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Abstract 

We propose here a point landmark based registration method utilizing geometric invariance properties of biomedical 
images. These point landmarks constitute entrance and exit points of concavities of individual structures and points of 
inflexion of curves, derived from the convex hull. Registration is performed in a canonical frame of reference. This 
technique is fast, semi-automatic and computationally inexpensive. 
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1. Introduction 

Registration is the process of determining a point- 
to-point correspondence between two images of the 
same object. This is a crucial first step for fusion of two 
image data sets to obtain an integrated image display. 
Applications include multimodality medical imaging 
(Banerjee and Dutta Majumder, 1993) and multisen- 
sor data fusion in remote sensing. Since images used 
in these applications are generally not well defined, 
the search for computationally inexpensive robust reg- 
istration methods which require little or no expert in- 
teraction, constitutes an open problem in image pro- 
cessing. 

In this paper we present our endeavors to develop a 
semi-automatic registration technique for 2D images 
which has been applied to register identical cross- 
sections of the human brain obtained from x-ray Com- 
puted Tomography (CT) and Magnetic Resonance 
(MR) modalities. Our method identifies point land- 
marks on surfaces of anatomical regions of interest 
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(ROI) that are visible in all scans considered. These 
ROIs have a purely geometrical representation and can 
be extracted from the image by segmentation. The se- 
lection of such point landmarks is based on the geo- 
metrical invariance properties of the ROIs within the 
original image. Biomedical images possess a large 
number of concavities and we have used these con- 
cavities to locate landmark points or signatures. 

This method can be classified (Van den Elsen et al., 
1993) as a direct, semi-automatic method using a lo- 
cal or global transformation, depending on the number 
of structures of interest in the image and can be de- 
scribed as interpolating or approximating depending 
on whether three or more points are used. As we shall 
elaborate later, this point landmark based method pos- 
sesses two distinct advantages over other point land- 
mark based methods. The use of landmarks in im- 
ages with geometric invariance properties simplifies 
the identification as well as automate the registration 
process. This method thus obviates the necessity of 
expert interaction (Hill et al., 1991 ) and hence results 
in a speed-up of computation. Secondly, this method 
does not require the computation of first and higher 
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order differentials of 3D image functions (cf. (Baiter 
et al., 1992) and (Thirion et al., 1992)) which gen- 
erally introduce noise in the image and are also com- 
putationally expensive. 

The underlying Theory and Methodology that is 
used extensively for biomedical images, are described 
in the next section. In the succeeding section results of 
applying this technique to two sets of biomedical im- 
ages (CT and MR) are given to illustrate the idea and 
a demonstration of the invariance properties is also in- 
cluded. The final section contains discussions of the 
advantages of this technique over others. 

2. Methodology 

The algorithm for image registration is as follows: 

• Generate a set of  geometric invariantsfor differ- 
ent sub-contours of  CT and MR images. Contours or 
sub-contours (also the ROI's) which are identical in 
shape and structure have the same set of invariants. 
The converse is not necessarily true. However, invari- 
ants can usefully be used to generate hypotheses for 
matching, which could be verified subsequently. Like 
model based vision, absolute invariants are needed to 
propose a match. Invariants calculated locally to a sub- 
contour are used at this stage. This particular choice 
has the advantage that it does not depend globally on 
the curve. Consequently, if part of the curve is oc- 
cluded or missed because of segmentation problems, 
local invariants can still be detected. 

• Locate possible "identical" sub-contours of CT 
and MR images based on matching pairs of geomet- 
ric invariants. Matching of invariants can be imple- 
mented as an O(n) complexity process by the use of 
hashing (Rothwell et al., 1992), where n is the num- 
ber of curves. We have implemented simpler O(n 2) 
algorithm, since n is small in the case we have exper- 
imented with. 

• Verify the match ofsub-contourpair in a canoni- 
cal frame. Having proposed matching curve pairs, we 
extract a set of point landmarks or distinguishedpoints 
in the local sub-contour. These landmarks are curve 
inflexion points which could be distinguishedirrespec- 
tive of imaged transformations like rotation, scaling 
or shear. These are evaluated using any planar con- 
struction which is again preserved under projections. 

These landmarks are then used to transform the lo- 
cal sub-contour to a canonical frame. The verification 
that the curve pair (already hypothesized as a poten- 
tiai match) are identical is performed in the canonical 
frame. The ultimate goal of registration of images of 
two 

• Transformation of sub-contour in the canonical 
frame result in image registration. The registration of 
contours of two different modalities in the canonical 
frame gives the amount of mismatch (both locally for 
sub-contours or globally for the entire edge image) 
between the two data set. This can as well be used as 
an indication of a biological growth or missing of a 
subpart of an organ or structure of interest. 

We have largely considered the concavities present 
in the ventricle of human brain as local sub-contours or 
ROI. The implementation details including its (ROI) 
detection, calculation of geometric invariance and fi- 
nally transformation of ROI onto canonical frame is 
detailed in the next section. 

3. Implementation 

Detection of  concavity. Planar CT and MR image 
slices are subjected to a local implementation of Canny 
(1986) edge operator followed by edge linking. We 
have largely exploited the concavities present in the 
ventricle of human brain to detect the point landmarks. 
The entire edge point set is traced by an edge fol- 
lowing algorithm (Ballard and Brown, 1982) and the 
coordinates of these points are stored in a file. Signifi- 
cant concavities are extracted for each closed contour 
after computing a convex hull and setting a threshold 
on concavity height and width. 

Concavity landmark points. Evaluation of convex 
hull on the edgel data set of the CT or MR images 
gives concavity entrance and exit points of a signifi- 
cant concavity. Also, the point on the concavity which 
is furthest from the bitangent connecting concavity 
entrance and exit points gives the concavity height 
point. In case of more than one concavity height 
points, the ambiguity is resolved taking the leftmost 
of the concavity height point set. The concavity en- 
trance, exit and height points are invariant landmarks. 
These three point set gives a stable construction 
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Fig. 1. en, ex and h are the concavity entrance, exit and height 
points respectively for a significant concavity. The ratio H/B, 
angles 01 and 02 are the ratio-angle-angle invariant triplet (up to 
similarity transform) used for concavity matching. 

which could be used for subsequent concavity match- 
ing/registration of images of different modalities. 

A set of geometric invariants, upto similarity trans- 
form, is evaluated to generate hypotheses for a poten- 
tial match. The ratio of concavity height to concav- 
ity width, the angle(s) between the lines connecting 
concavity entrance (and exit) point(s) and the con- 
cavity height point to the line joining concavity en- 
trance and exit points give ratio-angle-angle invariant 
triplets. The ratio H / B ,  angles 01 and 02, as in Fig. 1, 
are the ratio-angle-angle invariant triplet (upto simi- 
larity transform) used for concavity matching. These 
are used to find the matching concavity set between 
the CT and MR image sets. 

Mapping onto canonical frame. A planar affine 
model similar to Mukherjee et al. (1993) is used 
to match the concavities in the canonical frame. An 
affine transformation maps a straight line onto a 
straight line (collineation) while preserving paral- 
lelism. This is a linear transformation with six degrees 
of freedom due to translation, rotation, scaling and 
shear or unequal scaling along the axes. A 2D affine 
transformation on a vector x onto X is represented by 

edgel set of the CT or MR image contour is trans- 
formed to the canonical frame. 

For a certain set of images, as in Fig. 2, depend- 
ing upon features of concavity e.g. concavity height 
and width, a projective model is used to transform the 
concavity onto the canonical frame. In this case, the 
transformation is represented by 

X = T x  (2) 

where T is a 3 x 3 projective transformation matrix 
with eight degrees of freedom I. Both vectors x and 
X are represented in homogeneous coordinates. Quite 
straightforwardly, we need four points to evaluate ma- 
trix T. The square canonical frame, therefore, has four 
vertices at ( - 1 0 0 , - 1 0 0 ) ,  ( -100 ,  100), (100, 100) 
and (100, -100) .  

In order to verify the match between the transformed 
concavities, a further set of invariants are calculated 
in the canonical frame. We have determined moments 
(both about x and y-axis) of the transformed concav- 
ity pair. The matching concavity pairs have their in- 
variant values close to i 5 % .  Once this registration of 
CT and MR images are established in the canonical 
frame, moments of the entire contours are calculated 
to evaluate the global match (or the amount of mis- 
match) between the data of two different modalities. 
The result in the tabular form is shown in Table 1. 

The measure of mismatch between the two images 
has been computed as follows. Centroids of the im- 
ages of the two modalities have been computed with 
respect to the particular canonical frame of reference. 
The difference in this value of one image with respect 
to the other is computed. Centroids of individual con- 
cavities have been computed similarly. Other measures 
of mismatch are also possible. 

X = A x + t  (1) 

where A is a 2 × 2 transformation matrix represent- 
ing rotation, overall scaling and shear. Vector t is a 
2D translation vector. There are six unknowns, cor- 
responding to four coefficients of the transformation 
A and two translation vector coefficients. Significant 
concavities are transformed to a triangular canoni- 
cal frame with vertices at ( -  100, 0), ( 100, 0) and 
(0,100x/~) by using the point landmarks or affine ba- 
sis triplets of the concavity. The elements of A and 
t are evaluated following equation ( 1 ) and the entire 

4. Experiment 

Digitized images of axial sections of the the same 
region of the human brain of the same patient obtained 
from MRI (Magnetic Resonance Imaging) and CT 
(Computed Tomography) modalities are used. These 
images contain 512 × 512 pixels per slice. For the 
two images under consideration (see Figs. 2 and 3), 

1 The eight degrees of freedom arise from the nine matrix ele- 
ments of T, less an overall scale factor. 
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Fig. 2. Axial section of  brain for (a) CT and (b) MRI modalities, Fig. 3. Axial section of brain for (a) CT and (b) MRI modalities, 
containing two structures of  interest, containing one structure of interest. 
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Fig. 4. Region of interest for (a) CT and (b) MRI images extracted 
from Fig. 2 (N.B. RO| in MRI is inverted w.r.t. CT image). 

(a) (b) 

Fig. 5. ROI for (a) CT and (b) MRI images extracted from Fig. 4 
(N.B. ROI in MRI image is inverted w.r.t. CT image). 

(b) ,' " ,:'i<'" "t"4i'~'~i" 
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(a)  

Fig. 6. Smoothed images of Fig. 4 for (a) CT and (b) MRI 
modalities. 

(b) (a) 

Fig. 7. Smoothed images of Fig. 5 for (a) CT and (b) MRI 
modalities. 
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Table 1 
Comparison of mismatch using local "footprint" or global measure 
Notation: i: inner, o: outer, I,L: left, r,R: right, T: top, B: bottom 
Figure Local Global 

Moment Momen t  Momen t  Moment 
(x) (y) (x) (y) 

8(a) CT-il 44.78 48.08 92.36 54.22 
8(a) CT-ir 76.47 58.13 
8(a) CT-ol 26.11 53.50 
8(a) CT-or 92.90 48.70 
8(b) MR-il 36.03 37.62 89.99 54.48 
8(b) MR-ir 70.60 12.64 
8(b) MR-ol 13.70 36.50 
8(b) MR-or 86.47 39.50 
9(a) CT-L 51.79 111.47 53.18 285.98 
9(a) CT-R 51.61 91.92 
9(a) CT-T 51.09 98.92 
9(a) CT-B 50.98 91.63 
9(b) MR- L 50.82 97.71 56.83 288.76 
9(b) MR-R 50.68 97.27 
9(b) MR-T 51.16 93.92 
9(b) MR-B 50.18 86.07 

Table 2 
Image parameters for the images of Figs. 6 and 7 
Figure Modality Dimensions (pixels) Grey-level 

of image threshold (0-255) 
6(a) CT 132 x 107 171 
6(b) MRI 117 × 122 129 
7(a) CT 132 × 112 219 
7(b) MRI 152 × 137 116 

the ventricle is chosen as the ROI (Figs.  4 and 5).  
These images are smoothed, thresholded and edges 
are extracted using Canny 's  (1986) edge detection 
algori thm with a s igma value of  7. Details of  images 
of  these regions of  interest are given in Table 2. The 
smoothed images of  the ROIs are shown in Figs. 6 and 
7, respectively. Edges of  these images are extracted 
after thresholding. 

After edge extraction, entrance and exit points of  
the concavities as well as the points of  inflexion are 
obtained from the convex hull. These points,  as well 
as the heights and widths of  the concavities for the two 
sets of  images for both the modali t ies are depicted in 
Figs. 8 and 9. Ratios of  the heights to the widths are 
computed for the concavities and Fig. 10 represents an 
axial MRI section of  a different patient. Fig. 11 repre- 
sents the edge image of  a significant portion of  Fig. 10. 
Fig. 12 represent the image of  Fig. 11 scaled down by 
a factor of  1.5. Landmark points corresponding to the 
three concavities are depicted in Figs. 11 and 12, 

For each of  the images of  the image set contain- 
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Fig. 8. Landmark points of Fig. 6 for (a) CT and (b) MRI images. 
(N.B. Due to tear in the contour of the right structure, signatures 
corresponding to its inner concavity have been extracted from the 
unbroken portion for both the images.) 

ing one structure of interest (Fig. 9), one concavity is 
chosen (we have chosen the largest one by visual in- 
spection) and a local affine transformation to a canon- 
ical frame is performed, thus mapping the three points 
which correspond to the entrance, highest and exit 
points of the concavity, to the three vertices ( - 100, 0), 
(0, 100vr3) and (100, 0) of an equilateral triangle in 
the canonical frame, shown in Fig. 13. 

Fig. 14 depicts a canonical frame of reference in 
which both the images of Fig. 8 are superimposed af- 
ter a global projective transformation is performed on 
each of them. The two entrance and exit points of the 
inner concavities of both the images in Fig. 8 are cho- 
sen as the four points required for the projective trans- 
formation. These points correspond to ( -  100, - 100), 
( - 1 0 0 , 1 0 0 ) ,  (100,100) and (100 , -100 )  in the 
canonical frame. Other choices of points are also 
possible. The result of applying a local affine trans- 
formation similar to Fig. 13 to image set of Fig. 9 
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Fig. 9. landmark points of Fig. 8 for (a) CT and (b) MR] images. 
(For (b), there is a tear in the edge along the top concavity, so 
the footprints have been extracted from the unbroken edge.) 
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Fig. I0. Axial MRI section of a different patient. 
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Fig. 11. Edge image of significant portion of MRI image (pixel 
dimension: 172 x 152) extracted from Fig. 10. 
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Fig. 14. Canonical frame containing superposed CT and MRI 
images of Fig. 8 after a projective transformation. 
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Fig. 12. Fig. 11 scaled uniformly (decreased by a factor of 0.66) Fig. 15. Canonical frame containing superposed CT and MRT 
(pixel dimension 114 × 101 ). images of Fig. 8 after an affine transformation. 
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Fig. 13. Canonical frame containing superposed CT and MRI 
images of Fig. 9 after an affine transformation. 

with the entrance, height and exit points of  the inner 
concavity of  the left structure, is presented in Fig. 15. 

4.1. Results  

Tables 3 and 4 present values o f  the ratios of  their 
heights to widths and the percentage of  difference for 
both the image sets of  the two modalities. This differ- 
ence is small, indicating that there is good agreement. 
Fig. 13 shows a superposition o f  the images of  Fig. 8 
after a local affine transformation and Fig. 14 repre- 
sents the superposition of  Fig. 9 after a global pro- 
jective transformation. From Fig. 15 it is evident that 
a local affine transformation which suffices to map 
an individual structure containing the three signature 
points, becomes inadequate when the image contains 
several structures. A global transformation is recom- 
mended in such situations. An inspection o f  table 1 re- 
veals that a reasonably good match has been obtained 
as the measure of  mismatch is small. This measure of  
mismatch is computed as the deviation of  the centroid 
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Table 3 
Landmarks and invariants of Fig. 8 (2 structures) 
Number of concavities = 2 outside structures and = 2 inside structures, total = 4 

S. Banerjee et al./Pattern Recognition Letters 16 (1995) 1033-1042 

Figure Modality Concavity Height Width Ratio (height/width) Comments 
8(a) CT il 13.55 47.01 0.29 

ol 1.48 27.02 0.055 
ir 14.31 55.9 0.26 
or 4.21 42.72 0.1 

8(b) MRI il 18.93 69.01 0.36 80 % agreement w/CT. 
ol 3.86 53.1 0.07 79 % agreement 
ir 18.53 72.01 0.28 93 % agreement 
or 5.08 61.66 0.08 80 % agreement 

Table 4 
Landmarks and invariants of Fig. 9 ( 1 structure) 
Number of concavities = 4 outside structure 
Figure Modality Concavity Height Width Ratio (height/width) Comments 
9(a) CT L 13.89 56.15 0.25 

R 20.4 84.89 0.24 
T 18.5 64.01 0.29 
B 11.41 54.15 0.21 

9(b) MRI L 21.31 88.28 0.24 94 % agreement w/CT 
R 22.39 87.36 0.26 92% agreement 
T 15.69 58.08 0.27 77 % agreement 
B 28.04 99.08 0.28 95 % agreement 

of  the CT image from the MRI image with respect to 
the MR/ image .  From Table 5, one can conclude that 
these landmark points are scale invariant. 

5. Discussions 

We have chosen patient intrinsic markers in our 
registration technique. Object intrinsic markers are 
preferred over extrinsic ones for better accuracy and 
retrospective viewing of  images. Several registration 
techniques using object intrinsic markers are being 
explored (Van den Elsen et al., 1993) in biomedi- 
cal imaging. These markers can be points (Chen et 
al., 1985; Boesecke et al., 1990; Baiter et al., 1992; 
Thirion, 1993), centroids of  segmented regions (Bar- 
too et al., 1989), contours (Van den Elsen et al., 
1994; Thirion et al., 1992), surfaces (Gamboa-Aldeco 
et al., 1986; Pelizzari et al., 1989; Collignon et al., 
1994) or user-identified point like anatomical features 
(Hill et al., 1991), to mention a few. Of these, meth- 
ods based on centroid determination are good only in 
the absence o f  occlusion. Surface based registration 
algorithms are meaningful when there is proper cor- 
respondence information between the two images and 
the image has been treated for the removal o f  outliers. 

Signature points are required to establish correspon- 
dence in contour based matching (Baiter et al., 1992). 
Point landmarks are also useful in reducing the lack 
of  correspondence information in surface registration 
(Collignon et al., 1994). 

Our method is essentially a point landmark based 
technique which does not require differentials of  im- 
age functions and is therefore more robust, and based 
on geometrical invariance properties and thus the ne- 
cessity of  expert interaction is minimized. Recently, a 
number of  point landmark based registration methods 
have been reported. Hill et al. ( 1991) have performed 
registration of  MR and CT images using anatomi- 
cal point like features. This method requires exten- 
sive user interaction by a clinician for identification 
of  such landmark points since such landmarks are en- 
demic to the organ/ structure o f  interest. This is an 
extremely time consuming process. Point landmarks 
with geometric invariance properties simplify identi- 
fication as well as automate the registration process. 
Thirion (1993) uses feature points based on geomet- 
ric invariance of  images under translation and rota- 
tion, for registration. These feature points are referred 
to as extremal points and correspond to the intersec- 
tion of  the zero-crossings of  the first-order directional 
derivatives of  the two principal curvatures with iso- 
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Table 5 
Landmarks and invariants of  Fig. 10 (1 structure) 
Number of concavities chosen = 3 outside structure 
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Figure Modality Concavity Height Width Ratio of  height to width Comments 
11 MRI ( 172 × 152) L 22.97 112.97 0.20 

Right 28.36 113.56 0.25 
T 16.59 80.0 0.21 

12 MRI (114 × 101) L 14.1 66.75 0.21 95 % agreement w / l l  
R 19.29 78.09 0.25 100 % agreement 
T 11.59 54.01 0.21 100 % agreement 

intensity surfaces of a 3D image. Crest lines are loci 
of iso-intensity surfaces where the extremal curvature 
is locally maximal and these lines have also been used 
for registration (Thirion et al., 1992). These methods 
utilize first- and second-order differentials of the 3D 
image functions which are computed with linear filter- 
ing using the convolution of the discrete image with 
the differential of the gaussian function to calculate 
principal curvatures and principal directions. Elsen et 
al. (1994) have formulated an automated approach 
to register CT and MR brain images exploiting geo- 
metric invariance, by applying differential operators in 
scale space to each type of image data to produce fea- 
ture images depicting "ridgeness". Baiter et al. (1992) 
have devised a landmark based registration technique 
for 2D images that matches contours corresponding 
to projections of curved surfaces from similar images 
which have some degree of overlap. After determining 
the optimal overlap by parametrizing contours by their 
arclength and computing local curvatures, the curves 
are sampled over their common regions giving corre- 
sponding sets of points. In all these geometry based 
methods, curves (2D) or surfaces (3D) are extracted 
from the image and curvatures computed from the first 
and second derivatives of the image. From a computa- 
tional point of view, this is labour intensive. The digital 
implementation of second order differential operators 
introduces noise in the images which have to be sub- 
sequently removed. The method we propose here also 
locates characteristic points having geometric invari- 
ance under rotation, translation and scaling, for reg- 
istration of planar images of different modalities in a 
common frame of reference referred to as the canoni- 
cal frame. Our method does not require the computa- 
tion of image derivatives. 

The landmark based technique that we have detailed 
in the preceding sections is fast, computationally in- 
expensive and requires minimal user interaction. This 

technique works best when edges of images are well 
defined and it is possible to choose concavities for 
which the edges comprise of clear, unbroken contours. 
Biomedical images generally have complex structures 
containing a number of concavities, some of whose 
edges are hazy and sometimes occluded, and so, the 
user will have to select suitable edges. When broken/ 
torn edges have to be used one can either resort to 
edge linking techniques or the user needs to select the 
unbroken portion of the contour manually to extract 
the entrance/exit points. Another aspect which entails 
user interaction is the choice of transformation to be 
performed to bring the images to a canonical frame. 
This, off course, depends on the number of structures 
to be viewed. The choice of point pairs in projective 
transformation should be guided by the location, im- 
portance and rigidity of the anatomical structures of 
interest. 

Ventricles of the brain are also prominent in func- 
tional images like Positron Emission Tomography and 
Single Photon Emission Computed Tomography. Con- 
cavities in axial images of these modalities appear as 
valleys between hills in an intensity landscape. The 
technique outlined above is thus applicable for the reg- 
istration of such functional images with morphologi- 
cal ones (CT, MRI). The possibility of extending this 
technique to 3D is currently under investigation. 
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