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Abustract

A furry MLP model, developed by the author, is used as a comectionist expert svsiem for diaghosing
heputobilisey disorders. 11 cun handle uncerlainly andfor impreciseness in the inpul as well as the output. The input
te the netwark is modelled in terms of linpwistic pi-sets whose centres and radii along each feulure axis are
determined [rom the distibution of the traiming duta. Tn case ol partial mputs. the maodet is capabie of querying the
nser for the more important feature infanmation, when required. Justificalion for an inlerred decision may he
produced in rule form. A comparadve study of the perfermance of the model with ether merhods is aiso provided,

Fevw words) Puzey neural neltworks; Mullilayer perceptron;, Conneclionisl expert syslems; Pattern classification;
Inferencing: Rule generation

1, Ilntroduction

Artificial neural networks [9, 17] are massively parallel interconnections of simple neurens that
function 45 a collective system. They have been found to be proficicnt in solving various pattern
recognition problems. Fuzzy sets [6, 19, 21]. on the other hand, are capable of modelling uncertain or
ambiguous daka so oflen encountered in real life. Thercfore, fuzzy noural networks [1, 7, 16] are
designed o utilise a synthesis of the computational power of the neural networks along with the
uncertainly handling capahilities of Tuzzy logic. The multilyyer perceptron (MLP)Y {17] is a fead-forward
neural nelwork model consisting of multiple layers of simple, sigmoid processing elements or neurons.
A lueey version of the MLP (developed by the auwthor |13, 14]) is used in (his work for diagnosing
hepatohiliary disorders.

An cxpert sysiem | 2] functions in 3 narrow domain dealing with spueinlized knowledge generally
possessed by hwman experts. Traditional rule-based expert systems cneode this information as f-Then
rules while the conmectionist expert system |2] uses the conmection welghts of a trained neural net
mode]l for this purpose. These arc ustally suitable in data-rich environments and avold the
time-consuming phase of knowledge base construction. Since fuzzy neural networks have been found to
be berter equipped in handling vanous forms of uncerrainties eenerally associated with natural data,
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their use in designing Fuzey comneeliomist expert systems could alleviate several problems related to
uncertainty or ambiguity,

The fuzzy MLP model |13, 14] has been used {or classification and rule generation in [1{] with some
synthetic data consisting of fuzzy as well as lingarly nonseparable, nonconvex and disjoint patteen
classes. The model is extended here to automate the generation of the input description of the patierns
{along each feature axis) at the input layer of the fuzzy neural network from the training data. The
input vector {which can be in qoantitative/linguistic/set forms} is represented in tertns of the Hngoistic
prapertics low, medium and high while the output decision is in terms of class membership values. The
centres and radd of the pi-fonctions along each featore axis are determined automalically (tom Lhe
distribution of the training paiterns, Initially, the fuzey MLP is uscd for classilving the multi-class
paiterms.

Mext, the trained network is used 10 gencrate rules. The conncelion weights in this slage coastitute
the knowlege base (in embedded {orm) for lhe classification problem under consideration. The model is
then capable of inferring the output decision for complele and/or partial inputs along with a certainty
measore and can query the user for the more essential missing input information. If asked by the user,
it is capable of jostifying its decision in If-Then rule form with the amecedent and consequent parts
produced in linguistic and natural terms.

The effectiveness of the model as a neuro-fuzzy experl system is demonstrated on a set of medical
data from the domain of hepatobiliary disorders. A comparative study is made with the classificatory
porformance of the fuzzy neural expert system by Hayashi [18, 4] and the more conventional stalistical
approach, viz., lincar discriminant analysis.

2, The fuzzy MLP and rple gencration

1n this section we deseribe the {fuzzy MLP model [13, 10] which is used for both classification and rule
generation. Consider the lavered network given in Figure 1. The ontpot of 2 newron in any layer other
than the input layer is given as
v.{|+1 ror = 1 fotpi w
T T —exp(=Z v
where ¥¥ is the slate of the ith neuron in the preceding Ath layer and w is the weight of the connection
from Lhe #ib neuron in layer A to the jth pewron in laver & - 1. For nodes in the inpwl laver, ¥7
corresponds (o the fth component of the input vector. The Least Mean Square error in output vectors is
minimized by the backpropagation algorithm using gradient descent with a graduat decrease of the gain
factor [13]. '

(1)

Chutput

Ioput
Fig. 1. The threc-lavered MLF model,
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An n-dimensional pattern K — |F.. Fa. ... F,| 15 represented as a 3n-dimensional vector
-F:' = [#luwl{ﬁg{ﬂ'}: #nmd'iuml’ﬁ,]{ﬂ}: M]li.g.]n[ﬁ.'ll::FJ}i 4y #high”‘h]{Ff}j
— el x2S (2)

where the g valucs indicate the membership functions of the corresponding linguistic pi-sets along each
feature axis.

For an {-class problem domain, the membership of the ith patiern in class &, lying in the range |1, 1],
is defined as

1
bz lE)

where 7, 1% the weiphted distance between the ith pattern and the mean of the kth class (hased on the
training sct) and the positive constants £, and £, are the denominational and exponcntial fuzzy
generators controlling the amount of fuzziness in this class-membership set. Then, for the ith mpat
pattern, the desired output of the fth output node is defined as

di = ju; ()

Note that according (o this definition a pattern can simnultancously helong to more than onc class. This
is determined basically from the training set used during the Icarning phase.

Rules can he generated from the trained network. Figure 2 gives an overall view of the vanious steps
invalved in the process of inferencing and rule peneration. The input for a test pattern can be in
quantitalive, linguistic or set torms or a combination of these. It is represenied as memberships to the
three primary linguistic properties low, mediwm and high as in (2), modclled as z-functions. The
informatinn can be in exact numerical form like £ is #. It may be given as F is prop, where prop stands
for any of the primary linguistic propertics. The model can also handle the linguistic hedges very, more
or lexs (Mof} and met. In case of sel form psage, the input is a mixture of linguistic hedges and
quantitative terms. The modilicrs uscd are about, fess than, greater than and bepween.

If any input feature £ s nor available or missing, we clamp the three corresponding neurons
xp=x¥_ =xh — 05 such that K — {7 — 13+ 3+ 1. We use

no information = {0L5/ L, 0.5/ M, 0.5/ H} (4}

ZF {3}

as (L5 represents the most ambiguous value in the [uzzy membership congept. We also tag these input
neurons with oeintf? — noinf |, = noinf},, — 1. In all other cases the vardable noinf} is tagped with zero
for the corresponding imput neuron &, indicating absence of ambiguity in its input information.

If part of rule
X :
Weights
! lnput pattern | known or | Trained noural net %‘ Output decision & then Rule :
; somponents | urknown (Connection weights) " Certainty measure pa.rt_“i genaration
- 1 ; o i
T input feanire
* kv o When output
b f unobtainable neuronia)
i unknown
y [}uﬂm“E RS,

Fig. 2. Rlock diagram of the inferencing snd rule gensration phases of the fuzzy neural network,
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2.1 Forward pass

Associated with each neuron § in layer A are its confidence estimation [actor cont?, 2 variable
unknown{ providing a measure of the weighled information from the preceding ambiguous neurons £ in

layer # - 1 {having noinf!~' — 1} and a variable known” giving a measure of the weighted information
from the remaining non-ambiguous preceding neurons {with noini¥~' = 0), For neuron § in layer & =1}
we define
il o 2
unknownf= > whTplT!
ol e {_]
2
o Fol
unden;' = > |wrii
i noinry '—1}
and
Moo LR
known = > Wi (6}

1 neinfd-T=n)

where [or neurons in layer /= 00 we have

noinf? = {1 If |knm'l"”?| = |unknown(]. o
' 0 otherwise,
Using (1}, (5)-({7), we detine
- >y wh = Junden|  ifnoinf?—1 and A0,
I
{8}

¥ atherwise.

If there is no neuron § with noinf = 1, then the system finalises the decision inferred irrespective of
whether the input information is complele or parial. A certainty measure (for each output neuron in
output layer f7) is defined as

bell =y X,y (©)
where bell’ = 1, The higher (he value of bell” (=0). the jower is the difficulty in deciding an output class
fand henee the greater i the degree of certainty ol the oulpul decision,

22 Querving

If there is any neuron j in the output layer & with noinf]" — 1 by {7), we hegin the querving phase.
We select the unkoown cutput neuren j, trom among the neurons with noint{’ — 1 such that conf}’ by
{#) {among them) is maximum. Then we pursue the path from newron §, in layer H, in a top-down
manner, to find the ambizuous neuron {, in the preceding layer (h — H — 1} with the greatest absolute
influence on neuron .. We select § —§| such that

Wi Ryl = max el (10}
1 noinfd-l=1}

The process & repeatod down 1o the input layer (B =0) For node £ in the input layer, the model

queries the wser for the value of the corresponding input feature u,.

Note that if 3 missing inpul vanable by (4) is guericed for und found to be missing once again. we now
tag it as unobtainahle. The inferencing mechanism treats such variables as known with values
xp —xb o Al 705 bul with noinly, —noinl} , —ooinf) o — 0, such that & — (e, -t)*+3 -1
The response from an uncbtainable input variable can allow the peuron activations i1 the following
layers to become non-amhbiguous with noinlf — 0 such Lhet an output decision may fnally be inferrcd.
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2.3, fustification

In this phase the nser can ask the system why it inferred a particular conclusion. The system answers
with an If-Then rule, applicable to the case at hand, in terms of the salient input features. Let the user
ask for justification about a conclusion regarding class f. We choose neuron { from the hidden layer
H 1it w;’ “'={) Let a set of m,_, neurons he so selected. For the remaining layers we ohtain the
maximum weighted paths through these neurons down to the input laver.

Let the set of the selected mr, input neurons be given by {2l ol ..., ab, ) and their correspanding
path weights {sum of the connection weights along the different ]a}'erﬂ]l to neuran fin laver Ff b
denoted as

|wela wety, ., wela |
We arrange these neurons in the decreasing order of their ner dmpacts, where we defing for newron §
net impact; — y!'+ wet,

Then we generale clauses for an If-Then rule from this ordered list until
D wet, 3 >, wel,g (11}

wherg [, indicgles the inpul neurons sclected for the clauses and £, denctes the input neurons remaimng
from the set {al, &b, ... g%}

Let 4, be the input feature corresponding 1o 2 neuron ¢, in the input layer (f =0), selected for
clause generation. The antecedent of the rule is given in linguistic form with the linguistic properly

heing determined as

tow i, — 3, — 11— 1,
prop =% mediom  fé, 3w, 12, (12)
high otherwise.

A bnguistic hedpe wvery, trove or fesy or not may also be altached to the linguistic property obtamed for
the antecedent part. We use the mean squarc distance iy, . pr.) between the 3-dimensional impul
values {components of the pattern vector) al the neurons corresponding to feature &, and the linpuistic
property prop cbtained from 4, by (12} represented as pr, {with or without modificrs). The pr,, tor
which d{x, , pr..) is the minimom 5 selected as the aniecedent clause correspanding 1o [eature o, {or
neuron {, ). The procedure is repeated for all the inputl neurons selected by (11} to pencrate a set of
antecedent clauses for the rule justifying the inference regarding output node §. All mput features {of
the lest pultern) need not necessarily be selected for anlecedent clause peneration.

The consequenl part of the rule can be stated in quantitative form as membership valoe ¥ (o class f.
Mowever, a more ndiurﬂl form of decision can also be provided for the class j, having significant
membership value v 7, considering the valve of bel’ by (9). For the linguistic output form we use: very
likely for 0.8 = I:H.i” = 1. fikefy for 0.6 = hell’ <0.8, more or fess fikely for 0.4 =bel” < 0.6, not unlikely
for 0.1 = helff < U.4 and urable o recognize for hc1f <01 '

3. Input veclor representation

When the input feature is numetical, we use the m-fuzzy sets [15] (in the enc-dimensional formy, with
range [ 1]. given as
200 — |F —clfAY, foria=|F —¢j=
m(Fie, Ay— 1 L-20E clfay, for0=|f —¢ =;%J'I., {13}
i, uthetrwise,
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where A =0 is the radius of the a-function with ¢ as the central point.
When the input feature is linguistic, its membership values for the a-sets low. medium and high are
quantified from (13} as

0.95 A(E(.95/LY, e And TE(O.95/LY: e An)
e Eatltele s v St b oot it it LU AR LT g
k’w_{ L’ M : 7 }

edinm = {x{f-;{u.?sim; & A U._;ﬁ : H{Ff{ﬂ.gﬁf;{}: Che ,h.h_}} oy
o _ [w(FI095/ ) o M) RIF(0.95/H), (i A) 0.93
hlgh_{ L : M "H }

where g, A Cove Ay €y Ap Tefer 10 the contres and radii of the three linguistic properties and F{0.95/L),
F(0.95/M), E(095/H) rcler to the corresponding fcature values £ at which the three linguistic
properties attain membership values of 0.95,

3.1. Cheive of parameters

Let F,  and F;  denote the upper and lower bounds of the dynamic range of [catlure £ in all L
pattern points, considering numerical values only. Let #i; be the mean ol the pattern points along the
fth axis. Then m; and s, are defined as the mean (along the jth axis) of the pattern points having
coordinate values in the range [F,_.m,) and (my, F; | respectively. For the three linguistic property
scts we define the centres as

Cmedium( ) — My Crommi ) — M Crgery = Ms (15)

and the corresponding radii as

Mawiry = z(cmdium{q;] = C'l-:-w{.rjp}:

Aigni ey = 2 Chignien ~ Caredinmiz) (16)
g4 Alnwf}:;} (F, - cmcd.il.un[.ﬁj] 35 :’\high{_;-j]_f (Concdivmiziy — Fro)
F_-F

.r.l'l'ﬂl .|Im"'|

Amediuncs = T

where fnos 15 a parameter controlling the extent of the overlapping. Note that this choice of parameters
as well as the linguistic representation of features are different from thal reported in [13, 10]. Here we
take into accountt the disiribution of the pattern points along each feature axis while choosing the
corresponding centres and radii of the linguistic properties. This has been found to be mode efficient in
modelling skewed dats distributions. Besides, the amount of overlap between the three linguistic
properties can be differcol along the different axes, depending on the patlern set. We are also able to
ensure that aoy [(eature value along the jth axis for pattern F; is assighed membership value
combinations in the correspending 3-dimensional linguistic space of (2} in such a way that at least vne
Of fymeis i F): Pmedomiry{E) OF pragury(F) is greater than 0.5, This allows a pattern F; 1o have strong
membership to at least ane of the properties low, medium and high.

4, Implementation and resulis

The model was used on a set of 576 paticnl cascs ol various hepatobiliary disorders (already used by
Hayashi ct al. in |18, 4]). There wete nine input features corresponding to the results of different
biochemical tests, viz., Glutarmic Cxalacetic ‘Transaminate (GOT, Karmen unil}, Glutamic Pyruvic
Transaminase (GPT, Karmen unit), Lactate Dehydrase (LDH, iufl}, Gamma Glotamyl Transpeptidasc
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(GGT, mu/ml), Blood Urea Nitrogen (BUN, mg/dl), Mean Corpuscular Volume of red blood ccli
(MCV, 1), Mean Corpuscular Haemoglobin (MCH., pg). Total Bilirubin (TBil. mg/dl) and Creatinine
(CRTNN. mg/dl). These were represented in the 3n-dimensional linguistic form of (2). It is to be nied
that the medical data under consideration had appreciably skewed distributions along most of the
feature axes, The upper and lower bounds #; , F; and the mean my along the jth axls for cach of the
nine feamires are indicated in Table 1. This sort of data distribulion eculd be suitably handled by the
choice of parameters given in (15)-(16} for the linguistic pi-sets used. The 10th feature corresponded to
the sex of the patienl and was represented in hinary mode as (1,0} or (1), A diagrammatic
representation of the data points along the st feature axis {corresponding to GOT) is depicicd in
Figure 3. The hepatobiliary disorders used fur the four output clusses were Aleoholic Liver Damage
{ALD), Primary Hepatoma (PH), Liver Cirrhosis (LC) and Cholelithiasis (€2). The network was trained
wsing perc % samples from cach representative pattern class of the datg set. We selected Fy =5, £, — !
in {3) and fmos = 1 in {16) after several experiments.

We used two measures of percent correct classification performance for the iraining set. The outpul,
after » number of updating steps. was considered o perlcet match p if the value of cach outpot neurcn
¥ was within a margin o (1.1 from the desired membership value 4, This was a4 skricter criterion than
the bust match A,, where we lested whether the jth newron output ¥{* had the maximum activation
when the jth component o of the desired output vector also had the highest value, The lactar f.,
corresponded to the perfurmance of the model when une also considered the second best choice (ie.,
the eutput neuron with sceond highest activation corresponded to the correct paltern class). Note that
mse (mean square error). p. by, b refer to the training sel while mse,, ¢, (best choice), £, {with second
hest choice) are indicative of the test set (remaining (1{0-perc) % samples). Here b,(f-) corresponds to
the sum of B,(r) with the score contributed by the neuran with the second highest activation. The
individual classwise performance {with best choice) are alse provided for the test set putlerns for the
four cutput classes,

During the rule gencration phase, complete/partial sels of inputs were clamped al the input layer and
(he appropriate classification was inferred by the trained neural model. A measure of certainly was used
and querying regarding unknown input feature values resoried to in case of some partial inpul sets.
Tustification in 1(="Then rule form, regarding a conclusion. could also be obtained when desired.

A comparison is provided with the resulis of Hayashi ¢f al. |18, 4]. They used the Pocket algorithm
for training the Distributed Single-layer Perceptron Neiwork. The real-life fuzzy data were defuzzilicd
using the Level Sci representation to produce the crsp inputs {+1, — 1.0} required by the algorithm.
The various cut-olf levels for recepror responses of each [eature were scl manually after consultation
with domain ¢xperts. Generably 50 000 iterations wers required for converpence. In our appreach, the
choice of the paramcters for the linguistic features along cach feature axis is automated, depending on
the pattern sc! disinibution. Besides, converpence is also achicved penerally within 300 sweeps. The
resulls of using Lhe lincar discriminant analysis on the same data were reported by Hayashi et al. m
(1%, 4].

Table 2 compares the classificatory performance of the fuzzy MI1.P based model {using three hidden
layvers having 4} nodes each) with those of Hayashi's model and the more conventional linear
chiseriminant analysis method. All models used 70% of the partern set as training data. Mote that the
classwise recognition score, using best chaice, of our madel s compairable to the scores, including the
second best choice, of Havashi's model. The overall superiority of our model in classilying the paticrn
sets can be easily observed.

In Table 3 we provide a study of the effect oo the recognition score (%), wsing differenl nombers ol
hidden lavers, nodes and training set size pere. The number of hidden nodes in each case corresponds
to the network configuration (found experimentally) providing the best results with Lhe givwen
combinatton of number of layers and training set size. It is observed that botter resolts are obtained in
cases representing large training set size coupled with large network eonfiguration (in terms of hidden
layers and podes). Small irsining sct sizes usually resulted in poor generalization capabililies on the wst
set, However in such cases the performance deteriorated even further when wn optimal number of
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Table 1
‘The upper and lower bounds and the mean along each input
featur axis for the data on hopatobiliary disordars

Featurc Limit e m; R

GOT Karmen unit 3 1130 4356
GIT Karmen unit 3 545 Tt
LDH ufl L] 1] %) A32T
GoT mu/ml 4 1a4d.1 M
BLUMN mg/dl 33 17.2 910
MY fl 667 26.1 L&0k3
MCH R 03 321 525
TBil my/dl 0.1 3l o0
CRTNN mgdl 4 1.1 4.3

hidden podes were exceeded, but an increase in the number of hidden layers seemed to slightly enhance
the efficiency of the model.

Tabl: 4 depicis the rule generation and querying phases of the fuzzy MLP (trained using perc ="
with 40 nodes in each of the three hidden layers) for a sample set of partially known input festures.
Columps 4 and § refer respectively to the input feature supplied by the user after quervinp and the
resulting outpiit membership value of the neuron corresponding to the hepatobiliary disurder supported
by the Then part of the generated role in column 7. The last column indicates the rules obtained from

Eiﬂﬂﬂl—*

4000} v

3,000 ::::

GBOT (Karmen unit)

2,000

Case number

Fig. 3. Diagranumatic rcprescntation of the 576 data points for the feature Glutamic Oxalacetic Transamanaie (GOT)
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‘lablc 2
Comnparative siudy of the recognition scores (%) wsing the different models
Fuodel Lincar Tavashi's Fuizy neural octwotk Fuzzy t1F meuicl
diserininant _— - - -
analysis haes| chasice with 2nd best choice  besr chojce with dnal bt choice
hest malch B 630 4.6 - 100 -
with 2o best march A, — TEHL1D — 1LY
perfect madch p == — w7 —
ALD 5 545 auT 037 AE.A
PH 04,7 fitL6 H23 LAl E1M
1.¢” 03l Hhi Ti.4 527 89.4
¢ R ] Bl u LI M|
bst el spore o a2 Sid — T i
with Z2nd best net scor: £ — — A - Hi,

the nilialiy supplied feature seuin column 2 (from Hayashi, [22]). There were o types ol such rules in
[22], vie., the ones excluding a disease and the ones confirming a disease. In our model we resorl 1o
querying and further updating to obtain rules that are more specifically indicative of a discase. L may
he mentioned that the inpwl {feature valucs of the sample test pattern as well as the connection weights
learned during training contribule to the rule peneration process. This helps extracting roles relevant to
that region of ibe tealure space which is local 10 the arca pointed to by the feature values of the test
pattern. Note thal the cortainty measure (and nol the output membership value) is used in deciding
whether querving should be resoricd Lo at a particular stape and therefore querving is not required in
all cases with partial sct of mpw features (e.g., sce row 1 of the able).

5, Comclusions and discussion

A neurg-luzzy expere system has heen desceibed and its usefulness in diagnosing hepatobiliary
Jdisarders demonstrated. The model could bhandle uncertainty both at the input and the output. The
input to 1he network was modelled in terms of the primary linguistic properties low., medium and high,
using pi-lunctions. The centres and radii of these m-sets were aotomatically determined from the
distribution of the training patierns. The model was capable of quetying the user for the mare
important missing information. in case of paral inputs. Justification for an inferred decision eould he
praduced in If-Then rule form. A comparative study with the methods of Hayashi et al. |18, 4] and the
more conventional linear discriminant analysis was also provided.

It s to be noted that the connectionist expert system model by Gallant |2] uses crisp inpuis/outpms

Tahle 3
Classificatiom pedommance of the (o MEP using different notwork onflignrations {with fnos = 1. F, 5, f.=1)

o

Layers  MHidden perc &) h, n MLse #aweeps ATD PH T f f- s,

ruades

a 0 181 UL DRI S50 DN AsD Y4 447 Sm2OBN3 s23 T3 Lz
a0 i 4.8 RO z3Y k0LT R0 S3d 0 652 381 TRT  &42 HAZ LORY
1 0 M0 88T 92 056 200 428 W14 532 ®R3 O OATA MM Q075

4 13 10 1000 1004 981 K7 180 alE 56 330 AR4 a54 0 T2T1 0 dwg
15 S0 Wha M5 268 LoIZ 70 59 T3 A6d RIR M9 332 O
Xy n Fim Y81 54T N4 4T GZH 685 éadd B33 T05 @22 LAZ

3 13 1 TOLE 10 960 RS 210 447 352 4nd 6GBZ 538 TSZ QLM
23 N o2 92 Q0 kil 430 AL WEY 50T H4T TR4 B3 O

40 Wl 1008 1w 974 0N HD AT T RRT BOS e ERY 0064
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Tablc 4
Rule peneration and yoerying phases with a sample sct of parrial input features

Ar Inpul fenures Ourput  Rule generaled Rulc

ko — == — —— - memh. from
Lumially initially Queried or value IT pares Then  initial
supplied unknow ParL featuros

1 GO = I0H MOV, TR, — 077 GOFE s medinm ikely ALY
OPT =40 CRTEN GPT s low PH compleiely
LD = H GOT iy very low falsc
GiFI = a0 RN ig very medinm

15<2BL/H =220
W= WCH - 30

male
2 MOV 2 100 GO, GEL 3.0 GOT i wery low WELY PH s
male LIH, GIFr, GO7T is very low 1 GTT i wery low likely  complorely
BUN, MOH,  GFT i sery low a7 LI 5 vury Jow L falsc
THil, MIT 15 Mol mediom {026 MY iz verr high
CRINN BUN is very low 0,74 MCH is Mol mediune
LDH is wery¥ low 1.0 MOH 15 Mol high
3 GOT =24 CiPT, LD, .04 GOT 15 very low likely FHis
female GGT. BLTN, GPT is very tow o7 GPT is very low L completcly
MCY, MICH,  GGT s wery low (62 LI2H is low false
TRiL, BUMN is Mol medium 0,53 OGT ds very low
CRTNM LOH is low LG7 BLUM is Mol medinm
BACY is Mol mediom 072 MECY 15 Mol medium
4 COT-=4 [T, GO, 075 GOT s very low likely  PFTlis
A= GFT =100 PLN, MCH,  MCH iy Mol mediym 0.8 RICY 15 very low C eompletely
MOV 490 THil, MCH is Myl medivn false
femalc CRTMNM MCH is Mol low
5 [.TYE] =T GOT, GPT, %7 GOT s low vely L s
Rl 7% < BN GGT, DL, GOT 35 noL high .91 GPT is Mol how hkely  camplelely
made MCH, THil, GPT is very medium (.54 BLUMN is wery medium PH lalse
CRINM MCE is Mol medium 094 MY s very low
GG s not medium 087 MCH is ol medium
BUN is very medium (L4
f BLN =24 GOT, GFT, (RS GO is high very (s
BCY = 10400 I.1DH. GGT, COT = high {L&S BLUM is Mol high likely  complelaly
male hMCH, THil, GFI s hagh LIRS WIEY s high PH lalse
CHIWM MCH 3% Mol mediym (.84 WOCH is hMal medioim
MOH is Mol high
T GOT =24 LIH, GGT, (.l GOT 15 very low VT PH is
AN=GPT= LN BUN, MOV,  MOCH is high L3 BUM 15 very low likely  eomploneky
male RICH, TRl CRTANM b bow LA MY is very hiph ALD  false

CRTNMN GGT in wery high 0.35 MECH i3 high
BUN is very low 1T CETWM s low
MOV is very high iz CRTRN i very
medinm

and a lincar discriminant network (with po hidden nodes) that is trained by the simple Pocket
Algorithm. The absence of the hidden nodes and nonkincarity limits the utility of the system in
modelling complex deasion surfaces [9]. Dependency information regarding the variables, in the form
of an adjacency matrix, are provided by the experl. FEach variable [symptom, disease or treatment)
corresponds (o some node of the network. On the other hand, we use the fuey MLP-based model
which is capable of automatically catracting the diseasc-symptoms dependency m the form of If-Then
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rules from the fraining data consisting of patient cascs. These rules may be verified by the experl at a
later stage or may be used to constitute the knowledge base of a traditional expert svstem.

Besides, medical information such as resulis of biochemical tests andfor the diagnosed diserder arg
often ambiguous and/or fuzzy [4]. Hence incorporation of fuzziness at input and ootput levels becomes
more effective in modelling such problems. The skewness of the data set under consideration can be
appropriately handled by the chosen input descriptinn that autamaticaily determines the ceotres and
radii of the linpaisiic pi-scis. 10 may be mentioned in this conncction that olher work oo the choler of
the apprapriate input membership distribution for a fozey neural network for cole generalion has boen
reparted in |8, 3).

Furry connectionist cxpert system models have also been desipned by the author using logical
operators based on And/Or functions [11, 12] in place of the sigmoid nonlineantics. However, it has
been abserved that the more conventional {uzzy version (reported here) performed more accurately,
This result carraborates Keller's view in |5, p. 200]. 1L was lound that the logical-operator-based version
pencrated better rales Tor simpler problems.
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