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FEX LY

Hierarchical Classification of Permutation (lasses
in Multistage Interconnection Networks

Mahanita [Pas, Bhargab B. Bhatacharya, and Tayasree Daragupte

Abgsirpcf—= This briel voniributivn explores @ new hicrarchy amung
ilferent permmiiglion clvses, that has many up|||ir!1li|,n'|.l_.' n m:llt'q.‘tw
interconneclinn nefwerks. The well-kooawn TA0 [Iinmrnuympimﬂ] class
i% shoan b he merely o sulised of e chisare sel of e B | hil=peermruibe)
clasy, knpwn as the BPCL (hit-permote-closaeed class; the closure gy
ohtaine] by applving certain gmuop-Lransformation rules on the BP-
permutationg, It indicotes that for every peemuniatdon P of the L0 class,
there exists a permodation P* in (he BP class, soch that the condlict gruphs
of T gl 7 are iomorphic, for reestage MIN This obyinies the prowtice
of treating the O class oy w0 specinl case; the existing alporithm for
optimal routing of BEC clivs in an »-stage MIN, can Uik cure of aptimul
ronling uf the T.C cluss a3 well, inally, the celstbonships of BMCL wilh
viher dasses of permulations, v, LIE (inear-anpul -equivalence), BPIE
{hit=permute-inpat seygnivabenee), BPOE (hit-permle-outpot-equivalonees)
are alse exposed. Apart from kending better understandiog and wn integral
vicw of the nniverse of permutations, these results wre foumd te be uscful
in accelerating routahtlity in »n-stage MIN"s a5 well as In (25 — 1-stage
Benes and shuffic-exchanpe neiworks,

Fader Tereses— Mullistage Intercounection vetworks (WIM), BPFhil-
permote) permutations, leear perinatations, Daseline networb, Henes
nedwork, conflict groph, optinal routng.

I, IXTROOUCTION

[hsign and anulvsis of multistges ioterconness o netsacks [MIN)
play a ceucial mole in large scale paralle] processing systems, Varions
wpelomios ol sweh networks have been repuried inthe hteratune for
g in SIMD and MIMD compuicrs. An A o« Y onique-parh, full
soeess MIN, e, the hascline or omega, buy of— log, 31 swages and
[N.a /20 busacy switches [1]-[8; Qe fundwneotal colevion i dae
selecrign and design of a MW i3 its permutation capshility |7]. i.c., the
ability 1oy estublish simultxeons vne-10-vne and oot commncdcations
among ditferent modules. usually nepresented w5 a permuotation.

Fouting an arbitrucy permuctation £ theough @ wtiguee-path full-
acorsd MIN, muy requite the msage of common links lowding o a
cuanllicl, amd thesefore, may ol be realizable in o ciogle pass. The
prohlem ot apritnd seting i 0o determine the minimum number of
passes eyuived Ly realize . Bquivalently. oae needs (o partition 7
imin minitum muriber of sumsers. such that transmissions e luded
in each subzer are conflic-free. and honee rowrsble in g single pass,
The conflict infommaatien i, usoally represenied by a praph. callesd
the conllict zeaph €0V, £ 8L that consists of % vertices each
FEWERERING # transmis=ion of F'; swo vertices ane wmijacent 1§ end only
16 ke correspondiog consgmissems ae conflicing, Le., they dethand a
comnman link in the network. The optimal routing problem cen then
b apped 10 the well-known acaph-colocing probbem [8], which
for un arbitrary peroatauon., s SNP-hand [0 A heoreic algendim
of complexity (8% was reportad in [10] e rackle an arbitrary
pormutation. However, the BPC (hit-permute-complement: class of
ermulations, 15 oplanally raulable in omegadelts oetwork [E]; the
time complexity of the algeathm turns ot wo be linear i the number
of swilches, Later, i1 has beeo shown that the same algorithm can

hnnseript reveivect Ccwber P 1992, rovised Aogust b, 1993,

The juthars are with e Rlectionics it Todian  Stanstical  kosti-
tute, 203, Marrackpare Trunk Bead, Caleawa V00 035, lodia, c-mail:
bhargih i fyica L emel. in

LELE Lig Murnber 40365,
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be applied to a larger class of permotations, called the BPCL {hit-
permeete-closure) class [11]. The closwe s defined vsing cemain
priag frgngfieritadion files on the permutations, thae partition them
imio seversl equivalence classes: members belonaing to the same
prartiticn Tiave isomorphic conflict graphs.

Anuther ¢lass of permuatations, narely the LU {linear-complement )
class is alse reyguenly addeessed o the litesature FE2[-{16]. Selt-
ronting, of [A47 permutations has been swdied oo X~ L-stape
networks like Benes apd sheffle-exchange networks | 12], [14]-{16].
Rowting techmigues have heen neporied fur linear permutaions in an
omers oelwork. circulating the transmissions rwice throwgh it [17];
this is ¢asonfially the same sy rowting through o 2e-stage shofle
exchanee nelwork, A similar technique was also wsell much carlier,
1 royte the BRC permiutations in omeea netvwocks [ 18]

I this brief contribotion, we cxpnse & new hicrarchy amung
dicterent classes of permnutations. Needless 10 say that the BPC class
i a subset of the LC ¢lass, Onr analysiz reveals a very inleresting
prapeity: thar the 1O clasy is merely wsubset ol the BPCL class. Since
BPCL s the clusure of the BP class under groap-trangformarion §11].
[or every permuarion P oot the LO clusy, thene exists o pernutation
P oin the BE cluss, such that the conflicr graphs of F and T arc
isumorphic; 7 s called the BP-isomer of I*. Thus every membar of
147 clusy cun be geoerwted from the BF chass, by applying certan
pestricted farms of group-transformetions. This obviates the need
ot meating the LC cluss as o special case, The existing algorithm
for optimal routing of the BPC-permutations 3] will be applicable
for optimal Touting of wny LC permutation in an n-gage noowork
as well, provided the coresponding BP-isomer s wlentified. An
8"y alporithm for recoenicng the BM-isamer, appears in [11],
the cumpladily of which has turther been smproved 1 CHY e
in [19]

Chr hisrarchica classification alse imvalves other classes of perniu-
ticions, For instance, the LIE { linear-inpul-equivalence) permwtations
are peneraterd from (e £ penmanaions by applying inpul proup-
interchanges [171]. As LC tumms wal e be a subset of BPCL, s docs
the LIE class. T has already heen showm thut the LIE perroulations are
self-romakle in Benes and (26 — 1-stage shoffle-exchange network
[t6). This hiersrchical classification was alsn wsed o develop a
fusl rouling algorithm for the BPCL class of paomutations in Bones
network {19, Similar couling algorithm will also exise for a (2o - 1)-
stage chuffic-exchunge netwurk.

To summarize, Mg brief contribution cormelates different classes
ol permutations, namely BY. LZ, LIE. BFIE (bit-permutc-input-
eguivulence s, BROE {bit-permutc-output-squivalewcs), and tha BPCL.
class, trom the viewpuint of equivalence partitioning defined by
sroup-lrmsformations. Apart trom lending beter understanding and
an integral view of the universs of pemmocations, thess resulls s
vt to be useful inorouting LC perroataions inoa-stage netwarks.
and alsu i acceleiating self-routahility i ¢5x — 1)-stage Benes and
shulMe ewhange netaorks.
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Ihe bnel contnbution 1= orsamized as fellows. e Section 10, we
restate few carlier resudts on the BPRCL. elass of permutations, Section
I exposes the elationship betwesn e L and the BPCL class,
followed by the routing strategy of L0 permutations in an n-siage
network. The bierwchy among different classes of permuotatons 15
rliscussed in Scefion 1%, Coneloding remarks appear in Section V.

1. {TROUP-TRANSFORMATION RULES AxD THE BPUL CLass

As the work reporfed in this hriet congribution is centered around
s BICT. glass of peemuratcns, we resrare in this section, fiew
retevant definitions and earfier resolts [11] for compieteness,

Wi consider an Vo= Y haseiine network for our siudy. However,
1he resulls will alsn hoeld gnod for other unigue-path full-access
MIN 5 us has been observed e [

Definitian §: Foran V=N buseline network. the inpuls foolputs)
are gprouped o different lgvels as shown in Fig. 1. Any group

at level i, 0 = ¢ < w (o = log, ¥, contons 20 elemnents,
x4+ 1,00 b2 - 1Y, where tbe least element of the proup
s = p2°.0 < p o 3777 fwn groups at level §oume said to he

adjacent if they have lhe same paent al level 04 10

Diefigtition 2: Let a — b denote: interchange o wnd b, e replice
all) by D), A gronp interchange (Vi) ey, (whene N = f stands
for inpus and ¥ = €7 reters o colpel) applied oo pecoutation P,
tterchiniges the elements of a0 adjacenr groups of inputs | autputs)
atlevel 3,0 % § <, following the rule & o= B 12 5 < b o p 2,
where & 18 e leazl element of e tan gromps. This process gemeraies
anather permuotation 1, wnd is denoted by: ¢ X - 0) [Pl — P

Exomple T; Consider & pormutation P47 /2 4 1103 1 5, {un
N o= N pecmutstivn P ois cepresented as a sequence of p0)s, 0 <
£ A snch thar pil is the ourpue cormespomding to the input @ in 7
and the group-interchange #7711 : 40, such thal £10L 41 [F] — 1
ihe ilerchanging input pairs are: 4 — & and 3 — 7. Henee 2 07
Hi241 50350

Similarly, MEX 20U — F {3 2A04 T 5 10 the vutpul paics
interchanged are (1 — 3, 1 — 5, 2 — 6.3 — 7,

Definition 3: An ordered sequence of group-interchanges on io-
puts (oouts) is represented s, 5% = [ANOL o w fA
radiee 0 X Ty wg it sueh that for 7o g, L S, and T =,
oL R

Defimition 4; Twn sequences of input (outpul ) group-inerchanges
RYX, and BXs wre said 1w be equivalent, if for every permueation
P RX, [F] = HX, [F].

Remark: For any sequence of npuc (outputy group-inrerchanges
OX = BXh owniX il s vt XA 0], there exisis
an cquivalent endered yeguence @f growp-imterchanges oninputs
fowtpuls) SX = [EX Qg t e et e fzalio i X Tang

Simaltanecus spplication of bl jnpot and cugpat group- in-
terchansges in an appropriate onder, now lewds w0 e concept of
group-tramsformation,

Definition 5; A group-transformation T iy defined as an ordened
sequence of group-interchunges on the cutpors followed By an ordered
sequence of aroup-interchanges on the inputs (null ssquences are alsa
included).

Extmipdle 2: & group-transformation T = [JE00; D01 @ 4]
applied on P orunsforms it according to the following steps:

Pii7 26 403 1 3
AMPT 206 401 3 05

THER

F':i7 2 6 4 005 1 0.

It has been shown that for any random sequence of inpus and ouiput
group-interchunes, there esists an cquivelent sroup-ieinsformation
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which impan: che same effect on any pernutation. Furthermoore,
growp-teangfiormagon induges an egquitelenve partition on the sel of
all perimutaticns.

Lhefiniton o Civer 2 pormaaion £2, et Clisure (7)) denote the
e of permwtations decivable from £ by the application of 311 possible
group-rramsformations. The ghove ser is said v be the closure sel ol P

Definivon 7 The BRCL (bit-permute-closure) set of permaztarions
is deflined s Tolluws:

BPCL = § ey Clusere (£11 where T is o BT permutation
delined by the e-permuate-ruls,

AT fe L o2y g e — g b g
anld v £ g, for e £

The lollowing theee mmportand cesults have been reported i [11]

Flem | A=t == =T,

Resielt 1o The cunilict praphs of all permutations in a clnsore sct
are somarphic,
fresielt 22 Inmun X o X haseline network, tor any penmitation &,
the canlinality of the closurs set ie., Clwure P3| = 2%~
Kesele 47 Vhe closure sets of any owo BP-permutations are disjodoc
hene, UPf.'Ll ol T
Thos, far gach F. € TPCL, there exiss o umgue £ € BT, such
that the conflict graphs for £ and #, arg isomarphic: F, is called
e BP-ivomer or the seed-BP of Y. [t has been also shown that
O < BPECL,

III. BELATTOMNSINF BITWETN L AND BPCL PTRMUTATIONS

In this sccoon, some important c2solts related e LC amd BPCL
vlasses are derived.

A, Befnitiang and Preliminaries

Defigition & An N = ¥ permgtation H s said 10 be a linear
permttation £ il Miere exdsls an a %0 binacy matnix €, such that tor
every input represented in binay as [ P S STUT B lawgel
SULEILE e, 1 ooz 7 ¢ g W) 15 given by the squation: g = Qe --- 11,
where » and o represent the colunin veclrs (o, e s )’
uned |3 — We—u & W ]T tespectively, the superscrips 1 densiing
the transpose cpecation,

By definmon, Q is nonsingnlar. Al additions arc assumed (o b
moule 2.
A peematation is a Seece comglemen pemislalion
e - o2y,
where O 0 an o bit calunin vector

Fuammls 30 (iiven

(LCyil, y =

=11 o1

Erown £, the Tinear equalivns delecoodmiong e oulpul DU are yo —
a4 e o = a4y s = g 4o Which defines the
Fopermuation 20T 523446 10

Stmilurly. o gencrate a 1O permuration # from £}, ler {8 =
(00037, From ¢3). the linear sguations for the oulput bits sre:
Hy = W= —wa+ L g =t | L
Therefome, P B 1 3452070

Remierk: 1L s known that the LC class contains the BPC cluss
[E30 [14]. 1F the matriz € in Bguation {2} contains cxactly one | in
wach row amd in each eolwmn, then it resulis a BRC permanation

By — o — sl

B. Linear Permptations and Inper Cowp-interchanges

The BPCL class of permutations is based on e nation of group-
interchanges, 1o vorretae L und BPCL, we fest imroduce @ canon-
wal nonsingular malnxa 35000 defined below,

141

The Canomical mafric MiQ):

Definition 9 For tarp o -bil veclors, 77 = ieq 1y T and
T = vy ) ooend, ", we define an ordering *less than’ (], such
thae, V{4, if and oaly if o, < o, fur some L 0 =4 < % — 1 and
o= vl forall koo =k Son—1.

Example 5. Civen o= (0 1 117
1L,

Dagfimirine 0 Led Q = 06}, 50 be the maris correspondinge 10 a
linear permutation. The column ¢ of Q) & represented as (b, =
(i o fd, e’ Fom Q, we now ponccale a1 canamical
hinary marrix W00k, such that the celumn £ ot 340G is deasted by,

i1
Mithi. ;= min {Q,,. +3 Qb k=0 }

for l<i=<n-—1.

ECER |

whare (he mimmality 15 dicesd by the ondering relation () of
12efinition 9.

Remark: As @ s numsingular. by construction 4{C)1 iz nonsin
gular and thereby defings another £ permulation.

Example 6 A malrix ), can be trunstformed to its canonical
mutriz (G, as shown below:

1 1 1 I 1
1 o 1| = 1
L Lo Loy

= MiQi(1 0
1.1 0

Here, the minimality is amained by making (. | - ¢
ad Cles + Ch 4 Qe — MG, 2

Lemma £2 For any 0, spegifying an L permutation, the mamx
W) is unigue.

Freaf: Follows from the defivirion, O

Dfiritiom 13: For wny column & in €, 0 < 0 < no— 1, lal
=1 amd Q.. — L fwall r,, j < v % nn—1. Then it
will be denoted as ©F s lmd = . Similar noation will also be wsed
for ALY,

Lewmara 20 In o a canomical mamix W00, ML, im) #
M R =iy S n—Lamdi £ .

Mrxaf:  Evident trom the constmaction of MO0, (|

Egwivitence of Matric Operation and Tepur foup-fnisrchonges:
The following lemma relates cerain matis operalions and input
rroup-inlerchenges.

Tz 30 Let O} detine an L-pecmutation 7. The corresponding
canomical matrix 4710} defines another F-permatation, say 27,
Then there exists a sequence of npul proup-interchanges ST, that
transterms 7w P7oe, 5P — 27

Prowlt The L-permutation I s definsd by the cquation: 3 =
Crr. Lot the cotumn ), , of € e replaced by (a, + e, 0 =
3o i % e — A new nonsinguler motria 0 is created, thar defines
another -permutation F', given by o = Q'r.

In € and Q. all columms, sacepting the {-th one. are idendcal,
Thercfare, all the outputs, excepting those for e eputs wil: e = 1,
will he the sume in & and . Since in Q. @, — Q.+, the
inpul paics with o, — | amd dilfering in bil », wre interchanged in ™
b penerate . The same transformution can be implemented by the
fllaswing sequence of inpur group-interchanges:

el
LIRS {"I[j Pl |4: = E 25 0 = o L.

b=y—

— Mgk

for & s ¢ and <7, = 'n}.
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Binee, Q) iz generated from ) by applving such columin teans-
formations only, the lemme follows immediately, O
Exagmple 7 Consider the matrices Q, € and M0} af Exampie
1, which detine the L-permotations, (50T 5234610, 072
53416)and P70 T 251 46 3 4) respecdvely. The sequences of
input group-inerchanges involved in e transformations arc:
{eI0: 206 (P — Foand (#1143 P] — P

. The Conontcal Marrix and Owtpur rowp-feterchanges

In thixz subsection, we now study the effect of ootput group-
interchanges ob the C-permutotion definad by a cononical marix.

Smme Related Froperder of M{Q:

Definition 12- I the columo ¢ of & canonical mateix A0, Let
Mt . Aml = k. Then the slement M{ (e, 1= defined ax the Bo-
hit (cazential bit) of 300, and the remaining non-rem clpments anc
delned us the A-bils {redundant bitsy of column .

Fememe 4 Inoany MO, it Wi ; is the E-bir of column 1,
then M{GHe,; =0, forany 7.0 <2 7 < w1

Proolt Tet MG, : be the F-bir of column © and M0 .
=1, where ¢+ < 7 < 5t — 1. Now My .. cannat be the E-bit of
columa », by Eenuma 2, Since it is b in that colummn, the &-Dit mwst
Appear in some row £, & 3 R,

Let us now comsider the celumn vecter Vo= MQ . -+ MG .
Cleariy V{4 (3. ., Tt contradicts the definition of A7 and
thene fune proves Lhe lemona, C

fampue 30 Lat iy denote the number of 1's in rowe § of 24(C)).
Then 1 < p, = n = J.

Proaf: By Lemma 2, the row § of W01 will contain cxactly
onz F-hit of some column o T.emma & implies that all the elements
A e = 0o dore < & = w— 1 Again, for = & <, the columa
& may have MiQ ), ¢ = 1 a5 an B-bit, it and anly if it E-bit appears
al somme tew T, T = 3, Therefore, at mosl Te — L — f) columns may
have an F-hit in tow . It proves the lomma, 4

Lemna 6 Lel Q7 be the nonsingular binary mateix obtaimed from
a canonical mamix A (C)), by setting all R-bits o zero in cach
cotumn. Let 7 and 7 be the vao L-permutations defined by A50Q)
and € respectively, Then 13 P iz a BP-parmutation, and 2) £° can
he denved trom /7 by applying certzin outpul group-mmienchangees.

Frogf: Consider columa § of A7 (0} assume that the E-hit
s M-, amd kel an RE-hie be 38060, ¢ < ko Ler vi make
M. . = 0, esniting another binary matris €. Since G s
nonsingular, s will he Q. Thereltme, 3 peserues another L-
pernutation, say P

1ot us now examine the relation between I oand ™. The linear
eapressions of all e cupat bits for P oand P arc same, cueep fre
the autput kit g, In the exprossion of -, the cosfficient of », i 1
for I*, whereas il is © for P, Therefore, iF an inpul « wid o, = 1.
is diapped 10 ab outpat » in P, thee it will be mapped to an matpat
o im P, such that y and ' differ in bit . only. The same change
cen be accenplised by ouput aronp-iterchanges in level #, it and
only it the affectod outputs cover some paite of adjavent groups in
fevel r.

To find the affected owtputs, we put x, = L, in the expressions
af sutput bits, Each cutpur biv ga. ¢ # &, will remain independent,
becavee of the unigueness of the P-kit in each cdumn g, ¢ £ 1
Since Lhe F-bit ol the codumi &, 35 M0, by purting &, == 1, the
exprossion for the output bil g contins only some fi-bis of ofher
columns 5, § < &: these A-bits flrcady appear in the expressions for
SO L5, 10 = R Therefore, the oulput bit g, can be expressed as;

W= Z oo + 1. wherg, &, =for 1. for & = =n— L
=kl
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As ko> v, the affecied sefs of outputs exsctly cover some pairs
of adjaceut groups ar level v
MNow, the required sequence ol cutpul group-interchznges is:

el

p= 3 O

=+

Stk = {LU[." Pl O, =l

a—1
for j#kand Co = Y bOu 4 1}.
[ |

where, by, is the coefficient of ., in the expression for g...

Therefore, if we sez all the F-hits of each column of 00 @
rern, We ohtain A now nongingular matrix Q°; this will contain 4
single 1 in each wolumn aml in each row. Hence QF penerates a
BF-permutation I**; alse a sequence of output group-interchanges is
sufficient to generate #* from #, O

tovmgle & The marix M 0Q) of Exaemplc 6, gencrates the f.-
pecmutation P - (07T 2353163 4) Let us 1cansfoom M{Q0 w Q7
in the follmaing way:

1 101 mon o1
Migu|l L o] —-g|Ll L D
10, 1 00 0
0o

7|0 1 o,
1 @ 1

where, () and " define the permutations & : (062417 3 5)
aml P20 4 26 1 53 7), respectively. Nowe that [#02(0 : 4);
e BIHP —= Foand {HNT 2 D] — PP iz
BP-permutation.

L Permuratioves as a Subset of BPCL: The main resule of this
hrief cortributivn is noew stated in the [ollewing theorem.

Theorewe 1: For every L-perroutatien &, fhere exists a snigue
N1 F-permutation P, such tha: P & Closure (7). or in other words,
L T BPCL.

Froot?  Follows from the results stated in Lemma 3 and Lemma
f. O

Femart: An LU pormutsoon 7, defined by, v = Qs + O,
belongs o Closwrel P, where P ojs the 1. permugation, defined by,
y = Qe for each 1) = 1. sutput group-interchanpees at level ¢,
b= 1< n—1, foral possible groups at that level, will rransform
F' w F. Theretare, it is evident thut L Z BPCL.

Exammple 9: The L-pesmuotation 7 : (07 52 346 1) i defined by,

111
el oo
1 10

Assuming & = (1} 1 07", we gt the LC peroulatken - (2 5 7
016d 3 Note that {001 eedd ]l A F] — F.

D Rewiing of LO Peemutations

Since L7 C BPCL, it js clear that the [0 permutationy will be
aptimally routahle hy the same algorithm thae rowtes oplicsally the
BPC permutations [3]. Mow, given an arbitrary permetation I, owe
can decide whether it belongs w the BPCL class, and if 50, determine
ite BP-izomer in £ N.n! time [11], [19]. The peneralization of
group-transformation rubes, a5 has been descibed in (111, implies that
similar eouting will alee cxist for LO permutations in all equivatens [2]
m-stuge umigue-path Dell-access RIN's, Thus, the avers]] complexity
of optimal routing of LO-pormutations will ke CHN w0 e, linear
in the number of swirches.
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Fig. 2.

Hicrarchical relationships among various permutation classes.

1V, A& NEW HiERaRCHY OF Primorranos CLasses

It was known eaclier that EPC £ LOC. The new resolt that
L. C IMCTL, provides & hetter understanding of the LOC class, We
will pow wroduce other classes of permutations defined by varioes
group-transformariong, and then explore the hierarchy among ther,
This knowledpe may lead to some interesting applications, espesially
n routing hrouph different eypes of MINTs,

A, Permuiation Clisses Generated from BF and 1. Fermutations

For am & =V system. the set of BP peomatations eonstimtes of w!
permnulations, where o+ = log, . The BPCL cluss is penerated by
applying all poszible grmup-transtormacions on the BP class. Tt has
besn shown that |1'1‘|"(_-’L| =oal 2777 1] To have a beter idea
ahowt the BPCL. class, we now conzider input growp-interchanges
uod vulpul prowp-interchangess separately. It hes been observed that
the: number of permucations decivabla [noem P, by the applicatien of
all pustible ordered sequences of mput (output) group-iaterchanges
is 2L

Lel JEP ) und €20 1) dencte the set of permuotatons derivable from
by applying all possible sequences of input and oulpul group-
mlerchiunges respectively.

Defigivon 13: The sl ol
couivalence), is detinod as:
AR =L DT T s clear il BFJ'El =al2¥"
Smmilarly. the set AR B Pocurpur-eguivatience ) iz defined as:
PR = | DTS |H.f’|:.?£'| -l 2%

Keptark: 1L has been shown in |29 that BPC C BPIE N BPOE.

Fommg 7- |BPIE I BPG‘El =2V — [t - 1z,

Pragf: As obzecved earjer, W T BPIE BPOE. For
identity permuation Dy, JOP Y = €0 %0 Now Iy < TP Henee
the lemma follows immedigaly, |

By definiticn, BP C L. Here. we have established chat L BPCL,
or m ither words, all linear permutations can be gencrarcd from BPs,
by e application of sotable proup-transiocmalions.

Remariz |f18| = wl, whereas L] = 22" T e =1
implics that wany lisew peomwtations will have dve sane BP-isomer,

Drefinition [4: The LFE] Unear-inpui-egquividdence)) class of per-
mutationes i5 gafingd qg
Lik = | ) o, £044

Repwrk: Sipce L C BPCL, i s evident tha: LIE C BRCL.

The LIE ind BPIE classes of peonulutions exhibul o special chacac-
weristic in {2n - 1-stage networks, like Benes and shuffle-exchonge.

pectiwtations,  SFPTEBP-inpul-
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It has been shown eurlier thul LC and BPC permutations are sell-
rontable by the least-control routing Lechnoigue [15); oow any per-
mutaticn 7 € LIE or BPIE iy also self-routable by the same
method | 16f.

R, Hicrarchical Relationships Among the Permuration {lasies

Fig. 2 shows the hierarchicol relations among the ditfatent classes
of permutarions discussed so far. The Following ubservations arc
irmmesdiate.

Oy The BP class is the minimum set of permucations, which

by the application of suitable group-transiormations, generates all

the sers BPIE, BPOE, L, LIE and the BPCY .

s 2: The BPCL class of pormugations is a supersel of all the

soiz BF, BFIE, BPOE, L am LIE.

Obs 3: The L class of permutations includes members feom Faur

different classes, namely 13y BPIT, 2) BPOL, 2} BPIE M BROE

and 4) none of 1], 23, 3.

Example M The L-pormutation P D2 3 14 67 5) is defined
by

b

1 1 1)
Qoo 1.
01 o

Mote that {00 : 20000 G)HA] = PP 21 3465 T since
P* £ BF, P £ BFIE
Fxampde Il The f-permutation P03 1 247 5 6) 1x defined

by,
1 10
Qg1 N
001

Note thal {CH0: 206000 GBIV -« Pd0 21 24 8 5 T since
P = BF, F» £ RPOE.
Exvample I2: The L-permutation M5 (001 324 5 7 @) is defined

hy.
11 Inh
Oy (01 0.
0nomo1

h

Moe that {2000z 20800 G HMA] — P L 2345670 1%
is in BP; also {000 20:40h0: 61)[F%] — . Thercfore B £
RPLE 1 BPOE,

Erample 13; The L-permmulation 5y (03 1 2T 3 6 5) is defined
bry.

I 1 17
Ca:1 oo
01

Nude that {4000 204000 ; 640 434700 63 }[I4] produces
the BP-permutation P: (1321 3 4 6 3 7). Here, hoth inpur and oucgu
gloup-interchanges ate essental, imoplying il 5y i mcluded neither
in BPIE, nor in BPOE.

Oby 42 The sl L does nut cover BPIE M BPOR.

Erampie I4: Conswler a peronutation [ 0134 238 1.
Raoth &0« 23}[#8] and {ecdi ¢ A3} 7#4] penerate the BP-
permutation: {0 1 £ 52 3 8 7y Therefore % € BFIE N BPOE.
But 7% ¢ L.

Qb 5 Since BY © I, BFIE C LIE.

cHhs A BPORY & LIS



Evemple £%: Given Py (051 426 3 7, note that {#C00 -
41} ] generates the BP-permutation: (04 1 5263 7). Henoe Fp €
BPOE, hut P g LIE.

i 7 LC o LR,

Example 16; The D-permutation P {0 3 1 2 4 7 5 6} is dofined

2

by

110

Qs:l1 00
n n 1

Assuming O — 0 0 lfll: we gel the LC-permutation - (47 5
60313, Mate thar (#7172 : M) = P e, B e TLE).

We have already ohserved that BPC C BPIE 1 BPOE. Mareover,
it iz easy o see that BE = B M LC and also BRC C LC.

Thess permutations (I through 71 cited in the above sxamples,
are shown in Fig. 2, indicating their inglusion in different permutation
Clasney.

V. CONCTASIoN

In this bezel cootnbution, we have iotroduced a new hiecarchy
amoRg different penowtation classes that ane of interest 10 MINs,
We proved that LC ¢ BPCL. Thus [ur every LC permutation P,
there exists 2 unique BEP-isomer P°, sach that the conflict graphs
of ' oend 7 [or an n-stapre MIN. are isomocphic. Therefore the
optimal routing rechnique developed earlier for the BPC class of
permutations [K], is alsn applicable w1 LO permotavions. For any
pecmutation 7 € BPCL, the BP-isemer of F ocan be found in
L) time [E%]- Te has been observed thae centain rostricted forms
of prowp-transformations are required o genetate the LT class from
BP. Furthcemnre, we introdoce other classes of permotatons and
repurl Lheir mutval redations, Kaowledge of thos hierarchy helps us
in accelerating the routability of different classes of permotationy in
we-stape unigue-path full-sceess MIN'G ws well vs in (2n — L)-sage
MIN's, e.2.. Benes and sheffle-exchange networks
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