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Abstract--An adaptive smoothing algorithm has been described which is capable of performing various 
tasks, such as removing salt and pepper noise, preserving roof edges, stretching (enhancing) step edges and 
reducing variations in low intensity varied regions. While iteration advances, it approximates both isotropic 
and anisotropic heat diffusion processes in performing these tasks. A region topography index has been 
defined for guiding the algorithm under different situations. Further, an image quality index is proposed 
which provides a criterion for automatic termination of the algorithm. This criterion can also be used with 
other iterative smoothing algorithms. The superiority of the method over some other similar techniques has 
been established for both synthetic and real images. 

Adaptive smoothing lsotropic/anisotropic diffusion Edge stretching 
Quality index. 

Topography index 

1. INTRODUCTION 

Smoothing is an important image processing oper- 
ation. Smoothing operation is necessary to reduce 
noises and to blur the false/stray contour fragments in 
order to enhance the overall visual quality of the 
degraded image. In order to clean an image and en- 
hance its features, either spatial or frequency domain 
techniques can be used. The frequency domain 
smoothing uses filtering in the Fourier domain. Spatial 
domain techniques, on the other hand, normally em- 
ploy linear or nonlinear spatial operations. Many 
efficient techniques have been developed in spatial 
domain. The simplest smoothing technique uses (un- 
weighted) averaging over a predefined neighborhood. 
This reduces noise significantly, but at the same time it 
blurs the edges of objects. Thus, the overall image 
quality deteriorates. With the increase of the neighbor- 
hood size, blurring becomes more prominent. Some of 
the weighted averaging techniques, which have been 
proposed to reduce blurring, can be found in references 
(1-3). Weights play a significant role in the smoothing 
operation and hence their determination is an import- 
ant task. One of the techniques of selecting weights is 
to use the local mean and variance. ~+-6~ Wang et al. ~7~ 

have published a good survey on weighted averaging 
and enhancement techniques. One of the drawbacks of 
these fixed weighted methods is that they cannot re- 
move noise as efficiently as the unweighted averaging 
schemes. 

To make the smoothing schemes more efficient, 
iterative weighted techniques have been reported, t8"9~ 
The weighting coefficients are proportional to the 
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gradient inverses between the central point and its 
neighbors. The convergence of these methods is not 
known. Nagao and Matsuyama t lo1 used a simple tech- 
nique to smooth images, preserving edges. They ro- 
tated a mask inside a 5 x 5 window about the center 
pixel. For  every position of the mask, two regions may 
exist. They calculated the variances of all such regions 
due to all possible rotations of the mask and replaced 
the gray value of the center pixel by the average gray 
value of the region having the minimum variance. The 
process is repeated iteratively until all the gray levels in 
the image do not change much. Unfortunately, this 
algorithm assumes the difference of the average gray 
levels of the two regions is large, which may not be 
always true. This may seriously damage the image, 
particularly when roof edges are present in the image. 

Recently, Marc et al. ~111 have proposed an iterative 
weighted averaging scheme, which both sharpens and 
smooths. The method implements anisotropic diffu- 
sion t121 and its iterative behavior has also been dis- 
cussed. The algorithm considers only the step edges, 
preservation of roof edges has not been taken into 
account. Since the weighting coefficients are based on 
the gradients at all 3 × 3 neighborhood points, the 
averaging result is influenced not only by the neighbor- 
hood points, but also by some other points beyond it. 
This sometimes deteriorates the image quality. Fur- 
thermore, the number of iterations required for differ- 
ent operations, e.g. edge detection, is heuristic in 
nature. Human intervention is also needed for termi- 
nation of the algorithm and to judge the image quality. 
Otherwise, the noise cleaning may become insufficient 
or there may be excessive useless iterations. 

We have proposed here a smoothing algorithm 
which implements both isotropic and anisotropic 
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diffusion processes. The isotropic diffusion helps in 
preserving the roof edges and removing noises, while 
the anisotropic diffusion takes care of sharpening of 
step edges and reducing of low gray variations within 
regions. A region topography index guides the diffu- 
sion processes. 

To keep the influence of neighbors on the computa- 
tion of weights restricted only within a size of 3 x 3 of 
the central pixel, we consider the difference between 
the central pixel and a neighboring pixel as the gradi- 
ent at the location of the neighboring pixel. For  the 
central point, we take the usual gradient. Each gradi- 
ent at a point determines the weight of the pixel at that 
point using a polynomial function such as that for low 
gradients, weights are high and vice-versa. For auto- 
matic termination of the smoothing algorithm we have 
defined an image quality index (IQI) which gives an 
estimate of the average contrast (with respect to back- 
ground) per pixel in the image. The effectiveness of the 
algorithm, alongwith its comparison with that of Marc 
et al. (11) and Gaussian smoothing, has been demon- 
strated on both synthetic and real images. The per- 
formance of mean and median filtering as well as of 
Nagao and Matsuyama's edge preserving smoothing 
algorithm (~°) has also been examined. 

2. D E S C R I P T I O N  O F  T H E  A L G O R I T H M  

The proposed algorithm is based on an iterative 
weighted averaging technique. As mentioned before, it 
is intended not only to remove the salt-and-pepper-type 
noise, but also to preserve roof edges, stretch step edges 
and to reduce the gray variations in low intensity varied 
regions. In other words, we keep our attention to the 
following major tasks while formulating the algorithm: 

• Removing salt and pepper noise 
• Preserving roof edges 
• Reducing variations in low intensity varied re- 

gions and enhancing step edges 

In our subsequent discussions, the term smoothing 
will refer to any of these effects. In order to achieve this 
our weighted averaging scheme employs three differ- 
ent types of weights, depending on the surface topogra- 
phy within a small window. 

Let the digital image be defined as F [ f ( x , y ) ]  . . . .  
where f ( x ,  y) ~ { 1, 2 . . . . .  L} is the set of gray levels. Let 
us consider a 3 × 3 neighborhood, N3(i,j), ofa pixel at 
the position (i,j). At the (t + 1)th iteration the pixel 
intensity at the (i,j)th location in the smooth image is 
given by: 

g('+ a)(i,j) 
1 1 = Z , =  - 1Zv= - lg(')( i + u, j  + v)w(')(i + u, j  + v) 

1 E x  _, w(O(i + u, j  + v) ' 
~ U =  -- I 

(1) 

where ~t(°l(x,y) is the same as f ( x ,  y). The weights w (t) 
under the aforesaid three different situations are as 
follows: 

For  cleaning noise 

w : ° ( i + u , j + v ) = { ~  

For preserving roof edges 

w ( / ) ( i - l - u , j + v ) = { ;  

when (u, v) = (0, 0) 
(2) 

otherwise. 

when (u, v) = (0, 0) 
(3) 

otherwise. 

It is seen that w, [equation (2)] helps in cleaning 
salt-and-pepper noises by averaging with unity 
weights, whereas w, [-equation (3)] ignores the effect of 
neighborhood in maintaining roof edges; in other 
words, equation (3) does not have any filtering effect. In 
the next section we will be explaining how the weight 
w~, which can take care of both stretching of step edges 
and reducing variance of low intensity varied regions, 
can be determined. Here, we will be explaining, first of 
all, how w s can be selected. Then we will explain the 
behavior of the iterative algorithm in the light of 
anisotropic diffusion process in order to show that the 
same ws can also perform enhancement of step edges. 

3. WEIGHT FOR SMOOTHING LOW INTENSITY VARIED 
REGIONS 

In order to obtain the weights w s for smoothing we 
consider that the weight is inversely proportional to 
the image gradient ct, i.e. for higher values (magnitudes) 
of ct, w s should be low, while for smaller ~t values, w s 
should be high. However, ct can have both positive and 
negative values. Therefore, the weight function should 
be symmetric with respect to ~. As a simple case, the 
function may be of the form shown in Fig. 1. In terms 
of polynomial function, we may write: 

w s = (A~ 2 + B~ + C) p, (4) 

where p > 0 is a constant. 
Note that when a = 0, the weight should attain its 

maximum value of unity, i.e. ws = 1. This implies C = 1. 
Further, for ~t = 0 we must have d w j d p  = 0, i.e. 

p(Aa 2 + Ba + 1) p -  1(2A~ + B) = 0. 

From this we obtain B =.0. So, ws = (Aa 2 + 1) v. 
Now we want (as mentioned before) w~ = 0 when 
attains the maximum value a,, (say). This means 

W 

/ 
--Gltn 0 Gra 

B 

Fig. l. Typical behavior of the weighting function with res- 
pect to gradients. 
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A = - (1/e2). Therefore: 

(5) 

3.1. Criteria for  computing 

Consider  a neighborhood N3(i , j )  of a pixel at (i,j). 
The central pixel has its gradient  ax directed along the 
line with an angle 0 equal t t a n -  a(fy/f~), where f ,  and 
fy are the derivatives along the x and y directions, 
respectively, at the (i, j ) th  point. 

Fo r  a pixel in the neighborhood N3(i, j) ,  if we use 
a similar expression for its gradient computa t ion  then 
the smoothing operat ion is also influenced by the 
pixels beyond the 3 × 3 neighborhood and this may 
result in sometimes undesirable blurring of the image. 
To keep the effect restricted only within a 3 × 3 neigh- 
borhood for comput ing the gradient of a neighbor- 
hood pixel, we consider a to be equal to the difference 
between its intensity and that  of the central pixel. The 
direction of the gradient  will be along the line joining 
the concerned pixel and the central pixel. Thus, we 
write: 

f ~  + f y  for k = l, i.e. for 
~k= u =0,  v =  0 (central pixel) 

f ( i + u , j + v ) - f ( i , j ) ,  for k = 2 , 3  . . . . .  9 
(for neighboring pixels), 

(6) 
where 

f x  = [ f ( i , j  + 1 ) - - f ( i , j - -  1)]/2 

and 

f ~, = [ f ( i  + 1,j) - f ( i  - 1,j)]/2. 

Note  that  the parameter  p plays a significant role in 
smoothing images. Its importance with respect to 
smoothing as well as enhancing step edges has been 
described in Section 3.3. 

3.2. Behavior o f  the algorithm: isotropic and anisotropic 
property 

In order to explain the isotropic and anisotropic 
behavior  of the algori thm as i teration advances, we 
consider [equation (1)], i.e. the smoothed intensity at 
the (i , j)th point. Equat ion (1) can be written as: 

1 1 

g ( i , j ) =  ~ ~ m ( i + u , j + v ) f ( i + u , j + v ) ,  (7) 
u - - 1  v - - I  

w(i + u , j  + v) 
where m(i + u , j  + v) = and Z ~ m  = 

Z Z w ( i  + u , j  + v) 
1. The contr ibut ion of each pixel in N3(i , j  ) in smooth-  
ing 9(i,j) is, therefore: 

f l ( i + u , j + v ) = m ( i + u , j + v ) f ( i + u , j + v ) .  (8) 

We now show that  the proposed smoothing pro- 
cedure, when iteratively applied, implements an an- 
isotropic diffusion process ~121 for points where the 
smoothing weights w vary with respect to time (i.e. ws 

for reducing variat ion in low varied regions and en- 
hancing step edges) and isotropic diffusion process for 
the points where the smoothing weights do not vary 
with respect to time (i.e. w, and % for removing salt 
and pepper noise and preserving roof edges). 

Considering the points where w s [equation (5)] is 
applicable, the iterated value at time t +1  can be 
written as: 

9~,+ 1) = mt(i 1,j -- 1)9'(i- 1,j -- 1)+ m'(i -- l , j )g ' ( i -  l ,j) 

+ m ' ( i - - l , j + l ) g ' ( i - - l , j + l ) + m ' ( i , j  1)gt(i,j 1) 

+m'( i , j+ 1)gt(i,j+ 1) + mt(i + 1,j-- l)g'(i + l , j - -  1) (9) 

+rot(i+ 1,j)(/'(i + l , j )+mt( i+ 1, j+ l)g'(i + l , j +  l) 

+ mr(i, j)yt(i, j). 

Therefore: 

gt+ x(i,j) -- gt(i,j) 

= {m1(i + 1,j  + 1)[9'(i + l , j  + 1)--9t( i , j ) ]  

- - m r ( i -  1 , j -  1) [o t ( i , j ) -g t ( i  - 1 , j -  1)1 } 

+ {mt(i - 1 , j +  1 ) [ g ' ( i -  1 , j +  l ) - g ' ( i , j ) ]  

- m ' ( i  + 1 , j -  1)[gt( i , j ) - .q ' ( i  + 1 , j -  1)]} 

+ {m'(i , j  + 1)[g'(i,j  + 1) - 9'(i,j)] (10) 

- mt(i,j  - l)[gt(i , j)  - 9'(i , j  - 1)] } 

+ {m'(i + 1,j)[gt(i + 1,j) - gr(i,j)] 

-- mt(i - l , j)[,qt(i,j) - 9t(i - l , j ) ]  }, 

since 
Z Z m =  1. 

Equat ion (10) is the discrete approximat ion of: 

@ 
- -  = Vl(m(Vlg)) + V2(m(V2g)), (11) 
at 

where VI and V z are the spatial operators  with respect 
to a rectangular frame of axes and its rotated frame 
(rotated by 45°), respectively. The weights vary both in 
spatial location and in time. Therefore, it implements 
an anisotropic wave diffusion process/12~ 

On the other hand, in the vicinity of points where w, 
and w, [equations (2) and (3)1 are applicable (i.e. where 
weights do not vary at all with respect to time) we have: 

g'+ l( i , j)  -- g'(i, j )  

= mt[gt(t + 1,j + 1) -- 2gt(i,j) + gt(i -- 1,j -- 1)] 

+ mt[gt(i -- 1, j  + 1) -- 2gt(i,j) + 9t(i + l , j  -- 1)] 

+ m'[gt(i , j  + 1) -- 2g'(i,j) + g'(i , j  -- 1)1 

+ mt[g'(i + 1,j) -- 2gt(i,j) + gt(i -- 1,j)]. (1 2) 

This is nothing but the discrete approximat ion  of the 
following isotropic heat diffusion equation with re- 
spect to the aforesaid two frames of axes: 

@ 
~ t - m ( V ~ g + V ~ g ) '  w h e r e m = l .  (13) 

3.3. Relation between critical gradient and parameter p 

To determine the effect of the parameter  p on the 
gradients of step edges and for the regions of low gray 



500 S. BISWAS et al. 

variations, we restrict ourselves to the one-dimen- 
sional case. From equation (10) we obtain: 

g,+ i(i,j) _ gt(i,j) = mt(i,j + i)[gt(i,j  + 1) - gz(i,j)] 

- m'(i,j - 1)[g'(i,j) - g'(i,j - 1)], 

which implements the anisotropic diffusion equation 
(in one dimension): 

dg = V(m'Vg). (14) 
dt 

/O '  "~27P 
N o w m ' V g c a n b e w r i t t e n a s [ l - ~ m )  J9'~. 

Thus: 

: o:.[,- 

+q,- 

-, ,_ {l_ - }. 

Now for t = 0, G = f ,  = at- Since g' is a differentiable 
function, the order of differentiation (with respect to 
x and t) can be interchanged. Therefore, we can write: 

(dq d 
=G\¥/ 

d t -I 

x I-- -- 

\aml aml 

' - - -  1 - (1  + 2p) 
\ a , , l  _I 

+ g ~  1 -  - -  - 2  gx 
\ a m /  d -~ g~'' - 4p g~,,, . 

m ~Xm -) 

In the neighborhood of step edges 0~ is locally maxi- 
mum or minimum. Therefore, 9x~ is always zero, 
O ~  < 0 when G is maximum and g ~  > 0 when G is 
minimum. Therefore, we have two conditions, G > 0, 
G~ = 0 and g~x < 0. Also, g~ < 0, gx~ = 0 and g ~  > 0.. 
For  edge sharpening due to the first condition 
d ( d 9  t'] 

must always be greater than zero. Now 
dt ~ dx ,/ 
d ( d g t ~ >  { ( ~ ) 2  } 

\~xx} 0 implies 1-- ( l + 2 p )  <0,  be- 

[ (":?? cause 1 - - -  is always positive. For: 
\ a m , ]  A 

(0'x? (0:? 
1 -  - -  ( l + 2 p ) < 0 ,  we must have - -  

\ a , , /  \ a , , /  
(1 + 2 p ) >  1 

a m - - .  (15) or, gt > x/( 1 + 2p) 

Note that we obtain the same equaton for p due to the 
second condition because for edge sharpening, here 
d ( d g ' )  
&\ -~-xJ  must always be less than zero. Now 

d ( d g t ~ < 0  also implies l -  (1 +2p)  <0.  
dt \ dx  J 
This is because gxxx is positive in this case. Hence, 
stretching occurs in the neighborhood of step edges 

a m a m when g'x > - - "  When gt < _ _  we obtain 
x/(1 + 2p) x/(l  + 2p) 

the smoothing effect in the regions of low varied 
intensity. The process is an approximation because for 
real images g~  may not be exactly equal to zero due to 
the quantization error. However, the terms involving 
gx~ are very small since p is reasonably large even for 
a 32 level gray image and can therefore be assumed to 
be zero. 

It may be mentioned that the same effect also holds 
good when g is a function in two dimensions. The effect 
of p is similar to that of the smoothing parameter 
described in reference (11). 

4 .  R E G I O N  T O P O G R A P H Y  I N D E X  

Since the algorithm performs different processes 
(isotropic and anisotropic) for points over noisy, edgy 
and low intensity regions, it is, therefore, necessary to 
detect the nature of points (whether noisy or edgy) 
before we select the weight for obtaining pixel's 
smoothed value. To discriminate between noisy re- 
gions and regions with roof and step edges, we define 
a region topography index (RTI) in terms of its bound- 
ary and within region characteristics. 

Consider a small region f~ about the (i,j)the pixel 
consisting of its neighboring pixels in N3(i, j). The sum 
of the magnitudes of gradients ak, k = 2, 3 . . . .  ,9, i.e. 
SG~(=~]akl ) can be used to indicate the degree of 
flatness of the region [~. As SG, increases (say, for edgy 
and noisy regions), the homogeneity of f2 decreases. 

Let us now consider the boundary pixels of ~. If SG n 
is the sum of the magnitudes of Gx(x gradient) and G r 
(y gradient) of boundary pixels, then: 

SG,  = ~ [Gx[ + IG~.I 

(0f~ being the boundary of f~) indicates the degree of 
flatness of the boundary of f~. For  example, SG s .~ 0 
implies c~f~ is a flat boundary. Note that neither SG B 
nor SG, can distinguish between noisy and edgy re- 
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gions. In order to discriminate between them we intro- 
duce the concept of the region topography index (RTI) 
of ~ as: 

SG~, 
R T I  - 

SG B" 

The discriminating characteristics of R TI  will now be 
explained. For  a perfectly homogeneous region we 
have both SG~, = 0 and SGB = 0. Therefore: 

0 
R TI  = -  = 0 (let us assume). 

0 

Let us consider two types of step edge within a 3 × 3 
mask (as shown below). 

Ll HI H2 Hi  Lt  L2 

L 2 H 3 H ,  H 2 L 3 L,, 

L 3 H~ H 6 H 3 L s L 6 

H~s and L~s represent almost equal high and low 
values, respectively. Assuming I H i - H jI ,~ [Li - L il .~ l 
for all i and j and [H i - L~I ,~ h for all i and j, we obtain 
for either type: 

SGB= ~ l a ~ l  + ~ l a~ l  ~2h  +61 

and 

SG~, ~ 3h + 51. 

Therefore: 

SG~, 3h + 51 
(RTl)~tep edge = SGn ~ 2h + 61 "~ 1.5, 

as l ~ 0 .  

For  a salt-and-pepper type noisy patterns (as shown 
below): 

La L 4 L6 H1 H4 H6 
L 2 H L 7 H 2 L H 7 

L3 L5 L8 H 3 H5 H8 

SG~, ~, 8h. Thus: 

8h 
(RTI)nois~ .~ ~[ >> 1.5, i.e. (RTl)noi~ >> (RTl)st~pedg e. 

Let us now consider roof edges (as shown below): 

L1 H1 L4 H1 L1 H4 
L2 H2 L5 H2 L2 Hs .  
L3 H3 L6 H3 L3 H6 

In each case SG B ~ 4h + 41 and SG:, ~ 6h + 21. There- 
SG~, 6h + 21 

= ~ .,~ 1.5 (RTl)nolse>> fore, (RTl)roofeag e SGB 4h + 41 

(RTI)roofedg e. Since (RTl)noi~e is seen to be reasonably 
larger than those of step and roof edges, it can be used 
as a quantitative index for discriminating noisy and 
edgy regions. 

RTI  cannot discriminate between roof and step 
edges. However, since SG B for roof edges is approxi- 
mately twice the value for step edges, SG B alone can be 
used to distinguish them. 

To illustrate the discriminating characteristics of 

RT I, we consider the following two sets of two image 
blocks and a noisy (spot noise) block. Each set de- 
scribes a step edge and a root edge. 

3 3  
3 3  
4 3  

3 3  

4 12 14 
5 l l  13 
5 10 12 
6 9 1 1  

23 23 23 23 20 

i 3 2 3 8 7 2 3 2 0 8 1 0 2 3  71087 

2 3  2 
3 12 2 
2 2  1 
1 1  2 

2 2 4 1 9 7  
3 2 4 2 0 8  
5 5 6 2 0 7  
2 3 4 1 8 7  

923 ~ 2 2 0  ~ 3 2 2 8  7 

25 22 20 22 20 
2 3 2 2 1 8 2 2 2 0  

4 3 
2 4 
1 4 2  
4 2 

Consider the 3 × 3 windows as indicated in the first 
two blocks. They indicate step and roof edges. In the 
first block, SGn=20  and SG,=27 .  Therefore, 

$6 ,  
(RTI)stepedg e = SGB = 27/20 = 1.35. 

In the second block, SGB = 58 and SG, = 85, which 
means (RTI)roofedge= 1.46. Now, for noisy block 
SGR=6,  SG~,= 79 and so (RTI),oi~e= 13.16. Thus, 
(RTl)noise >> (RTI)stepedg e and also (RTl)noi~ >> 
(RTl)roofedg e. Therefore, R T I  can discriminate be- 
tween step or roof edge and noise. 

Furthermore, (SGB)roofedgJ(SGB)stepedg e = 2.9. This 
helps to distinguish between step and roof edges. Simi- 
lar discrimination is also seen in the third and fourth 
block. For these blocks, (RTl)stepedg= 1.531 and 
(RTI)roofedg e = 1 .20 .  Therefore, (RTI),ois~ >> 
(RTI)stepedg e and (RTl)nolse>>(RTI)roofedge. Also 
(SGn)roofedge/(SGB)step edge  = 2.56. 

5. IMAGE QUALITY INDEX (IQI) 
AND STOPPING CRITERION 

One of the major problems of iterative smoothing 
algorithms is "when to stop the algorithm", i.e. to 
determine the approximate time for its termination. 
Marc et al. ~1 ~ have discussed the convergence prop- 
erty and the iterative behavior of their algorithm. The 
convergence of their algorithm takes a fairly long time 
and it has been found that the smoothing as required 
for different applications (edge detection, segmenta- 
tion, etc.) reaches the desired level long before the 
algorithm converges. This makes many iterations use- 
less and hence a wastage of computing time. They also 
conducted an experiment in which the termination of 
the algorithm after a satisfactory result was done 
arbitrarily, keeping the number of iterations small. 
However, this requires human intervention to judge 
the output image quality. 

In our method we have proposed an image quality 
index (IQI) which reflects the average contrast (with 
respect to background) per pixel in the image for 
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termination of the algorithm. The IQI does neither 
depend on the size of objects nor on the number of 
objects in the image. It is also independent of the 
dimension of the image. 

To determine IQI we find, first of all, the total 
contrast K of the image. For an m x n image K may be 
defined as: 

K = ~, cij, (16) 
i = 1  j = l  

where cij is the contrast of the (i,j)th pixel. Using the 
concept of human psychovisual perception, the con- 
trast c~j of a gray level image at the point ( i , j )  can be 
written as: (~ 3) 

I B - B i j l  
ciJ - B 

= IABIjl (17) 
B ' 

where B is the immediate surrounding luminance of 
the (i,j)th pixel with intensity Bi? 

From equations (16) and (17) we note that the 
contrast of pixels in a perfectly homogeneous region 
is zero everywhere except near the boundary points. 
The contribution to K of the image, therefore, comes 
mainly from its noisy pixels and contrast regions. 

l l  

Therefore, average contrast per pixel may be defined 
as ;  

K 
I Q 1  = - ,  

rt k 

where n k = m n -  n h, nk = total number of significant 
contrast points, n h = total number of significant homo- 
geneous points and mn = number of pixels in the im- 
age. The average is taken over only those pixels which 
contribute mainly to contrast measure; the pixels of 
homogeneous regions being least contributory have 
been discarded. 

To find nh, we define the homogeneity h~i of the 
(i,j)th pixel as: 

ho  = ~8= 1 exp - IB 0 - B,I (18) 
8 

where B r indicates the intensity of a background 
(neighboring) pixel in N a ( i , j  ) of Bij. From equation 
(18) it is seen that when each background pixel is equal 
to the central pixel then the tiny region D around the 
central pixel is perfectly homogeneous and the homo- 
geneity measure at the central pixel is equal to unity. 
For other cases, the homogeneity value of a pixel drops 
down exponentially with its difference from the back- 
ground intensity. 

(a) (b) 

(c) 

II 
(d) 

m 
m 

I I D i . I B : , l I , ~  

Fig. 2. Noise-free synthetic image with grid and lines: (a) input, (b) output obtained by the proposed method, 
(c) output obtained by Marc et al. and (d) output by Gaussian smoothing (a = 1). 
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(a) 

• • 

(b) 

(c) 

m 
w 

m 
IIII I I I  
m 

II 
(d) 

maQi: 

(e) (13 

(g) 

Fig. 3. Noisy (salt-and-pepper) synthetic image with grid and lines: (a) input, (b) output obtained by the 
proposed method, (c) output obtained by Marc et  al., (d) output by Gaussian smoothing (a = 1), (e) output 
obtained by mean filtering, (f) output obtained by median filtering and (g) output obtained by Nagao and 

Matsuyama's algorithm. 
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(a) (b) 

(¢) (d) 

(e) (0 

(g) 

Fig. 4. Noisy (Gaussian, cr = 5) synthetic image with grid and lines: (a) input, (b) output obtained by the 
proposed method, (c) output obtained by Marc et al., (d) output by Gaussian smoothing (a = 5), [e) output 
obtained bv mean filterinR, {f} output obtained by median filtering and (g) output obtained by Nagao and 

Matsuyama's algorithm. 
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Equation (18) is a choice for homogeneity. The 
visual response curve (AB - B) tl 3) can be well approxi- 
mated by the exponential function. Since homogeneity 
can be considered as the inverse of contrast, it is 
reasonable to assume an exponential function for hij of 
the background intensity, B. 

Therefore, if we compute total homogeneity of an 
image as: 

m n 

H = ~ ~, hij, (19) 
i : l j = l  

then the major contribution to H comes only from the 
pixels which lie in perfectly homogeneous regions. 
Thus, n h can be considered to be approximately equal 
to H and we have 

I Q I  = Z,"- x Zff= x IAB,jI/B (20) 
mn -- Z ~ h i j  

As the iteration advances, the noisy points are cleaned 
up and hence their contribution to c~j decreases. Con- 
sequently, the numerator in the expression of IQI 
decreases. Also, when homogeneity increases with iter- 
ation the denominator of IQI decreases. However, the 

rate of decrease of the numerator is more than that of 
the denominator. As a result, IQI decreases with iter- 
ation. Therefore, for the termination of the algorithm 
one can check if the change in IQI, (AIQ0, is less than 
a pre-assigned positive number e. To avoid arbitrary 
(heuristic) selection of ~ one may consider e be equal to 
the theoretically possible minimum change in con- 
trast/pixel, i.e. (Acmin) in an image. In other words, 
terminate the algorithm when A,o , attains Acmi n. The 
minimum change in contrast/pixel, Acmin, in an L-level 
image is ( 1 / L ( L -  1)) (proof is given in Appendix 1). 

6. RESULTS AND DISCUSSION 

To examine the performance of the proposed algo- 
rithm, we have used a set of synthetic images and a set 
of real images. The synthetic images have been used to 
check the behavior of the algorithm under a known 
environment, while the application of the algorithm on 
real images shows its performance under an unknown 
environment. The synthetic images are of size 
128 x 128 while the real images are 64 x 64. Each 
image is of level 32. The critical gradient for these 

(b) (a) 

(c) (d) 

Fig. 5. Lincoln image: (a) input, (b) output obtained by the proposed method, (c) output obtained by Marc 
et al. and (d) output by Gaussian smoothing (~r = 1). 
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images was chosen to be 3 so that the value of p is 
almost 53 [equations (15)]. For the purpose of com- 
parison of the proposed method we have also imple- 
mented the algorithm of Marc et alJ ~ ~) and Gaussian 
smoothing. The smoothing parameter for the algo- 
rithm in reference (11) was taken to be 3. As a result, 
critical gradient about which stretching occurs re- 
mains the same in both cases. 

Figure 2(a) displays a noise-free synthetic input 
image with step and roof (grid and line structures) 
edges. The output obtained by the proposed method 
[Fig. 2(b)] is seen to preserve the grid and line struc- 
tures very well. On the other hand, the method of Marc 
et al. maintains the step edges but affects the grid and 
line structures [Fig. 2(c)]. The Gaussian smoothing 
even with a low sigma value (a = 1) is not very effective 
[Fig. 2(d)], because it blurs both the grid and line 
structures as well as the step edges present in the input. 

Figure 3(a) is a noisy version of Fig. 2(a), the noise is 

of salt-and-pepper type. Outputs [Fig. 3(b) (d)] show 
the performance of all three algorithms. In the case 
of Gaussian smoothing noise is reduced with some 
blurring, while the algorithm of Marc et al. removes 
salt-and-pepper noise completely, but it damages the 
grid-and-line structures. On the other hand, the pro- 
posed algorithm removes the salt-and-pepper noise 
and maintains the grid-and-line structures. In this 
context, we also examine the results of mean and 
median filtering, and Nagao and Matsuyama's edge 
preserving smoothing algorithm. I1°1 Figure 3(e) (g) 
denote the respective outputs. Following reference 
(10), we iterated the edge-preserving smoothing pro- 
cess until all the pixels do not change much. Nagao 
and Matsuyama's ~1°) algorithm fully removes the salt- 
and-pepper noise, but it damages grid-and-line struc- 
tures. All the step edges are maintained. This is because 
the grid-and-line structures are basically the roof 
edges, i.e. the regions on two sides of the edge have 

(a) (b) 

(c) 

input biplane ima9 e 

(d) 

s m o o t h e d  im~9e 

Fig. 6. Biplane image: (a) input, (b) output obtained by the proposed method, (c) output obtained by Marc 
et al. and (d) output by Gaussian smoothing (~r = 1),. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) 

Fig. 7. Noisy (structured noise) synthetic image with grid and lines: (a) input, (b) output obtained by the 
proposed method, (c) output obtained by Marc et  al., (d) output by Gaussian smoothing (tr = 1), (e) output 
obtained by mean filtering, (f) output obtained by median filtering and (g) output obtained by Nagao and 

Matsuyama's algorithm. 
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Table I. Change in AIQI for different images 

Input Total No. Output 
images of iterations AIQI~, AIQI:  images 

Proposed 
algorithm 

Algorithm 
of Marc et al. 

Fig. 3(a) 3 1.84E-02 2.93E-05 Fig. 3(b) 
Fig. 4(a) 10 4.97E-02 3.15E-04 Fig. 4(b) 
Fig. 5(a) 8 3.45E-02 9.56E-04 Fig. 5(b) 
Fig. 6(a) 6 2.73E-02 6.71E-04 Fig. 6(b) 
Fig. 7(a) 7 3.56E-01 9.58E-05 Fig. 7(b) 

Fig. 3(a) 20 1.17E-01 9.78E-04 Fig. 3(c) 
Fig. 4(a) 14 2.65E-01 9.13E-04 Fig. 4(c) 
Fig. 5(a) 32 6.47E-02 9.99E-04 Fig. 5(c) 
Fig. 6(a) 4 4.09E-02 1.15E-04 Fig. 6(c) 
Fig. 7(a) 15 5.10E-01 9.95E-04 Fig. 7(c) 

almost equal mean values. Median filtering removes 
the salt-and-pepper noise and the line structures. The 
grid structures are also affected. Mean filtering blurs 
the edges and structural details providing smeared 
pictures. 

Figure 4(a) is a noisy input, generated with additive 
Gaussian noise on Fig. 2(a). All three algorithms are 
found to be capable of reducing the Gaussian noise 
[Fig. 4(b)-(d)], but except for our algorithm, the line 
and grid structures are distorted. This distortion is 
highly noticeable in Marc et al.'s algorithm. Figure 
4(e)-(g) indicate the outputs of mean, median filtering 
and Nagao and Matsuyama's algorithm. Mean filter- 
ing blurs the sharp edges and reduces noise in the 
background to some extent. Median filtering also 
damages the line-and-grid structures. The background 
noise is not as reduced as by the mean filtering algo- 
rithm. Nagao and Matsuyama's algorithm, on the 
other hand, nicely maintains all the step edges and 
cleans the background noise, but it destroys the roof 
edges to some extent. Figure 5(a) is the input Lincoln 
image, while Fig. 5(b)-(d) depict, respectively, the out- 
puts by the proposed method, the method of Marc 
et al. and the Gaussian smoothing technique. A com- 
parison of the outputs shows that both in 
Fig. 5(c) and (d) the nose and some portion of the 
lips and ear are distorted, while those are well preser- 
ved in Fig. 5(b). In Fig. 5(c), although most of the 
features are clean and sharp, the nose, lips and part 
of the ear are found to be seriously affected. This 
may be attributed to the presence of roof edges and 
the fact that the central pixel is influenced not only 
by its 3 x 3 neighborhood, but also by pixels beyond 
that. 

For the Biplane image [Fig. 6(a)], the propeller is 
nicely preserved by our method [Fig. 6(b)], while it 
disappears for the other two methods [Fig. 6(c) 
and (d)-I. 

In order to examine the effect of the proposed 
algorithm on structured noise, Fig. 2(a) has been cor- 
rupted with structured noise of one pixel, two pixels 
and three pixels. The results of different algorithms are 
shown in Fig. 7. It is noted that the algorithm of Marc 

et al. cleans the noise, but due to the interaction of the 
background pixels and those on the roof edges the 
line-and-grid structures are highly distorted. The el- 
lipse in the figure is also distorted, but it is free from 
noise. Median filtering produces excellent results from 
the viewpoint of noise cleaning. Line structures are 
completely absent, while the grid structures are af- 
fected. Mean filtering does not clean the noise. More- 
over, the edges are drastically blurred. Nagao and 
Matsuyama's algorithm removes the lines and dam- 
ages the grid structures. Background noise is not no- 
ticeably removed. The proposed algorithm, on the 
other hand, preserves the structural information. 
Noise in the ellipse is cleaned. Some of the noisy pixels 
in the background are removed, while some are very 
prominent. This is due to the fact that three pixels of 
structured noise may sometimes represent meaningful 
regions and carry adequate i~nformation. 

Finally, Table 1 indicates the total number of iter- 
ations required for automatic termination of the algo- 
rithm and the initial and final values of the image 
quality index. 

The number of iterations in the algorithm of Marc 
et al. is large compared with that in the proposed 
algorithm. This is due to the interaction between the 
roof edge and background pixels. It causes A I Q I  to 
fluctuate a little and damages the smoothed version of 
the corresponding image. For the Biplane image, how- 
ever, the iteration numbers for the two algorithms are 
almost equal. This investigation clearly establishes the 
superiority of the proposed method over the other two 
schemes. Note that for the other algorithms such as 
Gaussian, mean and median, considered in the present 
investigation, are not iterative in nature and hence they 
are not included in Table 1. 

7. CONCLUSIONS 

An iterative smoothing algorithm capable of per- 
forming various tasks such as cleaning salt-and-pepper 
noises, preserving roof edges, stretching step edges and 
reducing low intensity variations has been developed. 
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In o rde r  to d e t e r m i n e  the  type  of  o p e r a t i o n  to be 
pe r fo rmed ,  an index  cha rac te r i z ing  the  t o p o g r a p h y  of  

a region has been  def ined.  This  index  d e p e n d s  on  the  

c onc e p t  of  b o t h  wi th in  reg ion  a n d  b o u n d a r y  gradien ts .  
An  e x p l a n a t i o n  for cri t ical  g rad ien t  for the  p u r p o s e  of  
e n h a n c i n g  weak  edges  has  been  p r o v i d e d  based  on  the  

conc e p t  o f  an i so t rop i c  diffusion process .  
An  index  for image  qual i ty  has  been def ined which  

makes  the t e r m i n a t i o n  of  the  a lgo r i t hm fully au to -  
matic.  This  cr i te r ion  is app l icab le  for any  o the r  iter- 
at ive s m o o t h i n g  a lgor i thm.  

The  super io r i ty  of  the m e t h o d  over  G a u s s i a n  

s m o o t h i n g  and  the  m e t h o d  of  M a r c  et al. (1 ~ has been  
es tab l i shed  for different  syn the t ic  and  real images.  

C o m p a r i s o n ,  in s o m e  cases,  shows  tha t  it is a lso per-  
forms  be t te r  relative to mean ,  m e d i a n  and  N a g a o  and  
M a t s u y a m a ' s  edge -p rese rv ing  s m o o t h i n g  algo-  
r i t h m /  1°~ F u r t h e r  inves t iga t ion  is r equ i red  for au to -  

mat ic  se lect ion of  the  cri t ical  gradient .  
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APPENDIX I 

Let the contrast at the (i,j)th pixel at iteration t and (t + 1t 
be d = (xl /y  0 and c I' + 17 = (x2/Y2) [equation (17)], respective- 
ly. For digital images, 1 _< yj, Y2 < L, and 0 < x~, x 2 _< L -  1. It 
should be noted that x 1, x2, y~, Y2 are all integers. Since we are 
interested in At' = Ic t - c "+ ~[, without loss of generality we 
can assume d _> c' + 1. We also assume that At: > 0, i.e. there is 
a change in contrast (avoiding the ideal condition of Ac = 0). 
This implies x 1 = 0 and x 2 = 0 are also avoided. Thus, we 
obtain 1 < xl, x 2 _< L -  1 (avoiding the ideal condition). Then 
the change in contrast of the pixel is given by: 

X I X 2 
mc  = 

Yl Y2 

x l Y 2 - y l x 2  

YtY2 

The minimum of Ac, can be achieved by minimizing the 
numerator and maximizing the denominator. On a digital 
grid, the minimum of x l y  2 - y l x 2  should be unity and the 
maxim um of y l y z is L( L -  l ). Therefore, Ac l mi, becomes ( l / L ). 
This is clear from the following two cases. 

Case 1. Yl = Yz = Y (say). 

Then At1 = (xl - x 2 )/L. Considering minimum numerator of 
unity we obtain Acl mi n  = I/L. 

Case 2. Yl #Y2- 

Then the largest value for the denominator is YlY2 = L(L 1) 
with Yl = L -  1 and Y2 = L. Under this situation we obtain: 

Lx 1 - - ( L -  1)x 2 
A c  e - -  

L ( L -  1) 

L(xl - x2)+ x2 

L ( L -  1) 

To attain unity for the numerator we can consider x~ = 
x2 = 1. Therefore, Ac2.,~.= 1/(L(L-1)) .  Comparing cases 
1 and 2 we obtain: 

Ac2min < AClmin. 

Hence, the minimum change in contrast ofa  pixel in a digital 
image is: 

ACmi n = Ac2min 

1 

L ( L -  l) 

Therefore, the termination criterion reduces to: 

1 
AIQI -< L ( L -  1) (A1) 

Note that this terminating criterion can be used with any 
iterative smoothing algorithm. 
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