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Abstract A connectionist system for  learning and recognition o f  structures is developed. The system is a cascade 
o f  two different modules, one for  detecting linear structures (primitives) and the other for  integrating these linear 
structures. A connectionist model implementing Hough transform has been used for  the first module. The peaks 
in the Hough space are found by iterative verification method. A multilayered perceptron (four layers) with 
suitably chosen number o f  nodes and links has been used for  the second module. As long as the size of  the output 
layer o f  first module remains fixed (even i f  the size of  input image changes), the same second module can be used 
and this is because the modules operate independently. The system performance is tested on handwritten Bengali 
character set. 
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1. I N T R O D U C T I O N  

An object can be described in terms of descriptions of  
its parts (primitives) and spatial arrangements (rela- 
tions) of  the parts (noted as structural description). 
Recognition of the structures basically involves match- 
ing of a candidate structure with some prototype struc- 
tures stored in the model base (Shapiro & Haralick, 
1982; Shapiro et al., 1984; Boyer, Vayda, & Kak, 1986; 
Basak et al., 1993). The main difficulty in structure 
matching problems is that the presence of noise (and/  
or vagueness) may change the description of some of 
the primitives, thereby affecting the matching perfor- 
mance. Assigning some weights to the primitives and 
to the relations (reflecting their importance in charac- 
terizing various classes) helps, to some extent, in 
achieving noise tolerance and in handling imprecise- 
ness in input. These weights will be higher for the prim- 
itives and relations that are most consistent (i.e., im- 
portant) in characterizing a class. 

Structural description is widely used in different 
problems like shape matching, stereo matching, char- 
acter recognition, etc. In all these problems descriptions 
should be such that the effect of noise gracefully de- 
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grades the performance of the system. Therefore, to 
design a recognition system based on structural de- 
scription, one should pay attention to the proper ex- 
traction of the primitives and assignment of  weights to 
the primitives and the relations. The extracted primi- 
tives (features) should be as robust as possible. More- 
over, the system should be able to assign these weights 
automatically (supervised or unsupervised learning). 

For designing a pattern recognition or vision system, 
one wishes to achieve robustness, adaptability (capa- 
bility of  learning the variations ), and fastness (for real- 
time applications). Neural networks (Lippmann, 1987; 
Feldman & Ballard, 1982; Fahlmann & Hinton, 1987), 
having capability to learn from examples, and having 
robustness and scopes for parallelism, have recently 
been used for designing more intelligent recognition 
systems. 

The objective of  the present investigation is to de- 
sign a scheme for structural pattern learning and rec- 
ognition within a connectionist framework. The prob- 
lem of  handwritten character recognition is considered 
as a candidate for the development of  the scheme. Be- 
fore describing the proposed system, we give a brief 
review of the neural network-based character recogni- 
tion systems. 

In the literature, there exist various approaches 
based on neural networks for the character recognition 
problem. Possibly the first attempt was made by Fu- 
kushima ( 1987, 1982) for 2-D object recognition. The 
model (neocognitron) can recognize position and scale 
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FIGURE 1. Block diagram showing the basic operations of the proposed connectionist system. 

invariant handwritten numerals. Attempts, so far made, 
for neural network-based handwritten character rec- 
ognition can be classified into two categories. In the 
first category, classification or matching task is based 
on the derived features from the character images. The 
second category, on the other hand, does not need to 
extract the features separately; the classification is per- 
formed directly from the pixel level information. Some 
of the investigations of  the first category are as follows. 
Lua and Gan (1990) used the method of cooperative 
and competitive processing to recognize Chinese char- 
acters. They used Hebbian learning mechanism. Later, 
in another study, they used adaptive resonance theory 
for recognition of characters (Gan & Lua, 1992). Cur- 
sive scripts written by different writers were catego- 
rized using Kohonen's  self-organizing feature map 
(Schomaker, 1993). Yong (1988) also developed a 
connectionist model for Chinese character recognition 
using strokes as the features. Recently, a newly de- 
signed network, namely CLF network (conjunction of 
localized features), was used to recognize handwritten 
numerals (Takfics, Johnson, & Pieroni, 1993 ). In most 
of  these investigations, the feature vectors were chosen 
in such a manner that they formed compact disjoint 
clusters corresponding to individual characters. It is 
therefore necessary that the features should be invariant 
under noisy, ambiguous environment. In other words, 
the process of feature extraction should be robust. But 
choosing the right kind of features in some scripts (like 
Indian) may be difficult. 

Some of the attempts in the second category are as 
follows. Le Cun et al. (1991) used multilayered per- 
ceptron (Rumelhart & McClelland, 1986) to recognize 
handwritten numerals. Le Cun (1989) developed a 
theoretical framework for optimal selection of network 
structure and used it for character recognition. Denker 
et al. (1991) also used MLP to recognize handwritten 
zip codes. One of the merits of  using MLP is tfiat it can 
generate complex decision regions. Because these ap- 
proaches take the entire image patterns directly for 
learning through the back-propagation rule, learning 
the classes from the images of  complicated characters 
(like, Indian scripts) may take quite a long time. More- 
over, the required arrangement of hidden nodes for dif- 
ferent scripts may be different if the pixel level infor- 
mation is given as input. 

Therefore, it seems that if the merits of  robust fea- 
ture selection and the characteristics of  MLP in inte- 

grating the features can be exploited to design the rec- 
ognition system, that would possibly lead to a more 
intelligent scheme for structural pattern recognition. In 
the present work, a six-layered connectionist system 
has been designed for both feature extraction and rec- 
ognition. The system accepts skeleton version of im- 
ages (regions) as input. Features are extracted by find- 
ing out the linear structures in the image. Then these 
features are hierarchically integrated by a multilayered 
perceptron model. In this case, the network has been 
designed with a view to reducing redundancy. The 
nearby linear structures (close in position and orien- 
tations) have been grouped hierarchically. The first 
three layers of  the network extract the features, and 
other three layers integrate them to map the decision 
space. 

The effectiveness of  the model in identifying dis- 
torted versions of handwritten characters has been dem- 
onstrated. Note that though the method has been im- 
plemented on handwritten character recognition 
problem, it can also be applied to other structural pat- 
tern recognition and learning tasks with suitable mod- 
ifications. 

2. PRINCIPLE OF FEATURE EXTRACTION 
AND R E C O G N I T I O N  

In describing the principle of  structural learning and 
recognition process, we consider the structures to be 
composed of mostly linear segments. One basic re- 
quirement, as mentioned in Section 1, is that the prim- 
itives should be as robust as possible. This very fact 
leads to the idea that if similar structures over a neigh- 
borhood are considered as a whole for primitive ex- 
traction and attributed in a proper way, then it would 
result in features with better invariance. The larger the 
size of the neighborhood, the higher will be the invar- 
iance and the lower will be the details of  the feature 
information. This argument holds true for any struc- 
tural shape recognition problem. 

The block diagram in Figure 1 shows the basic op- 
erations of the system. The system first finds out the 
local line points present in the skeletonized structures 
in the image. This is performed with the help of  tem- 
plate matching. These templates are efficiently embed- 
ded within the links between the first and second layer 
of the system. The local line points are then grouped 
according to their orientations in the third layer of the 
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system. This grouping is performed with the help of 
Hough transform. An efficient scheme for implemen- 
tation of Hough transform in the connectionist frame- 
work has been designed in the present methodology. 
The activations in the third layer representing the linear 
structures are then grouped hierarchically with a MLP 
model. 

2.1. Hough Transform and Feature Extraction 

The Hough transform works as follows. Each point ly- 
ing on a straight line in the image space (corresponding 
to nonzero pixels t ) can be expressed as 

r = x cos 0 + y sin 0 (1) 

where (x, y) is the coordinate of  the concerned point 
in the image space and r and 0 are parameters speci- 
fying the line. ( r  is the normal distance of the line from 
the origin and 0 is the angle subtended by the normal 
with the positive x-axis.) According to this equation, 
several (r ,  0) values can be computed depending on 
the (x, y)  value of the point. As a result, a point in the 
image space corresponds to a line (sinusoidal in nature) 
in the ( r ,  0) space. For each such point in the image 
space, the cumulative contribution (accumulator value, 
Ballard & Brown, 1982) in the (r ,  0) space is com- 
puted. If  there exists a straight line in the image space, 
then the contribution to a particular (r ,  0) value would 
be very high because all points lying on the line in 
image space would produce some contribution to that 
(r ,  0) value. In practice, a cluster of  activations in the 
( r ,  0) space would be formed due to the presence of a 
line in the image space. Therefore, if the clusters in (r ,  
0) space (i.e., parameter space) can be identified, then 
the possible lines in the image space would be detected. 
In other words, if the local line direction at a pixel in 
the image space is specified, then it should be trans- 
formed to a unique point in the Hough space. Let us 
consider this point (in the Hough space) to be the rep- 
resentative point of  that pixel. In the following claim 
we will consider only the representative points. A 
straight line in the image space can also be identified 
a s  

y = mx + c (2) 

where a t ( s lope  of the line) and c (intercept of  the line 
with the y-axis)  are the parameter values. However, 
eqns (1)  and (2)  essentially represent the same phe- 
nomenon. Next we present an interesting property of 
Hough transform in (m, c) space. 

CLAIM. I f  a curve in the image space is continuous and 
second-order differentiable, then the points lying on the 
curve will lie in a contiguous space after Hough trans- 
formation. 

In this investigation nonzero pixels correspond to object region. 

P r o o f  Suppose the image contains a curve given by y 
= f ( x ) .  For the sake of simplicity we consider the im- 
age space to be continuous. Consider a point (Xo, Yo) 
on the curve. The equation of the tangent to the curve 
at (x0, Yo) can be written as 

y - yo = ( x  - x o ) f ' ( x o )  

that is, 

y = [yo - x o f ' ( x o ) ]  + x f ' ( x o ) .  (3) 

In other words, in the parameter space the point (Xo, 
yo) will be transformed to (m~, el) where 

ml = f ' (x0)  

and 

Cl = yo - x o f ' ( x o ) .  

Now let us consider a nearby point on the curve (Xo 
+ Ax,  Yo + Ay) (i.e., Ax and Ay are chosen to be 
very small).  Suppose this point maps to a point (m2, 
c2) in the parameter space. In a similar way it can be 
shown that 

m2 = f ' ( x o  + Ax) 

c2 = Yo + A y  - (Xo + A x ) f ' ( x o  + A x ) .  

Moreover, Ay can be written as 

A y  = A x f ' ( x o ) .  

Therefore, it can be written that 

and 

m2 - ml  = A x f " ( X o )  

c2 - cl = A y  -- x o A x f " ( X o )  -- A x f ' ( x o  + A x ) .  

Because the first and second derivatives exist and 
are finite, values of  c2 - c~ and m2 - m~ can be small 
enough by selecting Ax  to be arbitrarily small. In other 
words, the nearby points on the curve in the (x, y)  
space will lie in contiguous space in the transformed 
region. • 

It is to be noted here that instead of considering (m,  
c) space one can consider ( r ,  0) space also. In fact, the 
second one has been used in the sequel. The equation 
for transforming the image space into ( r ,  0) space is 
given by eqn ( 1 ). It is obvious that if a curve occupies 
contiguous space in the (m, c) domain then it will oc- 
cupy contiguous space in the ( r ,  0) domain also. 

If  the parameter space is divided into a number of  
slots, then each slot corresponds to a particular straight 
line segment. The contribution (accumulator value) 
present in each slot represents the total number of  pix- 
els present in the corresponding line segment in the 
image space. Because of the above c l a i m ,  a curve in 
the image space contributes to a contiguous chain of  
slots in the parameter space. This is equivalent to an 
approximation of a curve by a sequence of line seg- 
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FIGURE 2. (A) Schematic diagram of the structure of the sys- 
tem. The layers of the network are two dimensional. Each link 
from the second to the third layer represents a bottom-up 
and a top-down link. The self-feedback connections in the 
third layer are not explicitly shown. The dashed box in the 
second layer indicates a group of nodes connected to same 
input node. (B) Connections between second-layer nodes 
connected to the same input node. The structure of each 
node is shown explicitly. The part that competes with other 
nodes is represented as a conjugation of two nodes. 

curve in image space is distributed over a sequence of 
slots in the parameter space, the response values of 
some of the slots may be low and, as a result, get elim- 
inated due to thresholding. Lowering the threshold 
value, on the other hand, may not be able to eliminate 
some of the spurious responses. However, Hough trans- 
form has ample scope for massive parallelism because 
the activation value in each slot can be changed inde- 
pendently. 

Because neural networks provide a robust, mas- 
sively parallel computational framework, Hough trans- 
form can possibly be efficiently implemented with con- 
nectionist models. Moreover, the problem of selecting 
suitable threshold can be avoided in a connectionist 
framework using iterative verification method (Stanfill 
& Waltz, 1986; Basak et al., 1993). 

In the iterative verification process, the activation 
values in the slots of Hough space are verified against 
the image pixels. It is assumed each pixel in the image 
should vote to at most one slot in the Hough space. In 
the formation of initial accumulator values, each pixel 
can vote to more than one slot (the slots that satisfy the 
parametric equation for the line). The slots in the ver- 
ification process compete for associating the pixels 
with them, and once a pixel gets associated with some 
slot, it supports that slot only and does not support other 
slots. Thus, if some spurious activations exist in the 
parameter space, they would lose in competition in as- 
sociating the pixels, and would not get further support 
from the pixels. If there exists a negative self-feedback 
mechanism to automatically decay the activation values 
in the parameter space, then the spurious activation val- 
ues would gradually decrease, whereas the genuine 
peaks would get stabilized to some nonzero values due 
to the support from pixels (which the peak has win 
over). 

In the connectionist implementation, a neuron is al- 
located to each slot. The activation of each neuron es- 
sentially represents the amount of contributions to that 
slot. The clusters in the Hough space depend on the (x, 
y) values of the nonzero pixels in the image space. A 
feedback pathway is maintained from the layer corre- 
sponding to the parameter space to the layer represent- 
ing the association between the pixels and the slots, to 
properly associate the slot activation values with the 
pixels. The architecture is described in Section 3 and 
the dynamics of the network is discussed in Section 5 
in detail. 

ments. The level of approximation is dependent on the 
size of slots. 

A linear structure in the image would correspond to 
a cluster, in addition to some spurious activations in 
Hough space. It is therefore necessary to extract (seg- 
ment) the clusters out from the spurious responses. But 
the selection of the proper threshold for segmentation 
is a problem. Moreover, because the contribution of a 

2.2.  C o n c e p t  o f  P r i m i t i v e  A g g r e g a t i o n  

The activations in the Hough space represent the basic 
primitives of the structures. The basic primitives should 
be suitably integrated to represent the higher-level fea- 
tures (information) with better noise invariance (robust 
features). Because the pattern of integrating the fea- 
tures is highly dependent on the type of classes, it will 
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be convenient to learn these patterns in a hierarchical 
(layered) connectionist model under supervised mode. 

To provide better noise invariance, the primitives 
should be grouped over local neighborhood (in the 
Hough space). This is due to the fact that even if the 
primitive varies in its position (in the Hough space) 
due to the presence of noise, the effect would be re- 
duced in the next layer of the hierarchy. Moreover, this 
kind of grouping may provide insensitivity to the small 
amount of orientations of the structures. 

The hierarchical structure of the system should also 
be able to extract out more invariant properties from a 
group of primitives. Possibly this can be performed by 
grouping the primitives over larger neighborhoods. A 
variation of multilayered perceptron (with suitably se- 
lected number of hidden layers and nodes, the connec- 
tions between the layers being constrained within local 
neighborhoods) may be used. This is described in the 
following sections. 

3. STRUCTURE OF THE SYSTEM 

The proposed connectionist system consists of six lay- 
ers (Figure 2).  The input layer of the network contains 
a 2-D array of neurons. The size of the array is the 
same as that of the image (say I × J ) .  Each neuron 
accepts an activation value equal to the normalized in- 
tensity ([0, 1] ) of  the corresponding pixel. In the sec- 
ond layer there are 16 neurons corresponding to each 
input neuron (i.e., second layer contains 16 × I × J 
neurons). The second layer associates the image space 
with the parameter space and each group of 16 neurons 
in the second layer corresponds to the 16 templates, as 
shown in Figure 3. The third layer corresponds to the 
parameter space. Each neuron in the third layer repre- 
sents a slot in the parameter space of Hough transform. 
This layer essentially approximates the structures (sin- 
gle pixel thick skeletons of characters) by line seg- 
ments. The size of the third layer depends on the al- 
lowed resolution in the parameter space. 

The connections between the first and second layers 
have been exaggerated in Figure 2B. Each group of 16 
second-layer neurons, connected to a single input neu- 
ron, is presented within a dotted box. Each second layer 
neuron has three parts, as shown in the figure. The first 
part holds the activation value corresponding to the re- 
spective line template. The position of the second-layer 
neurons within a group can be arranged according to 
which templates they correspond. For example, the first 
neuron corresponds to the first template, the second one 
corresponds to the second template, and so on. The 
activation level received by the first part of a second- 
layer neuron is determined by the respective template 
connections to the input layer and input node activa- 
tions. The second part of each neuron takes part in com- 
peting with other neurons within the same group. The 
output of the second part always modulates the acti- 
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FIGURE 3. (A) Line segments corresponding to 16 different 
templates used for line detection. (El) The eight possible di- 
rections that can be represented by these segments are 
shown. 

vation level of the third part. If the second part of some 
neuron loses in the competition, then the third part gets 
inactive, and if the second part wins, then the third part 
of the neuron becomes active. The third part of each 
neuron computes the difference between the signals 
coming from the input layer and the maximum feed- 
back it is receiving from the third layer. The difference 
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of these two signals is sent to the third layer if the 
corresponding neuron is a winner within its group. 

The fourth layer of  the network (Figure 2A) takes 
activations from the third and groups (smoothes) them 
over local neighborhoods. The objective of  the fourth 
layer is to smooth the activation values present in the 
third layer to achieve robustness of the system. The 
fifth layer also groups activations from the fourth layer 
over local neighborhoods. This layer is intended to in- 
tegrate linear segments over local neighborhoods to 
find some invariant structural properties. The size of  
the fourth layer is the same as that of  the third layer. 
On the other hand, the size of  the fifth layer depends 
on the chosen neighborhood size and the amount of  
overlap between local neighborhoods. The size of the 
local neighborhood in the fourth and fifth layers and 
the amount of  overlap in the fifth layer will be dis- 
cussed in Section 5. The number of neurons in the sixth 
or the output layer is equal to the number of  classes 
(structures) to be learned and recognized. Each neuron 
in the output layer has connection with all nodes in the 
fifth layer. 

The network works as follows. The input layer ac- 
cepts images of  skeletonized structures. As mentioned 
earlier, each neuron in the input layer is connected to 
16 neurons in the second layer. All 16 neurons within 
a group in the second layer have competition between 
them. Each neuron in the second layer is connected to 
all neurons in the third layer through bottom-up and 
top-down links. The bottom-up links carry activations 
from the second to the third layer and the third layer 
feeds back the activation to the second through the top- 
down links. Each neuron in both second and third lay- 
ers has a (r ,  8) value associated with it. The (r ,  8) 
value actually determines to which neuron it should 
send activation and from which it should receive. A 
neuron in the third layer would receive activation from 
a neuron in the second layer when there is a match 
between the (r ,  0) values resident in these neurons. The 
exact mathematical model for activating a neuron is 
discussed in Section 4. In addition, each third layer 
neuron has a negative self-feedback connection. 

In the initialization process, the local line directions 
are computed in the second layer using the template 
weights embedded into the links from first layer to sec- 
ond layer. Then the neurons in the third layer are ac- 
tivated from the neurons in the second layer through 
bottom-up links. After initialization, the nodes in the 
third layer feed back the activation values to the second 
layer through the top-down links. The second layer 
nodes, in turn, send the differential support to the nodes 
in the third layer. The activations of the nodes in the 
third layer are updated according to the negative self- 
feedback and the differential support. In this process 
the spurious activations do not receive any differential 
support and are reduced due to negative self-feedback. 
On the other hand, the true activations attain stable 

states when the differential support equals the negative 
self-feedback. 

After stabilization the third layer represents the clus- 
ters (corresponding to linear segments in the image 
space) in the parameter space. The weights of the links 
from the first to the second and from second to the third 
layer are fixed. The weights of the links from the third 
to fourth, fourth to fifth, and fifth to sixth layer are 
learned using the back-propagation learning rule. If  the 
size of the neighborhood in the fourth and fifth layers 
is very large, then there will be redundancy in the net- 
work and the back-propagation technique would re- 
quire more time to converge. On the other hand, if the 
neighborhood size is very small, then the network may 
not be able to extract out the invariant properties of the 
character images. As a result, the performance of the 
network may be deteriorated. The selection of the ap- 
proximate size of the neighborhood is discussed in Sec- 
tion 5. 

The following notations are used in the subsequent 
discussions. The activation value of the ith input (first 
layer) neuron is represented by v~i ~. The second layer 
neurons corresponding to ith input neuron are indexed 
as ij (i.e., the j th  neuron among the 16 neurons con- 
nected to the ith input neuron). The activation value 
of the ijth neuron in the second layer is denoted by 

(2) 
v 0 . The r and 0 values present in the ijth neuron in the 

(2) (2) • 
second layer are denoted by r 0 and (4i~ , respectively. 
Similarly, the activation value, r, and 0 stored in the 
ith third layer neuron are denoted by vl 3~, r l  3), and 
8 ( 3 )  , respectively. Note that indexing of only second- 
layer neurons is done depending on the first-layer neu- 
rons. The neurons in the other layers are indexed in- 
dependently. The activation values in the fourth and 
fifth layers are represented by vl 4) and vl ~) , respec- 
tively, corresponding to the ith neuron in both layers. 
The output layer activations are denoted as oss. 

4. COMPUTATION OF LOCAL LINE POINTS 

As mentioned before, the second layer contains infor- 
mation about the local line segments in the image. The 
local information about the possible line segments is 
extracted by matching suitable templates at each pixel. 
The templates ( ~  . . . . .  ~]6 in Figure 3) are designed 
considering all possible line segments that can appear 
over a 3 × 3 neighborhood in a digital grid. It is evident 
from the nature of  the templates that they can be di- 
rectly implemented in a connectionist framework by 
properly assigning the weights of  the links. The links 
from the first layer to the second layer represent the 
template connections. Note that more than one template 
will respond at a junction point. Moreover, even if the 
concerned point is not a junction point, more than one 
template may produce nonzero response values. For ex- 
ample, if a vertical line segment is present in the image, 
then the ~ template will produce full response and ~s, 
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~6, ~7, ~8 templates will produce partial responses. The 
situation may become confusing if no template pro- 
duces full response, but more than one template pro- 
duce partial responses. As a result, if a single template 
type is associated with each pixel to represent the pos- 
sible line direction at that point, then the result may 
become erroneous. It is, therefore, more reasonable to 
associate more than one template type along with their 
response values with a single pixel. 

Another problem of using templates to extract the 
local line segments is that there can be discontinuity in 
the template responses of the pixels belonging to the 
same line. Besides, the template type with the highest 
response (dominant template) present at a particular 
pixel on a line may widely change due to the presence 
of a small amount of noise. For example, one pixel shift 
of a point in a vertical line segment may cause the 
template ~3 o r  ~14 (instead of ~1) to dominate at that 
location. 

Again, note that the 16 templates correspond to only 
eight possible directions in [0, 180] degrees because 
of the fact that the templates determine the directions 
only on the basis of 3 × 3 neighborhood. Figure 3 
shows how these eight directions of a line segment are 
measured. On the other hand, the parameter space in 
the third layer should be able to represent all the direc- 
tions of the line structures with better resolution for 
effective primitive extraction. This problem can be 
avoided if the directions represented by different tem- 
plates are iteratively averaged over local neighborhood. 

The templates can be efficiently implemented by 
embedding the template weights into the links from the 
first layer to the second layer. Each group of 16 neurons 
in the second layer, connected to an input neuron, cor- 
respond to 16 different template structures. The posi- 
tion of a neuron in the group of 16 precisely identifies 
the template represented by that neuron. 

The orientation values (directions of local line seg- 
ments) are associated with the corresponding neurons 
in the second layer. Each neuron in the second layer 
stores two different values v and 4) to represent the line 
strength and the orientation of the line corresponding 
to the respective template. The line strengths computed 
in the second layer are then fed back to the correspond- 
ing input neurons. Each input neuron then accepts the 
maximum line strength coming from the 16 second- 
layer neurons connected to it. Thus, the input neuron 
stores the maximum line strength of the corresponding 
pixel. Depending on the local direction of the line, the 
possible ( r ,  0) value in the parameter space is com- 
puted at each neuron in the second layer (Figure 3). 
This is performed with the following equations (Figure 
4): 

ii 90 i  >90 
O= +90 if y > x  and 4~<90, (4) 

+ 270 otherwise, 
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FIGURE 4. Three different cases that  can occur for a line seg-  
ment. In t h r e e  c a s e s  t h e  va lue  o f  0 w o u l d  h a v e  di f ferent  re-  
lations with ~ .  

where (x, y) is the coordinate of the pixel with respect 
to the image reference frame. Note that the origin of 
the image reference frame is fixed at the upper left cor- 
ner of the image. The value of r is computed once the 
value of 0 has been found out. It is computed by eqn 
(1) ,  which indicates that these calculations involve 
only local operations and can be implemented with lo- 
cal processors. 

The orientation values are averaged according to the 
following rule. 

v(2)d~ tt'~ ip "t'ip\ , ~- K ~ ' j* i  maXq[VJ:)~bj~(t)X(T~, Tj,)I 
~b,.(t+ 1)=  

(5) 

where t represents the number of iterations, K is a con- 
stant that determines the relative importance of acti- 
vations received from neighborhoods, ~ is the neigh- 
borhood function that takes values in { 0, 1} and 
determines the connections between the nodes in the 
second layer, and Tip represents the template type cor- 
responding to the ipth node in the second layer. The 
template type refers to one of the 16 templates ( ~  . . . . .  
~6) as mentioned before. The template type corre- 
sponding to a second-layer node is determined accord- 
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ing to the position of that node with respect to the input 
node. The use of max [ ] operator takes care of  the 
fact that a second-layer node always responds to its 
strongest neighbor. 

The neighborhood function can be described in the 
following way. The 1 6 different template types can be 
presented as an ordered pair (~7,, rh) as explained be- 
low. The pair is defined by considering each line seg- 
ment in Figure 3 as a collection of two segments joined 
at the center pixel. For example, the type at the ipth 
neuron can be defined as 

Ti. = (r/ , , , ,  flit2 ) . 

77i,1 and ~7i,2 represent two labels within the eight neigh- 
borhood of the processor i, as shown in Figure 5. 

For example, the template type 5rl can be represented 
as 71 = ( - 3 ,  3) or (3, - 3 ) .  Similarly, 72 can be rep- 
resented as 72 = ( - 1 ,  1) or (1, - 1 ) .  Note that any 
template (~h, rh) is the same as (rh, rh). Let the po- 
sitions of the processing elements i and j (in the input 
layer) be (x~, y~ ) and (xj, yj), respectively. Let a vari- 
able 77 be defined as 

= (xj - x i )  + 3(y j  - Y i ) -  

It is evident that i f j  is in the eight neighborhood of i 
then r/ will take the same set of  values as shown in 
Figure 5. The jqth neuron in the second layer (of  type 
Tj,) corresponding to the j th  input neuron would affect 
the ipth neuron (of  type T/,) corresponding to the ith 
input neuron when either of  the following conditions 
holds: 

A: (77 = 77;.,) A (~j~, = -~il, 1 V ~jq2 m - - ~ i p l )  

B: (77 = rli.2) A (%, = -~i.2 v rb. 2 = -%2) .  

We elaborate it with an illustration. Let the ipth neuron 
in the second layer correspond to a template type ~ or 
(2, - 3 ) .  In that case, according to condition A, input 
neuron j should be placed in such a way that 77 = 2 
[i.e., j should be placed at the lower left comer  of  i, 
and Tj~ should be ( - 2 ,  * )].  Similarly, according to con- 
dition B, processing e lement j  should be placed in such 
a way that r/ = - 3  [i.e., j should be just above the ith 
processing element, and Tj, should be (3, *)] .  If  either 
condition A or condition B is satisfied, then only jqth 
neuron will be allowed to cooperate with ipth neuron 
in the second layer. Mathematically, it can be written 
a s  

~ ' ( T z . .  T j , )  = m a x { 1  - (171 - ~7~., [ + {(~jq' -}- ~ipl) 

X (rljq2 -b ' r / i r l ) l ) ( IT  / -- flip2 } + I(rljq, + flip2 ) 

× (rb~2 + r / , . 2 ) l ) , 0 } .  ( 6 )  

It is to be noted here that the template types are not 
changed as the orientation values change (i.e., the co- 
operative connections in the second layer are fixed). 
After computation of possible direction of the repre- 

Xi-1 Xi XI+I 

Yi-l -4 -3 -2 
Yl -i 0 i 

Yi+a 2 3 4 

FIGURE 5. Labels of the eight neighborhood of a processor. 

sentative line segment in each neuron in the second 
layer, ( r ,  0) values are computed according to eqns (4) 
and ( 1 ). The (r ,  0) values are then stored in the second 
layer. 

Note that the size of the input layer is dependent on 
the size of  the input image. For example, if the input 
image is of size 100 × 100 then the input layer of  the 
network should have 100 × 100 neurons. Because the 
second layer consists of 16 neurons corresponding to 
each input neuron, the total number of neurons in the 
second layer is 16 × 1 0  4. Each neuron in the second 
layer represents a possible line direction that can be 
present at a pixel. The size of the second layer could 
have been drastically reduced if four directions corre- 
sponding to templates 7j, 72, 73 and 74 were only con- 
sidered. 

5. COMPUTATION OF GLOBAL LINE 
STRUCTURES 

The line structures present in the image are extracted 
in the third layer. This layer actually aggregates the 
local line response values (extracted in the second 
layer) according to their orientations and strengths. The 
clusters of activations in the parameter space (third 
layer of the network) are formed after stabilization of 
the negative self-feedback and the differential support 
received from the second layer. Each neuron in the sec- 
ond layer is connected to all neurons in the third layer. 
The weights of  the links are fixed. 

The output of each neuron also consists of three dif- 
ferent values (v, 0, r) .  The output r and 0 values of 
each neuron in the third layer depend on the position 
of the neuron. The output r and 0 values of each sec- 
ond-layer neuron depend on the position of the pixel 
and the local line direction, which is computed by eqns 
(4) and (1) .  

The updating of the activation values of  the neurons 
in the third layer is derived by minimizing the error of 
mismatch between the activations of  the second-layer 
neurons and the feedback support from the third-layer 
neurons. The total error between the activations of the 
second layer neurons and the feedback values is given 
a s  

(2) 

E = ~ .  vi - m a x  bi, (,--7 " (7) 
~j U i 

Note that, the activation value of a neuron in the first 
layer is denoted by v (l), that in the second layer is de- 
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noted by 1) (2) , and that in the third layer by 1)(3). The 
second-layer neurons representing the local line re- 
sponse values at the ith pixel are denoted by ijs. The 
feedback to the iflh second-layer neuron is denoted by 
bij. T h e  amount of  feedback to a second-layer neuron 
is dependent on the difference between the resident ( r ,  
0) values of the second- and third-layer neurons. The 
difference is modeled by Zadeh 's  standard u-function 
(Zadeh et al., 1975). The graphical representation of 
rr(x, x0, Aoc) is shown in Figure 6. The value of the 
feedback is given as 

= 1 ~ (3) ,z~(3) (2) A0)Tr(r~3), rij(z); Ar) (8) blj -~ ok Irtt~k , 06 ; 

where h is a constant that determines the average level 
of  activation in the third layer after stabilization. The 
( r ,  0) values stored in the second and third layers are 
denoted by (r (2), 0 (27) and (r  (3), 0(3)), respectively. 
Equation (7) indicates the fact that the nodes in the 
second layer that correspond to the same pixel in the 
image (i.e., same input node) do not cooperate, rather 
they compete between themselves. The use of  max [ ] 
operator ensures that only the winner-take-all nodes in 
the second layer corresponding to each pixel would be 
able to determine the total error. 

In the error expression [ eqn (7)  ] the feedback value 
(2) 

is modulated by the activation value v ~j of the second- 
layer neuron. This is because of the fact that a second- 
layer neuron with a low activation value may receive 
very high feedback. On the other hand, a neuron with 
a high activation value may receive a low amount of  
feedback. If  only the feedback value was considered, 
then the neuron that has low activation value but high 
feedback would win. This may not be desirable in many 
cases. To consider effects of  both the present activation 
value and the feedback value, the product of  these two 
terms has been used. 

In the formulation of error expression, only the mis- 
match between the activation values present in the in- 
put nodes and the feedback support has been consid- 
ered. The error expression should be modeled in such 
a way that the redundant activations in the third layer 
get minimized. This can be achieved by adding an extra 
constraint on the total activation in the third layer. 
Thus, the modified error becomes 

(2) \ 2 l [  ( l 
E = ~  vl ' ) - m a x  bl, ( , , t  +~w~Z(v~3))  2 (9) 

• 6 \ v~ I k 

where w, provides the relative effectiveness of  the extra 
constraint. In other words, the error expression can be 
written as 

( 1) (2) 2 

E = 2  , v, - b~! + ~ w ,  2 ( v ~ ) )  ~ (10) 
k 

where it is the winner-take-all node in the second layer 
corresponding to the ith input node (the competition in 

TT( X ,X ,,LX) [ 1.0 

• x I_ ! .! 
T -,- : =  

X • 

FIGURE 6. Graphical representation of ~r(x, Xo, Ax) .  

the second layer takes place within each group of 16 
nodes).  

The changes in the activation values of the third- 
layer neurons are given as 

0E 
Ao~ 3)= - T - -  (11) 

where 3' is the constant of  proportionality. The rule can 
be derived as 

1 (2) 
A10~3) = T h ~ I v : , ) _  b v;, ]Trtta(3 ) tq,z). i, ~T7! ~vk . . . . .  A0) 

• 1) i J 

(2) ] 
X 7 r ( r~  3), r(i2); Ar)  Uit - -  - w,v~ 3) (12) 

Ui 

It is therefore seen that ws acts as the weight of the 
negative self-feedback. Depending on the value of ws, 
the activation values in the third layer will be deter- 
mined. I f  ws is very high, then the proper activations 
will also be reduced to a great extent. On the other 
hand, if Ws is small the redundant activations may not 
be removed. 

Equation (12) can be interpreted in the following 
way. Each neuron in the third layer feeds back its ac- 
tivation value to the second layer (which is given by 
bit) through top-down links. A second-layer neuron is 
able to receive the feedback coming from the third layer 
only when the resident (r ,  0) value matches with the 
(r ,  0) value present in the third-layer neuron. This 
matching is modeled in terms of the standard 7r-func- 
tion, as shown in eqn (8) .  The way of incorporating 
the 7r-function is described later. Each second-layer 
neuron has two parts. One of them retains the actual 
activation value v (2). The other computes the modu- 

s ;  / (27.  (1) lated activation value toi ,  tv i ,  tvi )).  The second part 
of  all second-layer nodes (retaining the modulated ac- 
tivation value),  connected to the same input node, com- 
pete between themselves. After competition is over, 
only the winner-take-all node becomes able to send ac- 
tivation to the third layer through bottom-up links. The 
amount of  activation from the second layer to the third 

/ (1) , / (2 ) /  (1)) , , ,¢  ( 2 ) .  (I) 
layer [given as t v i  - ni, tv i ,  i v i  ) ) t v i ,  t v i  )] is de- 
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pendent on the input activation and modulated feed- 
back activation. The amount of  activation is defined as 
di f ferent ia l  support .  T h e  differential support from a 
second-layer neuron can be mathematically modeled as 

! 1)(2) (2) 
vl I) - b i , - -~  -77 

ei~ = 1)i d 13i 

where 

if mb~j > mb~, for all / :# i 

otherwise 

(~3) 

(2), 
mb~j = b~,~ U ) " 

A neuron in the third layer would be able to receive 
differential support from a neuron in the second layer 
only when the resident (r ,  0) values in the second- and 
third-layer neurons match. The matching in the (r ,  0) 
values between the second- and third-layer neurons is 
also modeled in terms of ~--function [eqn (12)] .  Note 
that the A r  and A0 values for matching in the second 
and third layers are the same [eqns (8)  and ( 12)]. The 
activation values in the third layer are updated accord- 
ing to the difference between the differential supports 
received from the second layer and the negative self- 
feedback. It is evident from A ~3~ the derivation of z.xv " [eqn 
(11 )] that the error value always decreases (i.e., AE 
--< 0).  Because the error value is always finite [eqn 
(9 ) ] ,  in the limit, AE ~ 0 and, as a result, Av~ 3~ ~ 0 
for all k (i.e., the system will reach a stable state). 

The system needs the standard 7v-function to be im- 
plemented into the links between the second and third 
layers. The weights of the links are set fixed whenever 
the second-layer neurons get activated and the com- 
putation of (r ,  0) values is complete. The weights (of  
both bottom-up and top-down links) are set in the fol- 
lowing way: 

wijk = -hl 7r(Ok~3), OijC2'; A0) 7r(r (k3), r ij(2~ ; Ar) 

Zkij = hi 7r(0~3), 0it(z)', A0)Tr(r ~3), r (2,i~ ; Ar) 

where wijk is the weight of  the bottom-up link from the 
ijth second-layer node to the kth third-layer node, and 
zkij is the weight of  the top-down link from the kth third- 
layer node to the ijth second-layer node. In the setting 
of the weights the (r ,  0) values are available at the 
terminal nodes of the links. (This process of  weight 
setting should not be treated as a learning process.) The 
process becomes active whenever a new image is pre- 
sented to the network and the computation of (r ,  0) 
values in the second layer is completed. This is nec- 
essary both for learning and recognition. The weights 
remain fixed so long as the input image is not changed. 
Whenever a new image is presented to the network the 

weights are reset and fixed according to the new (r,  0) 
values, computed in the second layer. 

The activation level in the third layer depends on the 
value of h and self-feedback Ws, In the following dis- 
cussion we show an empirical relation between the ac- 
tivation level (v) in the third layer and h and w,.. Let 
an image contain a straight line segment of length l 
(i.e., 1 pixels). Let each pixel on the line correspond to 
a line strength of unity. When the image is mapped onto 
the connectionist model, all pixels will activate a single 
third-layer neuron under noiseless, ideal condition. 
Therefore, the updating of the activation value of that 
third-layer neuron representing the line segment can be 
written as 

Av (3)= 3 , [ / (1-Vh--~ 3)) -w,v~3>]. (14) 

Under stable condition, Av ~3~ = 0. Therefore, v ~3~ will 
take a value 

lh 
v ~3~ - - -  (15) 

I + w,h z" 

If  Ws h2 >~ l then v ¢3~ = l / ( w s h ) ,  and if l >> Ws h2 then 
v ¢3~ = h. Therefore, in the first case the information 
about the length of the line segments is preserved. In 
other words, with the first condition the activation val- 
ues in the third layer would correspond to the original 
accumulator contents (with some scaling), and with 
the second condition, the activation values in the third 
layer will have peaks of  constant magnitude. This re- 
veals an empirical parametric relation for choosing the 
parameters like w~ and h in the connectionist imple- 
mentation of the Hough transform. In the present in- 
vestigation, the values of  h and ws are chosen in such 
a way that the information about the line segments in 
the image is also restored in the activation values of 
the third-layer neurons. 

The third layer of  the network represents the param- 
eter space of Hough transform. The size of the third 
layer depends on the chosen resolution of the parameter 
values used in the Hough transform. Using the connec- 
tionist framework for computing the peaks in Hough 
space, the problem of selecting suitable threshold to 
segment out the peaks in Hough space has been omit- 
ted. However, in the neural network model also, we 
need to choose the parameter values like Ws and h. But 
because an empirical relation between these parameters 
has already been derived [eqn (15)] ,  it may provide a 
better parameter selection criteria. Moreover, the pres- 
ent scheme provides an alternative way to select the 
peaks instead of using the thresholding scheme, al- 
though selection of proper threshold in the standard 
Hough transform technique may provide comparable 
outputs. 

6. FEATURE I N T E G R A T I O N  

The activation values in the third layer represent the 
line segments present in the input image structures. The 
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activation values also store the information about the 
length of the line segments with properly selected pa- 
rameter values. These linear segments are hierarchi- 
cally integrated to recognize the shapes of the structures 
presented to the network. The integration of the seg- 
ments is performed with a multilayered perceptron 
model that accepts the activation values from the third 
layer of  the system. 

The MLP we considered has two hidden layers 
(fourth and fifth layers of  the system) and one output 
layer (i.e., the sixth layer of the system). The connec- 
tions between two consecutive layers in the MLP 
model are restricted over local neighborhoods (Figure 
7).  The restriction of the links rids the network of un- 
necessary details, and enables it to learn the structure 
with a greater speed. The size of  each hidden layer and 
the nature of  connections with its previous layer are 
determined according to the desired function of the 
layer. The way of selecting the size of  hidden layers is 
discussed below. 

The fourth layer of the system groups activation val- 
ues from the third layer over local neighborhoods. The 
purpose of this layer is to smooth the activation values 
present in the third layer over local neighborhoods. The 
size of  this layer is exactly the same as that of the third 
layer. The size of the third layer is 54 × 35. The manner 
of selection of the size is discussed in the next section. 
Every node in the fourth layer is connected to a 7 × 5 
neighborhood of the corresponding node in the third 
layer. The weights of  the links are set during the back- 
propagation learning process. 

The fifth layer groups the activation values from the 
fourth layer over local neighborhoods. The purpose of 
the fifth layer is to extract out the structural properties 
within the neighborhood of a primitive. The neighbor- 
hoods in the fourth layer are selected in such a way that 
there exists sufficient overlap between two neighboring 
regions of activities. In fact, the size of  the fifth layer 
would depend both on the nature of the desired overlap 
and the size of  the neighborhoods. The relationship be- 
tween the size of  the layer, the size of the neighbor- 
hood, and the nature of  overlap is derived below. 

The shape of neighborhoods is chosen to be rectan- 
gular. Let each neighborhood be of size m x n. Let Px 
and py be the fraction of overlaps in the two orthogonal 
directions, respectively, which means that p,m and p~n 
neurons (of  the fourth layer) send activations to two 
neighboring neurons in the fifth layer. Let the size of  
the fourth layer be M X N. In that case, each pair of  
two neighboring neurons in the fifth layer corresponds 
to a gap of m( 1 - Px) neurons in the fourth layer in 
one direction and n( 1 - py) neurons in the other di- 
rection. Therefore, the size of  the fifth layer (say, M '  
× N ' )  is given by 

M 
M F - 

m ( 1  - - p ~ )  

ololololololol 
o ol~lolololOl 
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O 
o D[ 

FIGURE 7. The neighborhood connections between two dif- 
ferent layers. This is valid for connections from the third to 
fourth and fourth to fifth layers. 

and 

N 
N ' -  

n(1 - py)  

The sixth or the output layer finds out the global struc- 
ture of  the character. This layer accepts the activation 
values from all neurons in the fifth layer. 

The rule used for back propagation is given as 

A (I-1) c(1) (I--I) w# = ~7oj vj (16) 

where w H- ~ ) stands for the weight of  the link connect- 
ing the j th  node in layer I - 1 to the ith node in layer 
I. The 6 values are given by 

6~6) (tj o j ) f ' ( u )  6)) 

where u) 6) is the total input to the j th  node in the sixth 
or output layer, f (  ) is the transfer function of the 
nodes. For other layers, the 6 values are given by 

(I)\ ~ .K(I+I) (I) 
~l )  = f ' ( u j  ~ / ~ u k  Wkj . 

k 

Because the size of  the third layer depends only on the 
resolution of the Hough space, it is virtually indepen- 
dent of  the size of the input image. This indicates that 
the back-propagation learning rule taking place from 
the third layer to the sixth layer can be independent of  
the image size. If  the image size is increased, the values 
w~ or h can be increased accordingly so that the acti- 
vation levels in the third layer remain unaffected. For 
example, if image size is doubled in both x and y di- 
rections, then also the activation level in the third layer 
remains unchanged if the value of w, is doubled. This 
indicates one novelty of  this system. Once the system 
learns the input structure set, the same system can be 
used to recognize structures of  different sizes. The 
modifications only need to be done in the first and sec- 
ond layers. Note that this modification does not involve 
any learning process. 
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FIGURE 8. A sample character set after thinning. 

7. RESULTS 

The methodology described in the previous sections 
was implemented on handwritten Bengali (one of the 
major Indian language) character recognition problem. 
Twelve different Bengali characters were chosen for 
learning and recognition. The experiment was per- 
formed in two separate phases. In the first phase, only 
17 samples of  each character were taken and the system 
was trained with these samples. The performance of the 
system was then tested with noisy versions of  the sam- 
ples. In the second phase of the experiment, we en- 
larged our data set and considered 30 samples for each 
character. Noise was injected to these samples, and 
these samples were then divided into training and test 
set. It was found that with the increase in the number 
of  samples, the performance of the system gets en- 
hanced. Ideally, for such kind of tasks dealing with 
handwritten characters, the required number of  samples 
is very high. But due to the limited computational fa- 
cility, we have restricted to a small data set and have 
shown a clear improvement in the performance with 
the increase in the number of samples. 

In the first part of  the experiment, characters were 
written by 17 different persons. Therefore, the char- 
acter set contained 17 X 12 (i.e., 204 characters from 
12 different categories). Note that the character set we 
considered contains linear structures. Moreover, some 
of them have similar shapes. This particular set was 
considered to establish the discriminating ability of  the 
proposed system even within less variant categories. In 
other words, the result we get is more meaningful. 

The characters were preprocessed before presenta- 
tion to the network. The gray level images were seg- 
mented to get binary images using gray level thresh- 
olding. The output was then smoothed and cleaned to 
remove noise. This was performed by growing and 
shrinking operations over eight neighborhood (Rosen- 
feld & Kak, 1982). The image was then normalized in 

size (100 x 100). The two-tone images were then 
thinned using the thinning algorithm as presented by 
Rosenfeld and Kak (1982). The thinned versions of 
some of the characters are shown in Figure 8. 

The thinned versions were presented as input to the 
proposed system. The input image was then trans- 
formed into the parameter space as described in Sec- 
tions 4 and 5. In the present case, for the sake of ac- 
curacy and robustness, all 16 templates were 
considered. But in the actual simulation process there 
is no need to allocate space for all neurons. In the pres- 
ent system, neurons were allocated only for the nonzero 
pixels, and for each nonzero pixel the first four prom- 
inent directions were considered. The value of K [eqn 
(5)  ] was chosen as 0.5; this makes the contribution of 
the concerned pixel and those of its neighbors to be the 
same during the smoothing process of line directions. 
The line directions present in the second-layer neurons 
were iterated 10 times. 

Considering the complicacy of Bengali characters, 
the resolution in the Hough space was chosen as 6r  = 

4 and 60 = 5. Note that the values of  Ar  and A0 [eqn 
( 12)] may be different from the resolution (i.e., 6r  and 
50, respectively). However, in the present work they 
were chosen to be the same. For most of  the Indian 
character set this may provide good results. For the 
English character set, these values would certainly 
work because the English alphabets are simpler in 
structure compared to Bengali alphabets. The number 
of slots the parameter spaces along the 0 axis was de- 
termined as 72. Because during the computation of 
Hough transform the origin of  the image coordinate 
system is considered at one particular comer of the im- 
age, the 0 values lying in the third quadrant are redun- 
dant. As a result, the required number of slots in the 
Hough space along the 0 axis becomes 54. Parameter 
r represents the normal distance of a line in the image 
space from the origin of the image coordinate system. 
The maximum distance can occur along the diagonal 
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TABLE 1 
Recognition Score for Distorted Characters (Probability 

Value Indicating Level of Distortion) 

Probability Value 

Iteration No. 0.05 0.1 0.2 

1 96.08 93.14 85.78 
2 93.63 80.88 72.55 

of the image. Therefore, in the present case it can be 
~-  x ~f2, which is approximately 35. Thus, size of the 
third layer was chosen as 54 x 35. It is to be noted 
here that the size of  the third layer can be kept fixed 
independent of  the size of the image. 

The values of  h and w~ were chosen in such a way 
that the activation values in the output layer retain in- 
formation about the lengths of  the linear structures. In 
other words, the condition w,h 2 >> I is considered. In 
this image we have l < 100 (note that 1 denotes the 
number of  pixels in a linear structure). The value of h 
was chosen as 1000 (i.e., l /h < 0.1 ). The value of "y/ 
h was selected as 0.1 and w~h was selected as 0.5. 
Therefore, the value of w~ happens to be 5 x 10-4 and 
3' becomes 100. Note that the factor y / h  determines the 
rate of updating of the states of  the nodes in the net- 
work. Therefore, if 3'/h is too small then the first three 
layers of  the system would take a long time to converge 
and, on the other hand, if 3~/h is large then there can 
be oscillations in the updating process. The values of  
h and ws were selected depending on the maximum 
length of the image. 

The size of  the fourth layer was considered to be 
of  the same size as the third layer. With a neighbor- 
hood size of  7 x 5 this gives an overlap of approxi- 
mately 82% between adjacent neighborhoods in the 
third layer. In the fourth layer, approximately 50% 
overlap (between adjacent neighborhoods) is consid- 
ered with a neighborhood size of  9 x 7. Therefore, 
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the size of  the fifth layer becomes 12 x 10. We used 
neighborhoods of size 13 x 11, which provides 
slightly more than 50% overlap. Because in the pres- 
ent work only 12 characters were used, the output 
layer consists of 12 nodes. Each node is connected to 
all neurons in the fifth layer. 

The value of ~7 (rate of  learning) in the back-prop- 
agation rule was varied from a higher value to a smaller 
one. The learning started with ~7 equal to 0.5. After each 
20 iterations it was decreased by 0.1 until it became 
0.2. Then ~7 was decreased to 0.1 after 30 iterations and 
to 0.05 after another 30 iterations. The final tuning of 
the weights was performed in another 30 iterations with 
a value of ~7 equal to 0.05. The network was trained 
with on-line learning, and the change in weights of  the 
links was noted after every epoch. Finally, the normal- 
ized change in weights reduced below 0.00005 after 
150 iterations. The total processing time for learning 
the character set was found to be approximately 25 h 
(24 h 59 min 38 s) on a SPARC 1 workstation (without 
floating point coprocessor).  The training was per- 
formed with the entire character set (204 samples ). Af- 
ter the training was over, the same set of  characters was 
presented to the network for recognition, and it was 
found that the system was able to correctly recognize 
all characters. 

In the next phase of  the experiment,  we demon- 
strated the effectiveness of  the trained system in 
identifying distorted structural patterns. To generate 
distorted versions, each pixel can be randomly 
shifted (with a probabili ty value) within its eight 
neighborhood, preserving the connectivity. This pro- 
cess can also be done iteratively to provide severe 
distortion. 

The recognition score of  the trained system is shown 
in Table 1 when different distorted versions (as gen- 
erated by various probability values and iterations they 
are on) were given as input. Some of the distorted ver- 
sions are shown in Figure 9 as an illustration. From 
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FIGURE 9. A sample set of distorted versions of the characters with probability of distortion = 0.2 and iteration no. = 2. 
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Table 1 it is clear that the performance of  the network 
gracefully degrades with the level o f  distortion. Note 
that the effect o f  two iterations with a low probability 
value (0.1)  is more severe than that in a single iteration 
with a higher probability value (0.2) .  The connection- 
ist system is therefore seen to be able to recognize the 
handwritten characters even when some of  their basic 
linear structures are distorted. 

In the second part o f  the experiment, the data set 
was extended to include 30 different samples o f  each 
handwritten character. Noise was injected into these 30 
samples (with a noise level o f  20% with two iterations ) 
to generate another 30 samples for each character. We 
have taken 25 original samples and 30 noisy samples 
for training the system. The set o f  weight vectors ob- 
tained in the first part of  the experiment was used as a 
starting point in the second part o f  the experiment. The 
rate o f  learning was decreased whenever  it was found 
that the network was going to oscillate around some 
minima. We started with a high value of  77 equal to 0.5 
and the weights were updated for 14 iterations. Then 
the value of  r/ was decreased to 0.4 and the weights 
were updated for 12 iterations. 77 was then chosen as 
0.3 and the weights were updated for 13 iterations. The 
weights were updated for eight iterations with a value 
o f  r /equal  to 0.2 and 15 iterations with a value o f  77 
equal to 0.1. This part o f  the experiment (training 
phase) took approximately 85 h o f  CPU time in the 
same SPARC workstation. 

The remaining five samples o f  each character (total 
60 samples)  were then presented to the network for 
recognition. The system was found to recognize all 60 
samples correctly. This indicates the generalization ca- 
pability of  the system to an extent, with the increase in 
the number o f  training samples. Although we have re- 
stricted to a medium-sized data set due to insufficient 
computing facility, it seems that the performance of  the 
system would get enhanced with a even larger data set. 
We also tested the performance of  the system with an- 
other set o f  noisy data samples: 20% noise was injected 
into the 30 samples of  each character (with one itera- 
tion) and the resulting 360 samples were tested with 
the trained system. The network was found to success- 
fully recognize almost 86% of  the samples. The per- 
formance of  the network was also tested with the train- 
ing samples (including the noisy samples chosen for 
u:aining) and the network was found to recognize them 
correctly in 98% of  the cases. 

8. D I S C U S S I O N  AND C O N C L U S I O N  

In the present article a connectionist system for learning 
and recognition o f  structural patterns has been devel- 
oped. This includes a scheme for robust feature extrac- 
tion, and integration of  features using multilayered per- 
ceptron model. The merits o f  the proposed system lie 
in the fact that it can select peaks automatically in the 

Hough space without using any threshold selection 
scheme, and can perform selective integration o f  the 
features during learning. Another  advantage of  this sys- 
tem is that it is able to learn structures independent o f  
their size. I f  the sizes of  the structures are increased, 
the parameters in the third layer of  the system can be 
adjusted to get the same activation levels in the third 
layer. Therefore, the same MLP model (i.e., f rom the 
third to the sixth layer o f  the system) can be used for 
further learning. Because the system approximates 
curves with line segments using Hough transform, it 
seems to be efficient in handling broken line segments 
also. 

To demonstrate the effectiveness of  the model, we 
considered, as an example, the problem of  recognizing 
handwritten Bengali characters o f  similar shapes. It was 
found that the performance gracefully degrades with 
the distortion level in input. The system was found to 
generalize, to a certain extent, reasonably well within 
the limitations o f  computing facility. The methodology 
can also be applied for recognition of  other structural 
patterns such as industrial objects. In that case, skele- 
tonized images o f  the industrial parts should be pre- 
sented with a suitable frame of  reference. In this model, 
features considered consist only o f  line segments. If  the 
structural patterns consist of  other features, like blobs, 
then the second and third layers need to be suitably 
modified. 
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