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Abstract 

A generalized self-organizing multilayer neural network incorporating fuzziness measures is designed for object 
extraction. Every neuron in each layer corresponds to an image pixel. A neuron in one layer is connected to the 
corresponding neuron in the previous layer and the neighbors of that neuron. Neurons in the output layer are also 
connected to the corresponding neurons in the input layer. The output of the neurons in the output layer is viewed as 
a f u z z y  set and measures of fuzziness is used to model the error (instability of the network) of the system. Results of 
a simulation study using synthetic and real images are seen to be quite satisfactory. 
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1. In troduct ion  

Fuzzy set theoretic [24, 7-9, 17, 20] models try to mimic human reasoning and the capability of handling 
uncertainty arising from ill-defined, incomplete, defective and imprecise input. Neural network models [21, 
19, 22], on the other hand, attempts to emulate the architecture and information representation schemes of 
human brain by providing a mathematical model of combination of numerous neurons connected in 
a network. Integration of the merits of these two technologies therefore promises to provide, to a great extent, 
more intelligent systems (in terms of parallelism, fault tolerance, adaptivity and uncertainty management) to 
handle real life recognition problems. 

These promises have motivated (during the last five years or so) a large number of researchers to exploit 
these modern concepts in the field of pattern recognition and machine vision under a new branch called 
n e u r o - f u z z y  computing [3, 2, 15, 16]. The fusion or integration is mainly tried out in the following ways or in 
any combination of them: (i) incorporating fuzziness into the neural network frameworks, (ii) designing 
neural networks guided by fuzzy logic formalism, (iii) changing the basic characteristics of the neurons so that 
they perform the operations used in fuzzy set theory, (iv) making the individual neurons fuzzy, and (v) 
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modeling the error or instability or energy function of a neural network based system using measures of 
fuzziness/uncertainty of a set. 

The present work is an attempt to design a generalized multilayer neural network capable of incorporating 
various fuzziness measures for performing (unsupervised) the self-organizing task of object extraction. 
Though a preliminary attempt was made in [6] to design a network architecture for such a task, the present 
article provides a more general version capable of dealing with different types of fuzziness measures. The 
architecture used previously was capable of working with those types of fuzziness measures where the 
derivative of the fuzziness measure with respect to the status of any output node is dependent only on that 
node. The present architecture overcomes this restriction and can work with different types of measures. 

Various fuzziness measures have been used to extract objects from noisy environments using this network 
architecture. A simulation study was done using a synthetic image corrupted by N(0, a z) additive noise and 
a real image. The results obtained were found to be quite satisfactory. A comparative study among the 
different fuzziness measures, to find out their suitability for object extraction, is also made in this context. 

2. Measures of fuzziness of a fuzzy set 

A fuzziness measure [9] of a fuzzy set 1-24] expresses the average amount of ambiguity in making a decision 
whether an element belongs to the set or not. 

Several authors [5, 23, 10, 18] have made attempts to define such measures. A few measures relevant to the 
present work are described here. 

(i) Index of fuzziness: The index of fuzziness of a fuzzy set A having n supporting elements is defined as [8] 

2 
?p(A) = ~ if(A, A) 

2 [ ~  {min(pA(Xi),l--tlA(Xi))}P] 1/1', (1) 
nl /p  i= 1 

when le(A, A) denotes the distance between fuzzy set A and its nearest ordinary s e t / / .  An ordinary set 
A nearest to the fuzzy set A is defined as 

{7 if pA(X) <. 0.5, 
pa(X) = if pA(X) > 0.5. (2) 

The value of p in the above equation depends on the type of distance measure used. 
(ii) Entropy of a fuzzy set: As defined by De Luca and Termini [5] is given by 

H (A) - { S . (#a(x i )  ) } (3) 
nln2  i=1 

with 

S,(pA(X~)) = -- #A(X,)In {pa(x,)} -- {1 -- I~A(x,)} In{ 1 --/~a(x,)}, 

and that of Pal and Pal [-18] is given by 

(4) 

1 ~ {S.(#a(X,)) - 1 } H(A) - n(~/~ - l) ,=, (5) 
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with 

S.(~A(Xi)) = ~tA(Xi) e 1 -uo(x,~ + {1 -- #A(Xi)} e uAtx'). (6) 

Another definition of entropy which involves the distance of a fuzzy set from its furthest ordinary set is given 
by Bart Kosko [10]. It says 

lP(A, A) 
Rp(A) -- IP(A,A_) 

[Y.7=1 {min(#A(xi), 1 -- pA(X,))}P] lip 
-- (7) [ . 3~i=, {max(/~A(xi), 1 -- #A(Xi))}P] lip' 

where A_ is an ordinary set furthest to the fuzzy set A, defined by 

{01 if pA(X)>~0"5' (8) 
IIA(X) = if pA(X) < 0.5. 

(iii) Fuzzy correlation: A concept of correlation, giving a measure of relationship between two membership 
functions representing fuzzy sets, was introduced by Murthy et al. [13]. The concept was later on extended 
and applied to image segmentation by Pal and Ghosh [14]. Correlation between a fuzzy property and its 
nearest two tone property represents the degree of closeness of the fuzzy set to the nearest ordinary set. In 
other words, correlation also provides a measure of information about the distance of a fuzzy set (represented 
by/~1) from its nearest ordinary set (represented by/~2) and is expressed as 

4 ~ 
C(~q,~t2) = 1 Xl + X2 {#1(i) -/~2(i) } 2, (9) 

i = l  

with 

X, = ~ {2p1( i ) -1}  2, (10) 
i = l  

X2 = ~ {2/~2(i)-1}2; (11) 
i = l  

0 ~< C(~a,#2) ~< 1. 
In the following sections we will use these measures to compute the error or measure of instability of 

a multilayer self-organizing neural network. 

3. Multilayer networks 

In this section let us brief the structure and working principle of the existing multilayer neural networks. 

3.1. The multilayer perceptron 

The multilayer perceptron (M LP) is made up of sets of nodes arranged in layers. Nodes of two consecutive 
layers are connected by links or weights; but there is no connection among the nodes of the same layer. The 
layer where the inputs are presented is known as the input layer. On the other hand, the output producing 
layer is called the output layer. The layers in between the input and the output layers are known as hidden 
layers. 
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The output of nodes in one layer is transmitted to nodes in another layer via links that amplify or attenuate 
or inhibit such outputs through weighting factors. Except for the input layer nodes, the total input to each 
node is the sum of weighted outputs of the nodes in the previous layer. Each node is activated in accordance 
with the input to the node and the activation function of the node. The total input (Ii) to thej th  unit of any 
layer is, 

I t = ~ wiioi (12) 
i 

with oi as the output of the ith neuron in the previous layer and wi~ is the connection weight between thej th  
node of one layer and the ith node of the previous layer. The output of a node j is obtained as 

o r = f ( I i ) ,  (13) 

w he re f i s  the activation function [21]. Mostly the activation function is sigmoidal, with the form (Fig. 1) 

1 
f ( x ) -  1 + e -lx-°)/°°' (14) 

The function is symmetrical around 0 and 0o controls the steepness of the function. 0 is known as the 
threshold/bias value. 

Initially very small random values are assigned to the links/weights. In the learning phase (training) of 
such a network we present the pattern X = { xi }, where xi is the ith component of the vector X, as input and 
ask the net to adjust its set of weights in the connecting links and also the thresholds in the nodes such that 
the desired output { t~ } is obtained at the output nodes. After this, we present another pair of X and { ti }, and 
ask the net to learn that association also. In fact, we desire the net to find a set of weights and biases that will 
be able to discriminate among all the input/output pairs presented to it. This process can pose a very 
strenuous learning task and is not always readily accomplished. Here the desired output { ti } basically acts as 
a teacher which tries to minimize the error. 

g(x) 

1.0 

0.5 

-& -2 
~ X  

Fig. 1. Sigmoidal activation function. 
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In general, the output { oi } will not be the same as the target or desired value { ti }. For a pattern p, the error 
is, 

1 ~i ( t  i _ oi)Z ' (15) E = 5  

where the factor of one half is inserted for mathematical convenience. The procedure for learning the correct 
set of weights is to vary the weights in a manner such that the error E is reduced as rapidly as possible. This 
can be achieved by moving in the direction of negative gradient of E. In other words, the incremental change 
for a particular pattern p is 

with 

8E dE dE dI r 
Awri oc - - -  

8Wrl  = - n d w r l  = - r l - ~ i - O w r i  

= rl3rol (from (12)) (16) 

dE dE do r ( S j -  
8I j - do r dis 

dE , 
= - ff0~ojf (Is) (from (13)). (17) 

As E can be directly calculated in the output layer, for the links connected to the output layer the change in 
weight is given by 

= q (  d E \  ' I Awrl (18) 

If the links do not affect the output nodes directly (for links between the input and the hidden layer, and also 
between two consecutive hidden layers), the factor dE~do r cannot be computed directly. In this case we use 
[21] the chain rule to write 

?E _ dE d]  k __ ~-~ OE d dE 

( or dot v do-; Z, wk,o, = 

= ~ ( - 6k) Wkr. (19) 
k 

Hence 

awr,  = ~f~( - de/dor)f'I1j)o,, (20) 
[n(Ek 6kWkr) f ( l j ) o i  

for the output layer and other layers, respectively. 
In particular, if 

1 
dr = 1 + exp( - (Y,i wriol - Or)) (21) 
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then 

~oj 
f ' ( I j ) = - ~ j = o j ( 1  --oj) (22) 

and thus we get 

{~/( - cqE/~3oj) o j(1 -- o j) oi, 
Awj~ = rt(Y~k 6kWk~) Oj(1 -- Oj)O~ (23) 

for the output layer and other layers, respectively. 
It may be mentioned here that a large value of r/ corresponds to rapid learning but might result in 

oscillations. A momentum term of ~Awji(t) (0 < ~ < 1) can be added to increase the learning rate (without 
leading to oscillation) and thus expression (16) can be modified as 

Awji(t + 1) = q~joi + o~Awji(t), (24) 

where the quantity (t + 1) is used to indicate the (t + 1)th time instant, and ~ is a constant which determines 
the effect of previous weight changes on the current direction of movement in weight space. The second term 
is used to specify that the change in wji at (t + 1)th instant should be somewhat similar to the change 
undertaken at instant t. 

3.2. A self-organizing multilayer network 

Several authors [4, 1, 12, 11] have used the multilayer perceptron for image segmentation/texture 
discrimination. These perceptron based techniques require a set of images of known classes for learning 
(supervised) which may not always be available in real life situations. 

If the images to be processed come from a set of classes (i.e., images of the same class have common 
characteristics) then one can train the network with a set of images (with known output classes), and use the 
trained network on future images. However, if the images do not share some common features and a set of 
images with known targets (may be synthetic images) is not available, the multilayer perceptron as such, may 
not be useful for image processing. In the following sections we describe a multilayer neural network which 
overcomes these constraints. 

3.2.1. Description and operation o f  the network 

Architecture. In Fig. 2 we depict the 3-layered version of a self-organized multilayer neural network 
(SOMLNN). In each layer there are M x N neurons (for an M x N image). Each neuron corresponds to 
a single pixel. Besides the input and output layers, there can be a number of hidden layers (more than zero). 
Neurons in the same layer do not have any connection among themselves. Each neuron in a layer is 
connected to the corresponding neuron in the previous layer and to its neighbors (over dth ordered 
neighborhood N d); thus each neuron in layer i (i > 1) will have I Ndl + 1 (where I Nd[ is the number of pixels in 
N d) links to the (i - 1)th layer. For N x, a neuron has 5-1inks whereas for N 2, 9-1inks will be associated with 
every neuron. However, for boundary nodes (pixels) number of links may be less than t Nal + 1. Every neuron 
in the output layer is also connected to the corresponding neuron in the input layer. It may be noted that this 
architecture differs from the standard MLP in the following major points: 
• the distribution of links, and 
• the feed back connection from the output layer to the input layer. 
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Fig. 2. Schematic representation of Self-organizing multilayer neural network. 

Initialization. The input to a neuron in the input layer is given as a real number  in [0, 1] which is 
p ropor t iona l  to the gray value of  the corresponding pixel. Since we are trying to eliminate noise and extract 
spatially compac t  regions, all initial weights are set to one (1). N o  external bias is imposed on the weights. 
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Random initialization (of weights) may act as a pseudo noise and the compactness of the extracted regions may 
be lost. As all the weights are set to unity, the total input (initially) to any node lies in [0, ne] (where ne 
( -- I Nal + 1) is the number of links a neuron has); hence the most unbiased choice for the threshold value 0 (for 
the input/output transfer function, Eq. (13)) would be ½ nr (the middle most value of the total input range). 

Operation. The input (1i) to any neuron in the j th  layer (except the input layer) is computed using (12). The 
transfer functionf(Eq. (13)) is then applied to get the output status of the neurons in this layer. These outputs 
are then fed as input to the next layer. Starting from the input layer, this way the input image is passed on to 
the output layer and the corresponding output states are calculated. The output value of each neuron lies in 
[0,1]. 

Here our intention is to extract spatially homogeneous regions through the process of self-organization 
using only one noise corrupted realization of a scene (it does not require a set of images with known output 
classes for learning). The way the network gets organized, under ideal condition when the image is not noisy, 
the output status of most of the neurons in the output layer will be either 0 or 1. But due to the effect of noise 
the output status of the neurons in the output layer usually will be in 1-0, 1] and thus the status value will 
represent the degree of brightness (darkness) of the corresponding pixel in the image. Therefore, the output 
status in the output layer may be viewed to represent a fuzzy set "bright (dark) pixels'. The measure of 
fuzziness of this set, on the global level, may be considered as the error or instability of the whole system as this 
will reflect the deviation from the desired state of the network. Thus, when we do not have any a priori target 
output value, we can take the fuzziness value as a measure of system error and back propagate it to adjust the 
weights (mathematical expressions for this are given later) so that the system error reduces with passage of 
time and in the limiting case it becomes zero. The error measure E can also be taken as a suitable function of 
a fuzziness measure, i.e., 

E = g(l) ,  (25) 

where I is a measure of fuzziness (Eqs. (1), (3), (5), (7) and (9)) of a fuzzy set. 
After the weights have been adjusted properly, the output of the neurons in the output layer is fed back to 

the corresponding neurons in the input layer. The second pass is then continued with this as input. The 
iteration (updating of weights) is continued as in the previous case until the network stabilizes, i.e., the error 
value (measure of fuzziness) becomes negligible. When the network stabilizes the output status of the neurons 
in the output layer becomes either 0 or 1. Neurons with output value 0 constitute one group and those having 
output value 1 constitute the other group. It may be mentioned here that the scene can have any number of 
compact regions (objects). 

4. Weight correction and network architecture for various fuzziness measures 

The mathematical derivation for weight updating rules with different fuzziness measures (Eqs. (1), (3), (5), 
(7) and (9)) are as follows. The derivations are given only for correcting the weights of the links connected to 
the output layer. For other layers similar expressions, as in the second part of (23) are applicable. 

4.1. Weight correction for index of  fuzziness 

Let us consider 

2 p 
E = {vp(A)} p = n ~. {min(°i' 1 oi)}P (26) 

./ 
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n being the n u m b e r  of neurons  in the output  layer. Here,  

d E  = ~'(2V/n) p ( o y  1 if 0 ~< o r ~< 0.5, 

8o r ~ -(2V/n)p(l  -or)V-1  if0.5 -..< oj-..< 1.0. (27) 

Thus  f rom (20) we get 

~rt( - 2 P / n ) p o f  - l f ' ( I j ) o i  i f 0  ~< o r ~< 0.5, 
Awri = ~rl(2°/n) p(1 - or) p-  l f ' ( Ir)o i if 0.5 ~< o r ~< 1.0. (28) 

For  our  s imulat ion purpose  we will be using p = 2 (i.e., the quadra t ic  index of fuzziness [8]). 

4.2. Weight correction for entropy 

We consider,  E = H, where H is the en t ropy  of a fuzzy set (Eqs. (3) and (5)). For  en t ropy  measures  the 
weight correct ion is made  as 

dE~do r 
Awr~ oc idE/Oorl q, q > 1, (29) 

where I dE/dojl represents  the magni tude  of the gradient.  The  above  formula  is used to correct  the weights 
instead of that  of (16) to ensure that  the weight correct ion is m a x i m u m  when the ne twork  is most  unstable 
(i.e., when all the ou tpu t  values are 0.5) and vice versa. In other  words,  for a neuron  the weight correct ion for 
its links should be m a x i m u m  when its ou tpu t  status is close to 0.5 and is m in imum when its oupu t  status is 
close to 0 or  1. For  our  implementa t ion  we will choose q = 2. 

N o w  from (3) 

(?H _ 1 o r 
8o r n In 2 In 1 ' (30) 

- -  O r 

Thus  f rom (20) and (29) 

Awri = t/(nln2)q 1 ln(off(1 - ~  
Iln (off(1 2 q f '(lr)°i" 

Similarly, with exponent ia l  en t ropy  (Eq. (5)) if we consider  

( 3 1 )  

then, 

E = H (32) 

(~H 1 

Thus,  

{(1 - or)e 1 -oj _ oreOJ}. 
?oj n(x ~ -- 1) 

(33) 

As the expressions for weight correct ion (Awrl) with the previously described error  measures  involve only the 
ou tpu t  status of  t h e j t h  neuron  of one layer and the i th neuron  of the previous layer (i.e., involves o r and oi) 
the self-organizing mult i layer  neural  ne twork  archi tecture described in Section 3.2.1 as such can implement  
the object  extract ion a lgor i thm with these error  measures.  

Awji = - r/{n(x/e - 1)} q ' (_1 _- oj)e 1 - ° ~  2 °Je°____~ j f ' ( l j )  oi. 
I(1 - o r ) e  1 - ° j  _ oreOJlq 

(34) 
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4.3. Weight correction for  Kosko's entropy measure 

Let us consider 

E = (Rp) p 

Y4 {min(oj, 1 - oi)} p a 
Y~j {max(oj, 1 - oj)} p b (say). (35) 

Then, 

OE f ( (a  + b)/b 2) pop-1 if 0 ~< oj ~ 0.5, (36) 

= [ - ( ( a + b ) / b 2 ) p ( 1 - o ~ )  p-~ i f0 .5~<o i~< 1.0. 

Therefore, 

Awji = ~ - q((a + b)/b 2) po p- l f ,  (Ij),oi if 0 ~< oj ~< 0.5, (37) 
[~l((a + b)/b2) p(1 - oj)p- l f (l~)oi if0.5 ~< o~ ~< 1.0. 

For  the present simulation p is taken as 2. Note that with passage of time (i.e., when oj approaches 0 or 1) the 
value of a decreases and that ofb  increases. Thus (a + b)/b 2 decreases. Also note that the value of(a + b)/b 2 is 
dependent on the present status of the whole network. Hence for the updating of a single weight the overall 
status of the network is required. Thus the architecture described in Section 3.2.1 is not sufficient for 
implementing an object extraction algorithm involving Kosko 's  entropy as an error measure. 

In order to implement this algorithm we need to add a subnetwork (with the architecture in Fig. 2) which 
calculates (a + b)/b 2. The block takes the form as shown in Fig. 3. It is worth noting that the product of the 
output of the block in Fig. 3 and q acts as the learning rate (for the present architecture) which decreases as 
the network approaches stability. 

4.4. Weight correction for  correlation measure 

Let us choose, 

E = I - C ,  

where C is the correlation be tween/~  and/~2 as defined in (9). Thus 

~E 8(X~ + X2){#~( j )  - # 2 ( j ) }  - -  16Xa{2/~x(j) -- 1} 

~Oj ( X  1 + X 2 )  2 ' 

(38) 

(39) 

I I I l l l l l l t l l l l l t  
Fig. 3. Block diagram for computing information about the overall status of the system with Kosko's entropy as error measure. 
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III l l l l l l l l l l l  I 
Fig. 4. Block diagram for computing information about the overall status of the system with fuzzy correlation as error measure. 

F'ig. 5. Original synthetic image. 

where 

X3 = Z {/~t (j) --/~2(j)} 2. 
J 

Hence, 

0E , 
a W j i  = - -  rIsy- f (lj)oi. 

(l(]jl • 

(40) 

(41) 

In this case the network architecture will need a subnetwork as shown in Fig. 4 in addition to the block in 
Fig. 2. Please note that for updating the weights we will need the output values of the block in Fig. 4. 

5. Computer  simulation and results 

In order to check the effectiveness of the proposed technique, computer  simulation has been done on 
a synthetic bitonic image (Fig. 5) which contains object regions of three different shapes (in general, it can 
contain any number of objects with any shape) corrupted by noise. (We did the simulation with a number  of 
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different types of images amongst which one is chosen here for presentation.) The corrupted versions were 
obtained by adding noise from N(0, tr 2) distribution with different values of a (10, 20, 32). Three noisy inputs 
are shown in Figs. 6(a), 7(a) and 8(a). The images are of dimension 128 x 128 and have 32 levels. Simulation 
study has also been done on a real image of a noisy tank (Fig. 9(a)). The noisy tank image is of size 64 x 64 
with 64 gray levels. For  the simulation study r/value has been taken as 0.2 and the neurons are assumed to be 
connected to its second ordered neighbors (N 2 neighborhood is used). A neuron thus gets input from nine 
neurons in the previous layer. The threshold value 0 in this case is 9 = 4.5. The input gray values are mapped 
in [0, 1 ] by a linear transformation and is given as input to the network. The network is then allowed to be 
settled. When the network is stabilized, the neurons having status value 0 constitute one region type, say, 
object (background), and the remaining neurons with output status 1 constitute the other region type, say, 
background (object). 

The objects extracted by the proposed technique with different expressions of error for different noisy 
versions of the synthetic image are included in Figs. 6-8. Fig. 9 depicts the objects extracted from the noisy 
tank image with different error models. 

Examining the results it can very easily be inferred that, as the noise level increases, the quality of the 
output, as expected, deteriorates; but approximate shapes and outlines are maintained. Note that the outputs 
are independent of the number of object regions (and their shapes) present in the scene. Comparing results of 
different error models, it is noticed that outputs with index of fuzziness measure are better than those 
obtained by entropy measures. Among the two different entropy measures, the exponential function is found 
to be more immune to noise. Results corresponding to Kosko's entropy measure and correlation measure are 
comparable to those of index of fuzziness measure and better than those of entropy measures. Between 
Kosko's entropy measure and correlation measure the latter one is seen to provide better results compared to 
the former. 

This is possibly due to different learning rates. For  a fixed value oft/, the learning rate is low for the index of 
fuzziness, Kosko's entropy measure and correlation measure, whereas it is higher for entropy measures. 
When the learning rate is high, a particular neuron influences its neighbors to a great extent; thus the noisy 
elements affect the results strongly. The system thus fails to remove all the noisy elements. Of the two entropy 
measures the exponential one is more noise immune due to its lower learning rate at the initial stage of 
learning. 

A critical examination of the results reveal that the index of fuzziness, Kosko's entropy measure and the 
correlation measure are consistently better than entropy measures for maintaining the compactness of the 
extracted objects (as determined by their boundaries). But shapes of objects are better preserved by entropy 
measures. This observation can be explained as follows: since for the fuzziness, Kosko's entropy and 
correlation measures, the rate of learning is slow, it smoothes out noises and creates compact regions, while 
for entropy measures because of rapid learning all noisy pixels may not be removed, particularly when 
a value is very high. On the other hand, entropy measures enable the network to preserve object boundaries 
as learning rate is very high near the most ambiguous region (o r -~ 0.5). 

6. Discussions and conclusion 

The limitations of the feed forward multilayer perceptron with back propagation of error for image 
processing (segmentation/object extraction) have been addressed. 

A generalized self-organizing multilayer neural network suitable for image processing applications is 
proposed in this regard. Though a preliminary attempt was made to design a neural network architecture for 
such a task, the present work provides a more general architecture capable of dealing with different types of 
fuzziness measures. The neural network architecture used previously was capable of working with those 
types of fuzziness measures whose derivatives with respect to the status of any output node are dependent 
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c d 

e f 

Fig. 6. Results for a noisy version (a = 10) of the synthetic image: (a) Input: (b) Extracted object with index of fuzziness: (c) Extracted 
object with logarithmic entropy; (d) Extracted object with exponential entropy; (el Extracted object with Kosko's entropy: (fl Extracted 
object with fuzzy correlation. 
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a b 

d 

e f 

Fig. 7. Results for a noisy version (a = 20) of the synthetic image: (a) Input; (b) Extracted object with index of fuzziness; (c) Extracted 
object with logarithmic entropy; (d) Extracted object with exponential entropy; (e) Extracted object with Kosko's entropy; (f) Extracted 
object with fuzzy correlation. 
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Fig. 8. Results for a noisy version (a = 32) of the synthetic image: (at Input; (bl Extracted object with index of fuzziness: Icl Extracted 
object with logarithmic entropy; (d) Extracted object with exponential entropy; (e) Extracted object with Kosko's entropy; If) Extracted 
object with fuzzy correlation. 
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Fig. 9. Results for the noisy tank image: (a) Input; (b) Extracted object with index of fuzziness; (c) Extracted object with logarithmic 
entropy; (d) Extracted object with exponential entropy; (e) Extracted object with Kosko's entropy; (f) Extracted object with fuzzy 
correlation. 
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only  on tha t  node.  The  present  a rchi tec ture  overcomes  this res t r ic t ion and can work  with different types of 
fuzziness measures .  

Each neuron  in the ne twork  co r r e sponds  to an image  pixel. A neuron  in one layer  is connec ted  to the 
co r r e spond ing  neuron  in the previous  layer  and  the ne ighbors  of  that  neuron.  N e u rons  in the ou tpu t  layer  are 
also connec ted  to the co r r e spond ing  neurons  in the input  layer. The  ou tpu t  of  the neurons  in the ou tpu t  layer  
has been viewed as a f u z z y  se t  and  measures  of fuzziness have been used to mode l  the e r ror  ( instabi l i ty  of the 
ne twork)  of the system. 

An app l i ca t ion  of the p r o p o s e d  archi tec ture  has been shown in object  ex t rac t ion  p rob l e m from noisy 
envi ronments .  The  a lgo r i thm has been implemen ted  on a set of noisy images  and  the a p p r o x i m a t e  shapes and  
bounda r i e s  of the ex t rac ted  objects  are  found to be sa t is factory  even for very high noise level es tabl ish ing the 
noise immun i ty  of the p r o p o s e d  technique.  Results also show tha t  the rate  of learning affects the ou tput ,  
special ly when the noise level is very high. The  ou tpu t s  are bet ter  for lower learning rates and  de te r io ra tes  
with increase of rate  of learning.  Thus  when the noise level is low, me thods  with higher  learning rates are 
preferred; but  when the noise level is high, me thods  with lower learning rates will be suitable.  
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