ON HOMOGENEOUS CONTRACTIONS
AND UNITARY REPRESENTATIONS OF SU{1,1)

DOUGLAS N. CLARK and GADADHAR MISRA

1. INTRODUCTION

Let Méb(D) be the group of biholomorphic automorphisms of the umt disk, and
T be a contraction on a Hilbert space H. Each 24,4 in M&b(3) has the form

w20,a(2) = e (2 =a)(1—F2)"!,|a| < L and 9 € [0, 7).

We call an operator T homogeneous, if T is unitarily equivalent to g o(T) for all
(920,s in M8b(D). In this paper, we obtain a family of homogeneous operators using
the Sz.-Nagy-Foiag model for contractions, and we study a corresponding class of
projective representations of Mab(D).

Homogeneous tuples of bounded operators on a Hilbert space are discussed in
[5]. In a recent paper [8], D.R. Wilkin has studied operators in By(D), which are
homogeneous under the action of certain Fuchsian groups.

Let us fix some notation, Let

= BT 2 iR —
sua={[5 2]t -187 =1},
The group ST7(1,1) acts on the unit disk by

Bs(2) = (ez+ BBz +w)"!, forg= [g. i] in SU(1,1).

Note that as a topological group SU(1,1) is homeomorphic (in fact, diffecmorphic)
to the product space T x I; where T is the unit circle. For g in SU(1, 1), if we

set § = arga(mod2x) and a = *5 then the map ¢ — (&, a) is a diffeomorphism,
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and the inverse of this map is obtained by setting o = &¥(1 — |g|*)~"/? and 8 =
= —ae'*(1 — Ja|*)~1/2, The map $, can now be rewritten as (we will drop the tilde)

we(2) = e (z —a)(1 —72)" L.

Thus, if g in SU/(1,1) is identified with (', ), where 0 £ § < 2, and |a| < 1, then
the map ¢: SU(1, 1) — M&b(D), defined by

(1'1) 'I(g} — q{eia: ﬂ] = ¥3 = ¥20,04 ge [D: 2“'.1-'

exhibits SE/(1,1) as a two fold cover of Méb(D). The covering map is just g.
We define a function on SU(1,1) x D as follows

(1.2) i(g,2) = ‘F;(Z)l“ = (Fz + &) = el (1 ;Jff:jlfﬂ.

Note that j satisfies the relations
j(plfﬂ: z) = j(ﬂl: Pm[’t}}j{gh 3}!

j{e;z} =1

Recall that a projective representation is a mapping U: g — U, of the group G into
the unitary group H{H) on some Hilbert space such that

1. U, = 1, where e is the identity of (7,

2. UglUn = elg, b)Y gon, where (g, h) isin T,

3. g = {Us¢ ), ie Borel function for each ¢, n € M.
The function ¢ is the multiplier associated with U/ and is uniquely determined by /.
It has the following properties
¢(g,¢) = 1 = e(e, ¢), where ¢ is the identity of the group & and g € G.
elk, gh)e(g, h) = e{k, g)e(kg, h), for g, h, and k in G.
The set of all n‘.ulultiplie:rs M on the group (7 is itself a group, called the multiplier
. group. If there is a continucus function f: G — T such that

e(g, b) = f(g)f(h)flgh) 1,
then the multiplier ¢ is said to be trivial. Note that in this case, if we set
VF = f{g)-IUyr

then ¢ — V; is a linear representation of the group G that is a strongly continuous
homomorphism ([7], Lemma 8.28, p.34).
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It was pointed out in [4], that if a homogeneous operator is irreducible then it
gives rise to a projective representation of Mb(D). Since the map g — ¢, is a contin-
uous hormnomorphism of groups, we may lift any projective representation to the group
SU(1,1}. However, it turns oat that the projective representations of Mab(D) we ob-
tain from our examples of homogeneous operators are in fact linear representations
when lifted to SU(1,1). In the following section, we discuss the characteristic function
for a contraction, and obtain some simple properties of a homogeneous contraction. In
particular, we show that a coniraction with constant characteristic function must be
homogeneous. Next, we point out that the study of homogeneous operators is related
to that of sysiems of imprimitivity, introduced by Mackey (cf. [7], p.58). We then ob-
tain explicitly the projective representation associated with the class of homogeneous
contractions which have constant characteristic funetion and show that the projective
representations of MSb(D), obtained in this manner, lift to linear representations of
SU(1,1).

2. THE CHARACTERISTIC OPERATOR FUNCTION FOR A CONTRACTION

Sz.-Nagy-Foiag model theory for contractions associates to each contraction an
operator valued holomorphic function ©r(z) on the unit disk.
Let us fix the following notation.

D7=m

Dy = ranDr
Ppe = ranDye
Or(z2) = =T + 2Dp+ (I ~ 2TV Dy € L(Dr, Dr+)
Ag = /T 6705
H=H3  ©Arld,
M= {(Orf, Arf): feHp}
Mt =He M.

By Sz.-Nagy-Faiag theory, T is unitarily equivalent to the operator

T:(f,9).— (sf.¢"g)
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on M, compressed to ML, The compression of T will again be denoted T\ It is the
basic thesrem of Sz.-Nagy and Foiag that iwo completely non unitary contraction
operators Ty and Ty are unitarily equivalent if and only if their characteristic func-
tions coincide, that is, there exist (constant) unitary operators IV and V such that
UBq,(2)V = @x,(2), for all z in the unit disk (cf. [6], Proposition 3.3, p.256). The
dimensions of Dy and Dyp. are ¢alled the defeet indices of T

TEEOREM 2.1. Let T be a completely nonunitary contraction with at least one
of the defect indices equal to 1. The operator T is homogensous if and only if the
characteristic operator function for T is & constant.

Proof. If ©7{z) denctes the characteristic operator function for T, then the
characteristic operator function 8, 7} satisfies

(2.1) Uge¢g(T}{z}VFt = Br(p; (%)),
(cf. [6], p. 240). If T is unitarily equivalent to 4,(7") for all g in G then
U200V, = Brp(2).

It follows that
U UBr (2)V"V, = BT(ga;l(z]).

Since g, acts transitively on the unit disk, setting z = 0 and w = ¢;?(0), we obtain
U0, (0)V;*V, = Or(w).

We note that ||@x(w)f] 5 in fact equal to Illﬂly[ﬂ}ll, and if one of the defact indiciesis 1,
then the characteristic function Bp{w) is sither a Py- or a Dypa- valued holomorphic
function on the unit disk. Is any case, the unit ball of the range is strictly convex,
and by the strong form of the maximum principle for vector valued analytic fonctions
{cf. [1], Corollary IIL1.5, p. 70), it follows that ©7(2) is a constant.

The converse staternent is trivial. Certainly if the characteristic function O¢(z)
is constant, then using {2.1) we find that

U8y, {2}V, = Or(ey () = Or(2),

that is, the characteristic functions 8¢ and O, r) coincide. In other words, T is
homogeneaus and the proof is complete, &

Unfortunately, there exist completely non unitary contractions with nonconstant
characteristic functions, which are homogeneous. In fact, all the homogeneous oper-
ators in By[D) discussed in [4], except the unilateral shift, are contractions of class
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(g, and their characteristic functions are inner. If the characteriatic functions of any
of these operators were to be a constant then T[Dr would have to be an isometry.
However, this is not the case for any of the homogeneous operators in B, (D).

CoroLLaRY 2.1. The unitary dilation U of a homogenecus operator s itself
homogeneous and s therefore a bilateral shift of uniform muliiplicity.

Proof. Since T is unitarily equivalent to ¢, (T, it follows that the unitary dilation
IF is also unitarily equivalent to @, {I/). However, ¢, acts transitively on the unit
girele, and if g is the spectral measure for U7 then p o ¢, must be equivalent to the
measure j for all g, that is, the measure p is a quasi invariant (ef. [7], p. 14) measure
on the unit circle, the measure class of such a measure pi is the same as that of the
Lebesgue measure on T. If T is homogeneous, then Ap(e*) has constant rank, a.e.
This implies that the multiplicity is constant and the proof is complete. &

Let £iny(M) denote the set of invertible operators on H and let L: G — Lino{H)
be a uniformly bounded homemorphiem. The map L is said to be wunitarizable,
if there exists an invertible operator £ such that £L,£7! is unitary for all g in G.
There are known examples (ef. [3], Theorem 5) of uniformly beunded homomorphisms
L: SU(1,1} = Lin,(H), which are not unitarizable.

PRoPOSITION 2.1. An irreducible contraction S is similar to a homogeneous
operator T if and only ifL;".S'LF = 4,(5) for all g in G, and the map L:g — L, is
an uniformly bounded map into £, (H), which is also unitarizable.

Proof. Suppose LTL™! = §. Let UU:g — I, be the projective representation
associated with the homogeneous operator T = £~1SL. The map L:g — LU, L
is & wniformly bounded representation of &, which is evidenily unitarizable, and
LySLy = 94(8).

On the other hand, if S is any operator such that L;'SL; = ,(5) and the map
L:g — L; is uniformly bounded, then to say g — L, is unitarizable means that for
some invertible operator £, the aperataf: LL L7 is umtary and we have

¥of Etele o1 P Tof gl g™ 0100 (-0 1 Vs s i

‘Thus, the operator T = £5£~! is homogeneous and is similar to 5. The proof is now
complete, |

If T and ,(T) are similar for all g, we say that the operator T is weakly ho-
mogencons. How are the homogeneous operators related to weakly homogeneous
operators? If, for example, we can find an operator T, which is weakly hamogeneous
but not similar to any homogeneous operator, with the added property that the map
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Lig — L; implementing the similarity is both uniformly bounded and a homomor-
phism, then in view of the proposition, we would have obtained & representation of
5U(1,1), which is not unitarizable.

2. SYSTEMS OF IMPRIMITIVITY

Let ¢ be a locally compact, second countable, continuous group and X be a
locally compact metrizable space. I G acis continucusly and transitively on X, then
A 15 & transitive, G-space. Let ¢ be a w-homomorphism of C(X} into £(H) and
U:g — U, be a projective unitary representation of G on M., Then (4, X) s a
system of imprimitivity based on X, for the group & if we also have

(3.1) Ugd(f)U; = ¢(fog ') forall gin G.

If X is a compact then classification of such systems of imprimitivity is obtained
through classification of +-homomeorphisms of the C*-algebra C(X). Mackey shows
that, if X = G/H for some closed subgroup H of G, then there is a one-one cor-
respondence between systems of imprimitivity based on X and representations of G
induced from the subgroup H. A good reference for all this material is {[2], [7]).

Let U:G — U(H) be a projective representation of a locally compact group @,
and let X be a transitive G-space. Let 4 be a function algebra, that is, a subalge-
bra (not necesarily closed with respect to #) of the C*-algebra of continuous functions
C(X), and ¢:.4 — L(H) be a contractive homomorphism. Defibe a system of imprimn-
itivity for the group G over the function algebra A, to be a triple (U, 6, X) satisfying
(3.1). Typically, if G = SU(1, 1), then there is a subgroup H such that G/H = D, and
the algebra A is the disk algebra A(D); in this case we identify A(D) as a subalgebra
of the C*-algebra C(T).

Note that if 7" is homogeneous, then we obtain a projective unitary representation
U.g — U, of G such that

U,TU; =g-T,

where we have set g - T = ,(T). ¥ ¢ is the contractive homomorphism of the disk
algebra A(D) defined via p — p(T") then we see that

(3.2) Usd(p)g = Upp(TYU7 = p(U,TUF) = p o o (T),

where we are thinking of ¢ = h™%, so that the map k — U, is a projective represen-
tation. The relation {3.2) is the imprimitivity relation on the disk algebra. On the
other hand, given a system of imprimitivity for G over the disk algebra, we obtain a
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homogeneous operator T simply by setting T = ¢(z). Thus, there is a natural one to
one correspondence between homogeneous contractions and systems of imprimitivity
over the disk algebra.

TueoReM 3.1. Let (U,$,T) be a system of imprimitivity over C(T). If H
is a semiinvariant subspace for ¢(id|T) and each U, leaves H invariant, then the
operator T = Py(id|T) is homogeneous with U, TU; = ipy(T'). Conversely, given an
irreducible homogeneous operator T (or, equivalently, 2 system of imprimitivity over
A(D)}, let g — V, be the associated projective representation of G on M satisfying
VoTV; = ¢y(T). Let Wr be the minimal unitary dilation for T on K containing %
as a semiinvariant subspace. Then there exists a projective representation U:g — U,
of G, on K, which leaves H invariant, U, WrlU; = ,(Wr) and Uz [H = V.

Proof, One-half of this theorem is easy to prove. We need only observe that if
‘H is invariant for Uy, then the projection Py commutes with L7, and 7. Thus,

Pud(f o05)Pre = Pully$(£)U3 Prc = Uy Prud( 1) PriU;.

For the conversa, we take Wi to he the matrix

where the box as usual denotes the (0,0) entry. If we restrict Wy to the subspace

D form < —1,
Kr={{h)E & H:iho€ H forn=0and},
n==02
D - forn>1

then Wy is a minimal unitary dilation of T. However, since T is an irreducible
homogeneous operator on H, there is a projective representation g — V,; of & such
that VTV, = ¢, (T). Let U/; be the diagonal operator acting on Eli H, with each
diagonal entry equal to V. Note that @,(Wr) is a minimal unitary dilation for
the operator i,(T) (cf. [8], Proposition 4.3, p.14). Since the unitary operator V,
intertwines T and y,(T'), it is clear that U7, will map K onto K cry. However,
Kr is equal to K, ;). Therefore, Uy is a unitary operator en Kp which leaves the
subspace H invariant. It is also clear that U, intertwines Wy and ,(We). Since



116 DOUGLAS N, CLARK and GADADHAR MISRA

is a projective representation of the group & and U} is defined to be a block diagonal
matrix with each diagonal block equal to V;, it follows that [7; is itself a projective
representation of the group . This completes the proof of the theorem. ]

The second half of the thearem says that every system of imprimitivity over the
disk algebra A(D} lifts to a system of imprimitivity over the C*-algebra of continuous
functions C(T).

4, CONTRACTIONS WITH CONSTANT CHARACTERISTIO FUNCTION AND UNITARY
REPRESENTATIONS OF SU(1.1}

THEOREM 4.1. Let T be a completely nonunitary contraction with constant
characteristic function

Br(z) = C € L(Dr,Dys),

where C is independent of z, and ||C|| < 1. Then for any linear fractional transfor-
mation ¢ mapping D onto B, @(T) is unitarily equivalent to T

(4.1) W(T) = U, TU;.

Furthermore, the unitary operators U, tan be chosen so that p — U, is continuous
in the strong operator topology and so that

UpUp = c(t, @)U oy

where c(1, i) is a complex constant of modulus 1.

Proof. By Sz.-Nagy-Foiag theory, T' is unitarily equivalent to the operator

T:(f,9) = (zf,e'g)

on H, compressed to M, in the notation of Section 2. The compression of T will
again be denoted T

T:(f,g) = Pps(zf eg),
since M is invariant under 7, the operator T is a (power) compression. Thus,
(42) S(THS9) = Prar(p(2)f, 0(e")g)

holds for y analytic in |z| £ 1. In particular, (4.2) holds for a linear fractional
transformation ¢ as in the statement of the theorem.
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The following is a charmterizgtiun of the space M*:
(4.3) ML= {(f,-C*{I-CC")"M2f 1 e"h): f € H}, , h{e™) € Hp, }
Indeed, since C*(1 — CC*)~Y2 = A-1C*, we have, for g € H%T
((f, ~C*(I — CC™)~H2f),(Cyg, Ag)) = {f,Cg} ~ (C*f.a) =0

and {(0,e"%h),(Cg, Ag)) = {e~*h, Ag) = 0, since Ag € H}_ande~"*h L H}_. This
proves D in {4.3).

To prove C in (4.3), suppose (g1, g2) € H is orthogonal to the right side of (4.8).
Since (g1,92) L (0, %h), we have g2 € H%T_. Now for f & H%T_,

(g1, 92) L (f,=C*(I — CC*y13p),

So

{91, f} = {g2, C*(I - CC*)" 2 ),
ar

= ~CCy 0 L HG, .
It follows that

a=({I-CCy 20 = CA™lg,

and therefore
(91,92) = (Ch, AR) € M (where h = A™"g5 € Hp).
Now we prove that
(4.4) Byqa (0, he) = (—CAhAg, C*Cho)
for hy € Dr (i.e., hg a constant function in £3, ). First,
| (~CAhg, C*Cha) =

= (~(I = CC*)3Chy, C*(I — CC™) V31 — CC"Y /2 Che) =
= ({1 = OC)H2Chg, —C*(I - CC*Y I ~ CCYH2Chy) € M2,
Secondly,

(0, ko) — (—CAhRg, C*Cho) = {0, ko) + (CAhy, —C*Chy) =

= (Gﬂha, ﬂghn} e M.
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This proves {4.4).
Now, we can characterize the action of T on ML by

T(f,=C°(I - CC*Y " *f +e~*h) =

= Ppu(zf,—C (I - CC*Y Y2 f + h) =
= (zf,=C*(I = CC")~ M2 f + e~ (e" (b — B(0)))) + Pus(0,A(0)) =
= (2f,=C*(I - CC*)~ /%" f + e (" (h — M0)))) + (~CAK(), T*Ch(0)) =
= (zf — CAR(0), —C*(I — CC*)~ /26l f 4 b — Ah(0)).

Now we will write i for 4 4, which has the form

@(2) = e¥®(z — a)(1 — dz)""! € Mob(D),
We define elements of ML by
&(f,n) = p(e")"" (1 - ae")"}{f, ~C"(I ~ CC*)"'*{), f € Pr-

B(f,~n) = p()(1 ~ ae=*)"1(0, f), f € Dr.

For n=1,2,.., it is clear that, for a given ¢ and for n = £1, 42, ..., {&(f, n)} form a
basis for M+. Furthermore,

(B(f,n), Plg,m)) = 0ifn £ m.
Also, if n >0
(B(f,n),P{g,n)) =
= {(1 - 3e*)71 1, (1 — aet'y 1 g)+
+{(1 — 36"y~ - CC*)Y M2 (1 = ey 1O - 0" Mg =
= (1 - la*)"[{f,9) + (I — CC") M ?CC* (1 - CO*)2f )} =
=(1- ey I+ CC" I -CC) S 9) =
= (1~ [af)~}{(I - CC*)"" . ).

and if n < 0,
{B(f, 1), B(g,n)) = {(0, (1 — ae")" £), (0. (1 — &) 'g) =

= (1= s} {f, 9)-
For p(el’) = e, we denote &(f, n) by I(f,n) (I for identity function).
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Define the operator U,: M+ — ML by
UoI(f,n) = (I — |af*)*/*@(f, »)
forn #0and f € Dr if n < 0, f € Dy- if n > 0. Note that U, is unitary and satisfies
Ua(f(2),9(e™)) = (1= [a[)/3(1 — @") (fap.go ),

for (f, g) € ML,
We compute, for n > 0 and f € Dy,

U, TI(f,n) = U,T(z""1 f,—C*{I = CC*)~2ein=105) =
= Up("f,—CH{I - CC*) 2" f) =
= U I(f.n+1) = (1= [a])28(f,n + 1).
If n>1and f € Dr,
U TI{(f,—n) = U, T(0,67™ f) = U,(0,e7 "1 f) =

= UpI(f,—n+1) = (1— eI}/ *&(f,—n + 1)
and, if f € Dy,

U,TI(f,=1) = U,T(0,& % f) = U (=CAF,C*Cf =
= U, H{—(I — CC*)*CF,1) =
= (1= [af*)?8(—(1 - CC*Y/*CF.1).
To complete the proof of (4.1), we apply the relation (4.2), to get, for n > {,

‘!:'{T}@(f: n) = d}(f: n+ 1}1
form>1,
w(TY0(f,—n) = &(f,—n+1)
and, for n = -1,
P(T)P(f, —1) = Pua(l —3e")"1(0, f) =
-3 O Il 0 i D
=@ =(f <OV 2011,

(The next to last equality is verified by checking that the right side lies in M~ and
the difference of the left and right sides lies in M.)
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Thus, for all n > 0,
UpTI(f,n) = (1 [a[*)' 2p(T)8(f, n) = @(T)U, I(f, n)

so that (4.2) holds.
To prove ¢ — U, is continuous from the uniform topology to the strong topology,
suppose p(2) converges uniformly to ¢(z) (in |z] £ 1). We need to show

(4.5) Uge f = Uysf for f € ML,
Write
£=3"I(fayn),
ngd
where

=1 o
ST =CCN PRI+ all? < oo
-— 1

Given £ > 0, choose N so that

3 11(fa,m)|? < €3/8.

Ng|n|
For each n, it is clear that
(1= [ak|")!/*@s(fa, n) ~ (1 ~ |a*)/?B(fa, n)

in ML, where ay is the zero of ¢ and a is the zerc of . Therefore, there is a positive
integer K such that

(1 = la *Y ?@e(fa, n) — (1 — |6l 2B £, m)|| < €/(2N)
for 0 < |n| < N and k > K. Therefore, if k > K,
“Uiﬂf ! Us‘-ﬂl =

=11 = lax[)/? Y " Ba(fa,n) = (1= [a]*) 2 Y &(fa.m)][ €

nFEd ngld

€ Y (= a2 Bx(fa, n) — (1 — [af21120(fy, n)| +

]| <N-

1f2
+2 [ ¥ llf(fmﬂlll’} <s

N<ln|
which proves (4.5).
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To prove thle last assertion of the theorem, let
o(2) = e (z — a)(1 - @2}, 9(z) = e¥(z = B)(1 = bz) 7,
where, |a|, [ < 1, #,9 € [0, 7). Then
oo $(z) = O 4+ Bae™7)(1 + 3™z — d)(1 - )1,
where d = (e%9b + 8)(e?" + ba)~!, We have
1= 42 = (L~ laf2)(1 = B[%)]e? +Bal~*

and so
UgUp(F(2)9(e")) =
= (L= 1a/)72(1 = P2 (1~ ay) (1 =By fopoy,gopo) =
= (1 — [a)®)/3(1 — )31 + Bbe®)~1(1 — de) " (fopoy,gopoy) =
= ¥ 4 ba|(1 + @be™) 1 oy
This completes the proof of the theorem. [

For the M&bius transformation ¢ = ag 4 of the theorem, let
flp) = €.
Then we have
UpUpUpey = f() F($)/ f(ip 0 ¥).
Tndeed, if we write (z) = ¥y 4(2) = €2%(z — B)(1 — bz)~? and if ¢ is as above, then
pop(z) = HP+M(1 4 ?ae“*“?}(l + by~ 1z — d)(1 - dz)"?,
and so f{ip o ¢} = HI[(1 4 Bae~UM)(1 + (b@e®7)~1]1/2, and
FR F(0)1 f(ip 0 ) = €¥e e HIM[(1 + bae™)(1 + bae™*7)~']/* =
= [{1 4 bmEe®™)? |1 + b&e®7| =412 = (1 + b&e®)|1 + bae™| ™! = USULUgoy

by the last step in the proof of the theorem. The function f is not continuous on
the group M&b(D) and we cannot infer that the map ¢ — f()~'U, is a linear
represcntation,

However, the map V:SU(1, 1) — U{H) defined by

Vig) = V{e¥,a) = ¥U o g(e?, ) = £°U/,,,
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where ¢ = 2 , and ¢ is the quotient map (see (1.1)); is a linear (anti)representation
of SU7(1,1}). Note that

V{g) = j{g, ") Ry, where (R,f)(z) = f e {iy(2)):

se= (1.2).

How does the representation V decompose in terms of the known irreducible
representations of SU(1,1)?7 When both the defect indices of the operator T are 1,
we can show that the associated representation V is unitarily equivalent to the direct
sum of two copies of the discrete series representation of SU(1, 1) cotresponding to
the Hardy space.
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