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Abstract--This paper is about the ability of principal components analysis, the Sammon algorithm, and an 
extension of the Kohonen self-organizing feature map to preserve spatial order during feature extraction 
on unlabeled data. Transformations to q-space that preserve the order of all pairwise distances in any set 
of vectors in p-space are defined as metric topology preserving (MTP) transformations. We give a necessary 
and sufficient condition for this new property in terms of the Spearman rank correlation coefficient. Unlike 
many other measures of extracted feature quality, the MTP index is independent of the extraction method. 
A modification of the Kohonen self-organizing feature map algorithm that extracts vectors in q-space from 
data in p-space is developed. The extent to which principal components, Sammon's algorithm and our 
extension of the self-organizing feature map (SOFM) preserve the MTP property is discussed. Our MTP 
index shows that the first two methods preserve distance ranks on seven data sets much more effectively 
than extended SOFM. 

Feature extraction Principal components analysis 
feature maps Topological preservation 

Sammon's method Self-organizing 

I. INTRODUCTION 

Object data are represented as X = {x 1, x2 . . . .  xn}, a set 
of (n) feature vectors in feature space ~IP. The j th  
observed object (some physical entity such as a fish, 
pickup truck, medical patient, stock market report, 
etc.) has vector xj as it's numerical representation; Xjk 
is the kth characteristic (or feature) associated with 
object j. To characterize feature extraction, let P (~P) 
and P (~q) be the sets of all subsets of ~P and ~q, 
respectively. Let q): P(~P)~--~P(~q) be a set-to-set 
t ransformation with image Y=c~[X]eP(~q) .  The 
dimension q can be greater than, equal to, or  less than 
p. When I X l = l Y l = n ,  there is a correspondence  

eo 
xi,--,y i Vi, and we call • a feature extraction trans- 

formationJ 1-31 Usually, • is a point to point transfor- 

mation, i.e. Y =  {Yl,Y2 . . . . .  yn} = {q~(xl), O(x2) . . . . .  
q)(xn) }, which is a special case of the general formu- 
lation. The word transformation includes two real- 
izations: • may be a function, written as q) = f ;  or 
may be an algorithm, denoted here as q) = A. Functions 
lend themselves to analysis of properties such as linear- 
ity, etc. Algorithms are computational transformations, 
and hence, their functional properties are generally 
difficult to verify. We avoid using the word 'map'  as a 
synonym for transformation, as there is much confusion 
in the literature about  whether the word is being used 
in its mathematical  sense; or its perceptual sense (as a 

:~ Author to whom all correspondence should be addressed. 

visual display, which is a 'map'  in a much different 
context); or  both. 

Dimensionality is sometimes increased when p is 
small in order to enhance the utility of the original 
data. For  example, simple images contain only one 
dependent variable (intensity) at each pixel in the image. 
Extracting features such as estimates of the gradient of 
the picture function in each coordinate direction and 
its average intensity over a window centered on each 
pixel increases the dimensionality of the raw (sensed) 
data from p = 1 to q = 3. 

When p is large, feature extraction is used for two 
different but somewhat related problems: dimensionality 
reduction and visual displays. Reducing p to q << p re- 
duces the space and time complexity of computations 
that use the extracted data. Another issue is redundan- 
c y - a r e  some of the original p features 'unnecessary'? 
Can we do just as well (with respect to a problem under 
consideration) with q < p new features derived from 
the originals? For  example, transformed features can 
work better than the original data for purposes such 
as classifier design. 

Any feature extraction method that produces Y = 
• [X] c ~q can be used to make visual displays by 
taking q = 1, 2, or 3 and plotting Y on a rectangular 
coordinate system. In this category, for example, are 
feature extraction functions such as the linear trans- 
formations defined by principal components  matrices, 
and feature extraction algorithms such as the Sammon's. 
A large class of transformations, however, produce 
only visual displays from X (and not data sets Y c ~ ,  
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~ 2  or  )l '3) through devices other than scatterpiots. In 
this category are functions such as Andrews plots, (4) 
and algorithms such as Chernoff Faces, (5) and trees 
and castles. (6) This more limited class of transforma- 
tions will be represented as fo ,  AO: ~p~_. V(~q), and 
these will be called, respectively, feature display func- 
tions and algorithms. The nature of the image space 
V(~ q) of display transformations depends on the func- 
tion or algorithm being used. 

For q = 2,V(~ 2) is often a viewing plane which must 
have a coordinate system to enable visual displays, but 
there are not extracted vectors y~ = (I)(x~) that have 
coordinates in V(~2). For  example, Andrews plots are 
made by representing each x i in X as a trigonometric 
polynomial, and the visual display of X is the collection 
of plots of the n polynomials produced by applying 

D fA,d . . . .  to X. An example of a hybrid technique that 
combines clustering with feature extraction uses fuzzy 
c-means to first color (label) X ~ ~p.(7) Then cores in 
X are found via membership value thresholding. And 
finally, any feature extraction transformation is applied 
to the cores to produce visual displays as core-zone 
scatterplots of the cluster substructure found in X. 

The choice of (1) for extraction or display is often 
dictated by a desire to 'preserve some property' of X. 
For example, principal components (s'9) maximizes the 
preservation of sample variance; the Sammon algo- 
rithm(lO.11) attempts to preserve interpoint distance 
pairs; and Kohonen's self-organizing feature map 
(SOFM (lz)) is said to preserve a certain topological 
relationship amongst the data points. A derivative 
question a posteriori to extracting (I)[X] is: how well 
was the property of interest preserved? The goal of this 
work to answer this question with respect to the pre- 
servation of metric topology for these three methods. 

2. THE THREE TECHNIQUES 

Principal components (s'9) is arguably the most popu- 
lar method in the functional category for extraction 
and display. This approach produces new features as 
linear combinations of the originals, so it is a feature 
extraction (and hence, feature display) function. To 
describe the method, let S be the sample covariance 
matrix of X, S =  1/nZ~= 1 (x k - m ) ( x  k - m )  T, where 
m = 1In Z~ = 1 Xk is the sample mean of X. Assuming S 
to be positive definite, extract and order the p eigen- 
values of S, as, say, 21 > )~2 > . - .2p  > 0, and let vi, i = 1, 
2 . . . . .  p be the corresponding unit eigenvectors; i.e. 
Sv i = 2ivl, i = 1, 2,...  ,p and v/Xvi = IV/=  1, 2 . . . . .  p. The 
eigenvectors of S are used to define p linear feature 
extraction functions. Let Pk denote the p x k matrix 
whose columns are the first k (ordered) eigenvectors of 
S, and define, for q = l ,  2 . . . . .  P, fec,q: ~ P ~ q  as 
yq = fPC,q(X) = pTx. yq is called the qth order principal 
component of x, and Yqi = vT x is called the ith score 
or loading of x. 

For  example, fPc,2(x) is a point in ~2, the set YPc.2 = 
fpc,2[X] is a set of two-dimensional feature vectors 
extracted from X, and a plot of YPc,2 is a scatterplot 

of the first and second principal components of X. This 
plot is the unique two-dimensional projection of X 
onto a plane through the origin that accounts for the 
maximum possible fraction of the total sample variance 
in X, namely (21 -4-J.2)/Ee=l )~i. Of course any of the 
p(p - 1)/2 pairs of PCs of the data may be plotted; of 
these, our notation accounts only for the single pair 
produced by fPc,2. For example, a scatterplot of the 
last two PCs is sometimes examined to see what is in 
the 'tail' of the sample variance. And for any q < p, 
YPc,q = fpc,q[X] is data in ~q extracted from X. Finally, 
observe that fPc.q is linear, fpc,q(~x + fly) = ~fpc,q(x) + 

fl,fPc,q(Y). 
The Sammon method (1°'11) is a set-to-set algorithmic 

transformation denoted by As,q: P ( ~ P ) ~  P(~q). As,q 
looks for vectors Ys,q = As,q[X] in ~q that have the 
same pairwise distances as their pre-images in X. Let 
d* be the Euclidean distance between xi and xj in ~P 
and dij be the distance between the corresponding 
(unknown) vectors yi and yj produced by As.q in ~q. 
Sammon suggested minimizing Es,q(Y ) =(l/Zi<jd*s) 
Z i ~ d * - d i j ) 2 / d  *. The Sammon error  function 
Es,q(Y ) = 0 if and only if As. q preserves all n(n - 1)/2 
distances exactly. Thus, As, q attempts to be an isometric 
connector between X and As,q[X]. The Sammon 
algorithm is the method of steepest descent applied to 
Es,q( Y). 

The Sammon algorithm is well known for its ability 
to find good lower dimensional representations of 
X, but it has not found extensive use for data sets 
having large values of n because each iteration attempts 
to solve (qn) simultaneous, coupled, non-linear equa- 
tions in the unknowns {yij}. Several modifications of 
the Sammon algorithm that attempt to reduce its 
complexity have been proposed. (~3-16) As, q provides 
a nice benchmark for other extraction and display 
algorithms, because the property it tries to cap ture - -  
isometry-- is  probably the strongest one that might be 
proposed in the context of feature extraction for pattern 
recognition. 

The SOFM and a special case of it called Learning 
Vector Quantization (LVQ) are computational net- 
works that 'learn' vector quantizers (or class proto- 
types). Advantages, disadvantages and variants of LVQ 
have been discussed, and modified learning vector 
quantization algorithms have been suggested else- 
where) 17-21) This article concentrates on the topo- 
logical preservation aspect of the SOFM. 

SOFM is an algorithmic display method denoted 
here by o . AsovM. ~1 p ~ V(~I q) that is often advocated for 
visualization of 'topological relationships' and distri- 
butional density in X. In principle X can be trans- 
formed onto a display lattice Oq c V(~  q) for any q; in 
practice, visual displays can be made only for q _< 3, 
and are usually made on a planar configuration arranged 
as a rectangular or hexagonal lattice. In this article we 
concentrate on square (m × m) displays on the two- 
dimensional lattice 0 z ~ V(Jl2). SOFM is imple- 
mented for this case through the network architecture 
shown in Fig. 1. 
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Fig. 1. The SOFM architecture. 

Input vectors x e ~  p are distributed by a fan-out 
layer to each of the m 2 display nodes in the competitive 
layer. Each node in this layer has a weight vector or 
prototype v u associated with it as shown in Fig. 1. We 
let Op = {vu} = ~'P denote the set ofm 2 weight vectors. 
Op is (logically) connected to a square display grid 
02 = V(~'2). (i,j) in the index set {1, 2 . . . . .  m} x {1, 
2 . . . .  , m} plays two roles; it is the logical address of the 
cell, and it is also a geometric vector with coordinates 
(i,j) which we take to be the center of the cell (i,j). This 
gives a one-to-one correspondence between the m 2 
p-vectors {vij} and the m 2 cells {(i,j)}, i.e. Op ~ 0 2. In 
the literature display cells are sometimes called nodes, 
or even neurons, in deference to possible biological 
analogs. 

S O F M  begins with a (usually) random initialization 
of the weight vectors {vu}. To simplify notation we 
suppress the double subscripts associated with Op ~ 02. 
Let x e R p enter the network and let t denote the current 
iterate number. Find v,. t_ j, the vector in Op that best 
matches x in the sense of minimum Euclidean distance 
in ~P; i.e. r is the index of the 'winner'  prototype, 
r = arg min { II x - vi,,- 1 II }. v~.,_ 1 has a (logical) image , '-z--" 

which is the cell in 02 with subscript r, t - 1. Next, a 
topological (spatial) neighborhood N,(r) centered at r 
is defined in 02, and its display cell neighbors are 
located. Finally, vr, ,_ t and the other weight vectors 
associated with cells in the spatial neighborhood Nt(r ) 
are updated using the rule Vi, t = Vi, t _ 1 + h,i(t)(x - v i , t -  1)- 

T h e  function h,i(t) expresses the strength of interaction 
between cells r and i in 02. Usually hri(t ) decreases with 
t, and for fixed t it decreases as the distance (in 02) from 
cell i to cell r increases. A common choice for h,i(t) is 

h,t(t)= o~te -dis t2(r ' i )az t  , w h e r e  ~, and a, decrease with 

time t. The extent of the topological neighborhood 
Nt(r ) also decreases with time. At the conclusion of 
training a final pass is made through X to get the 
display in V(~'2), which is produced by 'lighting up' 
(marking) each cell r in 02 that corresponds to a 
winner node v, eOp. 

Given a lattice structure 02, there are different ways 
to define topological neighbors. For  example, the cut- 
out in Fig. 1 depi6ts square neighborhoods about  r. 
Note that the prelmages of Nt(r) are not necessarily 
metrical neighbors in R p. However, this scheme often 
preserves 'spatial order' in the sense that weight vectors 
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which are metrically close in ~P generally have, at 
termination of the learning procedure, visually close 
images in the viewing plane 02. One objective of the 
present work is to clarify the notion of spatial order 
by giving a precise definition and test for it. 

Convergence of SOFM has been widely studied; see 
reference (19) for a representative treatment. There are 
many variations of the basic SOFM algorithm. For  
example, in reference (20) an algorithm is suggested 
that uses metrically defined neighborhoods of winners 
v, in f e a t u r e  space ~P.  In reference (21) neighborhoods 
of winner v, in ~P are chosen from nodes in a minimal 
spanning tree constructed on the weight vector set 
Op = (vu} c ~P. The version of SOFM that we will 
modify to extract feature vectors in ~ is: 

3. F E A T U R E  E X T R A C T I O N  W I T H  SOFM 

We believe three things are needed to make the idea 
of topological preservation precise: 

(i) an image of X under the transformation; 
(ii) a definition of topological preservation; and 

(iii) a way to measure the extent to which a given 
transformation preserves topology in the defined sense. 

D AsoFu yields a display in V(~2), but does not  extract a 
lower dimensional representation of X. Consequently, 
the extent to which SOFM preserves topology cannot 
be measured until it is extended to extract Y c )~'q. A 
natural strategy for doing this follows (we give the 
proposed method for q = 2; it can be done for any q). 

Algor i thm.  o ASOF M Kohonen(12): Display only 

Begin 
Input X = {xle~P: i = 1, 2 . . . . .  n}; 
Input m - - t h e  display grid size, a square m x m lattice is assumed; 
Input m a x s t e p - - m a x i m u m  number of updating steps; 
Input Ndo-- ini t ia l  neighborhood size; 
Input Cto--the initial step size (learning coefficient); 
Input a 0 and try--parameters to control effective step size; 

/** Learning phase **/ 
Randomly generate initial weight vectors {vii, i = 1, 2, . . . ,  m; j = 1, 2 . . . . .  m} 
t~-0;  
While (t < maxs t ep )  

Select randomly x(t) from X; find r=argmi_~n {l lx-vl l ]} ;  note that r and i actually stand for two 
i" 

dimensional indices that uniquely identify a weight vector in Op; 
vi(t d- 1) ~- vi(t) + ~tgt(dis t (r , / ) ) (x( t )  - vi(t)) V i ~ S d t ( r ) ;  
vi(t + 1) <- vi(t) Vi~Nd t ( r ) ;  

where dist(r,  i) is the Euclidean distance between the geometric centers of cells r and i on the display 
lattice, and gt(d) = e-a2/°~; 

t ~ - t + l ;  
ct t ~- Cto(1 - t /maxs tep) ;  

N d t  ~- N d o  - t ( N d o  - 1) /maxstep;  

a t ~ tro - t (a  o - ay ) /maxs t ep ;  
/** - - the re  are many other ways to readjust ctt, N d t  and a t, and many choices for gt **/ 

While End 
/** Display phase **/ 

For  each xEX find r = arg min { II x - v i II }, and light up (mark) cell r in 02. 

i 

End 

Kohonen{12) states that there are two opposing ten- 
dencies at work in the self-organizing process. First, 
the weight vectors tend to describe the density function 
of the input population by assuming the shape of the 
data. And second, the local interaction between pro- 
cessing units in 02 tends to preserve continuity in the 
double (two-dimensional) sequences of weight vectors. 
In other words the weight vectors in Op are trying 
simultaneously to approximate the distribution or 
spatial ordering of the data in ~P; and to have logical 
images which are topologically ordered in 02 . 

After SOFM terminates, find the winner cell in 
02 for each x e X  and take the coordinates of the center 
of that display cell as a two dimensional represent- 
ation of x. What if more than one input vector marks 
the same display cell? Input vectors that mark the 
same cell are either identical, or very close geometri- 
cally, unless the number of display cells is much smaller 
than the total number of input data points. Let k be 
the number of data points that are imaged on a partic- 
ular cell in 02. Among the k points, suppose that s are 
identical. In this case we generate (k - s + 1) distinct 
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two-vectors distributed randomly over (the area in ~2 
covered by) the cell. Identical points in #?P are given 
identical coordinates in ~2. 

We still need to associate each input vector with a 
specific point in its marked cell. One way to do this is 
to order the k points in ~P associated with the cell 
based on their distances from the origin, and do the 
same for the generated points in ~2. Then the image 
vector (in 02) with rank i for this cell is associated with 
the data vector having the same rank. This does not 
guarantee that topological relationships between the 
k points in ~P will be in any sense preserved in their 
two-dimensional counterparts. However, it will ap- 
proximate the situation in ~P because not many points 
will be associated with the same cell, and those that 
are will be close to each other. One problem with this 
method is that the data extracted depend on algorithmic 
choices. Different initializations and parameters of the 
learning process may generate completely different 
extractions having very similar levels of topological 
preservation (for example, rotating the display lattice 
02 generates a different data set with the same 
neighborhood structure). We formalize this: 

of course, depends on what Y will be used for. In 
pattern recognition (clustering and classification), dis- 
tance relationships are often important; now we turn 
to a new measure of how well distance order is pre- 
served by each of the three methods just described. 

4. T O P O L O G Y  PRESERVATION UNDER 
FEATURE EXTRACTION 

Topological spaces without metrics are usually re- 
garded as topologically equivalent when neighborhood 
structures can be reproduced with continuous trans- 
formations. When dealing with metric spaces, topo- 
logical equivalence usually connotes isometry (all 
distances in every neighborhood are preserved). Most 
pattern recognition algorithms for clustering and 
classification depend on the notion of distance, so the 
Sammon attempt to produce isometric images of high 
dimensional data has the underlying rationale that 
every result obtained using distance-based techniques 
in X can be exactly replicated in any isometric image 
of it. However, it is very difficult to extract isometric 
images of data. In this section we introduce a new 

Aloorithm AE,SOFM: extraction and display 

Begin 
Call AD "/*** Extraction Phase****/ rLSOFM, / 
for k = 1, 2, . . . ,n  

r *-- arg min { II x~ - vi JJ } 
i 

count[r] *- count [r] + 1;/** count is an integer array **/ 
List(r) ~ List(r)l k;/**l stands for concatenation, i.e. append k to the rth list **/ 

for i =  1, 2 .... , m  2 

if count[i] = 1 
Take the centroid of the i-th cell as the generated vector y for the x in List(i); 
/** For a two-dimensional display lattice, i corresponds to a pair of coordinates, say, (t, r), **/ 

/** and take y = r - . 5  " 

else 
if count[i] > 1 

Using the indices stored in List(i), find the number (s) of distinct x's for which node i is the winner; 
Generate Y = y j, j = 1 , . . . ,  s points randomly from the unit square around point i; 
/** For a two-dimensional display lattice, i corresponds to a pair of coordinates, say, (t, r), **/ 
/** and we draw points from the box defined by { ( t -  1, r -  1), (t, r)} **/ 
Generate li, i = 1, 2,.. . ,  s, the list of indices of the points in Y after sorting their distances from the origin; 
Generate Li, i = 1, 2 , . . . ,  s, the list of indices of the distinct x's corresponding to List(i) after sorting their 

distances from the origin; 
for j  = 1, 2, . . . ,s  

assign Ylj to XLj; 
End 

Let YE.SOVM.~ = A~,sov~,q[X] represent the q-dimen- 
sional feature vectors extracted from X by AE,SOFM,~. 
HOW good is the extracted data? The answer to this, 

property that finite data sets may possess that falls 
in-between continuity (which may not preserve distance 
order) and isometry (which preserves not only order, 
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but actual distances). The basic idea of this new 
property is that it requires the preservation of dis- 
tance order-stronger than continuity, but weaker than 
isometry. 

Much has been written about the SOFM's ability to 
preserve topology. (~ 7, ~ s) However, a formal definition 
of this idea is hard to find, and harder to make, because 

D Aso~M does not produce feature vectors in ~ .  Pro- 
perties of X a r e - - a t  bes t - -mirrored indirectly by the 
prototype vectors in Op (which exhibit spatial order) 
or cell markings in 02 (which exhibit logical order). We 
are una~vare of any definition or result that relates the 
topological preservation ascribed to SOFM to either 
of the precise mathematical notions of topological 
equivalence just mentioned. Nonetheless, there have 
been several recent attempts at quantification of this 
idea for SOFM. (22'23) 

Kraaijveld et al. (22) defined a way to modify the 
SOFM display strategy so that it produced a gray-tone 

A D , K M J  image; we use "-'SOFM to represent their display al- 
gorithm. They also discussed three ways to compare 
the extent of topological preservation under SOFM 
with that of the Sammon algorithm. Two of their 
approaches were 'performance-based' methods using 
labeled data that really afford a comparison between 

D A D , K M J  ASOFM and ,"SOFM at accomplishing a task such as 
classifier design. The connection between these two 
means of comparison and the notion of topological 
preservation is unclear to us. The third method for 
assessing preservation of topology reported in reference 
(22) used distances between the weight vectors {vii } in 
~/P to induce a measure of dissimilarity on 02 by 
defining 

• the distance 60 between adjacent cells i andj  in O 2 
as the Euclidean distance d~j between their correspond- 
ing weight vectors v~ and vj in Op; and 

• the distance J~, between iwo non-adjacent cells s 
and t in 02 as the minimum of the summed distances 
between adjacent cells, the minimum being taken over 
all possible 8-connected paths in 02 from cell s to cell t. 

Once this is done, the functional form of the Sammon 
error measure is adapted for SOFM by computing 
E K M  J = (1 /~ , i  < j d i j )  5~i < j ( d i j  - 6ij)2 /dij. If we accept 
Sammon's error function as an index of topological 
preservation (certainly it is, in the strong sense of being 
zero only for isometric images of X under As), this 
allows us to (roughly) compare the extent to which 
A~OFM and As preserve spatial order. We say rouqhly 
for two reasons. First, because A s produces vectors in 
~q that have neighborhoods in the same sense as X, 
whereas D ASOFM does not. And second, since 02 is m x m 
in size, the matrix [6~] of dissimilarities induced on it 
is necessarily m × m. Consequently, EKM J is computable 
only if / ) =  I-di~] is also m x m. Generally however, 
m :~ n [it was not in reference (22)]. Even i f / )  com- 
prises distances between pairs of points in X [this was 
not specified in reference (22)],/) must be either com- 
pressed (so some of the data distances are left out) or 
expaneded (so some of the data distances are used 

more than once) to make it the right size. In conse- 
quence, EKM ~ is at best a very rough indirect index of 
topological preservation. 

Another indicant of the quality of topological pre- 
servation under SOFM is reported in reference (23) by 
Bauer and Pawelzik, who use the topographic product 
as a basis for their measure. Let O 4 denote a q-dimen- 
sional display lattice (conceptually, SOFM connects 
Op~-+Oq for any q). Let nk,o~(]) denote the index of the 
kth nearest neighbor (with respect to Euclidean dis- 
tance on the lattice 04) of cell j in 04. Also let nk,op(J) 
be the index of the kth nearest neighbor ofvjeO r Let 

QI(J, k) - d°p(vJ' Vnk'°qO))" (I) 
0 d ~(vj, vnk,opO)) 

d°~O, nk,o~(j) ) 
Q N ,  k ) -  o • . '  (2) 

d "(j, nk.o,(i)) 

and 
Q(j,k)=(,=~ \,/(2k) Q,(j,I)Q2(j,I)) , (3) 

where d°'(vj, Vnko (~)) is the Euclidean distance between 
vj and the weight ~ector in Op that is logically connected 
to the kth nearest neighbor of cell j in Oq; and d°p(vj, 
V,ko~(j)) is the distance between vj and its kth nearest 
neighbor in Op. Further, d°~(/, nk.oq(j)) is the Euclidean 
distance on the lattice O 4 between display cell j and its 
kth nearest neighbor in 04; similarly, d°~(j, nk.o,(/')) is 
the distance between display cellj and the cell associated 
with the kth nearest neighbor of vj in Op. The topo- 
graphic product of Bauer and Pawelzik for a network 
with m 2 weight vectors is 

1 
,, ~ ~ Log Q(j, k) (4) TPs°FM'm'm2(m2_ ~j j * 

TPsoFM,Bp is defined using weight vectors in O, and cell 
distances in 0 4 . Further, the location (coordinates) of 
each display cell in Oa is used in 0)-(4) as a q-dimen- 
sional vector. Thus, TPsoFM.B P measures how well the 
q-dimensional cell geometry in Op matches neighbor- 
hood relationships of the weight vectors in Op. This 
index is certainly not a direct function of X. Hence, we 
think that it does not measure the quality of preser- 
vation of any property of X after processing by SOFM. 

Since the methods in references (22) and (23) do not 
measure topological preservation directly, we call them 
indirect indices. We seek a direct index of topological 
preservation for labeled or unlabeled data that is appli- 
cable to any feature extraction transformation ~ - - t h a t  
is, any function or algorithm that converts X in ~P 
into Y in ~q. We begin with: 

Definition MTP. Let tl): P(~tP)~--~p(~lq), Y=OI-X],  
o~ 

I X l  = I YI = n > 1. x i ~ yi v i. If d* is a metric for ~P and 

d is a metric for ~q, ~ is a metric topolo#y preserving 
(MTP) transformation if and only if for any x~ in X, 
whenever xj is the kth nearest (in the sense of d*) 
neighbor of x~, then yj is the kth nearest (in the sense 
of d) neighbor of Yi in Y. 
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When 0:  ~P ~ ~ is a point-to-point transformation, 
a stronger statement can be made, since the vectors are 
not confined to belong to just  X and E Then • is 
MTP,=-  Vk and any x, xl,  x2 . . . . . . .  Xke#t p, d*(x~, x) _< 
d*(x2, x) _< . . . . .  _< d*(x k, x) ~ d(O(xl), O(x)) < d(O(x2), 
O(x)) < . . .  d(*(xk), *(x)). Of course, this condit ion also 
holds for set to set transfromations as long as all the 
points are in X and Y. 

The basic idea of an M T P  transformation is that it 
preserves in its range the relative positions of (all) 
neighbors of every point in its domain. This is a fairly 
strong property. An M T P  transform lies in between 
contihuity, which preserves neighborhoods but not 
distance order; and isometry, which preserves not only 
distance order, but  actual distances. For  example, for 
any ~ +  and xeg~ p, f (x)= ct is continuous but  not 
MTP; and f(x) = ctx is MT P  for all ct > 0, is a contraction 
for 0 < ~t < 1, and is an isometry if and only if ~ = 1. 

According to our Definition, M T P  transformations 
carry neighbors in ~P to neighbors in ~ ,  and preserve 
(all) relative distance relationships. Let d* and dq be, 

respectively, the distances between (x~, x )  ~-+ (Yi, Y j). 

If • is MTP,  whenever d* is high dij should be high. 
The first index that comes to mind for measuring this is 
the statistical correlation between the (n x n) distance 
matrices D * =  [d*] and D = [dij]. The correlation 
coefficient p for these matrices is 

P(D'D*)=I~<J( (dij-ff)(d*-~*)l'0.d0.d* . ]  ( 5 )  

where 

Z Z Z (d,j-d) 
d -  '<J d * -  '<J 0 .$- '<~ 

n(n-  1)/2' n(n- 1)/2' n(n-  1)/2 

and 

y~ (d~ - d*) ~ 
0.2, i < j 

n(n-  1)/2 

Although distance order is preserved by any M T P  
transform, distances in Y will not normally be uniformly 
scaled with respect to distances in X. We clarify this 
point. Suppose X = {xl, x:, x3, x4, xs} in ~P has images 

Y = • 1 [X] --- {Yl, Y2, Ya, Y,, Ys) and Z = O2[X] = {zl, 
z2,z3,z4,zs} in ~ z  under ~1 and 02, respectively. Y 
and Z might be, for example, algorithmic images under 
the Sammon As after termination at different configura- 
tions due to, say, different initializations. 

This could result in the situation shown in Fig. 2(a) 
and (b), so O1 and • 2 should receive exactly the same 
M T P  score. However, these two arrangements will 
yield different correlation coefficients. Consequently, 
p(D,D*) is not our choice for assessing whether a 
feature extraction transform preserves topology in the 
sense of Definition MTP. 

Since preservation of distance order is the important  
characteristic of an M T P  transformation, we relabel 
the distances in D* = [d*] as [d*] where d* = d*, k = 
(i - 1)((2n - 0/2) + (j - i). Relabel the distances in O = 
[dij] the same way. Let the rank of the kth elements in 
D and D* be r(k) and r*(k), respectively, and let r and 
r* be the corresponding vectors of ranks in ~t "1"- 11/2 

Suppose the ith nearest neighbor of x j~X is xv 
According to Definition MTP, • is an M T P  feature 
map only if, for all i and j, Yl is the ith nearest neighbor 
of yj. Deviation from this can be measured by a rank 
correlation coefficient. Specifically, either Kendall 's 
tau or Spearman's rho ~24~ seems applicable. For  con- 
creteness, we choose the Spearman coefficient: 

T 

6 ~ (r*(k)-r(k))  2 
k - I  

Psp(r*, r) = 1 -- T 3 -- T ' (6) 

where 

T = n(n - 1)/2. 

As usual, - l < Psp < 1-1v~l Here is the relationship of 
Psp to M T P  transforms: 

0 Yl 

• Y2 

0 Y3 
(~  Y4 

0 Y5 

O Z I 

0 z2 

z a 
® z  

4 

0 z5 

2(a) Y = ~IIX] = {yl,Y2,Y3,Y4,Y5 } 2(b) Z = ~2[X| = {Zl,Z2, Z3,Z4, Z5} 

Fig. 2. Two data sets with the same distance order structure that yield different correlation coefficients. 
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Theorem MTP.  Let ~:  P(R p) ~ P(R~), x~*-~yiYi. Let 

d* be a metric for .~e, X c ~P with distance matrix 
D* = [d*], and d be a metric for ~ ,  Y = ~ [ X ]  ~ ~q 
with distance matrix D = I-d~fl, I X I  = I YI = n > 1, and 
let r* and r be the corresponding distance rank vectors 
in ~,t~-1)/2. (I) is a metric topology preserving (MTP) 
transformation if and only if psp(r, r*) = 1. 

Proof. If (I) is an MTP map, then r(k)= r*(k) Vk = 
1,2 . . . . .  T, resulting in psp(r,r*)= 1. Now suppose 

T 

~ (r(k) - r*(k)) 2 = 0 = (r(k) - r*(k)) 2 = 0 Vk = 
k = l  

1 . . . . .  T ~ r ( k ) = r * ( k ) V k = l  . . . . .  T ~ r = r * ~  is 
MTP. [] 

If there are ties in rank in the domain, MTP trans- 
formations will preserve them in the range. Ties in 
computations for Psp must be dealt with carefully 
because roundoff errors can eliminate them in the do- 
main or range of ~. Kendall and Gibbons (24) recom- 
mend that tied ranks be replaced by their average. This 
is the procedure we use in our numerical examples. As 
Psp decreases from 1, the extent to which ~ is not MTP 
increases until Psp = - 1, at which there is complete 
rank reversal between r* and r. This corresponds to 
'inversion' of the order relations that MTP transfor- 
mations preserve--one might call • such that Ps = - 1 
an anti-M TP transform. 

5. LABELED Vs UNLABELED DATA 

Quantitative evaluation of extracted features for 
labeled data sets is easier than for unlabeled data. 
There are several methods available when the data are 
labeled. (2s) For  example, the natural way to assess the 
quality of features extracted for classifier design is to 
compare the performance of a classifier trained on 
both the original and extracted features. Machine re- 
cognition of class labels often relies on two assumption: 
(i) each pattern class has a homogeneous and compact 
shape in the feature space, and (ii) different pattern 
classes occupy different positions in the feature space. 
For  labeled data, feature quality indices can be based 
on distances, entropies, or estimates of the within class 
valance and between class separation of the extracted 
features.(1,25) 

As an illustration, here is a feature evaluation index 
(FEI) based on the idea that good features will simul- 
taneously possess high interclass separation and low 
intraclass separation. To derive an index that measures 
this, let v e ~  q be the grand mean of Y = (I)[X], and 
define the between scatter and within scatter matrices 
of Y as 

c 

SB(Y) = ~ Pi(Vi - v)(vl -- v)r; (7) 
i = l  

Sw(Y) = ~ Pl ~ (Yik--V')(Ylk--V~)T', (8) 
i = l  k = l  n i  

where ni is the number points in class i, n =Y-~= l ni, 

Pi = nfln, ylk(7..~ '~ is the kth data point extracted from 
the ith class, v i e ~  is the sample mean of the ith 
extracted class, and c is the number of classes in the 
labeled data. The FEI is defined as FEIq(Y)= Trace 
S e( Y)/Trace Sw( Y). 

We emphasize that for unlabeled data this type of 
analysis is impossible since the class label for each 
point in the original and extracted data is unknown. 
In this investigation we confine ourselves to feature 
extraction for unlabeled data. For  unlabeled data it is 
possible to use indices such as Es(Y)--the Sammon 
index- - to  assess the quality of features extracted with 
any method. However, the utility of a single value of 
Es(Y)--which has no upper bound- - fo r  assessing the 
extent to which Y is not an isometric image of X is 
unclear to us. An important point about Psp is that its 
range is the closed interval [ - 1 ,  1]. Having these 
bounds enables us to develop a feel for the relative 
quality of features extracted using different methods. 
If the relative ordering of interpoint distances are pre- 
served (i.e. if@ is MTP) class structures, from the point 
of view of performance of clustering and classification 
algorithms, will be preserved. Our MTP index Psp 
quantifies this, and is not dependent on particular 
methods that extract features (or on the data being 
labeled). 

6. SOME NUMERICAL EXAMPLES 
FOR UNLABELED DATA 

An example of the construction of Psp makes the 
content of Theorem MTP transparent. Let n = 5, so 
T = (n)(n - 1)/2 = 10. As k varies from 1 to n(n - 1)/2, 
the addresses in D* and D are matched in the com- 
ponents of r* and r. For  D* and D as given below, we 
have: 

0 305 731 222 566-1 
0 4.28 8.54 1 .61 |  

! 

0 2.78 3.19 / 
D* = o 6.21j 

d* = (3.05,7.31,2.22,5.66,4.28,8.54,1.61,2.78,3.19,6.91) 

r * =  (4, 9, 2, 7, 6, 10, 1, 3, 5, 8) 

r =  (4, 10, 3, 7, 6, 8, 1, 2, 5, 9) 

T T T T T T T T T T 
d = (16.1, 37.2,10.3,18.9,18.6,19.1,9.15,9.43,17.1,27.7) 

T 

i 
O 16.1 37.2 10.3 18.9 7 

0 18.6 1 9 . 1  9.15[ 
D =  0 9.43 1 7 . 1 /  

0  707 J 
T 

(r*(k) - r(k)) 2 = 02 + 12 + 12 + 02 + 02 + 22 + 02 
k = l  

+ 12-1-02-F 12 = 8. 
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Substituting this into (6) gives 

Psp(r* 'r)=l-(1000-106(8) )=0 .9515 .  

Theorem M T P  gives a necessary and sufficient con- 
dition for M T P  transformations that applies to the 
structure extracted from X by any feature extraction 
transformation for labeled or unlabeled data. In par- 
ticular, Psv can be used to assess the relative extent to 
which each of fpc.q, As,~ and AE,SOFM,q preserves spatial 
order in the M T P  sense. 

Table 1 lists values of Psp for the two-dimensional 
sets YPc,2, Ys,2 and YE,SOFM,2 extracted from the seven 
data sets described in the table. Apparently As,2 and 
fee.2 find very good two-dimensional representations 
of all but one of these data sets that preserve neighbor- 
hood distance structure nearly (and equally) perfectly 
as measured by Psp. The values for Psp on Ys.2 [ X J  and 
Yvc.2[Xi] are nearly identical in six cases. This does 
not mean that Ys,2[XJ = YPc,2[Xi], nor  does it mean 
that Sammon's  algorithm or principal components  
will always preserve distance order structures nearly 
perfectly, but it does imply that both algorithms extract 
two-dimensional data that preserve metric topology 
(in the sense of Definition MTP) much better than our 
extension of SOFM. 

As [ p - q l  increases, p > q ,  it becomes harder and 
harder to find q-dimensional representations of X that 
preserve any property. In particular, we expect Psp to 
decrease as p increases with q fixed, regardless of the 
method used to find Y. This point is highlighted by the 
last two rows of Table 1 which present the values of 
Psp for two data sets composed of 250 points drawn 

randomly from two and ten-dimensional normal dis- 
tributions having equivalent means and covariance. 
Comparing rows 6 and 7 in Table 1, you can see that 
there is a large decrease in the (MTP) quality of the 
two-dimensional representation of X using any of the 
three extraction methods when p jumps from 2 to 10. 
As expected, Es(Y ) increased and (21 ~t-~.2)/)'~lP= 1 •i 
decreased when going from row 6 to row 7. 

7. CONCLUSIONS 

AE,SOFM,2 is, to our knowledge, the first attempt at 
using SOFM to produce vectors in ~q as images of 
data in ~i 'v. Since the geometric coordinates of the 
extracted points are const ra ined via logical con- 
nectivity to the lattice O~, the resultant features cannot 
generally be expected to be good lower dimensional 
representations of the data they attempt to mimic. Our  
index Psp of metric topological preservation suggests 
that the Sammon method and principal components 
preserve metric relationships much better than A~,SOFM.2 
(which, we emphasize, is our method, based on SOFM) 
for the seven data sets studied in this note. Since all 
but two of the data sets in Table 1 are two- or three- 
dimensional, generalizations of this conclusion to large 
values of p should be approached with caution. We 
found that as p increases, the ability of principal com- 
ponents or the Sammon algorithm to preserve M T P  
structure decreases. This does not detract, however, 
from the ability of Psp to assess the relative quality of 
features extracted from X using different methods. 

Examples given elsewhere (12) indicate that SOFM's  
do preserve topology in the sense that display neigh- 

Table 1. Values of the Spearman rank correlation coefficient Psp 

Data set X~ Method Psp 

n = 100 points in ~2 uniformly distributed along the boundary of a circle 
centered at (0, 0) with radius 5. 

2-100 point subsets of ~2, each drawn uniformly from the boundary of 
one of the circles x 2 + y2 = 16 or (x - 15) 2 + (y - 15) 2 = 36 

The Anderson IRIS dataJ TM 150 points in ~,4, c = 3 IRIS strains, 50 vectors 
for each of the three classes. 

200 points in ~3. Two subsets of 100 points each, drawn uniformly from the 
surface of one of two spheres. The first sphere was centered at (0, 0, 0) 
with radius 4; the second was centered at (10, 10, 10) with radius 5. 

100 points in ~3 drawn uniformly along the three-dimensional helix 
x = cos(z), y = sin(z), z = t/,,f2; the points were sampled at t = 0, 1, 2 . . . . .  99. 

250 points in ~2 drawn randomly from a bivariate normal distribution 
having population mean vector (2) and covariance matrix 0.0412, 12 is the 
two-dimensional identity matrix 

250 points in ~1o drawn randomly from a 10 variate normal distribution 
having population mean vector (3, 3, 3, 3, 3, 3, 3, 3, 3, 3) T and covariance 
matrix 0.0411o, I1o is the ten dimensional identity matrix. 

As. 2 0.999 
fPc.2 0.999 
AE.SOFM,2 0.758 

As, 2 0.996 
fec2 0.999 
AE,SOFM.2 0.682 

As. 2 0.996 
fec,2 0.995 
A~.SOFM. 2 0.684 

As.2 0.996 
f ~c,2 0.983 
AE.SOFM,2 0.716 

As.2 0.999 
fr'c.2 0.999 
A~,sow, 2 0.712 

As, 2 0.999 
fvc,2 0.999 
AE,SOFM.2 0.883 

As.2 0.661 
f~.2 0.527 
AE,SOFM,2 0.203 
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borhoods in 0 2 become organized to reflect proximity 
among subsets of the weight vectors {vii} = Op. To us, 
topological preservation has a much more precise and 
well defined meaning, viz., relative ordering of inter- 
point distances are preserved under transformations 
of one topological space to another. Our  definition 
of an M T P  transformation is quite general, and the 
Spearman rank correlat ion coefficient provides a 
convenient test and measure of this property. Conse- 
quently, this notion of topological preservation should 
be useful in any context involving feature extraction. 

Finally, we think that M T P  is an important  and 
reasonable property from the standpoint of pattern 
recognition. For  example, any clustering algorithm 
(e.g. hard/fuzzy c-means, learning vector quantization, 
the linkage clustering algorithms, and so on) that uses 
a distance-based criterion to make parti t ioning deci- 
sions using X in ~P will usually make roughly the same 
decisions if it is instead applied to the image Y in ~'q 
of an M T P  transformation. 

To conclude, we emphasize once more that the main 
objective of this article was to introduce a well-defined 
property (MTP) of extracted data that, when satisfied, 
preserved an important  property (distance order) for 
pattern recognition. And we have characterized the 
M T P  property quantitatively with an index (Psp) that 
has crisp lower and upper bounds. Because of the 
bounds, our index enables users to rank the relative 
efficacy of different feature extraction methods at metric 
topology preservation for both labeled and unlabeled 
data. A natural corollary to this study would be to 
develop an algorithm based on maximizing psp, just as 
Sammon's  algorithm attempts to minimize Es(Y). This 
will be the topic of a future report. 
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