a)da = i&l‘j:—- —ilndet(J + T} _ (4.8)

=1
By theorem A.3 (if) we have that

Indet[(U, — )Ty —w)~ '1=lndet[] + U~ U= )]

= 3, InAw)
i=1
. t [* Bl e

= — I dit. {49)
2;@1 EJ+ P ,,[_ﬂ Em—t’ﬂ (J}:}ﬂj[ﬂ})

The fact the U, — Uy—»U—Up in 8, and the continuity of the determinant with
respect to its argument in #,-norm (theorem A3 (ii}) lead to

P A
A== Y. ﬁj+1j e T2 (a)da (4.103
2 j=1 2 Juget—a
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and hence
 E : fo A :
(o) =—lm Imln [exp(ui x Ej)ﬂ{pe’“j]. (4.11}
ot 2=

- : Ati N .
l'he transformation & = i or conversely o = 2cot™ ! A implies that as 1 increases

il
from —cc to O and then Lo + ¢, @ moves from 0 to — = and then from = to 0. If

d 2
we now define £:R— R by setting £(A) = n(y) = n{2cot™12), then since —a 2= — memaa

ds 1+ A%
one has by (4.8)

r |§(1}|{1+»’-2}"di=%J I?‘f'{ﬂt}ldﬂtﬁ;llTl;L

M

| E(1 + 12}-1@;% J-

- =

and
T

la}de = -%Indet{.’-lﬂ T)

-

which proves (i) and (ii). The part (it} is the statement (4.11) which also shows that
£ is real,

r+1 N
The mapz—w = —i maps the open lower half plane onto the open unit disc and
7 —i

we have (U —- w) ™! = —;(z —N+E-DR 1L (U, ~m) ! = Ei(z — D1+ (z—i)R*] for
Im z < 0. Thus by theorem A5 (i) and (4.10)

Tt[(U — )™ — (U, — o)1) =25(z- §Tr(R, — RY)

_ d B I d x® Eh+w 3
= dwhl&.[mj——-E—J = nia)da

din |__ e —

fn [
= —i j {3—2 ie)da,

e — )

where the interchange of differenti

by noting that the last integral is uniformly convergent for all e such that

0<|w|<d<1 Therefore for Tmz <D, iIl[z—:']F-’Tr|{1~1=—Rf-}=--—;ﬂ{— r f{l}?'

A
AYIN L d—z I O (e E(A) 1
ﬂﬁ{(&r-- z') [21([A—ij{z—i})] }__T—_ P dA which leads to (jif)

for ITmz < 0. Since & is real-valued, an identical formula
complex conjugation of the one for Im » <. :

Finally, if € and & are two shift functions satisfﬁng: {i) and (ii), then setting
C(A) = £&{4) — &(2) we have that for z —= f+ (e >0),

J‘ {dz _ [ T(A)da _
(A=z)*  J{i—p? —33-—2i£[i—n,u} -

for Imz >0 is obtained by

ation and integration can easily be justified

e it s
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Thus
ZiAd [ I

0=1 f_—.————-—- Bkl

P AT = - 2slh— ) J[{1~ﬁ]2+ﬁ2]1
_d [ @ g
dp ) (A— )+

or {{(A)e((d—p) +&’) tdd= constant for all peR, &> 0. By taking limit ¢ —~0+ of
1511& above expression by theorem 13 of [27], {(p) = constant almost everywhere which
implies uniqueness of ¢ up to an additive constant. B

Next we consider functions ¢ of H and H, and obtain the trace formula for

W (H) —(H,)

Theorem 4.2. Let R,— R'&#,, and let W be a bo
sup| (AL + 72)] < oo and supiy (YU + A2 < oo
b=

Aelt

unded C'-function on B such that
Define y_as in (2.9). Then

(i) ¥ (H)— ¥, (H,)e®, for each &> 0.
(i) If y (H)—y,(H,) converges to W (H) — @ (H,) in &, -norm, then

Telh (H) — ¥(H)l = [Wmaim,

where & is the spectral shift function obtained in theorem 4.1.

Proof. Let z=p+ic (0<8< 1) and wnte ¥,=H- NH -2 ¥ =(H,- i}
(H,—z}" ' Both ¥, and ¥° are hounded and
R_~RS=R1+iz— DRO1—[1+(z~ IR_R]
— R (H,— )R~ R,(H —)R;

=W (R,— R))YL. (4.12)

=] o
Now let R.—R?= Y, 7,lf;> gl with 2 I7jl= IR, — R? I, < =0. 1fl =jgl=1
. J=1

ard -
Then by (4.12), Schwarz inequality and lemma 2.2 (ii) we have that

J\d‘.u‘{l + ﬂi}_l “ Rp-t-!g o R3+is “ 1

% Z hl_fll j‘d‘“{l + ”2}"1 IiiIPF.k;Efj ll Illl.{fﬂ—mgill

i=1

< iR, — R} 121 +e~1)

% Next by the definition of ¥, and functional calculus,

() — 9, ai jdmwn_utmm,m-R‘:*-.imai
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gi(supsuf{z}u #2) ) | dutt 2 1R, RO
T el

i ,u+|‘4;||ll

Iy

£ 2 +5‘*J(sup|{1;a[ﬁ.}|{1 + Az]l) IR~ R}
AcR
and this proves (1).

Triy (H) -y (H,)] = i .f W(A)ImTr(R,, —R°_ )di

J.'I'I.E

()
=== J.d,i,l,f;[).}lm —“’@-“f-—
s (4 — A — fg)y?

- o[ e)o

O
-~ 2y [ L )
T

i+ J| _,

Py f.;f [,l}( {—@1 d )di. (4.13)
i

—au
o {P'_Jr}l_!'ﬁz 'I.-f

Since

A1+ <C, @ +t)=11{u— A+ AP S2[1 4 A% + (u— 4)*]

(4
it follows that the boundary term in {4.13) can be estimated by 2Ce/n flfil:.! ]1
o H
(1+A%) +(u—2)? : |
(14 = dp. Furthermore the integrand in the last ex €581011 converges
1+ )= 2 2] T 'mtegrand in the last expr g

1o 0 as 1- 4 o and is bounded by (1+&2)E(at1 +#*)”! which is integrable,
and hence the boudary term in (4.13) vanishes by an application of dominated
convergence theorem. The same

estimate allows us to interchange the order of
integration in the second term ip (413} 1o get

Triy, () — g (8,)] j %[E [ gﬂl}jjg ;L] 3

_ [ S

T2 2 ¥ (p)dp. (4.14)

By theorem 13 of [27] we know that is integrable by hypothesis W ()
converges to (14w )y'(1) as e—»0+. Op the other hand sjnee A1 + A7) < ¢,
as before we get the estimate '

(e di & di
P ”%C’{“ [ '—~+—‘[——}
(v rdd—ul+e p)1q4 52

=C'(1+4<2C,

since i

and we have the result by dominated convergence theorem. | B

i

e i e R il ik T

e
S

R

b
1
E
"
E
4
3
1
!
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Finally we have the main theorem of this section, For fhis we define the modified
Krein Class of complex-valued functions on 4

F = (PR Ciph =L+ AW DA (4.15)
where " is the Krein class defined in (2.12).

Theorem 4.3. Let R, —R°e®, and DIH) = D(H,)- Then for wed, y(H) — y(Hy)e%,
and

Tr[p (H) — ¢ (H)1 = jw*m&mda
We need a lemma.

Lemma 4.4, Assume the hypotheses of theorem 4.3 and et pia) == (A7 + 117 (g™ —1})
for JeR and 1 #0. Then (i) Wit is a C'-function Jor t#0 and WAL+ A and
(AL + A%) are hoth hounded in A Furthermore, AL+ .lzjllla'ltl"l <3
{,!Ate—nhl , ST E—':r'

.. 1—e ; ;
i W)} = al 2=~ —Fe—g 5 ¥ t>0andt <0 respectively
(1) ,{4) :FL““\:I--!-{Aiis]2+£{,l-—ﬂ2+az]j
and ¢ = 0, where y . are the indicator functions defined at the end of §3.
(i) P (H)— " HH)eH, and

.|||1F[:]{H'J i W”':H |)} ||.1 = (2 |I|R; o R? ||| 1 + “ R-.‘ =i RE;“ 1}|1t||-

(iv) YU(H) — AN H e, for every g0, 10 and Y (H)— WU (H ) converges to
GOy — W (H,) in B, -norm as & —0+.
(v} Try™ (H) — W(H 1= wa {ﬁ.}ﬁ{l}dﬁ.

dnrt! T
Proof. The part (i) [ollows by direct verification. For exampie, —:;—{,1} =——

1+ A
(A% 4 1)
TN + 1) = e = < (e — 1) <30
! ' ' 1447
¢ iph}ui} : [‘ gt —1 :
0 evdiiiiE e L et e _FT____._dp,\xraemplnY
opatuate et Jm—mw S eSO

the method of complex integration by taking a gemi-circular contour of radius R
about origit in the upper hall complex plane (for ¢ 0). It is casy O S€¢ that the
contribution to the integral from the semi-circlilar 4rc CONVErges to 0 as R0 and
what remains are the residues at the two enclosed simple poles Viz, at i
== J + te. This leads to

il | gt —1
IO .
Y] = —— B - for t>0.
'““ {l+ia]"*+l) {l—i]z-i-ﬁz :
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For ¢t <0, one has to take a semi-

circular contour in the lower half plane and these
two together lead 1o i1).

By functional caleulus, one writeg

w(H) - WH ) = Rie"™ - NR_ - RO(eiHo

- DR®,
SRR DR+ RO pr_,_ RO
TR~ ety R {1 - )R _,). (4.16)

The first term in (4.16) can be written ag (R, — RY)! ™M (iHR
%, and admits 4 trace-norm estimate MR, —RY ¢ - An identicy
to a trace-norm estimate for

DIH) = p (F ), the third term

_;Jds and hence is in
| consideration leads
the second ferm ig (4.16) by || NR_,~R%,|l,. Since
in (4.16) can be written as in {2.6)

[
f e“""JH“R:} VR e (1 — IR_,}ds.

0]
Since R VR, = RY~Red, and since IH -D)R
the discussion following the proof of theo
CXIStS in # -norm and itg trace-nomm ¢a
{tii),
We prove (1) for £ > 0, the case for ¢

< 0 being similar. That y(f) - WO H )eB,
follows from (i) and theorem 4.2. By (if) and functional calculus,

Lo H) ~ i ) - L6 (H) — yoisr )
—ell~e")R, R, RS, RO 1

[l ¢ il PR3 [ T Skl e %
22 [{Rf—faR-I*ﬂ a Rf—hﬂc—lf—h} - {RiR—; o R?RD_;}]
4 [E—sr{R! __EEEEHHR

=1 bya reasoning similar to
rem 2.1, we conclude that the above integral
I be estimated by IR, ~ R2{|, |#]. This proves

—teip T R:]-izeﬁﬂuﬁti:_ e}
‘{R,-EEEHR_!-—R:]E&H“REI}]. [4_1'?}

Now by the firgt and second resojvent

identity (since D{H)= D(H oth we have
EJ-_-RI +1'1;R!—!z —R] RF— 5]

i+ig

"2_2.{[&::-& i R:]H;,-J = [Ri-it = R?—-:‘z}}
1
= EE[{RH ie[H_"' f}}{R; = R?}{(Hu - 'T'IJR?—' ie}

= {qui’x{H e ﬂ}[‘Ri '_R?H{Hﬂ b ﬂR?ﬂu}J
~0in & -nom as ¢ g since |

norm. This shows
term in (4.17) can

(4.17) we again us

H+4R__, w and (H —§R
that the first term i (4.17) converges to 0 ip
similarly be shown 1o converge to () in #,.F
e the two resolvent identities to gee that the r

h— 1 in operator
%, and the second
or the third term in
esult (iv) follows if

i = ;E&Hu”h—’ﬂ

[ENETENRREPECTERY
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as £—0 4+, But the above expression

= || +i8[ R,y & R — R” G R
= e|R,, (™ (R, — R} + {Ri5 {H— DR (€™ — ") R}
+[{R,, H - D}R~ R Caals? o | PR ' (4.18)

Since IR, Il and [(H—0R;, | are bounded in £ for ¢ sufficiently small, the
contri hutmm from the first and “third terms are zero in the limit £—0. For the second
term in (4.18) we need only to observe from (2.6) that

RJ-{IE”H ay El!ﬂ'u}R? . IE:] el{T-v.'z}HRE VR:} I!HEI i ==
Zift, et (R, - R }e*Fods.

The part (v) follows from {iii), (iv) and theorem 4.2 {ii}. L

Proof of theorem 4.3, By (2.12) and (4.15),

itd
LE‘U-}=[P+1]‘1UEL z l-v(dﬂ 4-'5?]

["’ : ) idn) + (A2 + L
o i

It is clear that (H?+ 1)L —(Hz+ 1", Also by lemma 4.4 (11i)
\‘ [ . M(H“} )|
I+

< |V|{R){EHR1F R? |ij + |!.an'_ R?.gnl]r-
and hence (H)— W (H,)e#,. By theorem 4.1 (iv),
Tr[(H*+ D)7t —(H:+ D7) “ImTr[(H-1"1—(H, -]

f(i]

- - [t [wentez + b330
(A*+ 1)

Onq the other hand by lemma 4.4 (v),

S Y — ' |
F=Tr {‘w_tu_@_ﬂ) y(di)
J it

Yty — y O (Ho)]
T

"

i [”{d‘] juf‘” (HEMA
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Since by theorem 4.1 (i), AT+ 2% *elt and by lemma 4.4 [ ™A1+ A% < Cly,
and since v is a finite measure, we can interchange the order of integration in the
above and get

" o itd TR
4 [m;dﬂ. | 5{--‘“—--- L2 ) } v(di)

] el (2L

P s |
= J £{A)di cﬂ[fﬁ{—_ﬁ.f g v{dx}:’.

The interchange of differentiation and integration in the last step is justified since

1 e iy

i S S [T
22+ (Z1p H{[ )

for all ¢ #0 and hence the concerned integral converges uniformly. This completes
the proof, n

Remark 4.5(i). If YeF (), the Schwartz class .i;!f smooth lunction of rapid decrease
al zo, then 80 is e (d) =y ({1 +4%) and thus by temark 2.7 (i) #{R) <= .. Also all

functions of the type (4 — z)”™ (for integer m 3 1} are in . Krein in his original work
considered functions W admitting integral representation

Fall N T

() = f (A2 du(z), (4.19)

where ut iy complex measure on the set of non-reql points in C satisfying for z = x + f A
J1¥1 ™ 1duiz)) <eoo(j = 1,2). A simple calculation as in the proof of theorem 3.3 (v)
shows that vince {exp(— |ev])dulz)| < 20 for every  #(, this class of functions are
contained in 5.

{1} Let J be a real open inlerval in p{(H)~ p(H o and let YreCP (), the class of
smooth functions with compact support in J. Then by functional caleulus :
Wi = Y(H,)=0 and henece by the trace formula in theorem 4.3, :

' (Ddi=0 v yeco(y), (4.20)

Since E(AN1 + 4% el it follows that feLli (R) and hence as in remark 2.7 (i),
the equation (4.20) can be viewed as (& y> =0 for YeCT(J) where & is the
distributional derivative and we conclude that £ is a constant in J.

Thus if H and H; are bounded below

operators ([17], [237), the shift function is constant in the neighbourhood of — o
and can be chosen to be zerg there,

5. Applications

First of all we want 1o mention the relation between
Scatfering theory. One of the carliest results in this
Krein [7]. More details can be found in (207, (37}

the spectral shift function and
direction is due to Birman and
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Let H and H, be self-adjoint and let R, — R%c, for some zep(H) rp(H ). Define
wave operators 1, (if they exist] as: :

Q,(HH)=0, =s— lim et HIED, (5.1}
t—+ = o

where E2 is the projection onto the absolutely continuous subspace of H,. &,
exist, then they are partial isometries with initial set E° s and final set closed
subspaces of E, 3, and satisfy the intertwining property.

!'-I:I: H'ﬂ,m‘ = Hauﬂi d [52}

where H, and H, are the absolutely continuous parts of H and H, respectively,
and E,, is the projection onto the absolutely continuous subspace of 3. The wave
operators are said to be complete il their final sets are both E # ie. if

Range ), = RangeQ_=E " (3.3)
If O, exist and are complete, then one defines the scattering operator 8

S=Q*Q_, (5.4}
and observes that § commutes with H, and 58% =53 = E? . Tn such a case, E} o
admits a direct integral representation (upto unitary isomorphism) [11]:

&

E Ee‘;"? = j fﬁ.di‘

s0 that

L

e
H, =J Ad4 and (5.5)

-

g

For almost all A, S{) is a unitary operater in #°, and is called the scattering matrix
or on-shell scattering operator. One can also define a self-adjoint operator-valued
function TI(4) (called the phase shift) such that

&
S{A)da.

§(3) = exp{— 2riI1{A)}. {5.6)

We now state a theorem (without proof) which 18 typical of scattering theory and
also relates the shift function & with the phase shift operator TT(4) in (3.6}

Thearem 5.1, Let R, — Rfeéﬁ1 for some z in p(H)r p{H ). Then the wave operators
Q, in (5.1) exist and are complete. Furthermore, T{A)ed®, (#,) for almost all A,
E(A} = Tr(I1(L)) so ihat .

det S(3) = exp{ — 2wil (A} (5.7

where E(A} is the spectral shift funciion obtained in theorem 4.1,
For an introduction to scatteting theory and a prool of the above theorem, the
reader is referred to [1] and [S].
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The expression (5.7) and the trace formula in theorem 4.3 has found applications
in many areas. As an example, one may menticn the d erivalion of the Eisenbud-Wigner
relation between the average lime-delay in a scattering process and the {distribuiional)
derivative of the associated shift function £(4) [1s].

Tn a series of papers the authors of [6] and [ i 3] used the trace formula, in particular
{(2.17} appearing in remark 2.7 (v}, to compute the Witten index in sHper-symmetric
quantum mechanics, A typical theorem which we state without proof, is the foliowing,

Theorem 5.2, Let 4 pe 4 closed aperator in 3 such thar exp{— 4* 4) — exp{ — AA*)
is trace-closs. If we assume that the associaied shift function £(4) is right continuous
at O and if we define the Witten index. W(d)=lim,_ _Tr(e=u"4_ gTidATy,
W(d)= — £0+),

From the remark 2.7 (v), it iz clear that [exp(—tA* 4) — exp(— tAA*)1ed, for all
£>=2 and

then

™o
Tr[{exp{ — LAY A} — exp(~ 14 4*))] = -r.Ji —e " E(N)da,
q

Then the result of theorem 3.2 follows from thig expression and the hypothesis of
right continuity, Under further assumptions, the authors in [13] prove an invariance
property of the index for a clasg of perturbations.

Another inleresting application is in relation to g pair of projections P, 2 in a
Hilbert space #. An ordered pair of projections (P, Q) is zaid to be a Fredholm pair
if G=0P: Range P—Range Q is Fredholm ie. if #(G) = Range G is closed and if
A{G) = the null space of G) and #(G) have finite dimension and
respectively. In such Arcase, we define the index of the pair

500 e

co-dimension

S T e e e g

Ind(P, 0) = ditm ' (G) - dim (3"

Then the following theorem ([2], 137} can be proven,

Theorem 5,3, §qt A (=0, l)={fes#|Pf= mf, Qf =nf}.
W) If (P, Q) isa Fredhohn pair,thenm, = dim »

e ol
—

1o @ndm_ | =dim #y, are finite and

]’nd{P,_ Q) = dim H o —dims = mo—m__.

() If A=p Qe&,, then (P,Q) is a Fredholm pair and 42+1
integer n and Tr A +1 oy 4 Ind(P,Q)=m, —m
(1) If AR, then the perturbation determinant Af

ﬁ(z:’z (Z; i)m_m_"

The shift function £ in this case iy given by

i(i}z{ 0 if A¢[0, 1]

My—m-y if Ag[D, 1],

€# for all positive
~1+ QN integer.

2) (for Imz #0) is given as

Thesc results find application in the study of charge transport phenomenon in
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integer Hall effect [4] and a proof of the above theorem and its generalizations can
be found in [2]. A recent survey of some further applications of the trace formula
can be found in the lecture notes of Simon [24].

Appendix

In the first part we state soms of the standard results on boundary values of functidns
analytic in half-plane and unit disc. T hese have been used in §2 and §4. Next we
define the perturbation determinant and study some of its properties.

Theorem A.l. Let Fiz) be analytic in the open upper half piane {z:Tmz >0} with
3 ™

1 :
0 < ImF(z) < C for some constant C, and |Fiz)| =0 e ) as Imz— co. Then there
mz
exists a umique real valued L' function [ on B given by ¢(4)=(1/m) lim Im F{4 4 i)
| i

for almost all i(Lebesgue) such that

o

F(z)= J g

l—z

Such a function F, analytic in the open upper half plane such that Im F(z) = 0, is

g 1Y
called a Herglotz function, A Herglotz function F satisfving |F(z}| = G(-[-— ) as
: me,

Imz— oo admits the [following representation (see ‘theorem B3I of [29]k

o A E
on R. The further restriction Im F(z) < C leads to the absolute continuity of & such
that £(4) (= ¢'(4) ae.) is integrabile.

4] d ;‘L ) . )
F{z) = jj 2 }, where o is a right continuous non-decreasing bounded function

Theorem A.2. Let Glw) be analytic in open unit disc |w) < | and let 0 <1m Gl =€
for some constant C. Then there exists d real balued functionnin L' [—m, 7] such that

™ iz _

Glew) = ReG{0) -+ — F @ pw)ds,
Pl o

[
b

and

#{a) = (1/m)limt Im G{pe') for almost all =
271

For a proof of this, sce for example pages 189-198 of [21].

In analogy with the case of operators in finite dimensional Hilbert space or of
finite rank operators in infinite dimensional Hilbert space, the determinant of (I + A)
for Ae®,, is defined as.

detl + Ay= [T (1 + /7440, (A1)
=1 L

where A {AJ's are the eigenvalues of A counted as many times as their multiplicitics.
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The above definition makes sense since ZE 4 <)A), for A &9 . The following

properties of determinant can be proven (see ﬁl-‘{l for further detaiis).

Theorem A.3. Ler Acg 1> and let {7.(4)} be the elgenvalues of A. Then

(1) det(I + A) = exp{[.dzTr{4(J + 2.4)"" 11, where [ is a rectifiable path in C
Joining O and ) such that none of the points {=2{A)" ) leson T,
(i} given &> 0 there exists 3 =0 such that Jor every BeB. with | A —Bj, <4,
|det(I + 4) — det(] +B)| <k, ie. A—det(l 4+ A) is continuous in & -norm, :
() If Bed,, then

det[(£ + A)I + BY]=det(I + A)-det(I + B).

(iv) |det(] + 4)| < el 4l
(V) For every unitary operator S, det({ + A) = Sailossrsy

Proof. Since 4 is compact, the intersection of the set {—4.(4)7"} with any bounded
subset of C is finite (could be empty). For zeC, define

[ +2204) iz — A(A) ‘forany .

D(z) =det(] Lz4)= { jo1 : !

0 ifz=—j.(4)"" for some}.

Then D(z) is analytic in the complex plane with zeros accumulating at infinity. Taking
the logarithmic derivative, at points away from these zeros,

Diz) A4
Diz) ;=i14z4

D TrAU s, (A2)
= ;{ ;I
Let T be a reciifiable curve in C joining § and 1 such that none of — AdA)™ Vs lie
on I' Tntegrating both the sides over " and then taking the exponential we get the
required result. Apriori it seems, the integrai depends on the path. But if we extend
I" to a closed contour by taking another rectifiable cutve I (say) from T to 0 such
that none of the — 2 AA)" Vs lie on T, then Int{T'wT) contains al most finitely many
~ A A) T, say — A, {4yt — AfA), L, — A{A) . Then the integration over T ™
has the contribulion E;f=121rtimj, where m, is the multiplicity of A;(A), which equals
identity on exponentiation, This proves (i),

By the resolvent identity

(f+zA4)™' — (7 +zB)1 =zl +zA) (B - A + :B)~!
or

U +zB)" = [+ z(l 4 24y 1B ATHI +z4) 1,
If Bed#, be such that

I B— Al € min{|z|{I(f + z4)= 1) )1, (A.3)
sl
then [f+ z(7 + z4)"*(B — A}]™! exists as a Neumann series, and
SUR ({7 +zB)~ | £ Csup HEE 4+ z4)" 1, (A.4)
=a]" ==l

it e A i

Pt P P g ek

0N PR R E IR

F
4
|
]
1
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where the constant C depends only on I' and A. Let L{I') be the length of the arc T.

Since
A+ z4) =B +2B) |, =il + 2By HA — BT + zA) 1
< (1 + 2By L IA =By hUE+ 247

it follows from (A.4) that for any x> 0, there exists @ 6 > 0 such that

j. Trd{l+z4) —B(I+ :c'-fr-‘}_.1 tdz
r .

~

< | [A(J+z4)" —BUI+2B)7 " dz

o T

< L[T}C{SUP I(f +z4) " 1} kA= Bl

el
< K

whenever |4 — Bl|, <4. Using the inequality e — 1| EﬁE:’!IEL and choosing &
sufficiently small we get

|det(f + B) — det{I + A}l
ﬁllcxp\:J dzTr{B[I+zB]_1}:l.._exp[j. dzTr{A_[IJrzA]_i}]
r r

étﬁ:-;p[ [ dzTr{A{l +zA}‘1}J||

o

1

lcxp[ ‘. IdzTr{B{I 4+ 2B - Al + zA}'l}]n ]_ul

< /Zex|det(T + 4|

which can be made arbitrarily small by choosing § appropriately.
Let {P,} be a sequence of finite rank projections such that P, 11. Then P, AP, and

P,BP, converges to A and B respectively in &, -norm as n- cC. Hence
{1+ P AP)I+P,BP)—(I+ A+ B)
=(P,AP,— A)+ (P,BP,— B} + p,AP,BP,— AB-0
in 48,-norm as n-+co. Nate that
| det(f + P, AP,) = del(P, + P,AP,),
where the determinant on the right hand side is taken on the finite dimensional
Hilbert space P,2¢. By (i),

det[(I + AU + B))

— lim det[(f + P,AP,)(I + P,BF,}]

m=t i
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M=o

= lim det(P, + P, AP )det(P, + P,BP )

[ =

= lim det(f + P, AP det(] + P BP,)

= ol

=det(I + A)det(7 + B),

which proves (iii), By {A.]}, and the inequality | + x < e* for x = 0, we get

Ideti? + A)] < [T (1 + 14, 4))

i=

gexp(i Mjun)

i=1
geilﬂlld

Since g(4) = g(§AS~ '} for any unitary operator §, part (v) follows from (A.1).

|
Next we define the perturbation determinants for two explicit cases and study some
of their properties,

Case . Let H be a‘self-adjoint operator in #. A ssume that ¥, and V, are two trace
class self-adjoint operaters, so that H,= + V; are self-adjoint for J=12. For
Im z # 0, define the perturbation determinants

Az} = det{I+ V(H ~2"1] forj= Ll} (A.5)

Ay () =det[f + (¥, — VINH, - 271,

Case [1. Let U, [J 1 and U, be three unitag

Y operators in ¥ such that U —Ued,
for j=1,2. For complex o with [w) < | def;

ne the perturbation determinants
&)= det[1 + (U, — U)U — ) 1] fnrj:i,z} ',Mﬂ

1A
Aoy = det[{T +(U, — U )(U, - )71,

We start with the following abstract resylt.

Lemma Ad. Let z— A(z) be g @B -valved analytic function in some domain D in C.

Then det{f + 4(z)) is anglytic i D. For all - Jor which (I + A(z) " ' eB(#),
Indet(i + 4(z}) is an analytic function and

%Iﬂ det{I + Afs))=Tr {{I + A(z))7? %‘Z_}}

Proof. As in the proof of theorem A3, we cho

0S¢ an increasing sequence of finite
dimentional projections [P} and view P+ P,

A(z)P, as acting in P 3. Then for

ISR P

W
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cvery zeD,
A(z) == det(l + 4(z))

= lim dei{l + P A{z)P,)

"=

= lim det(P, + P,A(z)P,}

R

(I

lim AL(z).

A—F oo

Since A(z) is #,-analytic in D, A (z) is analytic for each n and by theorem A3 {iv),
14, (2)] < exp( ]| A{z} ||, } < M. This and Cauchy's integral formula implies equicontinuity
af {A ()}, and by Ascoli’s theorem (relabelling the consequent subsequence] we
conclude that A, {z) converges to A(z) as n— cc uniformly in z in compact subsets of
D and consequently A(z) is analytic.

Set A,(z)=P,A(Z) P, and let (I + A(z)) ' €@B(#) for some z5eD. Then there is
an open ball % about z, such that (I + A(z))”'e®B(#) for all ze#. Thus A(z) #0
and hence InA(z) is analytic in 4. Since A, (z) converges to Alz} upiformly in ¥ (a
closed ball in @), A,(z) # 0 for ze® and n> N (depending on % only}. By the speciral
theory of compact operators, we have that (I+ Az} ' ed(a) or equivalently
(P, + A,(2)) " *eB(P,5) and therefore InA,{z) is analytic for such n and z. For finite
dimensional determinants, the formula in this lemma 1s well known and we have for
all n and z as above,

= _ A0
E; In ﬁ'll I:E] - ﬂln{Z]
=Tr [(P,, + A )1 d—ﬁ"(zq ‘
dz |
=Tr [(1 i A,z 9‘4”—{21], (A7)
dz

For such z and n one has the identity:
1

(+ A, (2N~ =T+ A2) 7 =T+ A4, HA(z) = Ag(z)}I + Az

This implies that for fixed @, |+ 4,02 | < M{2) and ([ + A,(z}) ! converges

Alz) dA,[z]
dz

to (I 4+ A(z))" ! as n-»on in &, Since d—d-—e{ﬁl, it follows that COnVerges to
z

QA(—H—} in #, and hence the right hand side of {A.7) converges pointwise in % Lo
dz

I [“ + A)"!

integral formula to conclude that A {z) converges 10 A(z) as n-+ oo,

d—ii{—'ﬂ _As for the left hand side of (A7) we need only to use Cauchy’s
i R
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Theorem AS. (i} Lez A1 (2 AL2) (j=1.2) be the
(A.5). Then they are analytic fo

rimz=0 and have no zeroes there, Furthermore
Ay (24 (2) = A,(z) and

E— InAfz)=~ Tr{{H;— 2" ' —(H —~ ) 1}

- (A.8)

Jor =12

(i) The perturbation determinants &5 ),
for all complex number o with lea]
A fw) and

Ajw) (7= 1,2), given by (A.6} are analytic
< | and have no zeros. Furthermore Ay (A (w) =

ﬂd—ln A= —Trl(U;— )™ — (U —w) 1] (A.9)
[eh
for j=1,2.

Proof. We shall only prove (1} since the proof of (11} is identical,

Since for Imz # 0, ([H — 2)7 ! i analytic in &), so ViiH —2)7? is analytic in 2, .
Hence by lemma A4, A 2} is analytic in the same domain. Furthermore for Imz = 0
and fest, [1 + V;{H — 2 =(H,— 2)(H — )™ f = 0implies f = 0 since z belongs
o p(H)np(H ). Thus, Az} has no zerns there. Hence by theorem A4, In Az} is
analytic for ITmz #0, and

(%lnﬂj{z]srr[[u VJ.(H—_zrlj-li{I{,(H—zri}]
=Tel{I— Vi, — 271} ¥l = )2
=Tr[(H-z)~1{f VilH; — 2} 4} W{H - z)™1]
=Trl(#;— 2 'V,(H — z)~1]
= —Tr{{H_;—z]l“L—{H—-z]‘l}.

Next by theorem A3 (i),
52,1{3}31{2}
=det{{ +(V, — ViMH, o Tl o VilH—2z)"17
=det[{T+ (¥, ¥,)(H, ~2) T HI+V(H —2) 1))
= det[] + (¥, ~ 1}{{H1-zj—1+|{Hl—z}"qu(H—zJ-l}+V;(H—z}*]
=det[{+ (V, — V,}{H -- Tty Vil —z)71]
=det[1+ V,(H —z)"1]
= A, (z).

perturbation determinants given b y

aﬂ"r_“_ A

e e ot
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