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ABSTRACT 

This paper deals with a new framework in analyzing the formal mathematical 
correspondence between quantum mechanics and time-frequency representations of a 
signal. It is also shown that joint time-frequency distributions have a close link with 
Heisenberg uncertainty relations if the observables are taken as fuzzy entities. This 
result contradicts the arguments of Cohen [IEEE Proc. 77(7):941 (1989)] regarding the 
time-frequency distributions and the uncertainty relation. It is postulated that these 
mechanisms will be of crucial importance in highly fragmented computation structures, 
such as neural networks, as they may exhibit a strong mutual interaction between data 
and operator. 

1. I N T R O D U C T I O N  

Gabor  [1] published a pioneer ing paper  in 1946 on t ime-frequency 
representat ions  of  signals in the context of  communica t ion  theory. It was 
Wigner  [2] who first investigated the possibility of  construct ing joint 
distribution functions in phase-space and their impor tance  in the domain  
of  quan tum mechanics.  Later  on, Ville [3] studied the joint distribution 
functions in signal analysis in the spirit of  Wigner.  In 1965, Cohen  [4] 
suggested a general ized approach  for construct ing the joint distributions in 
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phase-space. Most of the joint distributions are shown to be special cases 
in Cohen's class of distributions. Since the publications by Gabor, Wigner, 
and Ville, a large number of interesting works [5] on joint distributions 
have been reported in the context of quantum mechanics, optics, and in 
signal processing. In the 1980s, the interpretation of the uncertainty 
relation in signal processing and its relation to the Heisenberg uncertainty 
relation renewed the interest of the signal processing community. It was 
started after the publication of papers by Wilson et al. [6, 7] and Daugman 
et al. [8] in the context of computer vision. Daugman tried to analyze the 
psychophysiological evidence of receptive fields in the mammalian visual 
cortex and discussed the existence of the uncertainty relation in case of a 
2D-signal representation. Recently, Cohen made an excellent review [9] on 
time-frequency distributions and their relation to the Heisenberg uncer- 
tainty relation, especially with reference to signal processing. He tried to 
make a systematic study on time-frequency analysis of signals and investi- 
gated the correspondence between quantum mechanics and signal analysis. 
He claimed that the uncertainty principle is a relationship concerning the 
marginals only and has no bearing on the existence of joint distributions. 
He has also criticized the mathematical correspondence between quantum 
mechanics and signal analysis as often discussed by various authors [8]. 
The recent developments of the theory of unsharp measurements [10-12] 
in quantum mechanics opens up a new possibility of constructing joint 
distributions of unsharp observables and studying their relevance to the 
Heisenberg uncertainty relation. This theory is a natural extension of the 
usual Hilbert space formalism of quantum theory. This development is 
quite interesting not only in quantum mechanics but also in the context of 
signal processing, especially in image processing and pattern recognition. If 
one considers the case of object-background segmentation in a gray level 
image, a great deal of ambiguity arises in a decision process due to the 
continuous gray level distribution from object to background. This kind of 
situation could be handled more efficiently if fuzzy set theoretical formal- 
ism is used instead of ordinary set theory [13]. Similarly, in extending the 
usual Hilbert space formalism of quantum mechanics to describe unsharp 
observables, it is generally required to introduce the concept of fuzzy sets 
in place of ordinary sets [10]. Consequently, Cohen's analysis needs rein- 
vestigation in the light of this extended framework of quantum mechanics. 
In this paper, we shall briefly discuss Cohen's main arguments regarding 
joint distributions and their relation to the Heisenberg uncertainty relation 
in Section 2. In Section 3, we shall try to reinvestigate the whole issue 
within the framework of unsharp measurements. It will be shown that 
Cohen's analysis is not true in the case of unsharp observables, which is 
much more relevant in signal analysis. In our opinion, a more detailed 
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investigation considering all other aspects is needed to settle the issue on 
the applicability of quantum-mechanical concepts in signal processing and 
analysis, as is discussed in Section 4. 

2. TIME-FREQUENCY DISTRIBUTIONS AND 
COHEN'S ANALYSIS 

The joint distribution in the time-frequency plane was originally consid- 
ered by Gabor and Ville. Gabor was motivated by the development of 
quantum mechanics and the formal resemblance between the time- 
frequency uncertainty relation and Heisenberg's time-energy uncertainty 
relation. He also introduced the concept of analytic signal. Ville derived a 
distribution that'Wigner studied in quantum-statistical mechanics. The 
Wigner-Ville distribution is 

1 r) dr (1) W(t,w)= ~----~fs*(t-½r)e J'Ws(t+: 

for a signal s(t) at time t and frequency w. 
The fundamental goal for the derivation of a joint distribution of time 

and frequency is to represent the energy in terms of intensity per unit time 
per unit frequency. In general, for a joint distribution p(t, w), we have 

o r  

p(t ,w)  = intensity at time t and frequency ~o, 

p(  t, w) At Aw = fractional energy 

in time-frequency cell AtAw at t, oJ. 
Summing up of the energy distribution for all frequencies at a particular 

time would give the instantaneous energy, and the summing up over all 
times at a particular frequency would give the energy density spectra 

fp(,,w) dw = Is(t)12, (2) 

f p( ¢, w) dt= Is(w)f2.  (3) 
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The total energy E can be given in terms of the distribution as 

E = f p ( t , w )  dwdt .  (4) 

This will be equal to the total energy of the signal if the marginals (2) and 
(3) are satisfied. At this juncture Cohen raised the following questions: 

(a) Do there exist joint time-frequency distributions that would satisfy 
our intuitive ideas of a time varying spectrum? 

(b) Can their interpretation be as true densities of distribution? 
(c) How can such functions be constructed? 
(d) Do they really represent correlations between time and frequency? 
(e) What reasonable conditions can be imposed to obtain such func- 

tions? 
(D Is there any distribution that is the best, or do different distribution 

need to be used in different situations? Are there inherent limitations to a 
joint time-frequency distribution? 

Cohen tried to answer these questions in his above-mentioned review 
and raised a number of other questions which should be investigated 
thoroughly in future research. What concern us in this paper are Cohen's 
analysis on the uncertainty principle and joint distributions, and the 
remarks on the formal mathematical correspondence between quantum 
mechanics and signal analysis. 

With respect to the second issue, Cohen first pointed out that while 
quantum mechanics is inherently probabilistic, in signal theory the signal is 
inherently deterministic. He also pointed out that the probabilistic charac- 
ter of quantum mechanics is not due to ignorance of the initial conditions. 
At this point, the physicists working in quantum mechanics are not in 
accord. Bohm [14] proposed and elaborated a theory in 1952, called the 
hidden variable theory in quantum mechanics. According to this theory, 
the basic equations are fully deterministic and the concept of probability 
can be interpreted as due to ignorance. All the tenets of the hidden 
variable theory have not yet been discarded [15] and investigations are still 
going on. Moreover, in many world interpretations of quantum mechanics 
as expounded by Everett and elaborated by Wheeler et al. in [16], the 
equations are also deterministic in nature. Our main contention is that the 
issue of the interpretation of probability is not yet settled in quantum 
mechanics itself and it requires further investigations to settle the issue. 
Then Cohen pointed out another important difference. In quantum me- 
chanics, observables are associated with operators. For example, the posi- 
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tion and momentum can be associated to self-adjoint operators. In signal 
analysis, time and frequency are not considered as operators. Moreover, in 
quantum mechanics, q and p are continuous variables, while qZq_p2 is 
never continuous. On the other hand, in signal analysis for time and 
frequency, t 2 + w 2 is never continuous. This observation is very important 
for making a mathematical analogy with quantum mechanics. If we con- 
sider the energy-time uncertainty relation in quantum mechanics, the issue 
of the time operator is not yet fully resolved. Moreover, the interpretation 
of this uncertainty relation in comparison with the position and momen- 
tum uncertainty relation has raised a great deal of controversy since its 
very inception. In a series of recent papers, Busch et al. [17] tried to give a 
consistent interpretation of the time-energy uncertainty relation within the 
framework of the theory of unsharp measurements in quantum mechanics. 

Cohen made a comprehensive analysis regarding the uncertainty princi- 
ple and joint distributions. The uncertainty principle expresses a funda- 
mental relationship between the standard deviation of a function and the 
standard deviation of its Fourier transform. In particular, the standard 
deviations are defined by 

(At)  z= f(t--t)Z[s(t)[ 2 dt, 

(Aw) 2 = f ( w  -  )2l s(w) 12 aw, 

(5) 

where t and ~ are the mean time and mean frequency. The uncertainty 
principle is 

1 At Aw >/2 (6) 

for any signal. At and Aw are called the duration and bandwidth of a 
signal. Cohen has shown that the uncertainty principle is a relationship 
concerning the marginals only and has no bearing on the existence of joint 
distributions. He concluded that any joint distribution that yields the 
marginals will give the uncertainty principle and it has nothing to do with 
correlations between time and frequency or measurements for small times 
and frequencies. It says that marginals are functionally dependent but it 
does not imply correlation between the variables and has nothing to do 
with the existence or nonexistence of joint distributions. Recently, Busch 
and Lahti [18] discussed uncertainty relations and complementarity of 
canonical conjugate variables in quantum mechanics with respect to some 
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general coupling properties of a function and its Fourier transform. They 
have clearly disproved Gibbins (and Popper's) conclusion. In 1981, Gibbins 
[19] pointed out that uncertainty relations have nothing to do with impossi- 
bility of joint localization of a particle on bounded positions and momen- 
tum value sets, and he concludes that uncertainty relations can be 
interpreted only as statistical scatter relations. So we shall discuss the 
theory of unsharp localizations. 

3. UNSHARP MEASUREMENTS, UNCERTAINTY RELATIONS, 
AND JOINT DISTRIBUTIONS 

Busch and Lahti [18] questioned the exclusive validity of statistical 
interpretation of uncertainty relations. They tried to justify an individualis- 
tic interpretation introducing the concept of unsharp observable where a 
joint measurement of position and momentum is a logically tenable 
hypothesis. 

It is the transition from ordinary sets to fuzzy sets that enables one to 
describe this type of unsharpness. In ordinary set theory, the element 
relations x ~ E  can be represented by a characteristic function X E which 
is either 0 or 1, while in the case of a fuzzy set, E x is replaced by a more 
general function /z E with the following properties: 

0 ~</z E ~< 1 (7) 

for any x; /zE(x) is a membership function which indicates the extent of 
membership [13]. 

The main difference from a characteristic function X E is that /z E may 
assume any value in the real interval [0,1]. Now we proceed with the 
corresponding change with the description of observables. A spectral 
projection Q(E)  is defined in the configuration space representation by 
means of the equation 

( Q ( E )  4~) (q) =XE(a)  ~b(q). (8) 

Replacing X E by/z  e results in a new "effect" 

( a ( E ) e k ) ( q )  =/zE(q)  6 ( a  ) , (9) 

where a: E ~ a ( E )  is a positive operator valued (POV) measure called 
unsharp position observable or fuzzy observable. We shall assume that to 
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/*E there corresponds a density function fq such that 

]£E( q )  = fEdqfq( q')" (10) 

Furthermore, the functions fq shall be supposed to be essentially the same 
for all q, i.e., 

f,(q') =f(q'-q),  (11) 

which means that the position measuring device which corresponds to the 
fuzzy observable a also works equally well in all regions of space. Let us 
define joint measurements of unsharp observables. A joint position mo- 
mentum observable af, g is defined as a POV measure on a phase space 
[, = [~2, 

aj,g(~X) =fadqdp~(q,p), (12) 

with a continuous positive phase space distribution 

( q , p )  --+9-(q, p) ,  0 ~ - ( q , p ) ,  (13) 

bounded and with marginals 

af, g(E×~) =Qf(E), af, g([~×F) =Pg(F) (14) 

being unsharp position and momentum observable, respectively; the mea- 
sures 

A --+ tr [ W, af, g( A )] (15) 

are positive definite phase-space measures and thus may be interpreted as 
joint probability distributions. Before discussing joint probability distribu- 
tions and uncertainty relations, let us look into the theory of Fourier 
integrals. Two important theorems in Fourier integral theory are (1) the 
Paley-Wiener theorem and (2) the bandwidth theorem. One refers to the 
support property and the other to the dispersion property of a function 
and its Fourier transform. If ~b is a smooth function on the real line [R with 
its Fourier transform 

~o(y)=(F~)(y)=(277)-l/2f+~oiyx~(x)dx, Vy ~ JR, (16) 

then the following properties hold. 
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Support property. If supp(~b) = cl{x ~ ~:~b(x) 4= 0} is compact (i.e., 
bounded), then supp(~) is the whole real line ~, and conversely, cl 
indicates closure. 

Dispersion Property. 

A[~b]z AlVIn> ½. (17) 

Here, Alibi2 denotes the standard deviation of the absolute square ]~b]2 of 
~b, i.e., 

{f~? (f~] )2) 1/2 Al4~]2 = x 2] 6 ( x )  ]2 dx 6 (x )2  ] dx , 

assuming 

J7 ]]6][ 2= [oh(x) 12 dx= 1 

and 

2 ay=l 

The dispersion property is an immediate consequence of the well-known 
Cauchy-Schwartz-Buniakowski inequality. The Fourier transform of a com- 
pactly supported function is analytic, so the standard results in function 
theory give the support property. 

There are pairs of physical quantities which share both of the properties 
in (16) and (17). Such quantities frequently appear in optics, electrodynam- 
ics, solid-state physics, and communication theory as well as in quantum 
mechanics. In quantum mechanics, canonically conjugate position and 
momentum Q and P of a physical system are represented as a Fourier 
couple. Thus they share both the support property as well as the dispersion 
property as defined above. 

Let us define the quantity I I ° (x)  for each Borel set X of the real line 
0~, with 

HQ(x)ck=xeck, V~b in L2(~  ), 
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where XE is the characteristic function of the set X c B(R). Similarly, we 
define 

HP(Y) = ( h/2rr)F -111Q(Y)F 

for any YeB(~). The projections liP(Y) are then exactly the spectral 
projections of P. 

Let X and Y be bounded Borel sets and assume 

(4,,II°(x)4,)=l=(4,,lip(Y),b) forsome 4~@L2([~ ). 

Then for any two bounded X and Y in B(R), the intersection of the 
(closed) subspaces X and Y, 

IIO(x)(L2(R)) = {4)EL 2 E ~: nO(x)(/)= ~} 

and IIP(Y)(L2(R)) is the null space zero, i.e., the greatest lower bound, 
l iQ(x)  A li P(Y) of the projections [IQ(x), and I] P(Y) is the zero operator 
0. We thus arrive at the relation 

liQ(x) A HP(Y) =0 (18) 

for all bounded X and Y~ B(~). This is a special case of support property 
defined earlier. 

In discussing the ideal measurements of properties (described as projec- 
tions) of a physical system, Ludwig [21] mentions that 

ne(x)Anp(Y) 

as an example of a property is not possible and thus not measurable. 
Ludwig introduces the notion of complementarity as: Two properties 
(projections) P1 and P2 are complementary if P1 A P2 = 0. He also claims 
that the properties IIQ(X) and liP(Y), with bounded X and Y, are 
complementary properties. It may be mentioned that Weizsacker also gave 
a definition of complementarity similar to that of Ludwig. According to 
Weizsacker [22], two elementary propositions are complementary if and 
only if they cannot be detected simultaneously. However, Busch and Lahti 
[23] showed that this claim of Ludwig is wrong and that Ludwig's notion of 
complementarity is too strong. 
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The notion of complementary physical quantities was systematically 
analyzed by Lahti [23] in 1979. His starting point was with the result 

nQ(x)A n,'(Y) =o, 

which expresses the complementarity of position and momentum observ- 
ables in the sense of natural exclusiveness of the experimental arrange- 
ments that permit the unambiguous definitions of the quantities. The 
general concept of complementarity, expressed as a generalization of 
I IQ(x)  A I IP(Y)= 0, was then found to be logically independent of uncer- 
tainty, expressed in terms of the dispersion property, i.e., 

1 

Also, the invalidity of the "localization interpretation" of the uncertainty 
relations was pointed out there. The claim that the dispersions A(A, oh) 
can only be interpreted as statistical spreads has been shown to be 
erroneous. It would imply that the uncertainty relations only can be 
interpreted as a statistical relation. The statistical interpretation of quan- 
tum-mechanical probabilities is, however, not the only one. In fact, if we 
look at the interpretation originally proposed by Heisenberg [24], i.e., 

The dispersion property expresses as an uncertainty relation the limits of 
accuracy within which joint measurements of position and momentum are 
possible. 

it appears that Heisenberg was originally motivated by an interpretation 
which is different from probabilistic interpretation. Of course, critics are 
divided in two major groups on the Heisenberg issue. One group claims 
that there are no joint measurements of position and momentum at all. 
They are right if one thinks of "sharp" measurements as localizations in 
the sense of support property I IQ(x )A  1JP(Y)= O. 

The question of inaccurate or unsharp measurement has never been 
explicitly discussed in this viewpoint. Another claim is that joint measure- 
ments of position and momentum are possible only with arbitrary accu- 
racy, irrespective of the uncertainty relations. Busch et al. [25] have 
strongly challenged this claim. They have systematically studied the situa- 
tion, and an alternative interpretation, i.e., "individualistic interpretation," 
of quantum probabilities (that is, of the states as dispersion of an individ- 
ual system) was proposed and elaborated in a series of recent papers [20]. 
Such an interpretation leads quite naturally to the Heisenberg interpreta- 
tion of the dispersion property. Especially, the founders [18] of quantum 
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mechanics have (probably) always thought of individual systems. According 
to this individualistic interpretation, the state vectors in Hilbert space 
seem to play a double role; the wave function 4,(x), which describes 
position indeterminacy, may also be imagined to have been prepared by a 
kind of "unsha~" position measurement. This means that the probability 
densities Jd,(x)J may not only be used as probability densities for the 
possible values of (sharp) position measurements (first role of ~b), but also 
as descriptions of unsharply defined measuring values (second role of (b). 
It was an intuitive notion of unsharp measurements which led to the 
famous Gedanken experiment illustrating the Heisenberg interpretation of 
dispersion property. 

If a system possesses position and momentum only with indetermination 
to the extent given by the probabilistic uncertainty relations, then joint 
measurements should be impossible with accuracies violating the uncer- 
tainty relation. With the introduction of the so-called unsharp (fuzzy) 
observables, a proper joint probability distribution for position and mo- 
mentum has been developed by Busch et al. The existence of joint 
probability distributions is stated in the following theorem. 

THEOREM. For any uector space (a ~ L2([~), there exists a joint probability 
distribution for (unsharp) position and momentum, namely, 

2 dxdy, (19) 

with 

x 

4,o(x,y) = f 
--.15 

where 0 is any unit uector in L2(~) with auerage or the expected ualues, i.e., 
E(Q, ~b) and E(P, 0 ), equal to zero and fiaite standard deviation A(Q, y )  
and A(p, 0). 

Consequently, vectors 0 represent unsharply defined points in phase 
space or ]~(x912 and ]~b(y')l 2 represent distribution functions contained 
at X and Y, respectively. 

Marginal distributions are 

2, (20) 

(21) 
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2 ~  h (22) A f . A g =  AI~pI 2 AISLE ~ T--~, 

so that the inaccuracies A f  and Ag of the Fourier couple (Qf, Pg) obey 
the uncertainty relation. 

It is evident that the probability measure [18] is built up from two 
vectors 4' and 0; 4' is used as the state vector representing the prepara- 
tion of the measured object, whereas 0 is used to define measuring 
inaccuracies for unsharp (joint) observables. 

Busch and Lahti correctly formulated the double role of vectors in 
Hilbert space formation as the following. 

According to the use of Hilbert space vectors in quantum theory as genera- 
tors of probability measures (description of states) or as generators of 
unsharp (joint) observables (descriptions of measuring inaccuracies), there 
are two possible interpretations of the dispersion property as a probabilistic 
relation characterizing the approximate range of possible position and mo- 
mentum values or as an uncertainty relation limiting the accuracy of joint 
position and momentum measurements. 

Cohen's claim regarding the relationship of the uncertainty principle and 
joint distributions may be valid only for sharp observables as well as if we 
take only the statistical uncertainty relations. Busch [17] studied the 
interpretation of the time-energy uncertainty relation in this framework of 
unsharp measurement theory. He has shown that it is the mutual influence 
between measuring instruments (observer and the observed) which is 
manifested through the uncertainty relation. Thus according to Busch's 
work, the uncertainty relation determines the lower limit of (individual) 
unsharpness of measuring results which one necessarily is subjected to 
with joint measurements. He has analyzed Heisenberg's slit experiment 
within a model of quantum measurement and concluded that within the 
framework of unsharp observables, it is the mutual disturbance of the 
measuring device which is responsible for the occurrence of the uncer- 
tainty relation for incompatible observables (like position and momentum 
or time and energy). It may be mentioned that Wotters and Zurek [26] 
studied the complementarity principle analyzing the double slit experiment 
with the help of information theory, and they clearly indicated the exis- 
tence of unsharp observables. In fact, if we analyze the above-mentioned 
double slit experiment with photons (say), then we meet with a difficulty, 
i.e., on one hand, the photon always chooses one of the two paths; on the 
other hand, it behaves as if it had passed both ways. Niels Bohr, in a long 
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epistemological discussion with Einstein, pointed out, "It  is just arguments 
of this kind which recall the impossibility of subdividing quantum phenom- 
ena and reveal the ambiguity in ascribing physical attribu, "s to atomic 
objects." 

4. IMPLICATIONS IN IMAGE PROCESSING 

In the context of spatial information processing, which often implies the 
processing of visual information, there are several issues which have 
important bearings on quantum-mechanical formalism. To start with, 
sampling, or any operation whatever upon spatial data, gives rise to an 
ambiguity which is reflected in the uncertainty of measured properties in 
two complementary domains [6]. This can be interpreted as a property of 
the filter used, or it can be interpreted as a more fundamental limitation. 
The trivial example for interpretation is that integration over a larger area 
will give a more reliable feature estimate. On the other hand, integration 
over a larger area will give an increased uncertainty about the position at 
which the feature estimate is valid. 

This gives a limitation of, e.g., the ability to determine the position of an 
edge, given a certain frequency function of the filter used. The same type 
of argument can be used for other image analysis operations, such as for 
segmentation, recognition, etc. What varies among the different operations 
are the domains of uncertainty according to our interpretation. There is 
inevitably an uncertainty in the complementary features derived. 

There are now ways to improve this lack of resolution in typical 
situations, e.g., through a combination of statements of several filters, 
using adaptive methods [27]. This should not be viewed as a way to fool the 
uncertainty principle; rather, it is an application of the uncertainty princi- 
ple in that we can nonisotropically decrease the uncertainty in one direc- 
tion of the uncertainty domain. 

This ultimate limit of uncertainty for features may not have a large 
influence for the bulk of classical image operations used. In this context, 
an interpretation can be given which is more similar to classical mechanics 
than to quantum mechanics. This is due to the fact that we in this case do 
not generally assume a mutual interaction between data and operator [17]. 
We might say that we are dealing with systems having the equivalent of a 
larger inertia, which brings us into classical mechanics. Although data 
changes the output of an operator, it does not modify the operator itself. 

Besides the uncertainty arising out of spatial sampling, another kind of 
uncertainty one may encounter in image processing is due to grayness 
ambiguity. This uncertainty arises out of the multivalued nature of the 
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pixel intensity [13]. According to the fuzzy set theoretic notion, this 
indeterminacy is due to inherent vagueness rather than randomness. 
Incertitude in image pattern can be explained in terms of grayness ambigu- 
ity, spatial ambiguity, or both. Grayness ambiguity means indefiniteness in 
deciding whether a pixel is white or black. Spatial ambiguity refers to 
indefiniteness in shape and geometry of the region within the gray level 
image. 

The conventional approach to image analysis and recognition consists of 
segmenting the meaningful regions, and extracting the various features 
and properties (for example, area, parameter, centroid, etc.) and primi- 
tives, and of relationship among the regions. As the regions in the image 
(multilevel) are not always crisply defined, uncertainty can arise in every 
phase of the aforesaid tasks. Any decision made at a particular level will 
have a definite impact on all subsequent levels of activities. A recognition 
system should have sufficient provisions for representing and manipulating 
the uncertainty involved in every processing stage, so that the system can 
retain as much of the original information as possible. If this is done, the 
ultimate output of the system will possess minimal uncertainty. Let us 
consider an example, the problem of object extraction from a scene. 

Now the question is "How can one define exactly the target or object 
region in a scene when its boundary is ill defined?" (ill defined in the sense 
of multivaiuedness or grayness). Any hard decision making (thresholding) 
for the extraction of the object will propagate unassociated uncertainty to 
subsequent stages. This might affect the subsequent analysis and recogni- 
tions. This is convenient, natural, and appropriate to avoid commission to 
a specific hard decision by allowing a segment or contours to be a fuzzy 
subset of the image, the subsets being characterized by their possibilities 
or degree to which each pixel belongs to them. 

Now it is curious to note that in extracting the image, the background 
plays an important role in the sense that it introduces some sort of 
indeterminacy similar to that evoked during the preparation of a state 
vector of an object in the theory of unsharp measurement in quantum 
mechanics. It is also worth mentioning that Slepian and his collaborators 
in [6] explained the role of uncertainty in simultaneous windowing opera- 
tions. This work has found very important and fruitful applications in areas 
such as sampling theory, spectrum estimation, image coding, and filter 
design. The works of Marr, Granlund, Jacobson, Wechsler, and Wilson 
either explicitly or implicitly acknowledged the role of uncertainty among 
various Fourier couple other than only time-frequency variables. So, in the 
field of image processing and computer visions at one level, the back- 
ground introduces uncertainty like the unsharpness introduced in prepar- 
ing the state of the object in quantum mechanics, and uncertainty is also 
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involved at the level of measurement. 3~his has a striking similarity with the 
two roles of the state vector as already discussed in the framework of 
unsharp measurement tneory, it has been emphasized that the unsharp- 
ness due to preparation has a profound impact on the consistent interpre- 
tations of the Heisenberg uncertainty relation. 

The situation may well be different for the types of distributed or 
heavily fragmented computation architectures, which are visualized for the 
future. This is, e.g., the case in what is termed neural computation. For this 
case, postulates have been made that for a flexible context control of 
processiiag, it is necessary that information can appear interchangeably as 
data or as operator in traditional terms [28]. This implies that there is a 
pronounced mutual influence be~veen data and operator, or in quantum- 
mechanical terms, between the observer and the observed [17]. For this 
case, it is postulated that uncertainty effects will not only be significant, 
but also play an important role of the computation mechanism itself. It is 
outside the scope of this article to go into this issue in detail. 

This raises the possibility that a framework of unsharp observables may 
be constructed to find relevant application within spatial data processing, 
such as signal processing and computer vision. As alluded to in the 
preceding paragraph, it is believed that the uncertainty relation in this 
context benefits from an individualistic interpretation, rather than a statis- 
tical one. Lastly, we think that the role of context (e.g., background of an 
object) in image analysis and computer vision should be thoroughly studied 
for the interpretation of the various uncertainty relations already found in 
these fields. 

5. DISCUSSION 

It is evident from the above analysis of the joint distribution and 
uncertainty relations, that Cohen's arguments are not tenable, at least in 
the context of unsharp observables and individualistic interpretation of 
uncertainty relations. It has a striking correspondence with the phenomena 
in the domain of image processing and computer vision. It not only 
sharpens the debate regarding the formal similarity of time-frequency 
uncertainty relations in signal processing and the Heisenberg time-energy 
uncertainty relation, but also raises a new possibility to describe the 
ambiguity in an image by using fuzzy observables. It is worth mentioning 
that the unsharp observables are also introduced in quantum mechanics so 
as to describe the semiclassical behavior of a quantum system, i.e., to 
describe the trajectory of a quantum particle (say, electron). Moreover, 
this trajectory is like a classical trajectory, i.e., it can be described by the 
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Ehrenfas t  t heo rem.  As  a result ,  the  theory  of  unsharp  observables  as 
f o rmu la t ed  by Busch, Laht i ,  and  Mi t t l e s t aed t  [20] might  be  also a sui table  
f r amework  for mesoscop ic  systems (i.e., systems be tween  classical and  
quan tum systems).  

I t  is pos tu l a t ed  that  these  mechan i sms  will be of  crucial  impor t ance  in 
highly f r agmen ted  c o m p u t a t i o n  s t ructures ,  such as neura l  networks ,  as 
they may exhibit  a mutua l  in terac t ion  be tween  da ta  and ope ra to r .  

One of the authors (S. Roy) is greatly indebted to the Computer Vision Lab, Department 
of Electrical Engineering, Unieersity of Linkoping, for the hospitality where this work was 
started. 
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