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Mahematical formelisms enderlying some of the privcipal hio-medical  imaging
modalities are given, Problems of image reconstrection using Lhese formulations. when
limited or noisy data is available are swied and atiempts to remedy Lhese problems
are discussed, Applications of the mathematical formalisms w X-ray, nuclear el
resonance and radionuclide based imaging mudalities aee presented.

1. INTRODUCTION

Visualization in scientific and cngineering rescarch is a rapidly emerging
application area aimed at developing approaches and tools 1o allow researchers and
users to "see" and comprehend the systems and components they are studying. 1t is
an application area thal requires multidisciplinary endeavour from subjects like
computer science, clectrical engincering, physics, mathematics and statistics-along with
experts from other domains such as medicine hiology. astrophysics and environmental
sciences. The subject is at the intersection of some of the frontier rescarch arca ficlds
such as pattern recognition (PR). imaging processing (IP). computer vision,
tomography and compuier graphics. Examples of approaches scientific visualization
include the presentation of information in three dimegsions, development of dynamic
methods to interact with and manipulate multidimensional data, and development of
models of visual perception that enhance interpretive and decision making processes.
Application arcas include, among olhers, Astronomy, Astrophysics. Environmental
Seicnee and Bio-Medicine. In this paper we shall concentrate only in the arca of
bio-medical computing.

Important examples of applications of visuafization in biomedical computing
include presentation of anatomy and physiology in 3-D, animated represcntation of
the dypamics of fluid flow, animated representation of bio-medicine and bio-kinetic
study for orthopaedic purposes such as guil analysis and graphical rendering of
biomolecular structures and their interactions.

We shall try to develop the presentation of the paper in a brief but tutorial
fashion indicating the research areas and opea problems and then concentrate on the
mathematical aspects of 3-D reconstruction from projections in different bio-medical
imaging modalities. Researchers may be expected to get acquainted with some uf the
standard books on pattern recognition® 3 image processing® > ©, computer vision',
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computer graphics® and image reconstruction™”, but is not necessary for the
professional people. We shall not attemnpt to present an exhaustive list of references
but we shall try 0 cover the key references on the basis of which our study is
made.

The principal imaging modalities to date are X-ray Computed Tomography (CT),
Positron Emission Tomography (PET), Single photon Emission Comptued
Tomography (SPECT), nuciear Magnetic Resonance Imaging (MRI) and
ultrasonography/echocardiography, In all these modalities, the wanation of some
particular physical properly in a 3-D object clement or reconstruction space is used
in reconstructing the image on pixels. Images obtained by considering this slices of
the ohject are tomographic images which are preferred to planar images owing to
their beuer image contrast and spatial resolution.

There are two broad groups of imapge reconstruction methods, namely, inverse
transform tvpe methods and series expansion type methods. In the former, a "picture"
tunction (i.c. a function that describes the physical property under consideration in
Cartesian/polar space) is obiained in terms of itls Radon or Fourter transform using
a diseretized version of the Radon or Foorier inversion formula, respectively’. This
subject will be claborated in a later section. On the other hand, in serics expansion
methods, the problem is discretized al the very bepinning. [t may be noted here, that
in other methods, the physical property osed in reconstruction may be modeled gither
deterministically or stochastically.

in scrics cxpansion methods, the idea is to cstimate an image vector x such that
y=Rx+re

for measurement vector v. # is referred to as the projecltion matrix and ¢ is the error
veclor, These methods generally slart out wilh the approximation of an oniform gray
level matriz and projection are caleulated and compared with the measured ones
Then appropriate corrections are incorporated and successive approximations are made
until convergence 15 oblained. Estimation of x is done by requiring that x and ¢
salisty some kind of optimization criteria. These series expansion metheds uwsvally
utilize an iterstive method of image recomstruction. One such method, known as the
Simultaneous lrerative Reconstruction Technigue {SIRTYY simultancously corrects all
projections by applying a suilable damping facior. In the second method, an individual
projection is calculated and comreeted. This constitutes the Algcbraic Reconstruction
Technigue (ARTYY, The disadvantage with these methods is that all projections are
not given equal weight with the latter projections carrying more weight. These
mcthods are not generally applied to X-ray C but are frequently employed in
Emission Computed Tomographic (E(CT) imaging systems hke PET and SPECT, as
they allow the incorporation of beam attenuation factors in a fairly straightforward
manner'!, Later on, we shall show how this is done for SPECT.

This paper is organized as follows. Section II contains a formulation of the
Convolution Backprojection (CBP) algorithm, an cxample of an inverse transform
mcthod. Extension of the CBP method to 3-D is presented in Section I followed
by Section 1V describing cfforts to recomstruct images using CBP for limited and
noisy data. Section WV details the Expectation Maximization {EM) formulation of
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Maximum Likelihood (ML) estimation (EM—M[:] for finite data proposed by
Dempster, Laird and Rubin!?, Tterative vector extrapolation methods to accelerate the
convergence of the EM-ML algorithm and their applications to PET imaging are
discussed in Section VI. The 3-D version of the EM-ML algorithm used in SPECT
imaging is described next (Section VII). Noise in ECT images and efforts for their
rectification constitute the subject matter of Section VI In the following Section
(IX), the Fourier zeugmatogrphic techmique in MRI, an inverse transform type
method, is elaborated and finally, a few concluding remarks are made.

2. MATHEMATICAL AND PHYSICAL PRELIMINARIES
FOR PROJECTION RECONSTRUCTION

The basic idea underlying projection reconsiruction is the production of an image
of a 2-D distribution of some physical property from estimation of its line integrals
along a finite number of lines of known locations!® (see Fig. 1). The line along
which the integral is obtained is called the ray and the integral along this line is

Y
b

CRFI(r, o)

Fa. 1.
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called the ray sum. We assume that contributions to the integral are from infinitely
thin slices of the object so that distinctions between voxels and pixels is of no
consequence. The picture function at point (x, ¥) of Cartesian space is fix, ¥). The
ray sum P{r. &) in terms of (r, ¢) variables in projection space is

Pr.4) = [ fley)ds ol 2T
ne

where r = x Cos ¢ + v Sin ¢ and 5 is the distance along the ray direction. The set
of values for a given orientation ¢ is the projection at angle ¢ (see Fig. 2). By
chainging ¢ one obtains a set of projections P(r, §) which are wsed to reconstroct
the image. The rays considered in Fig. 2 are equally spaced parallel rays.

¥

N

F. 2.

Backprojection consists of dividing each ray sum cqually among all the pixels
which lie on the corresponding ray. This process is repeated for each of the
projections and the results are summed'®. The hackprojection is
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_ m . (2.2)
fa =Y Prepae
-]

i

f{,\; ¥) is the caleulated picture function, m is the total number of orientations and
A ¢ is the angular increment berween adjacent projections. In terms of x and v,

L

fx v = E PlixCosd, + ¥y 5in ¢,.¢;)A¢

i=1
and in intepral form

= “ . (2.3
flxy) = [ PxCos¢ + ySing, ¢} d¢
0

From Egns. (2.2} and (2.3) one finds that the projection amplitude needs to be
known at arbitrary values of » and the integral over angular increments A is sought
after. ln practice, only a finite number of equally spaced values are available. These
errors result in the appearance of streak arifacts in the image and spatial resolution
is decreased. Thus, it is necessary to Olter the projections prior to backprojection to
make the method analytic. These filiers should produce a gradual roli-off of frequency
prior to backprojection in order to mimimize the effects of aliasing.

The analytic method known as Fourier reconstructionl® is derived with the help
of the "central slice theorem". According to this theorem, the Fourier coefficient of
the picture function f{x, v} given by

& .. {2.4)
Flkok) = [ Plr,9) exp (-2mikr) dr = H(k, ¢)

equals the fourier transform of the projection takep in the direction of the Founer
wave defined by the wave numbers k, k. (& ¢) is the Fourier transform of the

projection. .
Then, on using egn. (2.4) in (2.3)

ifk'I exp [25 ik (x cos ¢ + ysin9)]| & | dkd ... (2.5)

x

Hn

fxy =

=

Here the Fourier wasform of fix, y) is taken and eqn. (2.4) is vsed, as a
consequence of which

Hk$)  Flio k)
L& | | &
So, the actual fourier epefficients Flk, k) of the object are obtained from those
of the backprojected image by multiplying with the wave vector amplitude | & |.
The picture function is
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" =

fooyy = [ [ Fikoyexp(2uike) | k| dkdg

it -
=[ P(xCos¢+ySing,¢)d¢
i

where the modified projection P' (r, ¢) is piven by

z . (26
P(r¢) =[ |[k]| Flk ¢)exp(2mikr) dk. J

-

This modified backprojection P' is not spatially bounded unlike, P, so Radon
fikering' is applied. This method incorporates the convolution theorem in egn. (2.6).
According to this theorem, the Fourier transform of the product of two functions
Flk,¢) and | k| arc replaced by the convolution of their respective Fourier
transforms, namely P(r, ¢) and —1/2n2 2

50 eqn. (2.6) becomes

. 1 P ) dr
P0 = on [N

The quadratic singularity is removed if & 1s bounded, 1c. | k| =k, So

L
: lIkm X —Siﬂliﬂkmf‘}
_{“ | k| exp(2nikr) dk = e Sin{2mk, r) .

Using Egn. (2.7), the cxpression for the modified backprojection is

gy Sint [200 ki r— 1"} ] sin® [mky (r—7) ]

nir-r) - omEir— }"}3 dr',

Pirgi=[ Pr.e)

This result is valid for equally spaced parallel rays.

In realistic situations data are collected so that they divide into subsets, as in
fan beam type of collection mode. Each of these subsets contain ray sums for rays
diverging from a single point. This is the divergent mode of data collection shown
in Fig. 3. A process called "rebinning" is performed on this data set before applying
the paraliel beam convolotion method described above. Measured ray sums for sets
of divergent rays are_interpolated in projection space 1o estimate ray sums for parallel
rays (10].

The divergent projection dala are Plrp,$ry). for —- N=sn = N and
0 =¢,; s Il From these values, estimates of p(ud, I for —UsusU and
OsvsV—1 are made with ¢=vI and (V[)py = ® and ud <L (VZ LxvZ L is the
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size of the 2-D picture space). The interpolation is camried out in two steps.

The first stage, done for each — N < n = N, consists of interpolation in the second
variable. Considering n fixed, estimates of pir., o), for ¢=v[,b Osv=¥ -1 and
VIl =g, are obtained from wvalues of pr., ¢, ). At the end of this stage, ray sums

for sets of paraliel but unequally spaced rays are obtained. In the second slage,
interpolation in the second variable is performed. Keeping v fixed, cstimates of
plud, vI) are obtained from pir,, v[) for — U = u = Y. Thus, parallel equally spaced
rays arc obtained and parallel beam convolution techmiques can be applicd.

3. CBPF METHOD FOR 3.0 RECONSTRUCTION

Magnetic Resonance lmaging (MRI) wears the advantage of being a truly
maultiplanar and 3-D imaging modality. Thus, it can provide images in planes other
than the traditional transverse one as in X-ray CT. Three dimensional MRI images
can be obtained by Convolution Back Projection. A [ew words on the exiension of
the CBP method described in a previous section to three dimension will clanfy the
concept, ;

The 3-D equivalent of the picture function is the spin density p (x, ¥, z) for MRL
In terms of its Fourier coefficients F{k,, k, %.} this is

plxy.z) = J'_fj' Flky, ky kp) exp 2nilkex +hyy+k,2) dk, d, dk,
and, in spherical coordinates (k, 8, ¢) this becomes

plxyz = [ [ [ Fk8, ¢)exp(2n ikr) i Sin? db db dk
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i =

=[ [ Po,(r)Sin0d0d¢
[ ]

where, the modified projection P;, (r) is

Py, (r) = [ K2F(k 6¢) exp(2nikr)dk.
i

Using the 3-D extension of the central slice theorem viz.,

o

Fik,8,9) = [ Pyy (r) exp (2mikr)dr = Hyg (k).

o

{An additional filtering factor g(k) can be introduced into the above eXpression)
the modified projection becomes

-

Py (1) = [ ¥ Hyy (k) exp (27 ikr) dk.
0

The 3-D image is reconstructed by backprojecting these modified projections.
In the discrete case

N

pleyz) = E PE.:h {r) SinB;AQ;Ad;

i=1

where N is the oumber of projections and the solid angle for each projection is
Sin 6,A 0, A ¢, and this has the same valve for all projection angles B, ¢ in the case
of isotropic resolution.

The CBP method has some limitations and Fourier imaging methods i MRI
some inherent computational advantages which will be discussed in a later section.

4. CBP IMAGE RECONSTRUCTION FROM INCOMFLETE, MiIssING
aND NOISY DATA

Improving proccdures for obtaining reconstructions from missing/noisy prijection
data is a cha!h::nging area of rescarch, and we present below some of the efforts
made to alleviate this difficulty and indicate the nced for further rescarch.

Several approaches exist for image reconstruction from limited data. One way is
to devise algorithms which do not require compieteness of projections. The series
expansion methods and Minimum Variance Estimator (MVE) methods! fall under
this category.Both these methods require a lot of computation time.

Another approach obtains estimates of missing data in projection space by
extrapolation and the image is reconstructed by CBP or Fourier inversion (FI)',
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These extrapolation methods are generally iterative and, therefore, convergence is
slow and the computation cumbersome. However, there are two approaches which
claim to achieve substantial savings of computation time, and we devote the rest of
this section to a brief survey of these approaches.

The first method under consideration estimates missing data by extrapolatvon, but
is nom-iterative and utilizes a parametric model of signals. Srinivasa er al'® have
estimated the missing data in projection space using Linear Prediction Theory (LP).
They represent the ray sum as a data matrix P whose elements p{i, j) represent line
integrals for location vectors § and projection angles j. ie. i and j are discretized
versions of r and ¢, respectively. For data available over limited angles, only the
rows representing projections for @ < < B are available in matrix B, and so s
colomns are not complete. The procedure consists of modelling each column as a
1-D» Auto Regressive (AR) process of order N. Thus, a non-recursive digital filter
cstimates data values p(i, j) from prior observations available in the same column j.
The predicted value p (i} in terms of p{i, ;) observed and the AW predicior
coefficients ay, ; (k) is

A

Pl ==Y an; Rpli-kj)
k=1
The AR predictor coefficients are selecied o minimize the mean square error
(MSE) hetween the predicted and observed values. Srinivasa er al'® considercd
several methods lor oblaining the AR parameters and found that the Levinson
recursion method'” was most suitable.

The data matrix was completed by extrapolating the available column data
upwards and downwatds wsing the lincar predictor. For column §

I
P = -3 av; BpB-ki)
ke b

N

.E {ﬁ"" l,j} - 2 ﬂh‘,_,i {klﬁ{ﬁ"k‘*hﬂ—“ﬁ_; {I}E} {ﬁ_j:}
k=12

By tunning the predictor backwards, missing daia for angles less than [ are
obtained. Apriori information such as non-negativity of the projectiom data and finite
extent of the object have also been taken into considerstion. ln addition to obtaining
images from hollow, limited angle and truncated projections, images from arbitranly
missing/moisy projections have also been obtained'™.

The other approach that we consider is a hierarchical Bayesian approach for
image reconstruction proposed by Bresler and Macovski'” which uses minimum
variance filiering. Their algorithm for reconstruction of multiple 3-D objects has been
implemented in three steps for hierarchical estimation of the position and shape of
the object. The object is considered to be smooth with Limited boundary curvature
represented by a chain of primitives which arc equal length cylindrical sections
centered  at a peint ¢ (f) around a trajectory {clf) = [x {#), ¥(#), z ()]} in the (x ¥
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) space and cross-sectional shape and oricntation defined by parameter vector T .
The curvature and smoothness of objects (); is obtained from a stochastic difference
equation describing the evolution with time, of the vector X (r) :

) = [¢' (0 L)

and
X;(t+1) = AX (1) + BW;(1) - (4.0)

where A, B are constants and W, (#) is a zero mean, uncorrelated Gaussian noise
vector with covariance (). Bresler'” has performed and data analysis for a single
cylinder and stated that the application of the algorithm to multicylinder data utilizes
a suboptimal approach.

Massive data reduction is obtained in the first step by detecting object primitives
in 3-D space and oblaining local maximum likelihood estimates of their parameters.
The likelihood function of measurement ¥ for a single cylinder ¢ is?0,

L{c,T) = —logp[¥ | c,T]

2 m|
=N { :[; J?(r,ﬂgn[r—}f{th},c,:b;r]dmtb_%E{]-.‘M

where ds is an area differential in projection space and the integral is over all
projection angles ¢.

Here gy is the X-Ray Transform (XRT) of the cylindrical disiribution in
projection space, r is the location wvector in projection space, ¢ is an unit vector in
the direction of projection view and M) is a 2 x 3 matnix determined by projection

angles 4.
By linearity of the XRT, the noisy projection of N objects with the jih object
comprising of T cylinders is
T,

N i
yrd) = ¥ Y galr-M@heo:F (O] + vr¢)
jel iml

vir, ¢} being the uneorrelated Gaussian random field of intensity N, and

end) = [ [ [ & [n¢;T1dsds
* -

being thought of (19) as the cnergy of the cylinder signal in projection space.

Thresholding and maximization of L{c,I) wrt ¢ and T give the optimal
detection of a eylinder’s presence and estimation of location and parameters. Thus,
at the end of the first step, the algorithm produces a set of ¥ data points

z=1Z1,
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Assuming the estimation error 1o be Gaussian distributed with covariance R and
uncorrelated between data points

Z; = X (1) + Vi{D) e (4.2)

where V, {1} is additive white noise. The system and measurement models are of the
classical form to which Kalman filtering can be applied, in principle, and a minimum
variance estimate obtained. However, the uncertainties in this case are not confined
to the noises W and v. Also, due to noise and false assumption (false alarm) of the
presence of a single cylinder in space, the detected cylinders are not those cor-
responding to any object and so0 MVE is not useful at this stage.

In the second stage, a set of feasible objects are constructed by combining
individwal detected cross-section estimates via minimum variance filtering. The
assignment of detections lo each feasible object is guided by the sequential hypothesis
test.

Bresler!? thus treat the reconstruction problem as an unsupervised pattern
recognition (PR) problem. Number of clusters present {objects) and parameters of
individual objccts are obtained from the unclassified data set Z. § is partitioned by
T into m disjoint clusters »/ and a false alarm cluster © consisting of data rejected
from all A/

v; 15 a vector of indices specifying the order in which »; dala points in the
cluster / are 10 be assembled into corresponding objects. All the m disjoint v,

]
comprise an order rule v = | v, } :
R

A hypothesis H = ( T,v ) completely specifies data to object association and

& is the set of all valid hypotheses. The choice HE£ 8 is crucial to the solution of
the problem and is formulated as a multihypothesis test,

This fest is to maximize the posterior probability distribution of data z, i.e.
max P(H | 2} which minimizes the associated Bayes risk provided that the errors are
HES

equally weiphted and correct decisions are not penalized. According to Bayes' mle

Z

p{H), the apriori distribution, has been assumed constant, and

PZ | Hy= TL p(f | H, NEH) plo | H)

=1

because of independence of the objects, estimation noises V oand the constraint
MW iaj e (4.48)

which together imply conditional independence of the clusters.
Also



154 D. DUTTA MAJUMDER AND S. BANERJEE

. v (4.41)
G=Z- | ) ¥
i=1
and
t={m(m, | .. (4.4¢)

Again, because of the equal likelihood of false alarms in the imaged domain of
volume V.

ok i {&.5)

p{¢|fﬂ=[$

L.

where n, = number of false alarms = & - Z "o
~

Taking the log of egn. (4.3) and dropping ff independeni terms, one arrives at

m _ e (4.6)
min Y [-logp¥ | H NEH) -nlog V]
Hes

J=l

It is computationally difficult to solve eqn. (4.6) by direct enumeration of
different H in §. Calcolation of object likelihood functions for all § hypotheses is
unfeasible for all but the smallest problems. Bresler!® utilizes' the conditional
independence of objects to decompose egn. (4.6) into a step of feasible object
construction followed by intcger optimization.

Thus, in the sccond step, ordered clusters ;= (A, w) in Z that are reasonable
to incorporate from H are detected. The criterion that € be incorporated into feasible
sel B O(H(F), is that it most pass the following hypothesis lest

L{G) =—In pld: | )

subject to X, (r+ 1) and Z, of eqns. (4.1} and (4.2} >> a given o, Thus a pruned
feasible set §* replace a larper set § and thereby produces computational savings.
The Kalman filler is then applied to data &' in order specified by v, o obtain a

minimum variance capsal estimatc {i} {t |5 }':”..1

In the final step, a subset { (W, v) }»:_ of F ix chosen to maximize eqn. (4.5)

1
subject to the constraints given by egns. {4.4a), {4.4b) and [4.4c).

This problem has becn reformodated as a linear integer oplimization problem. A
feasible object O; is completely specified by (A;v;} where }; is a bimary vector of
length &, whose ith element is set te 1 if Z is associated with (; and 0 otherwise.
T is another binary vector of length X, where K is the number of feasible objects
in F, iff the dh feasible object in F C H. So T decreascs a hypothesis H.
A=[h ., hy] is a Nx K matrix with the columns A, The constraints of eqn. {4.4)
are reexpressed as
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Ars[L1,.,1]
Also define
CJ - L(ﬂfj e ”_.i

as the cost associated with the choice of 0, Cs are elements of vecior € =
[Cans O

Thus, the linear integer optimization problem is

min ' 1 subject to AT=[1, 1, ., 1} o 44T
TEX

with 8% = {all binary vectors of length K}

This is a sel packing problem and there are a pumber of efficient algorithms
for solution®. The performance is claimed to be improved by preprocessing & and
taking advantage of the sparseness of A to decompose eqn. (4.7) into a set of
smaller problems.

In both methods discossed above, computation time is reduced. However, no
account has been taken of density variations of the object to be reconstructed. In
Bresler's™ method, the extension of the algorithm to reconstruct multi-cylinders is
not clear. Extensions to irregular objects with density wariations are areas requiring
further research.

5. IMAGE RECONSTRUCTION FROM LIMITCD
Dara I8 ECT IMAGING

in ECT methods, the patient is administered with some physiologically active
compound labeled with a radionuelide. These radionuclides decay in the body and
emanate radiation which consists of positrons in PET and gamma ray photons in
SPECT.

Radionuclides emilling positrons are unstable nuclei of protonrich isotopes of low
atomic number element(S).

The emitted position combines with an atomic electron in its immediate vicinity,
annihilates and produces two gamma ray photons of energies 311 keV each. These
photons fly off in nearly opposite directions along a line with absorption are detecled
in time coincidence photon pair indicates the presence of an annihilation evear in
the cylindrical region between the detectors (referred to as tube). The number of
coincidence counts observed by all such tubes in a given time imterval is the
measprement data. Single gamma ray photon emission occurs in unstable nuchie with
high stomic numbers. The emitted photon in SPECT travels in a randomly orented
direction and is detected outside the body by a gamma ray camera. The photons are
collimated to selectively detect only those photons which fall on the camera sorface
in specified directions. Photons which lie within an enetgy window separates
unatternuated primary photons from those undergoing interactions, are detected,

Let & denote the mean intensity function for emission of positrons (PET) or
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gamma ray photons {SPECT) resulting from the decay of the radionuclides in the
object space. A(S} has to be estimated for all points 5 within the object. Measurement
data is a finite set of photon counts observed by detectors both in PET and SPECT.
Thus, one has to estimate the parameter 3(5) over the entire, continuous object space
based on a finite sct of measurement data,

The physical processes involved in ECT imaging are stochastic in nature and are
generally described by mathematically appropriate stochastic models. Likewise, the
measurement process, which involves observations of photon counts by detectors is
also a stochastic process. Hence, image reconstruction in ECT can be treated as a
siochastic estimation problem. As mentioned earlier, image reconstruction in ECT
generally falls under the iterative series expansion category. An iterative algorithm
based on the Expectation Maximization (EM) formulation for the Maximum
Likelihood (ML) parameter estimation from incomplete data is often used in BECT
imaging, This ML-EM algorithm was introduced independently by Shepp and Vardi
(22) and Lange and Carson (23). In this section, we first describe the ML estimation
from incomplete data via the EM algorithm developed by Dempster of af'?. Then
we show how this algorithm has been adapted to ECT imaging.

Dempster e al'? propose the existence of two sample spaces Y and X and a
many to one mapping from X to Y. The observed data vector y € Y and the
cortesponding x in X are observed indirectly through y. A mapping process
x =+ ¥ {x) from x to y i5 assumed to cxist and x is known to lie in x{v), the subset
of x determined by ¥ = Y{x), where ¥ is the observed data. X is referred as the
complete data and can include parameters also.

A family of sampling densities f{X | %) depending on parameters ¥, is postulated,
and a corresponding family of sampling densities g(¥ | ) is derived. The complete
data specification filx | &} is related to the incomplete-data specilication gy | %) by

B3 1D= [ AX|D &

The object of the EM algorithm is to find a A which” maximizes g(¥ | %) by
making essential use of the associated family fi¥ | R). Each iteration of the EM
algorithm involves two steps, the expectation step (E-step) and thc maximization step
(M-step). We shall claborate this algonthm in the context of our problem in the
following. _

The _ incomplete data likelihood function can be expressed in terms of the
complete data likeliho of function through

P\'{FsI}=Pxﬁsm/P:/yG|F’=}'—!I} (51}

where P, ={(x | y=¥; X} is the conditional depsity function given ¥ = y.

In gur problem, the object is made vp of ¥ voxels and thc mean intensity
function k; defined earlier is considered constant in each voxel ie. x =
{x;, i=1,..,N} is the emission veetor which 'is a sample from the emission process
¥ =X, i=1,.,Nt and ¥ = {¥;, j=1,..M} is the observed wector which is
a sample from the measurement process ¥ = {¥;, j=1,..,M}. Y, is the number of

-’
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photon counts in the jith detecior) or detector tube in PET).

E-step of the EM algorithm : The algorithm of eqn. (5.1) is taken and the
oxpectation for given A = A% is obtained.

log P, (Y. M) =K, [log P, (x, ) | Y=y, &¥]
~ EflogPuy(x | Y=y, B Y=y 1Y .. (5.2a)

s

E {log P, (Y, 1) Y =y; &] = log P, (Y, ).

Equating the first term on the r.hs. of eqn. (5.2a) with Uik, i*] and the second
term with Vi, 35

Log P,(Y; ) = Li(h, &%) — V(b 35). .. (5.2

From Jensen's incquality (24), V(h, i*]l = L’{i*,i‘*}. from eqn. (5.2b) we see that
for any A =3%+! for which

U[i**l,i“} = Ul i"‘,i’*]
log P, (Y, 25+ 1) = log P, (Y, 1%).
The M-step consists of computing the maximum likelihood of A by the iteration
U(REY 3% = max U(h, 38
F

A " ~
where 3%+ ! is the new estimate from A%

The measurement random variable ¥; belonging to the incomplete dafa random
process, is given by

Y= E Xij
=1

where X, represents the unobservable random number of photors emitted in voxel §
and counted in measurment J.

The emission process in the complete set of voxels is modelled as a spatially
independent Poisson process as

N i 3 - (3.3)

The measurement process is also modelled as an independent Poisson process.
Given that the mean of the emission process is h={};, i=1, .., N}, the conditional
probability for observing the measurement data ¥ is
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N

Iy N0 (X i
n € [E Mpi
P(Y=y|X) = }nl }}'[" : . (5.4)

Py = probability that emission from voxel i will be detected in tube j. This eqn.
{5.4) is also the likelihood function L(A) of the observed data.

Since X; represents only those photons of the emission process X; which is
detected in measurment j, X; is obtained by thinming X; with probability p,. Since
X; is Poisson; X; 15 also a Poisson random variable with mean p; A The complete
data likelihood function is

Pi(x;d) = ﬁ ﬁ 2 'Il'lpyﬁ
J=1 i=1 ,J.
where T X,
The lop-likelihood function is
M N
log Pe(xih) = % 3 | —hupy + Fyloghpy —logi® 1 |
j=1 =1

E-step of the EM algorithm
U R %) = Ez [log P ()) | Y=y, A%)

| Mgy + Ez[ ¥ | Y=y, h*]loghp; | + C.

N

M
i=3
5% is the currcnt estimate of A and € contains A independent terms. Since the
observed measyrement data y; = 2 x; for a fixed data y, the random variables

Xpé =1, ., N can be assumed 1o be muitinomially distributed. The expectation
E; [ | Y= _v,i*] for these multinomially distributed random wariables is
-Ei' Efy | }r-},, ik} o, qu:r_
E }"#:-P!‘}
i
So
M py v, :
Ui, ) = E E kPt oD loghpy |+ C
j=1 il 2 M opy

The M-step is
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M
[aug}.,i*;] -3 _ln,ry, 1 ]:l]
":'}"i MY Ty e E 5 A+l i
giving the new estimate
fK ek :
R D T v .. (5.52)
2 Pi  ja E it Pty
i i
This expression in additive form is
!
il fj_E L Fij
Al o Ry 3 L P .. (5.5b)
Pi  jml E A pij
s
and in vector matrix notation is
A Talt o T (RY g0h ekt A (Y. .. (5.6)

The diagonal mairix is given by

M

Fiih=

and the log-likelihood gradient vector g{ﬁ} at & w A" has #th componct

¥y— £ '.'I"'f Prj
[eWli= 3 ———
% l‘l Py

i

and ﬁ{i‘} is the correction vector.

The iterates of the EM alporithm have non-decreasing log-likclihood values, ie,
possess the monotonicity property. The non-negativity constraint is automatically
satisfied if the initial cstimate has non-negative pixel values, ie. if = 0 if i? = .
The EM cstimate also has the self normalizing property of preserving the rotal activity
of the estimate a constant, ie.,

N u - p E ¥

i.:“l r ¥} g 3
21 E 2 Py - 1 E i Pij 2 Py
i

1l
-
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Since the right hand side is independent of £,

N . N .
Y Bty &

F=1 Pk
Therefore,

W
AN =0
iml
Assuming that all the emissions occumring in a voxel ¢ are detected by one of
the deteciors, 2 p; = 1. Then 2 if - E ¥;- Thus, the recomstructed image will
i f i

have the same activily as in the measurements.

Although the EM algorithm produces images that have better quantitative
accuracy and resolution than those oblained by the CBP method, they are nor
generally suitable for vwse in routine diagnostic and research algorithms due to their
high computational requirement at each EM iteration and slow convergence. Hence,
a nmumber of schemes, including the EM Scarch (EMS) algorithm® have been
suggested for accelerating convergence.

In egn. {5.6), the correlation vector can be considered as defining a direction 10

which 7} mowves to the new estimate. By multiplying ﬂ.(i’t} by a factor pf, this
movement can be enhanced. This forms the basis of the gradient search algorithms
of which the EMS™ produces the most satisfactory results for ECT imaging.

In EMS, the parameter p* is chosen to maximize the log-hkelihood () along
a line sepment {}.=?x,k+1.u}.{?-.*}; n=z0}. Line search for p* is made in the line
segment setermined by the vector inequality
i*+uﬂ{ik)in*
where £ is an infiniltqimal positive guantity.
Defining y; = Z Pij i‘: and

fal

N

;= E pi [A I[i*} ]i» the log-likelihood becomes

!
=1

Wp)=[-y;—p b+ ¥log(y;+ ud;) ] + constant.

The maximum value is obtained as usual. To maintain the positivity of the
estimate, the line search is made in the range 1.0 = p= p_... Here

ey = TOIL Wy

where w = if [A(RY]z0
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[C7 G 7 v .
=——3 i [A(A)]:; =<0
AR, I

Optimom 4, can be obtained using the Newton-Raphson method or simply by
checking for maximum I{p) for a number of intermediate in the specified range.

Rajeevan® has found that the EMS algorithm accelerated the convergence
twofold. However, he has developed a class of vector extrapolation based iterative
algorithms, coupled with the above mentioned gradient based ML estimation (MLE)
algorithms for convergence of basc iterations, which are claimed to substantially
reduce the number of iterations required for obtaining MLE. A presentation of these
two algorithms along with results obtained on application to PET constitate the
subject matter of the next section,

6. VECTOR EXTRAPOLATED FasT ML Al GORITHMS

In the nonlinear vector extrapolated fast M1 algorithms of Rajeevan®, each cycle
of the algorithm consists of generating a finile number conseculive estimate by a
gradient based algorithm,

The maximum likelihood estimate &% to which the iterates generated by a
gradicnt based algorithm converges is

E= -3

o I Yt Y S MY

] i}

for the kth iteration.

& M1
A

The estimates converge asympiotically to and

[TAGH || =0 as k==,

Al each siep &, the new estimate is considered to be generated by a nonlinear
operator A, ie.

fee1ap, §

The two cyclic alporithms presented below use a local linearization of an operator
A. In each cycle, a small number m of consecutive cslimates are generated by a
fixed Mnear operator using a gradient based algorithm, ie.

=B R by k=1, m . (6.1)

where B, is the linear operator, b, is a constant vector and an initial estimate
obtained in a given cycle n of the vector cxtrapolation technigue, which is used as
a starting estimate of the next cycle. A, , is compuied as a weighted sum of the
cstimates i:, k=0 .., m In the Minimum Polynomial Extrapolation (MPE)
melftod, the weights are compued from the cocfficients of the minimum polynomial
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of the linear operator 8,. In the reduced rank Extrapolation (RRE) method, f.,,._ is

computed by adding a weighted sum of the correction vectors .&[iﬁ}, k=10, ..,m
- 1 to the initial estimate of the cycle, where

Sk M+ 1 Tk
Aldy)=d, " =k,
The procedure for obtaining the weights in each of these two methods is given
below.

For the MPE algorithm, the extrapolated estimate is

P22

Apm = Wy Ay

with wy being the weights.

The minimal polynomial of an operator B worl. a vector v is the unique monic
polvnomial P{B) of minimal degree which aanihilates the wvector v. The minimal

polynomiat B(8,) for the linear operator B, w.r.t. the correlation vector ﬁ{iﬁ) is thus

P(B,) A(AD) = D
where

P(B)= 12 { c,Bf,:i : m being the degree of the minimal polynomial and ¢ (k = 0,
-]

.., m} arc the coefficicnts with ¢ = 1. The number of estimates osed for extrapolation
is mathematically cqual to the degree of the minmimal polynomial m. From the
definition of minimal polynomial

S B Al =0
k=10

using the definition of A (AY) viz.,
B, 8 (M) =AY

m

Y Ay =o0

k=0

or, a5 P(B.) i5 a monic polysomial, ¢, = 1,

w—1
T oAl =-ady
knl

or, in vector matnx notation,

Dc=—A(AT) .. (6.2)
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where D is the m dimensional column vector
pD=[adDady)...adyh)
and ¢ is the vector of coefficients
c=fec .. ey i B
The least square solution to the overdetermined system of egn. (6.2a) is
c=—D'AGM. . (6.2b)
p' being the Moore Penrose geueralised inverse of D
D' =[DD}' D
Thus the coefficients c; are computed.
If 15 not an eigenvalue of B, then i.,,_m is unique and satisfies
Ay = B bt By e (6.3)
Using the definition of ﬁ{i’tﬁ_} and eqn. {6.1)
A =(B,—DN*+b,, I being the identity matrix. Substituting for b, from
Eqn. {6.3)
AGR) = Ba=D (R -Fom)
Premultiplying both sides of the above equation by P(B,) and rccalling the
definition A(H,)
P(B,) (B~ 1) (3 ~Ry ) = 0.
Since (B, - 1) commutes with any polynomial in #, and is assumed inverlible
PB) (h—dy ) = 0

or
L]

Y aB -k =0
k)
Using eqns. {6.1) and (6.3), the above equation becomes

E ctl:in.m:l" E T if"
k=0

kmi}

in.m' E wti‘;

k=0

with the weights given by
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In the second wvector extrapolation method., RRE, &, , for each cycle n is
obtained by adding a weighted sum of correction vectors ﬁ(if,]l to the initial
M
estimate AL ie.
m-1
A - - - (6.4)
ham=hnt 3wy Alhg).
k=i

As in MPEML, we adopt a local lincarization scheme wsing the linear operator
B,. We also assume that 1 is not an eigenvalue of B,  Thus eqos. (6.1) and (6.3)
siill remain valid.

Muliiplying both sides eqn. (6.4) by 8,

m- 1
Bohon=8004 S w B,AGH

" &k -1l
which becomes
m-1
. (6.5)
= o+ T owmadih)

k=]

Subtracting egn. {6.4) from (6.5)

m—1

0=a00)+ T owladi h-adh!

k=11

which can hL rewTitten 1-5

E wy A2 (h) == (3

with . A2 (F)=a(= 3 H-aph

of, in malrix notation
D?w =~ A (&)
The matrix D? is
D[ (@) a0 .. & 7))

and the vector of weights
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w=[wywy eowy |
The least squares solution for obtaining the weights is
w=—[D4" A (i) - (6.6)
where | D*]T, the Moore-Penrose generalized inverse of matrix [ is computed using
D" = [ 1D DT [,
The extrapolated matrix is
=it 4 Dw =52 - DD A (B
In the next cycle, the starting estimate is
SRS .

The cyclic ileration is continued until acceptable convergence is obtained. This
is the reduced rank eslimate as the matrices D, 09 each consist of m column vectars
having ranks smaller than B,. If the number of estimates equals the dimensions of
solution space, 2 D7 are squarc matrices. The expression for full rank extrapolation
is obtained as follows,

i.w..m E_{BM_IJ_J E:"rJ i {6.7}
Provided that {8, 1) is invertible.
From the definitions

AR~ (B, -N4b, o (6.8)

A2 (R7) = (B~ 1) A (i) ~ (63)
Substituting for A, from eqn. (6.8) imo (6.7)

Kl R B = TP
From eqn. (6.9} the matrix D? is

DI={B-ND
So iﬂ,m for full rank extrapolation is

Foom= A0~ DD A (D).

This equation for full rank extrapolation is smaller to that of reduced rank
extrapolation in which the inverse of D? is replaced by its gencralized inverse.
As with EM algorithms, the MPEML and RREMIL algorithms possess the self

normalizing property if the gradient based algorithms generating the intermediate
estimates possess the sell normalizing property. Some of the weights can be negative
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as thev are obtained through minimom norm solutions. It may be possible that, when
image values are small, the extrapolated image becomes negative. These nepative
pixels are offset o a very small positive value at the onset of the next cycle.

The error introduced in the estimate due to the local linearization assumption is
reduced by the process of cyclic iteration. 5idi*™ has shown that, with cyclic iteration,
nonlinear vector extrapolation methods generally converge quadratically.

RESULTS OBTAINED FOR A COMPUTER SIMULATED 2-0 PET SySTEM

Rajeevan® has found that PET (the geometry of the simulated 2D PET system
is given in Fig. 4) images for both of the vector methods coupled with the EM
gradient based algorithms, namely EMMPE and EMRRE, ie. 2 cycles of EMMPE
and EMRRE (ie. n = 2} with 3 EM ilcrations (m = 3), are comparable to those
produced by 30 LM iterations alone. Likewise, 2 cyveles of EMSMPE (EMSRRL)
with 2 EMS iterations each per cycle, produces images that are comparable to those
produced by 10 EMS iterations. It has also been shown?® thal 5 or 10 iterations of
the EMS algorithm produces images of the same quality as 13 or 24 EM interactions,

B
X X
I
X X
/ ™
ithpixe ">
A ¥
X x
eij

Y th tube

Fic. 4.
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respectivelv, A glance at these numbers indicated that the vector methods produce
substantial acceleration of convergence. These images are also found to produce
images with desired likelihood values and low residual errors®™.

The open question at this point concerns the stability properties of these two
cyclic algorithms. The MPEML uses first order difference vectors for compuating
weights, whereas the RREML algorithm uses second order difference vectors. In this
sense, MPEML appears to be more stable than RREML. The nomber of intermediate
estimates used for vector extrapolation in each cycle of the algorithm also influences
the stability. In the MPEML alporithm, the-degree of the minimum polyvnomial of
B, is not known explicitly and so an exact estimate of the intermedisie estimates
cannol be made. In computer simulations™, typical values of m = 2, 3 are chosen.
Mo criteria has been presented for choosing the value of m in the RREML algorithm,
and a typical value of m = 2 has been taken. Also. the number of cyeles noof the
vector extrapolation has been taken to be 2 in both cases. Therelore, in both the
algorithms. appropriate criteria need 1o be established for obtining optimum values
of mroand n.

The other probicm that arises is that of nolse present in the images. We shall
address this question in g luter section.

An extension of the EM algorithm to 3-D. applicable o real SPECT imaging,
along with a discussion of how beam allepvauon faciors can e incorporated, is
considercd in the subseguent seclion.

7. SPECT Imiadiini

We have sisted in the Introduction that beam atlenvation factors can he
incorporated in an casy manner when using series expansion methods for ECT
imaging. In this scction we shall show how this is achieved for SPECT imaging.
Results of the previous section will be extended to obtain 3-I Maximum Likelibouod
images in SPECT, which incorporate corrections to minimire image degradation. In
SPECT. images are degarded due to attenuation and scattering effects of photons in
addition w collimator divergence. Inadequatc number of detected photons in
measurcments also limits the accuracy of the imaging process. Scattering and septal
penetration of photons result in blurred images of point sources. Both of these cffects,
namely, blurring and attenuation, vary with depth and location of the emission source
inside the object. The width of the geometric response varies with the distance of
the source from the camera and the width of the scatter responsc varics with the
depth of the source from the medium. 5o the point source response obf o SPECT
measurement system has a 2-D distance and depth dependent functiomal form. Thus,
SPECT image teconstruction algorithms need to account for this 2-13 nature of the
response functions, Compensations for the aforementioned degrading effects can be
obtained through point response functions incorporated into ilerative MLE alporithms.
The vector extrapolated MLE algorithms described in the previous section has been
extended o 3-D by Rajeevan er ol* and applicd o SPECT image reconstruction.
In these 3-1 versions, voxel detector probabilites are computed from 2-D point source
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response  functions which approximate the effects of attenvation, sacttering and
collinear divergence. These point source functions are modelled as 2-D Gaussian
functions, assuming that the object has uniform attenuation, A projector-backprojector
pair™ is then developed and used in the implementation of the 3-D MLE algorithm.

The primary and scatter radiations emitted from the object are modelled as a
pait of paralle] subsystems™ both of which are in series with the detector system?!,
The point spread function {PSF) of the total imaging system {#,) in the spatial domain

is?

hoAd, D)y = e W0 by (d) + &2 SF (D) [h (d) = h, (D) ]. - {7.1)

The geometric detector PSF () and scatter PSF (A;) are taken to be rotationally
invariant P3Fs in 2-D), whose parameters are functions of the distance from the
collimator {d} and depth of the medium (D) of the poimt source and and lincar
attenuation coefficient of the medivm (u). A 2-D convolution between h, and #, is
performed. The varisnce of the geometric PSFa,) is assumed to be lingar function
of d given hy (32)

GF" = iy o + [r53
and the wvariance of the frequency domain scaiter PSI(3)) is taken 1o be
=bl fi_ll.l:D+b3 ey 2
giving o, in the spatial domain as

I [
T e Py et

and the scatter function (SF) is (332)

oy el ol
EF =-= .r_“.l.]_ il

The constanis «), a3, b by by be Loy, and ¢ can be estimated from SPECT
geguisilions on g point source 8t varions distance from the collinesr and depths in
the medium.

The reconstruction space is 8 cubie region cnclosing s cylindrical object of
uniform cross-section and is decomposed into Nx N = N voxels of which onlv those
that are within the object are taken into account. Each projoection image is made of
N x N pixcls. The cross seetion of the object is considered to be vniform. Thos, all
voxels in a column in the axial direction have equal & and D and the center of the
vixgls project at the same lateral distance’ onto a projection image space. Thesc
vatues for voxels in a cross-seclion for afl projection angles are compuied and the
corresponding widths of the peometric and scatter responses are calculated and stored.

As the imaging syslem is considered 0 be a combination of rwo parallel
subsystems and the total PSF is assumed to be the sum of the primary and scatter
PSFs, the projeclor-backprojector and pair compute the primary and scatter component
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separately and then add them together.

The projector is implemented by first computing the widths of the geometric and
scatter PSPs at projection angle 8, from precomputed values of o, o, and ). The
projection of an image is obtained by each voxel column convolved with the 2-D
PSFs. The PSFs being rotationally invariant 2-D Gaussian functions are separated
into axial and transverse components which are easily computed from a knowledge
of width and amplitude and the lateral shift for the transverse component.

Let ky and h’z be the N x 1 vectors representing axial and transverse components

of h, respectively, and K and K| be the corresponding quantities for the scatter PSF
b, at a given angle. The ith voxel column of the image is the N x 1 vector. The
convolution of the total PSF A, is done in two stages corresponding to the two terms

of Eqn. (7.1). In the first stape, the ptimary component of the PSF is convolved,
This again is obtained in two sieps as follows :

. ~ ~ 1 & \

Step 1t wvi=0F T IF(H)=F{wh
where F and }H are the forward and invers¢ Fourier transforms, compuetd using FFT.

Step 2 ¢ Each clement of vector ¥ is smeared in the transverse direction with

the wights givne by the transverse component of .Fz; multiplicd by the attcnoarion
factor e~ belore adding to the projection image, i.e.

[pﬁlh-.'z - [pﬁl.i-iz SR R [h.{r]."] [F.h ]r'l
where |py];, o 15 the (fi.f;) the element of the projection angle 6.

In the second stage, the scatier component is projected as
VT (F ) F FD)

ang
[Poliy.;; = IPely.jn + SF L%, * '&;‘J,'z ¥ }i,

All voxel columps are thus projected in all projection angles.
Back-projection, as the name implies, consists of backprojecting cach image onto
a voxcl column. An ¥Wx1 column vector ¢ is first obrained by taking a weighted
sum of each row of projection image with weights given by .F:!:r ie
N
[C}'2= E l['ﬁfg]_fl [PﬁiJ'],_,iz

ip=1

for j, = 1, ... N. ¢ 15 then convolved with the axial component of the peomelric
PSF (K} to obtain c,

E=F T F B F i),
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The primary component of the projection image is backprojected onto vexel
column v,
v, — yre N E

The scatter is likewise obtained in two steps, viz.,

:
Step 12 [cly= 3, Vi i ol
ip=1
_J;g = 1, ey N

Step 2 1 v, < v+ e SF (¢ * (B = hD)).

In 3-D SPECT imaging, each detector is indexed by its position (), f;) and
projection angle 8. So, the index of a detector becomes {8, fy, j;) insiead of j in eqn.
(5.5b). Thus, the 3-D EM algorithm gives the cstimate for the image density

i _ Ay
uf Yo ..~ Yo 5.4
L

et e P SR
2 2 B L .vE._.;-_,_,l:
B fof

A

E+1 2k
W=

where ¥, ; is the observed measurcment data in the (B, f. 7 the detector g, i, is
the probahility that a photon emitted in voxel [ will he detected in the (8, j, f.)th
detector and

- oL
LN E b Pisis
i

is the projection of image #* onto the {1 jojth pixel at angle 8.

RESULTS FOR A REAL SPECT TMAGING SYS1EM

It has been found by Rajeevan et al (26,2%) that 4 cycles of the 3D Expectation
Maximization RRE, (EMRRE) with 2 iterations per cvcle have the same
tog-likelthood value and residual image as 26 iterations of the 310 EMMLE image.
Transverse and coronal (of Liver and Spleen) views?? indicate that 4 cycles of the
3D EMRRE algotithm with 2 iferations per cycle produce images of comparable
guality as 26 ierations of the umaccelerated EMMLE algorithm. Thos vector
acceleratiom techingues also reduce computation time in real SPECT imaging.

As in PET imaping, noise in the image is a problem and we shall treat this
subject in the following secrion.

B MISE 1IN ECT IMAGES AND THEIR RECTIFICATION

Maximum Likelihood estimates of emission deasities in ECT images produced



BIO-MEDICAL IMAGING 1m

by iterative algorithms such as those described in the last two sections produce
images that have better guantitative accuracy and resolution than CBP images.
However, one problem associaled with MLE algorithms is the slow convergence
which has been alleviated by wvector extrapolation algorithms discussed before. The
second problem is due to the noise generated in the image in successive iterations.

Two approaches have been adopted to minimize this noise. Several authors™
have suggested that ML iterations should be terminated before the images wrn noisier,
However, this approach has consistestly failed™ with real PET data, The second
approach is to use prior information about the object to be reconstrucied.

In cases where some prior knowledge abont the object distribution is available,
it can be formulated into a probability distribution for the parameters k. These mean
parameters b, can be assumed to be random variables. Image reconstruction in these
siluations 15 performed in a Bayesian framework,

According to Bayes' theorem, the posterior density function P(: | ¥) is given
by

p o LR 20) B

i3, G

where PUh | Y) is the likelibood function. P{R) the prior distribution and other terms
have therr usual significance,

Taking the loganthn of both sides of egn. (5.1)
lng P2 ) = log P(Y | &) « log PR — log A(Y). - (B2

The maximum a posterioni (MAP} estimate WM which is the estimate of &
which has the maximum conditional probability for measurement data ¥ is obtained
by maximizing log P(x | V).

The log-likelihood function is obtained as described carlier and log F{Y) is
independent of ). Thus, in order to mimimize log P(x | ¥). information about the
prior distribution is required.

Rajeevan™ has Iried three distributions-Gaussian, Gamma and Gibbs for the prior
image reconstruction implemented along with MAP algorithms. A penalty of deviating
from the mean image, known apriori, is imposed. In tealistic situations. such images
are rarely known aprioni. [deally, in Bayesian reconstruction, it is desirable to use
distributions for which the mean image does not have to be known aprioni, or af
least. 10 use image distributions for which a minmimal set of paramelers need to he
known, Of three distributions, the Giibbs distribulions best {its into this calegory.
Therefore, the wse of Gibbs fonctions as prior distributions in Bayesian image
reconstruction has hecn explored.

The Gibbs distribution, which is an example of a Markov Random Ficld (MRF)
i5 a suitable siochastic model for the images produced im BECT and can incorporate
image characteristics such as spatial smoothness and edge properics through local
correlations. Some relevant properties of MBFs arc deseribed befow. Other properties
can be found in Dubes and Jain®,
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S is defined as the set of indices for the wvoxels in an image. Then the image

= {h =k, i =1, ..., N} can be considered to he a collection of N random
variahles defining a random field on the index set S. The image & is an MRF if
the conditional probability for an image voxel, given the values for all other voxels
in the imape has the property

PV ) =PRA) Y ES

where 5/ denotes the set of all indices in § excluding the index ;. N E5 denotes
a set of indices forming a neighhourhood for voxel 7 and A, ., and A, are, respectively,
random wvariables defined on these sets. For 2.D image defined on a rectangular prid,
the Ist order neighbourhood consists of all the 4-neighbourhoods of a given pixel
and a 2nd order neighbourhood consists of all the B-nieghbours. For a given
neighbourhood type, a set of sites is called a ‘clique’ If each site in the set is a
nighbour of every other site in the set. Following™, the Gibbs function used is one
tor which the potentials are nonzero only on cliques of pairs of sites.

The Gibbs distribution for the prior function of egn. (8.1) is thus

Fld)= Ifzf:'{p Er 2 Wik Irh,,]r

e, 1,0

where (1, 1) arc pairs of neighbouring sites. Using this expression, the log-posterior
function is

log P3| V)= E E A py + ]ug E b By II

J=1 i= L orml

2 é E V(h,. %) + terms independent of k.
L&, i
‘The expeciation siep ol the EM-MAP algorithm with this Gibbs prior s
Uik, £ = E, [log P(h/x) | V.0 ]

E. [log Pix | PN A fl'-‘.k] +log A+ C

i‘.}:.P..
it L.nl : la '-"'-c iIn: = V{}m }‘1)
S By T S Wk
P : '

|
N
i =
e
=

+ terms independent of 2,

In the maximization step, Uk, f'-\.,i] is maximized woril Ay, le
i I
LY My 1] 1
an -8 EJ s T R

— (4, - — | —
ik, 4 Eys zﬁf’u !-.‘ ﬁ.-.g.-f ik,

N. being a set of neighbours for site i. The complicated form of
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£

renders it difficult to solve the coupled equatmns Jn the One Step late {OSL)
algorithm of Green®, Vik, ), ) os replaced by V{L“.'h] in the potential and enery

of the new estimate . Thus, with the OSL algorithm, the EM-MAP cstimate is

jk
REE e i s E Yi Py

i EP;;BE[ ‘,J*-!ERP‘J

EH

when B — %, the OSL algorithm reduces to the EM-MLE algorithm.

In order 1o eliminate the non-smoothness in the ML reconstructed images, the
patential function chosen should have a form that penalizes non-smooth images. The .
following choices have been-used. (26 and references therein} '

:"..‘—-}.. ok
0y = [ 220

{}“J'_}“J }2
e W

Vi (A, i‘n-,-,fl = [ugl:i 1+ l }H;}m J ’

- }L‘I:I - 'l cosh [ "!'.f;?'-:'l J}

V, is found io penalize deviations between neighbouring pixels excessively,
resulting in an oversmonth image. On the other hand, V, incorporstes & ent off value
of 1.0 and so large differences in neighbouring pixels due to an edge are
insuffictently penalized. Vy and V; are compromiscd between the two cxtremes.

In the use of Gibbs priors, the two parameters pand § necd to be specified.
These have been chosen, for instance in®®, by trial and error. ‘The estimation of these
parameters is an open area of research. As a matter of fact, parameter specification
of MArkov random Fields iz onc of the difficult problems that bimit the usage of
these models for image restoration, edge detection and segmentation®. These
parameters are ofien determined by trial and emor®® as in the case of ECT imaging
discussed above.

9. MAGNETIC RESONANCE IMAGING (MRI)

The principles underlying both the commonly used techniques of MRI arc
basically inverse transforn type methods. The physical properties used in this imaging
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modality are usvally modelled deterministically. In order to provide a clearer
understanding of the mathematical formulation of these techniques, a brief overview
of the physical processes is presented firsi.

Muclear magnetic moments of an object placed in a magnetic ficld align
themselves parallel 1o the direction of the field, which we consider to be the =
direction. If an oscillating magnetic ficld is applied along a perpendicular direction
{e.g. the or the v direction), the mapnetic polarization vector is deflected from the
z-direction when the z field approaches the reasonance value'* **. The resonance
condition is

Y B=wm

where B is the amplitude of the applied static field, v the gyromagnetic ratio and w,
the Larmor frequency. The rotation of the polarization vector in a plane perpendicular
to the z axis induces an em.g. in the detector eoil which constitutes the nuoclear
magnetic resonance {n.m.r.) signal. In practice, nuclear spins are excited with short
r.f. pulses and the response of the spin system to such pulses is the free induction
decay (f.i.d.) signpal.

When magnetic field gradients are superimposed onto the main magnetic field,
the resonance frequency becomes a function of the spatial origin of the signal. Dwue
to this gradient ficld, the frequency domain signal is the equivalent of a projection
of the object onto a gradient axis. Lauterbur®, first proposed the idea of nmr
zeugmatography, which consists of gencrating spatial maps of such distributions. In
the CBP method discussed earlier the pradient is rotated in small angular incremenis
and a series of projections obtained. Image reconstruction is performed wsing 3-1D
backprojection.

In the second techmigque known as Founer zengmatography, proposcd by Kumar
et al*!, a spatial encoding process is involved, which, in effect Fourier transforms
the spin density {i.e. the picture function) with appropriately scaled varables to obtain
the f.i.d. signal. This Lid. signal is then inverse transformed o reconstruct the image.
Due to the nature of the physical processes involved, the reconstruction data are
automatically discretized.

Consider the spins of spin density plx, ¥} to be cxcited by a r.f. pulse due to
the magnetic field gradient &, (along ¥} called the phase encoding gradient. The spins
resonate with relative frequency.

wiy) = yGyy.
If this gradient for time interval #,, the phasc at the end of this signal is
L y =7 Gy.]"'l'

Afier interval ¢, G, i tumed off and an orthogonal gradient (7, is applicd for
a duration f, when the fid. signat is collected as shown in Fig. 5. During this
detection period, the spins process at a frequency

wix) = vG.x
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Thus, spatial information is encoded into both the phase and frequency of the
amr signal whose amplitude is proportional to p {z, ¥).
An image can be regarded as a 2-D array of signal amplitudes verwus spatial

coordinates (x ¥). The signal corresponding to two subsequent m/2 pulses of
magnitudes G, and G, applied during intervals ¢, and 1, respectively, is given by

Staty = [ [ ployexpliogt + ip,) dudy

= [ J ety exp 1y (Goxs + Gy} dxdy
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The values of S(1,f) when appropriately scaled, represent 2-D Fourier
coefficients of spin density, the fourier conjugate variables being w, = v G, ¢, x and
= Oy ¥,

Spin-spin relaxation (the return of the spin system to equilibrium) effects can

easily be incorporated by damping the fid. with the expomential decay term
exp{-t/T=} in egn. (9.1), ie.,

Sttnty) = [ plxy)exp {&(Goxt,+ Gy y1) — (1o+ 6)/Ta} dxdy.
)  (92)

During the interval t,, the nmr signal is sampled at repular intervals T, so that
in a single fid, a set of Fourier coefficients S{gy, T); St 21), ..., S(tp N.T) is
obtained. T is chosen so that it conforms to the sampling theorem. I T is too large,
aliasing effects occur, and if v is too small, the object will fill only a small part of
the image. The optimal value for a sample of extent I, along x, 15 obtained as
yO L, t=m,

The total number of sample points N, determines the nomber of pixels and hence
the spatial resolution in the x- direction. Raising the amplitude of {7, imcrementally
during each excitation and read cycle, as in spin warp imaging? yields an array
N, xN, of raw data which is double Fourier transformed in oeder to reconstruct the
image which consists of M, xN, pels. The process of incrementally increasing the
amplide of the gradient to encode spatial informpation into the phase of precessing
spins 15 termed as phase encoding.

The above procedure can be extended o 3-D by introducing a variable period
of evaluation ¢, during which a third mumally orthogonal field &, is applied. Similar
analyses are carmmied out but with two phase encoding stages instead of one

Echoplanar imaging, first introduced by Mansficld (43) is a modification of MRI
applicable for imaging physiological motion. In this scheme, many lines of data are
collected from a single excitation, each being encoded separately. The entire data
space is mapped during a single read cycle with a sufficiently fast sample rate.

Spatial resolution is an issue which needs mprovement. However, since the
himitations are physical, a discussion of this problem is hevond the scope of this
articie. As with other inverse transform applications, reconstruction of images from
limited data remains a problem in this modality also.

10, CoNCLUTING REMARKS

In spmmary, we have presented a tutorial introduction to the mathematical
formulation of several biomedical imaging modalities which fall under two broad
groups of image reconstruction techniqués, namely inverse (ransform and series
cxpunsion methods, Reconstruction in X-ray CT and sometimes MRI is performed



BIO-MEDICAL IMAGING 177

using the CBP method while an iterative seris expansion algorithm based on the EM
formulation of the ML estimate is used in ECT imaging modalities like SPECT and
PET, Physical models in X-Ray CT and MRI are deterministic whereas a stochastic
description is adhered to in ET. Fourier zeugmatography, an inverse transform type
reconstruction technique widely. used in MRI, is also discussed.

It is found that in all the formulations described, recomstructions of coatinuous
density distributions of the objects are carried out from limited, finite or noisy data.
Several approaches have been attempted to increase the accuracy of reconstruction
from available data but these approahces tend 10 take too much computation time
due to slow convergence, or are simplistic in nature. Therefore, vsualization in
biomedical computing is limited in accuracy due to reconstructing contindous objects
from limited data. It is hoped that, with the advent of new technologics and
sophisticated mathematical tools, it will be possible lo obtain more accurale imapes
which will considerably simplify the task of diagnostic radiologists.
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ADDENDUM

Herman and Odhner! have omdertaken a study on the evalvation of several
reconstruction abgorithms, namely rwo iterative type Expectation Maximization {EM)
methods, which are Expectation Maximization-Maximum Likclihood (EM-ML) and
Expectalion Maximization-Maximom Apriori Probability (EM-MAP) methods, as well
as two varianis of transform methods (convolotion backprojection). This evaluation
was carmied out in 3 manner which satisfied statistical hypothesis testing. The
evaluation crileria were chosen 5o as to judge the suitability of a particular algorithm
based on three different tasks that they are reguired to perform. These three tasks
comsisted of the deteetion of the relatively higher uptake on the left side of the brain
compared to its right side, the estimation of the total uptake in various neurological
structures and the uptake at individual points within the neurological structures.
Accordingly, three Figures of Merit (FOM)} were defined for these tasks. These FOM
are, respectively, the hit-ratio, the structural accuracy and pointwise accuracy.

Subjects used for the study consisted of mathematical phantoms containing
ncurpanatomical structures which are represented as ellipses and Tectangles at
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appropriate locations symmetrically situated with respect to the midline. The
background activity in the brain was taken to be 1.00 while that in the
oeurcanatomical symmetric structures was taken as 1.95 or 2.00. A random number
generator chooses exactly one of a pair to have an activity of 2.00 for each pair of
symmetrical structures.

The abnormality index is the average of the reconstructed pixel values for pixels
whose centers are within that structure in the phantorn. A hit is considered to be
made if the abnormality index is higher for that structure in a pair of symmetric
structures for which the activity is higher in the phantom. The hit-ratio is the ratio
of hits to the total nomber of pairs in the data set. If the hit-ratio of one algorithm
is found to be higher than the other algorithm, the next step was to determine whether
this was statistically significant. The sign test® was chosen as the test to reject the
null hypothesis that both methods are equally good to be hypothesis that the one
with the preater hit-ratio is better. In this test, pairs of struetures which have been
classified as different by two reconstruction methods is considered. Let C be the total
number of such pairs and O be the number of pairs comectly classified by the
reconstruction with total number of ilems C and equal probabilities assigned to the
two classes. From this binomial distribution, the probability of selecting an element
with value € or higher is noted. This probability gives the level of significance for
gjecting the null hypothesis.

Inaccuracy is the absolute value of the difference between the abnormality indices
of that structure in the reconstruction and in the phaniom. Siructural accuracy is the
negalive of the average of imaccuracy over all structures in the phantom. The level
of statistical significance for the structural accuracy is obtaimed as follows. Let B,
and &, be the inaceuracies of the bih of a lotal of B structures reconstructed by two
methods. Null hypothesis implies that {B, — &) is a sample of a zero-mean random
variable. For a large enough &

B

E By — B5)

b=l

is & sample of a normally distributed zero-mean random wariable. The variance is

]

By — B

b=

The significance is calculated using the normal distribution.

The phantom and reconstruction are clipped by setting pixel wvalues which are
less than 1.65 to 1.65 and valoes which are greater than 205 to 2205 The normalized
root-mean-square distance between clipped reconstruction and clipped phantom is
calculated. Pointwise accuracy is the average of the negative clipped normalized
distance over all the phantoms. Statistical significance is calculated in the same way
as for structural accuracy with the clipped normalized distances for whole phantoms
being compared instead of maccuracies for individusl phantoms.



180 D. DUTTA MAJUMDER AND 5. BANERIEE

In the iterative algorithms siudied, the commonly used practice of preconvergence
termination was adopted. After plotting average values of hit-ratios versus number of
iterations, the iteration number 2 was considered noteworthy as the highest hil-ratio
was oblained at this iteration. The other two iteration numbers were 28 and 80. A
plot of the average value of the clipped normalized distance versus the number of
iterations for EM-ML and EM-MAP indicated that the average of EM-ML is
minimum at iteration number 28, The average monotonically decreases for EM-MAP
and does not change significanlly afier iteration B0,

Results showed that EM-MAP had proise if pointwise accuracy is the important
FOM whereas EM-ML was best for detecting relatively higher uptake (hit-ratio) and
estimating the average uptake within the structures. In conclusion, it may be remarked
that the relative merit of two construction algorithms can be extremely dependent on
the medical tasks.

Another elass of iterative algorithms known as Multiplicative Algebraic
Reconstruction Technigues (MART) have also been described, which have not been
cxtensively used to date?. These methods are generated using a multiplicative updating
in such a way that non-negative constraints are automatically satisficd and no
parameters” choice has to be done, ie,

k] E Kk
.CJ' = x_,- _{','_l;
where cf is a positive real number. These alporithms are generally computationally

expensive and the convergence rate of the algorithms as well as methods for
aceelerating them are open areas of research. :

ACKNOWLEDGEMENT

One of the authors (3B) would like to acknowledge a2 grant from CSIR, India
which cnabled this work on Mathematical lechnigques in biomedical imaging.

REFFRENCES

1. G. T. Herman aod D, Odnner, Mathematical Methods in Tomography, Proceedings, (Frerwolfach
199, Springer-Verlag, Berlin, . Herman, A. T.owis and F, Matterer, eds, p, 215-228.

2. R. Mould, Introduction o Medical Statistics, Adam-Hilger, Bristol, Fngland (2nd. =d) 1989

3. A. R. De Pierro, Mathematical Methods in Tomography, Proceedings, Oberwolfach 1990, Springer-
Verlag, Berlin, (G, Herman, A. Lowis and ¥. Matterer, eds, p. 167-1H6



	mathematical techniques-143.jpg
	mathematical techniques-144.jpg
	mathematical techniques-145.jpg
	mathematical techniques-146.jpg
	mathematical techniques-147.jpg
	mathematical techniques-148.jpg
	mathematical techniques-149.jpg
	mathematical techniques-150.jpg
	mathematical techniques-151.jpg
	mathematical techniques-152.jpg
	mathematical techniques-153.jpg
	mathematical techniques-154.jpg
	mathematical techniques-155.jpg
	mathematical techniques-156.jpg
	mathematical techniques-157.jpg
	mathematical techniques-158.jpg
	mathematical techniques-159.jpg
	mathematical techniques-160.jpg
	mathematical techniques-161.jpg
	mathematical techniques-162.jpg
	mathematical techniques-163.jpg
	mathematical techniques-164.jpg
	mathematical techniques-165.jpg
	mathematical techniques-166.jpg
	mathematical techniques-167.jpg
	mathematical techniques-168.jpg
	mathematical techniques-169.jpg
	mathematical techniques-170.jpg
	mathematical techniques-171.jpg
	mathematical techniques-172.jpg
	mathematical techniques-173.jpg
	mathematical techniques-174.jpg
	mathematical techniques-175.jpg
	mathematical techniques-176.jpg
	mathematical techniques-177.jpg
	mathematical techniques-178.jpg
	mathematical techniques-179.jpg
	mathematical techniques-180.jpg

