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Fast Parallel Algorithm for Ternary
Multiplication Using Multivalued I°T., Technology

Malliks De and Bhabani P. Sioha

Abatract —Am algorithon for parallel multiplication of twie nbit termary
numbers is presented in this beief contribution. This algorithm wses
the technigue of column compression amnd computes the product in

(2log e 4 2 units of addition toe of a single-bit ternary full adder.
This algorithm requires regular interconnection between any two types
of celk and hence is very sultable fie YLSI implementation, The same
algorithm s ako applicable to the multplication of negative mom bers,

Index Termns— Balanced ternary logle, column compression, precarry
addithoa, systolic architecture, ternary multiplication.

I INTRODUCTION

During recent years, design of Fast multipliers has become an area
of growing research imerest to the system designers. To improve
the speed of computations involving many multiplications, parallel
algorithms for multiplication have become increasingly popular. The
execution time for parallel multiplication has been decreased substan-
tially by using the technique of partial product matrix reduction or
column compression [1j-[4]. Two algorithms for iterative amay mul-
tiplication have been reported (5, both of which require only n units
of time for multiplication of two =-bil numbers and involve almost
regular iMerconnection structures of the multiplier array cell elememts
which are ideal for VLSI implementation. Authors in [6] have also
reponied an O lug ) multiplication scheme using redundant hinary
trecs. Authors in [7] have proposed two parallel algorithms for
multiplication using the technique of column compression which
require {0+ [log, «71 and approximately 3[log. n] units of time,
respectively, and involve almost regular interconnection between only
twa types of cells.

Multiple valued logic, in which the number of discrete logic levels
are not confined to two, has been the subject of much research owver
many years. [t has been shown mathematically that if the cost or
complexity {7 of the system hardware is proportional 1o the digit
complexity, the radix three would be more economical than radix two
(8. 9], Frieder and Luk [19] used binary coded form for balanced
and ordinary ternary operation. The ternary design is casily produced
if one selects as supporting technology a temary version of the L
circuits described in [11]-]15]. Also there exist in the literature an
ECL vemion [16) and MOS version [17] of temary logic.

Recently, new, reliahle, and low-cost multistate memory devices
have been implemented [1%], [19] in a single physical element, called
the resonant tunneling transistor {RTT), providing the possibility of
low-cost implememation of multivalued logic circuits. [t appears that
in the near future it will be possible to implement different reliable
loow-cost circuits such a5 counters, adders, multipliers, dividers, etc.,
in ternary logic using these RTT s,

In this brief comribution, we propose a pamallel algorithm for a
multiplier based on the balanced ternary system and implemented by
means of ", cument-mode threshold logic gates. I°L logic family
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facilitames the design of LSI chip because it offers a high packing
density {a factor of 10 over the popular TTL), a low speed-power
product {a factor of 1) over TTL), and a wide range of operating
power supply and current levels. This performance is obtained at a
delay per gate on the order of 100 ns |2, The speed of 1'L is not,
in general, as great as that of TTL. But a delay of the order of 5 ns
has been achieved using dielectric isolation [217-[23%.

In the balanced ternary system each digit of representation has three
possible values (—1.0. —11. The pamallel algorithm for multiplica-
tion uses the technique of column compression to increase the speed
of execution. For multiplication of two o-bit ternary numbers the
algorithm requires (2[leg, 47+ 2) units of time with (e {lagn®)
AT® value. A systolic architecture using a pyramidal inerconnection
of elememary processors (full adders) to multiply two 64-bit ternary
numbers using the algorithm has been shown as an implementation
example. It requires regular imerconnection between anly two types
of cells: four-input single-bit full adder and precarry generators,
and hence, it is very suitable for single-chip WLSI implementati on.
Since in the balanced ternary system, any negative number can be
represemted only by changing the sign of every bit in itz positive
represemation, the same algorithm, without any change, also applies
to the multiplication of negative numbers.

The brief coniribution is organized & follows. In Section [I, we
describe the preliminaries of ternary multiplication and the method
of implementing balanced ternary full adder by means of threshold
I"L logic. In Section 1I[. we deseribe the design of a new temary
precarry adder (to add two temary numbers) which will be used by
our algorithm. In Section IV, we describe the parallel algorthm for
multiplication, and in Section ¥ an implementation example is given.

II. PRELIMMNARES

Lat T7and ¥ be the two numbers (o be multiplied whase Dalanced
ternary represemations ane as follows:
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where @,, = »s.y. Any e can be obtained by computing the

appropriate summation and adding camy bits that are propagated from
the less significant bit positions.

We have implemented a modifiod Wallace type multiplier that
uses full adders in carry-save configumation for the pamllel steps of
column compression leaving finally only two ternary numbers which
should be added by a camy propagate adder. Since the two bits in
the balanced ternary system can hold a number in the range {(— 4 to
+4). we will use here four-input adders for the column com pression
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instead of three-input ones as in the binary case. This will evemually
decrease the number of pamllel steps in column compression. In
Section 1, we describe a technigee for adding the two numbers left
after the column compression process by mens of a 3-input adder
in [log, 1| +2 steps.

L fmplementation & Termary Fall Adder

We have used three basic threshold L logic modules for our
different cireuit implementations [13], These are 1) input replication:
create replicas of an input through current-mirmor imaging (Fig. Ly 2)
wei ghted sum: forms the arithmetic sum of seveml weighted replicas
{Fig. 2); and 3) threshold detection: determines if the sum exceads a
predetermined threshold {Fig. 3L For implementation of our pmposed
multiplication algonthm with the help of above modules, we will
wssociate each logic value with some definite value of input current.
For physical realization, the logic values (— 1.0, 1) are mapped onto
the values of currents according to

=1=L; 0=M; 1=—H, 3
where L, &f. and H stand for low, medium, and high cuments,
mespectively. As a result, bit-by-bit multiplication (such as 2,_;, ;]
will be mapped onto the cument values as shown in the multiplication
Table I An implementation of this table using threshold 1L logic has
been given in [24]. A circuit diagram of four-input temary adder using
the ahove three threshold logic modules is given in Fig. 4 [24),

MMl PRECARRY ADDNR
The concept of using precany adders [26], [27] for genemting the
carry vector in Doz al time in a carry propagate binary adder was
as follows: If ;- =hi_ . = 0 (binary value) then =, = C. (¢, is the
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TABLE 1
Beaoamcen Temmany PromoT vy MAFFRR
Ta Comment Vases L, M, asp H

v -1 0 i

| H M L
1] M M M
1 L M H

camy-input to the ith bit position.) If a4y =b:; =1 then ¢, = 1.
But if s, = b, then ¢; depends on bits previous o {i= 1jth
position. To resolve this situation, a 3-state precamy bit g at the ith
bit position was intmduced. {p. =0 fora; 3 =b_ 1 =0 p, =1
for ¢;p = bior = 1 and i = 2 atherwise,) Using this concept of
precarry, two numbers can be added in [Ing; «] + 1 units of time.

We exterd the above idea to the case of temary logic. Consider
that two temary numbers A = ooy e and B = b .. By
are 10 be added 10 pmduce the sum 5 = Snfno: -0 -an. We need
here a T-state precarty bit 2 for the ith hit position to resolve the
carry-input ¢,. There are three cases for which we can tell surely
what the camies ¢,'s will be. These are a) sare '"=1" carry: when
{digit-sum),~1 = — 2 and (digit-sum},-2 is other than 2 or |, when:
{digit-sum), = a, +b, for¢ > Jand oy =4 | =1l b) sare "01"
carry: when {digit-sum),-1 = 9 for any valee of {digit-sum),-2 and
o) swre “17 earry: when (digit-sum), -1 = 2 and (digit-sum),-2 is
other than —2 or = 1. Other combinations do not produce any sure
carry but depends on the digit-sum of the previous positions. We
resolve the ambiguity of these cases by defining o [Wecany vector
P = p.pa_r..m and an associated fundamental camy operation
{fea). We define "% (1 = (1), depending on the digit-sum of the
fr = 2ith and {¢ = Zith position as shown in Tahle 11,

[efine a binary operator foo on x, y according to the truth Table
Il wher x, v, and & fco v each can assume valuwes 0, 1, 2 3 4 5,
and 6. Effect of carry propagation from the lower order hits on the
wilue of precarry bit p; is actually reflected through foo, The opemtor
feo is associative but not commutative.

Mow the carry vector C can be genemted from the precamy vectors
in two stages. The first stage i the repetitive application of feo
aperation on precany vectars 1o get P = plpl o1 gy where

pi = pfeoip- fealpicafea(--- (pafeop ) )), Ll<iga
and the second stage is a mapping of pI's 1o 2, according 1o
2=l F=ik

6=1. 4

[
4=l F-=1

1= =1;



IEEE TRANSACTIONS ON COMPUTERS, VOL 43, KO 5, MAY 1994

TaBLE IT
TRITH TABLE FOR GENERATING Precassy Diem p;

Digit-5um Value at Digit-Sum Vahoe at

p: (¢ — 1uk Pasition o= 2h Pusition

0 -2 =2 —=loar

1 -2 |

2 2 2

2 =1 =2,=1.0,1ox2

3 ] =2, =1.0,1 ¢ 2

4 1 =2, -1,0, 100 2

4 2 -2

5 2 -1

6 2 0 1or2
TaBLE I

TRUTH TAHLE FOR PRECARRY OFpramos (oo

i 4 1 3 El 5 6
0 0 i} 0 0 (4] il 0
[ 0 0 0 [i] 1 2 1
2 [H] 1 ] 3 3 3 3
3 i k] 3 k] 3 3 3
4 3 k] 3 k] & 5 &
5 k] 4 5 ] fa ] [
fi [ f 1] [ [ ] .1

hitally P = 4

Afies fim parallel mep: B =
A ool pecilld siepe. B0 =

Ader dhind puralisl siep: Po- l l
Fig. #

This mapping follows immediately from the digit-sum values at
{ = 1jth and {z = Z;th hit positions comesponding to a definite value
of the precarry hit p,.

We give an illustrmtive example as follows,

Example: We take two 7-bit ternary numbers 4 and B, where

A=-1 1 ! -0 — 10D
fi=-1 0§ 00 -1 =1.
Hence,
P=1 4 2 2 3 0 2

Since foo is an associative operation, the valves of precarry bits after
suocessive foo opertions can be computed in three parallel steps
in Fig. 5 (where the thicker lines represem the data flow for foo
operations and the thinner lines stnd for unchanged values of po ot
every pamllel step).

Finally, the mapping from P 0 C is done according 1o (4) to get

C=01100 -1 0

Mo, if we have a sufficient number of hardware modules (precarry
generators) that execute the foo opertion on two given operands, then
the vector & can be generaed from the precamy vecor in [log, #]
units of time, where in each step the feo operators are executed in
parallel. The mumber Nin} of such modules required to compuote
the vector &' for n = 2% js given by N{a)l = E2%°! [T], An
example of interoomnecting all these modules to generae the vector
™ was also shown in | T]. A circuit can be designed using threshold

FL technolagy to implement the precamy logic modules, based on
the successive extraction of step functions proposed by Davio and
Deschamps [25]. We requine two mome parallel steps, one for getting
C trom F* (Fig. 6)and the other for adding © to A and 8, resulting
in Tlog, »] + 2 time units for adding two mimbers,

IV, PARALLEL MULTIFLICATION ALGORITHM

After generating the partial product bits o, 5 = wi—, ¢}, we
are to add n n-hit ternary partial products (with appropriate shifis)
to get the final product 7 = IV, To accomplish this, we would
use here the column compression technigue to educe the number of
bits at each it position successivel y by using ternary (4, 2) counters
[2]. Ultimately, by repeated application of this column compression,
we will be left with two vectors—one sum vector 8 and a carry
vector (1o be added to generate the required pmoduct. To describe the
algorithm formally we nead the following notations and explanations.
Let x be a positive integer, x 2 1 and & bhe another integer defined
as, @ = 4Tmf4].

Let T be a function defined on asetof bits B = [0, B2 5}
in the following way whenre we sssume b, =b. e =83 =10,

T by, b b | = 8By, b be b b C70hG B By B
CN R TR TR T SR SR B |
i bm=o ik L om
being all different, }

where T8, by, beo by §and Cb;, by, Bio b, | are, respectively, the
sum and camry bits in a single bit ternary { four-input) full adder with
imputs &, by, by, b, The function T operates on x mumber of hits
to generate [2a/4], ie., [/2] hits as output. Let m be an integer
defined as

i ifi<mn

m=in—-1 ifi>u

and @ he another imeger defined as

_ i+t
W {?‘rr —i—1
It follows from (2) that w, can be obtained by adding & hits
@y 1= 11— - o3 i rn. o tOpether with the final camy bit
propagated from the (1 = 1yth bit positon. This addition at each bit
position : to generate the final sum bit has to be done by repeated
application of the T opemtion; after each T opemtion, the genemted
sum hits are to be retained in this hit position, the generated carry
hits are to be tmnsmitted to the next higher hit position and the carry
hits penerated at the preceding bit position are to be collected at this
position to be ready for the next T opemtion. The main idea of our
proposed algorithm is as follows.

For each {, the T opemtion is done on all bits o be added to get
i, and the genemted carry bits C'ih,, g, Br. &) ame propagated o
the mext higher order bit position {§+ 1), However, if b = b =
b, =0, Cib,, 0,4, 0) =10 and this carry bit is not propagated. At
the subsequent step, the T operation is performed, ateach bit position
on the sum hits S(&,, e, oo b)) generated a this bit position and
the propagated carry bits ST, e, £, b ) from the lower onder hit
position. This process continues until we get only two hits, one sum
hit and one camy hit, at each hit position. All these operations an
done in parallel for all © At this point, the resulting sum vector
Sap 28—z 515 md the carry veotor Cpn o1 Cans
ame added together by using a 2n—hit precarry adder as befare. The
al gorithm is given in Fig. 7. The function §(n) used in the algorithm
is defined as f{n) = [#/27, Il ¢ is the minimum integer such that
f'fm) = 2, then after executing T operation t times we get one
sum hit and one camry hit. This explains { times execution of loop 2.

ifi<n
ifi2n.

AT
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Henee, this imeger t = [log, a| = I, for any given n will determine
the complexity of the algonthm.
Theorem 1: Time complexity Tin) of our proposed algorithm is

T(n) = 2[log, n] + 2.

Frogf: Loop 2 of the algorithm requires t = [log, «] = 1 steps.
Loop 3 requires [leg, (23] steps. Mapping of I to C requires one
step and the final addition to produce s requires one mome step.

(m]

¥. AN IMPLEMENTATION EXAMPLE

We now discuss the processor amhitecture and the associated data
Ao among the processors implementing a mu ltiplier for § 4x064 radix
3 {balanced temary ) digits using our pmposed algorithm. To generate
the product hit 4, the partial product bits o, - ,_for j =10, 1.- .7
ame added up along with carry bits from {7 = 1]ch bit position (§ = 1)
by means of four-inpt ternary full adders. These full adders for
any particular hit position are connected in a way which we call as
extended pyramidal structure (EPS) as explained below.

The structure of o pyramidal interconnection [28] with 21 proces-
sors is shown in Fig. 8, where the dots represent the processors and
the ams mepresent the interconnections. In this structure there will
ot he any imerconnection hetween the pmeessors along the dashed
lines, Cmly wpward connection from the processors at level O 1o the
processors ot level | and from processors at level 1o the processors
at level 2 of the structure is requinsd, so that four bits from the
preceding level are added in each pmcessor at the succeeding level
of the pyramidal structure. Since we have to propagate the camies
genemted at level 1 and onwards, from one pyramidal structure 1o
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the next one {for the next hit position), some extension to the above
pymmidal interconnection is necessary. Inferconnections between the
processors of one level of an extended pymmidal structure (EFS) to
the processors of next higher level of the next EPS (corresponding to
next higher hit position) is necessary. The sum bits (soumce bits in case
of level (1) are added in higher level of the same EPS, but the camy bits
are added in higher level of the next EPS. S0, as soon as the camy bits
ame genemted, they are propagated to the next higher level of the next
EPS, ready to be added in the next T opemtion. The EPS for adding
64 hits in o bit position isshown inFig. 9, where we see that at level 2,
two 2 X2 planes are reguired instead of one; one plane for adding the
sum hits generated at level 1 of the sume pymmid and one plane for
wdding cary bits genemted at level | of the preceding pymmid. By the
same argument, the mimber of processors required for levels 3, 4, 5
will be, respectively, 4, 2, 1. Note that, at the base of the pymamidal
structure (ic., at level 5, the bits which are to be added are stored
imitially. S0, no adder is required for that plane. The total number of
processors required for the 63rd hit-position=16+8+4+ 24+ 1 = 3L
Lot g = 2% 0 ok g2t oy o giemt

Then the total number of processors mequired to add g hits in the
(g = 1ith bit position 15 given by

[/ + Ta/81 + - + 1 = Laf2] — (g} + (k1 = ko + €]

where - = [ for g = 27(p > () and | otherwise, 7{g) = r = the
number of {'s in the hinary representation of q.
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Assuming that n = 2%, the total mumber of processors ¥, equired
to add the bits in all Zn bit positions is given by

Ny = 2% 1a/2] = rig)+ thy = Ry + )] = [nf2] + 1.

g=l

which can be simplified to ¥, =n"/2 + nlog n - On/2+ 5

The AT value of such a realization comes out to be (n*/2 +
nlag, no= 92+ aillag, n — 1), where n = log, A", wheras
for hinary case [7] it is (n?/24 o207 log, a] - 1%, wher
log, X,

Since the implementation of the algorithm imvolves negular inter-
comnections between only two types of cells, the algorithm is suitahle
tor single-chip VLSI implementation.

n o=

V1 CoNcLUsios

We have proposed a pamllel algorithm for multiplication of two
1-bil ternary numbers, which requires |log, 5] 4 2 units of time and
is implementahle on an SIMD architecture, The AT# measure of the
implementation is fJI;u"{In_g:a ¥ where A is measured in terms of the
numbers of single-bit full adder units and precarry modules. Since the
algorithm involves regular interconnections between only two types
of cells, this is very suitable for single chip WLSI implementation.
An advantage of wsing balanced ternary system is that the negative
numbers can be obtained only by changing the sign of each digits in
its positive number representation and hence the same algorithm will
be applicable to the multiplication of two pegative numbers,
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