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Implementatlon of Four Common Functions
oo an LNS Co-Processor

Debasish Pas, Krchnendu Mukhopadhyays, and Bhabani P. Sinha

Abstract—We prapose a scheme for evnluating four commpoly used
Functinms namiely, 1) inverse trippnometric fonctons, 2) trigonminetric
functions, 3} the exponentinl fonetlon, and 4} the logarithmic function
with the help of 2 lgarithmic mumber system (NS} processar. & novel
idew of sevier folding has been intrdbuced foer compuding e above
Tuncliens, vxpressed in the form of infindte serles, We abse show that with
a sultahle cholee of the ndia for the LNS we can evaluate exponential
and loparithmic fonetlon: withoul wsing any extm hardware,

Index Terrm— Logarithmic number system, scrics folding, ioverse
trigonomeirke fonetlons. arclangent fomclion, Irigooomeirie fonctbons,
exyrriemitial Function, lopurithmic fuoction.

I INTRODUCTEIN

Mlany 1eal time apphicuticns n the areas of signal processing,
procoss controd, ofc., require very [ast evalustion of g largs aumber
ol mathernatical functions, Contemporary Arithmetic Logic Unitg
{ALU) of @ pensral purpose computer may often fied i0 difficult
to meet this requirement of mussive teul-time compugasions, Che
of the main reasons for aor achieving suel bigh role of writhmetic
cornpulaliong is the rebative inetficiency associared with lloating-poim
oneeaEtinns,

Tos pvervome chis ditficulty. the idex of the Logerithmic Sumber
Systemy (LN5) for the representation and manipulation of numbers
was propased [1], LNS offsrs several alvantuges compared o the
foating-puint representzrion. A fost aridmetic unil was developed [2]
for ehtaining very high computational data rates, Sech provessoms e
very cfficicnt in performing operations Bke muldplication, division,
syuaring and agquarc-rooting, bor siow for operalivoe Gke sddition
and subtrgcticn. Addition and subtraction operagions in LM5 need
tu pertonm & tahle lagk-up aml this whle 15 w be stored as par of
the ENS processar. A technbque fior reducing the size of the look-up
tables has been proposed in 3],

Cme of the peoblems assuciated with the design of the LNS
© processar was the conversion of a number fmem the binary Qoating-
ik system to LMS and vice-versa, In the desigo given in (2], the
authors proposed e use of the lonk-up tabics o perform thess
operations, However, methods for genersting the logarithme of 3
nuriber using PLAS have evolved, as given in [4] and have solved ths
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problem foo, To redoce the number of conversions from Anating-poin
tir ENS. it s ressomable oo think ahout an LNS co-processor which can
perform all the arithmelic operstions performed by a commercially
avuilable numcric co-processor and with the sume precision. The
LNS co-processor g5 designed in |21 was of very Hmited application.
The processor could perfiam only six basic anishmetic operations 1)
additiun, 2} subtruction, 3) moltiplication, 3) divigion, 5] squaring,
and B square-Tooting, It §s difficult for a co-processor bf such
limited cupability & sstisty the demanding needs of computing vlhes
mathematical functicos involved in many real-6me applicarions.

In thiz hrict contribation, we propose e wea of implementing
four ciher. genecal purpose functions in such 3 co-processor, Dy
uzing suitable algocithims and a lotle aonownt of extra hardwarc.
The four functioms that we have chosen for implementation ae very
fmdamental anul freguently nesded. They are 1) inverse trigonomatric
functions, 2) wrigonoaelric lunctions, 3 the exponcntial fnction, and
4) the logarithmic fanction. Each of these functions is first expreseed
a5 power serics znd then evalated by the LNS co-processor. [n
evalugiing such infinite power serics of a variable . the primary
penhicm s thar the aumber of terms which are we he evaluated and
then summed op, depends an the precision and the value of the
argument = IF ¢ is & small fraction close 1o zero, e nember of
terms 1 he summed up will be small; otherwise it witl be lurge. The
propissd techmique is contered avoand developing an algomithm hased
an an idea of serer foldiag, soch that by suitably rranstfomming the
argument. we can compule the value of the function, by evaluating
o smalt number of terms for 3 given precesion. Siove te oumber of
multuplicationstdivisions to be performad ina powar sefies evoluatiun
soon overrides e number of additivns’subtractions, and also because
the mult:plication/division doninated compuatons can be cxecuted
at a faster cute on un LNS co-processor, the propozed technigue elps
to compute these funclions very guickly with a reasonsble accuracy.

In the Ginal part of our work, we will show thot o suisble chidce
of the radix ¢ of the TNS, may climinate the requirement of any
extra camputation uther than twble look-up for the exponenrial and
loparithmic fusctions, again witlwul afllecling the precision,

[l LowjARITHMIC NUMEBGRE SYSTEM AND ARSOCIATED ARITHMETIC

In LME, 4 number x s represented in sigoed magniiude form, ie.,
as a pair (5, ¢, where & = (—11"(r1", 5 heing the sign bit ¢ which
is cither ( or | according o the sign of 1) and ¢ heing the signed
exponetl of the radix v The exponent < s expressed o faed poin
binary moda with soy, £ bits for the integer part and F' hits tor the
fractiomal part and one bit for the sign of the exponent, 1., with =
tolal of {f + F + 1 bits. If the radix is congidered to be 2, then e
smallese number that can be represented weing the scheme i 275,
where ¥ = (2" —11401-2 “y= 2 —_2'"* 1. The ratia hetweoen
two conseculive owmnbecs i egual o 1'?‘-". and the comesponding
precision ¢ is roughly lar )27 Typically, if T = 3, F' = 26, and
v = 2, we ocan have a precision of 26 bils in rmlis 2. However,
for the purpose of comparsan with the precision of Aoaling-point
Tepresentation, € will be assumed as 2 e 1077

Arthmetic operations, involving manipulation of the exponent part
only can very easily be pedformed wsing such a representation,
Assume that to nmbers A and & are cepresentsd in the LNS formar
as the tpies (F7AL«LA) and (500060 B)) sespactively when:
A= =N e B o= 1T B e i 6T = A =
and ' iz represented in the LS form as the a8, (0, then

I — plA) + e(H) and §1C) — S{A1 D S(BY. For © = 4,



156

everything will be same excepd that ofC) = e[A) — & D). 5o it iz
clewr that these operations can be performed in a single sdditem or
subtruition time of a fixed-point number, F O = A+ B and 5140 =
S0m), then for 4 < B, 510 = S(B) and &) = 4] 4+ $.0V,
where ¥ = «{ Bi—e{ Al and $20F5 = log_ {14+ 1. Foe € = A-B
with 4 < £, and 5(:A) = S{H) everything remains the same
eacepl that P, 15 changed o0 3, = log, {1 - rV}. Evatuating @,
or d, involves a table look- up, Hence, the addition and subtraction
uperidions are slower in the LNS than those in dhe foating-point
mumber svstem. Also, subtraction may intreduce s large amount of
ermor when the rwo nperands arz pearly equal,

T INENITE SERIES BvaLranoy Using ax LNS Co-PROCESSOR

To sninimize the number of conversions from Roating-point to LNS
and hack, the LNS processor is nacmally used as o dedicated co-
processor for Lhe evaloation of mathematical functions where the
iletaziedrate esulls can cermain in e LNS format. Duts conversion
winld he performed only on the operands for bringing them into the
sa-piocesser [rom e main provessor and then alse on the results
taken out of the LM co-processor to the maie processor In such
an environment, the number of dita inputs and outpats should also
be preferably restricted 1o a small valwe, The class of compulaticenal
prhlems which are dominated by cperations such as multipication,
squarig, squars-reoting would yield significantly fuster results using
the 1.NS without introducing 2 significant amount of ercor,

All these featurss of an ENS co-pricessor make 1L suitable for
cvaluating functons which can be expressed as infiniee series. For
practical purposes, we can rungate the sericss after some fived number
ol s when we schieve the desired level ol precision.

[¥. E¥ALUATION OF INVERST TRIGONOMETRIC FUNCTIONS

We cnnsider here the cvaluation of the arctan function, i.c.,
Lon ') [or an arpueoent x. Other inverse tigonomednic functions
can very casily be cvaluated from tan™'e). For example, suppose
min T LT i o he ovaluatcd, Wo fitst cvaluate i = 7 Then

tan” 'yl gives the value of +in” '/x), The Taylor series expansion

of tan™" (o) for | & = 1 i given by,

2 "
1

1h.'r|"'|{.r:|=.r - i + # -
: i 3
We can use this series in evaluating san™ (e forall &, 0= e <1,
However, fur —1 = ¢ <€ 0 we will evaluate tan™'{—z) sime
tan”ey = —tanTH =2, Similarly if | @ | > 1, we compats
= ! und then compute tan~'(g). Sitce tan™' (3 = cot ™12 =

¥
£ — ran"he), we ger,

x AT
fer= 5 —tan” iyl (2

Thus, we cen evaluate tan™'{z) for all = by computing different
terms in the appropiate series expansion ard summing them up ancil
a desired precision s achieved. The LNS co-processor can very
efficiently be vsed for computing each individual term, However,
there are two mapnr problems in the approach. First, it needs o be
detenmined how many (erms are tobe evaluated to achieve the desired
precision. For > oclose o 1, the number ol lecms may be very lungre
and the computation will ¢sen be highly inefficient. Secondly, fhere
wre allesreale pusilive and negative tetms, cousing slower convergence
ot the serics. Subwractions may ulso introduce & very lunge amoumt
of ereor in the compuiation when the two aperands are nearly aqual,
Faor the hrst peoblam, we note that we can tarpinate whenever any
Term becemes less than o predefined valee, To overcome the secomd
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I I
prublem, we see that afier a lifle manipulation %27 can he
expressed uy )

1

tan L. Lo
m:I+[1_E':I +[1-—E+E:|J' + .- {3}
Thus, we have obtained a serice cxpansion of "[‘":1“’{ as
: , g . : V. [-17P—1
Fopng Apm 2 where Apy = (11 4+ 5 +.0 4 I

Mote that Ay §s wlwuys positive and converges o the valoe f FTS
p tends to iofinicy, Thus the secood probbem is solved. Instead of
evaluating the 4. % gach time, we can #lore them in @ while for o
direct lovk-up, However, w implement it in practice, we must have
an idea of the size of the table, Le., we abe W0 koow the upper bound
P 00 e oumber of termes that are to be evaluated,

A, The pmer Bound on p

To calevlate the vpper bound on the number of terms to he
evaluuted, we proceed sy follows,

Lemena 12 Len Tyl = A,y o™, und et thir) =
e ITu(r). Then for all p = 1, depaim) < #ufwl.

Frog: Omitted.

By lcmma 1 the successive torms in eqn(3) are moneonically
decragsirye. Cur poul is to find a valoe of p such that the LNS
mepresentation of 4, is less than o predefined velue n. We may
choose v e be egual to -23 in radix 2, which would torm ot o be
278 = Yo ¢ after conversion 1o its Aoating-poinl representation.
Using Jemma 1, wee can cluim that it the LNS representation of £.00!
is less than -23. dhen the LN5S mepresentanon of £ (] will alsn he
lgss than -23, In this case, we will evaluate only ip — 1) terms of
the series. Hence, the maximum number of terms po, .., that needs
to be cvaluated is e less than the smallest valus of posavisfying
the inequality

1-

I

logy(tloil < <23 ()

ie.

1 1 1
lagidl — = b = e Y
Gl FREETL

2 — Doy o+ bagdl — o < =23 (5

Examining the inequality (5}, one can easily conclude that the value
of P 1% primanily dependent on the value of | —23) 7 lop. (21, For
o= L, we see thal an inhioite ouober of terms are e be eval nated
for evaluating the series comrectly. As ¥ decreases, prax Wwill alse
decrease. For a successful implementation of the series evsluation
scheme, we must have a sutficiently small value of .., However,
even for ¢ = 0.3, poae van be as dage as 120 The only way to
further redoce the value of pbpa i85 10 restict the maxinum value
of x to s still smauller valwe. [n the next seetion, we will discess
meethod whicli would enable us o schieve (his poal when evaluating
the series, yet Gnding the valoe of tan ™) for anv vatue of the
arpoment £, 0 = x|

Ltewina 20 For  umy  p sutisfying  the  imeguality (5,
'}_:h._‘._ Togelat) < 2m, when < (L5
“Proaf: Omitted,

Femme 3 The total series truncation error in evaluating tan ™' ()
will be less than g, il we take o | = pe = 1} terms of the series
(31, where jy is the smallest value of p satisfying the inequality (30,

P Oamiired.

We now intriduce the ides of series falding in the following ssction
w reduce the value of pra By & suitable transformation an the
arpument o without losing the precizion. The reduction i & wall,
1y en, reduce the residual errar,
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Fig. |. Curvies showing the value of ¢,

x[—axis 1

X=X
A X—axis—

Fip. 2. Curves showing o and ru.

H. Seriex Folding
Lt us have a transtormation on X defined by oy =

k is a posilive integer. The expressions Lan
then related as,

(BT g japl = Lan ™' ]E.:-:I — Lo el 16}

Muwr, we shall show that for cenam values of x, the transfomed

value .#¢ is bess than x, The graph of oy versus X assumes the shape
s shown in Fig, 1. We have alsa drawn the straight line 7, = 2 an

Fip. 1, which ioersects the curve o) = "r'*__-;_l;f-f. al & polnl .o = o
where, o) = S50 e
er— [ T = {7}

We call op the cridcal value corresponding 1o k. We note that [or
w3 oy, xy « poand for ro e, 00 > o0 i we o oon changing the
withuees of &, ¢ number of such critical values £, ¢, o5 ete., would be
obtzined for & = 1, 2. 3. - - -, respectively. Specifically, oy = VE—1.
fz — 5 — 2, ete. This is illustrated in Fig. 2. We define o = 1,
Mo, we can start folding the series as foliows. T o = o <0 o wea
tramsform e fooay, where e, = ,1' 7 f' ¢ far & = 13 Uhis transtormed
valae o will be dess tao o IE oo < 0 = oo, ien we can lrassfon
o I oy AR i = %‘i (far & = 3 Tn gencral, we divide the
interval [0, 1] imdo several sobimervals £, Ffooo--, where e ah
subinterval I is defined by £, = (r., rioy] for 7 = 1. For a given
input argument .o, we check which interval £ les i and wanslorm i

aceordingly. For example, if it falls in [, we use the transformation
with k = q and obtain the ccansformed arpurnent ¢, = Lﬁ—‘*ﬁl 56 that
T, % ;. We con repeat this process o bing down the transtormed
value to loss than or equal to any desired .. by 0l most m successive
transormarions.

Remurk: As a special case, for @ > ey, the ransformalivn on @
i%, rp = % {for & = 0, which we have already seen in (2).

Hemark: Fixing the maximum nomber of transfoemaiions 1o some
value of m will alsoe determine the valoe aof pras.

After evaluating the arcran of the transformed acpurment we can
get back tan (e} by wsing (63 For this rerrensformation we have
it do only few submactions, If we fix that ar most m rransformations
will b wsed 5o thet the valoe of the mansformed argument will be
below e, then we bhave 10 di o masimuwm of m subtesctions. The
values of tan ') for & = 0,1.2, - are stered to faciliate this
process [ for k = 0. we settan g = 2

The propased algorithm including the transformations and retrans-
[ormations can be precisely Uescribed for o miven input argument 2
amd 4 piven value of the maximorn number of fransforiations us
found at the Boom of the page.

Ome may find & remote similarity beraeen this ides of series fulding
amd the transfurmation lechnigue deserdbed in |5, pp. 1231257,

n terms of s, the maximum nunber of traosformations, the
inequality ¢3) can be rewTitlen as,

g b (i
Bkl oy 2= 137

(25— T logeiwm® +1 — mi—log.il — ,{'2:1 < =23, (8

Thus, as we increase the value of m, the value of pp abtained from
the inequality (8) (henee the value of pmax = o4 11 would decrease.
It 32 clear from the dmequalily (33 that as 1m0 = 22, g — 1L Table 1
shows the dependency of poa 00w, IF we increase e, e nuimber
ol LETNIS flea. Teguited for compoting can™ (o is educed, Tosolting
inlesser amount of compulaticdal error. On the olher band, increasing
the valye of m hag the ctfect of introduging crrar in the argument
itzelf, Sinolary, i pie. 15 reduesd then the ume for svaluating the
terms of the serice and summing them up will decrease while thas
for transformation aond cetransfommsticn will incoewse. W s expected
that there may he some oprinum valoe of m for which the product
of errur and computational ime will be minimum.

. Chaice af m

In this section, our objective is to tind the optimum sumber of
tansforeations. To do su, we st ol e emor inineduced in the
computed value of tan” ) for different values of m, ducing the
whols process of arpument ransformations, evaluations and suniming
of terms. and retransformacions. To estmale the error, we use o
simulation program. We next cstmate the required compusational
tume for differeal values of m. Finally, we choose tbe value of m
for which the product of the total cror 2nd the computational time
15 minimwn.

) Simalonen Resulrs: The proposed  fechnigue was  simulared
with ¢ = 2 #F for unifarmly distribumed ten millon values of o
herween [ and 1. The results were comparcd with the valves of
i Lt caleulaed in Boating-point with double precision. The

Step 1 = Set b — A
Step 2 Compute the funcion gia. ko where

Dl S

)
gk =Lomp,

gla ko) =

for k= o
for (o = Cydoand (5 < m)

I..nsg""['fjn - _.,-|::] — kiR el B L) for (e > ) and (4 <
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TARLE [

hfaxiome Murmbar of I Mazinwm Mumber of
Transformations (m) | Terms(p, )

1 | 9

2 ! fi

3 ’ 3

4 4

iy 4

10-12 3

13 : 2

observed differences are listad in Table II The proposed algorntion
prowides ool securacy [or any ressomable value of m. Both the
averape and the maxicuntt ercors alluin Beeic menimem al e = &,

2§ Fetimazian of the Compunationol Time: Az memiongd in Sec-
tion L, muliplication aml division operations can be done at 3 faster
spead than pddition and subtraclion operatiops in LN3. The Llime
reguired lor one multiplication or divdsion s o mene than the fime
required for onc fxed-point addation or subtraction. However, one
aditien o subtraction in the LME reguires twe fixed-point additions
ol subtractions and ane table look up [2]. For addiion or sublaction
with a very high precision, one may even nexd @ Taylor scrics
upprosiniticn i akdition 1w the lable leok-up [3]. Thos, 1 we
agsyme hat the fimg required For @ able look-up is =amc as shat
for one Hxed-point addition. then the wme requiesd foc ene sddition
(subfraction) cpcration is aproximarcly thres times than that waken
for one muitiplicatien operation. 11 we denole the tme wesded Tor
o [ined-point addiion (subrasticanr by ¢y, 1ben the dme peeded
for an 1.45 multiplication or division is egual to # ¢ and that for one
addition oF subiraction is 3y, However, as o special cass, 14 0o
1 — x can be compueed 0 fp dme. sincg the LNS representation of |
is 0, We will powy o o fthe maximwn time raquired For evaluating
the arctangent function. )

Druring oaie transfommalion. we evaloate :Ill___';x_] - e, we need wodo
ang ultiplication (f ¢ fime ), ong division (8 rinsg), and one addition
(A timel and Bnally o special subtracton O r timel. Thus, the
liene needed for one ramsformaion is 50, For celrmsionoation, we
evaluate tan” ' i) = ran” (e ) — tan 'ip i where tan 7 gy s
stered in & 1able. Thus, ove subtraction amd coe able lock-up are
needed, making the dme for one reteansformation &g .

The ptholerme of the modified seres Fr tan™'tr) s wrilen
@ T Boord®P N = e®y The Baeter (1 — %) can be
evalpared mmee for all {by onc multiphcation amd onc subtraction)
and storcd o register, The LNS representation of Ag—- will be
storcd in a tehle, The temm o5 ' can be evaluated from o7 % by
multiplying it with +*. These three factnts ean then be mulriplizd (2
mnltiplicavions) W gencrule 00 Hence, svaboadion of sach term
needs thees waltiplications aod oce wable look wp, Fisallv, this term
is 10 T added to the stoded resull. Thus. the totul cime nesded fir
evaluation of one teem ad wldiog i we the slored reseft is 70,

Bt s is the number of Lrans vrmations and po, e 15 the vermespaoad-
ing gumher ot terms of the scrics cxpansing w he evalaated, then
the tatal time needed for computing tan 'ied s T = (e —
Trmas M ¢+ 21y, where the erm 2t accounts for the evaluation of
e factor 11 = %) Usiog Table L we Gnd T) for different values of
m, which are listed in Tuhle 171

toxarmining Tadte T8 and Table TIT, we see that the pmoduct of che
muximum error and the wial e seeded foc computing Lo e is
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TaHLE NI

m Anerzge Errar Muximum Error
] 1.OE-7 5.8E-7
2 5.4L-R 2.6E-7
3 4.8E-H 2AB7
4 1AE-7 4.8E-7
5 E1E-8 2.2E-7
G 4.3E-4 21E-7
T 4,1F-# 1.8E-7
f ERIICH 1.RE-7
o A0E-T 4. lE-T
I | 1.BE-7 4.2E-7
11 1.2E-T 1IE-T
12 B.5G-R 2.6E-7
13 ‘ f.3E- 2.2E-7
IARLE 111
m | T {interms of ) |
1 ‘ 75
2 id
E] [ 67
E i
5 ‘ Hi
[ : i
7 Lnn
A L1
n i L2
10 123
H i L33
12 4%
13 146 J

minimum o o = 3, Beoce, we cooclude that the optimum numbser
if transformations for compurng tan™' () i equal o 3 We also
nole that boh the averape eomor amd the masimum emor for m = 3
are pot significantdy higher than fheir cespective minimurm valvees
(which comespond e s — ¥1.

23 Trmsformations or Pferent Vadsey of thet Argement: o Talkle
IV, we show the specific trunsformations thut the nput arguments
must uodecgs,. From e weble it js clear thar the estiomalion of
compuitational tume, as reported nosection IV-C-2 0w rather con
servative. Dnly o smafl range of vabes would vsderzo all the
three teansfoaamations, while the rest would require less then three
Lransf o tiony.

V.o Bval usn o oF THIGONOMETHIC FLRULIONS

We consider here only e evatnation of the Sine functon. Ohes
trigonometric functines can be eviloated using this funcrion
The series by wlich we can cvaleate sinl x| s very emuck similac
in natorg 10 the serics for avaluation of tan ™' {0 and is piven by
) _".I W
SULLET = - ar oy

=5 9

where | o | < 1, We woobd modify the series as in Section I, as
sl = 51— e 4 r:*:-;. LeEeter — e, Rinee
S0 =r1 = — s, evalualing sind ) 3 enough wopel siul =),
Apain, we can alwayvs cupress % ws oo — 85— 4 where g0 5 and
it = e sindgh or +oeasig ) depending on the values of g, Thos,
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TAELE I¥
Hanpe of Trans rmation

Tnput Argument First  Second Third
1.000 - G721 | Tes N Ma
{728 - {L&19 Yes Mo Yes
U608 - 0,524 | Yes o Ves  Yes

| 0525 -0415% | Tes  Yes Mo
04ld- 0313 Mo Yes Mo
0312 - 0237 Mo Yoz Yes
(230 = [L163 Mo Wi Yes
162 -1 My My Mo

TABLE ¥
Maxigem Munber of Maximum Number of !
Trarsformalions (n; Terms {p-_“]
1 32
2 ' 3
3 5
4 3.
5 3
ﬁ "3
? k3
-1 3
10 2
1l 1
12 1

i is sufficient e evaluste siufy} for y < . But y <0 I does not
abways guarantec that ¥ will be less than 1 wmd this prevents us from
nsing the Taylor series expansion of sin{x;. %o here again, we ke
the jdea of folding as in Section IV (0 reduce the number of terms
those are L be evatuated for computing s}

Iy = T we wansfonn vy 0 g w3 = F — g Thus
. = i ; ] 3 Iy ..- L, . N - e
sinfag b = vosiyh oo, siod g L —sin®ig ). Again if 3 > T
we use the transformation 4 = 41 — i Thus, 3 = F —

and henee, sinfiy | = T;;E-fl'lﬁl;yy] — Il :IJ. The tems ., and
i1 are related a8y, 1 = & — W Hemos, sinlge_) =
A g priel i b — eos{ gl sindgne ) We assume Lhat e values
of sing 5, b oamd cosi G5} wre stored in o tahle. Hemoo sinffim—1)
can be computed, i we can evalvate sinf g ) rum e uncated
nfinite series.

In terms of m, the maximum nwnber of runsformations, Lhe
ineyuslity 151 takes the form for Sine function as,
] =1

TP TR
+i2p — ]?lug‘di%} +log,il — ¥ < =23 (1Y

: 1
Togy (1= = 4

!

Table ¥ shows the dilferent values of g0, for diflerent m. To
estimute the commpatational ermor for various m, we Use a gimalation
program with + = 2 **. Tor uniformly distributed ten million values
uf o between rero and one. 'The results werne compared with the valoes
of sini.r} caleudared in fosting-point with double precision. The
whserved differences are listed in Table Y1, The proposed techrique
provides good accutacy Tor any rewsonuble value of .

Tar estimute the tme needed for evaluating sing ), we follow the
nowations vsed in Secion IV.C-20 In ahis case, he trumsiurmation
involves one subdraction and one division (b compute g from
ot Thus the i necded for one vansformaden is 44, The
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TABLE ¥I
m Averape Error Maximum Ercor
1 1.9E-6 i 2.HE-5
2 £.8E-8 I 4,287
3 4.4E-4 " 23ET
4 6.26-8 | 32E-7
s ' aA7EA LIE.7
& 17E-8 L3E-T
7 1.6E-8 L2E-7
E 1HER 20E-7
9 1.6E-B 2AIE-7
10 L6EH ZAE-7
L1 3.GE-4 N
E 12 |  GhREE LHE-T
TARLE viI
m T, (in terms n-F1E}

I 241

z 03

3 2

| 4 LK

| 5 3

[ B 13

l O 128

g | 143

LI 151

m | rah

i 174

140

retransformation involves two able look-up operations {for getiing
sin[g5 1 and rns! 500, 2 sulractions (one with 3 e and the
other with ¢ty dime), 3 multiplications, and T square-Tooting. Assurming
that the time needed for square-rooting is equal o £y, the wial time
nesded for one remansformation s 116

The time needed for evaluation of a wenn and adding it o the
stoced resull remuing same a5 that for can ™' (&), i, T2 IF m is the
numher of ransformations amd puase 12 the correspording nurober of
terms of the series expansion Wy be evaluated, then the total time for
COMpUting sin{x] is Te = {Lam + Tpueeltp = 24 . Lsing Table ¥,
we [ind the lime T for difforent values of m, as listed in Table VIL
We see from this (able that the ine 10 compute sing @) is minimum
for m = &

Examining Table VI and VI we Gmd tha the prodwct of the
muximum error and the ol cnmputational time is mioimom for m =
3, Henee, we conchele that the cptimum number of fransformations
fur evalpating Sine function is 3,

Table WII shows the wmansformutions undergone by the difterent
values of the input argument. It is readily seen that oniy a small ruogs
of the inpit argement values undergo all the three wranstormations,
while the st would requing less than three transtormations,

VI Evarvancs oF EXpONERTIAL AND LOGARITAME: FURCTHING

LMS co-processors can also be used oo gvaluam exponential and
Iogarishimic forcticns flrom their infinile seties representations, wsing
the idew of seties Folding. For example, to compote <5, where = > 1,
U5 first teanstormed to a sufficiendy smabl value ¥ = 5. Then o i
evaliated feom the senivs und fnally @ 14 aquarcd k times to got e,



1el

TABLE VIIT

| ——

j Range of Transfarmation
Input Argurnant First  Sewvond Third
1.(8H] - (L9EZ Yes  Yen  Yes
0981 - 0,784 Yes Ye= Mo
0.78% - 0.550 Ho Tei No
[.58% - {0,393 No  Yes Yes
0.3%2 - 0197 Mo No Yes
0196 G Mo Mo No

Similarly, to compute log, «, we can ransform x bo 2 sufficientdy
small velue 3 = . Eviluation of log, ¥ can be done from the seres
expansion of log, ¥ (¥ < 1}, with the help of the LNS co-processor.
Hence, logy @ can be compated by adding k o log, 3.

However, we can do awey with all such computations in evaluating
exponential gnd logarithmic functions by o proper choice of the radix
r, as expluned below.

The conversion at the owput of the LNS co-processor convers 4
number trom the 1L.NS format o the floating-poing binary moede. Thos,
given the idepral purt | and the fractonal past F oof the mumber in
LNS, the oatput conversion is done o get = = o'+ This is done
b a rable look-up. Choosing v = = instead of the uanal value 2, we
can directly evalnate the exponential functien by the conversion wnit.

Similarly, the comversion process ar the inpit of the LNS co-
processer will direcily give the valee of log, o for a given binary
flpating-point oumber ¢, The input cobversion process in this cuue
will. however, be 2 bit more complex. Consider, tor example, a
flpasing-point binary number 2 — M2". To convert 1 to LNS radix
2, we need to eveluate the integral part T and the fractional parl
F in the LNS formal where, 27 — 7 = M2F jig, T+ F =
loge 3 + E. Now, lag, A can be obtained by u wble look-up.
Om the wher hand, if T = 2, then we wonld have, ' = & ie.
F+ F=lop, M+ F log_ 2.

The muliplication operation herween E oand log, 2 can be over-
lapped in time with the table look-up vperation to find log, 3. If
wet allow this added complexity in the input conversion process from
floating-point 1w LNS, then loparthmic functions can be cvaluaed
with no exira computation,

VIL Haridware [MPLEMENTATION

The implementation of all these fonctions would require some
hatdware support. To illustrate the case, we propose the handware
that is required o evaluate Lan (] a5 shown in Fig 3. It consises
of two parts © 1) Term evalustor wnit and 2] Summing unie. The
advantage of this scheme is that the satre hurdware can be fubricated
using the existing LNS adder or the muliplier that iz acmally present
in the LME co-processor. The proposed scheme is heavily pipelined.

A, Term Evalwator Unit

The erm evaluster unil consiss only of 3 repisters R, K2 and
R 3 maltipliers M1, M2 and M3; and one fable T contalning
[P = 1} entres (LNS form of Aq, that is (0, is not stored). The
tegisters R1, B2 and B3 are firss fad with the values ¢, +* and [1- x 1
respectively. The table contuins the LN forms of the coefficients,
Apoi e, (1- 31,01 = 1 + 1), ate,, 0p 10 s such rerms. The
table iz a ser of regisiers with a table poanter which increases ieself
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Térm Evaluooar
Unit

Surnmling Lrnit

Fir. 3. Bliock disgram of the proposed handwsme,

TABLE IX
m T in terms of 4
[sing paea el LNS unit)

1 3

2 a4

3 3R

4 42

5 a4

f 36

7 L]

E el

¥ 7

Lek #

11 BE
12 =
13 W

by L. whenever one access to the table is made, The poiner intially
points 1o the first entry of the table.

Ini the first time unit the multplier . multiplies the contents of
the registers R1 and B2, and the muliplier Az multipliss the contents
of the register B3 amd the first entry of the table I, The outpmn of
A s fed back o the register BL and also fed o the input of the
multiplier M3, while the other input of My comes from the output of
My, During the second time instant M5 compotes the product of is
rwo inputs while M, woliplies o with te content of B2, anc M
multiplies {1 ~ 2%} with the second entry of the table, Recalling that
fpo= An @ T — 1 My penerarres the portion o7 of t
and M= generates the product A, (1 — 2 ). Finally, M, mualtiplies
the rwo results penerated by A and My o prodoce the wm £,

B. Summing Unir

The summing unit conwing 2 registers R4 and R3 and one LNS
adder, The register R4 is fad with the value £{1 — £*} and RS gets
the vulpul of the lecm evaluator unit. As the werm evaluator wnit is
pipelined and it can generate the culpul in every ume instunt, the
SUCiUTInE umit cun aperale ot the same speed with the term evaluator
. The alder adds the conlents of B4 and BE5 and puts the result
back in B4, The finel output cun be taken from the rpgister Ré itzelf.
As we have seen that the addition in LNS s a shower process than
multiplication, we tnay raquice o buller betwesn the tenm evaluaior
unic gnd the summing wmit,
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With such a pipelined implementation, we <an easily verify that
the time needed for compuating tan™"(x] can ke reduced o T =
1T+ Jpaws 20 . Tuble TX shows the values of T, for different
values of m. The time-error product is still minimum for m =
3

Using the very samc pipeline, just cheanging the contents of
the table Ty, the whole setup can be used o evaluaie rRinfx)
also.

VI CONCLUSION

We have shown that the four common functions namely, in-
verse mgonometric futcdons, tigonometne fonctions, the exponen-
tial function, and the logarithmic function that are very freguently
used, tan be implememed by using an LNS co-processor. The
advantage of our idea based on series folding is that as the number
of iierations reguired can be known o prier, (he time for computing
a piven function can easily be cstimated, Further works are also
being camied owt to evaluate some other funclions like the hyperbalic
trignometric functions o the fast Fourier oansform in a similer
framewirk.
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