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Abstract 

It is shown that a maximally entangled state of two spin-l/2 particles not only gives maximal violation of the CHSH 
inequality but also gives the largest violation attainable for any pairs of four spin observables that are noncommuting for 
both systems. Any entangled state implies a violation but it need not be an eigen-state of the relevant Bell operator. 

Recently it has been shown that for any entan- 

gled state of two quantum systems it is possible to 
find pairs of observables whose correlations violate 

the Bell/CHSH inequality [ 11. In the special case of 
two particles of spin J in a singlet state, the maxi- 

mal violation of the Bell/CHSH inequality allowed 
by Cirel’son’s theorem [ 21, occurs provided 23 + 1 
is even [3,4]. Braunstein et al. [5] showed that for 

any Bell/CHSH inequality based on noncommuting 
observables for both systems it is always possible to 
construct a state which will yield a violation, though 

not necessarily maximal. 

Local realism constrains the statistics of two or more 
physically separated systems which can be expressed 

for two systems in terms of the expectation value of 
some Hermitian operator (the Bell operator, BCHSH) 

[51 by 

-2 < (BCHSH) 6 2. (1) 

Quantum theory predicts a violation of this inequal- 
ity if for some state the expectation value exceeds the 
bound. In operator language the largest violation will 
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be given by the largest eigen-value of this Bell opera- 
tor. In other words, the states which can produce this 
largest violation will be eigen-states with this largest 
eigen-value. The eiqen-states which produce violation 

cannot be product states. In general, they are entangled 

states of degenerate eigen-vectors of the squared Bell 
operator B&sH corresponding to the largest eigen- 
value [5]. 

In this Letter we shall determine the form of all 

eigen-states of the Bell operator giving the largest vio- 
lation attainable for any four spin-l /2 observables that 
are noncommuting for both systems. They are maxi- 

mally entangled states (the singlet state is one exam- 
ple) with a relative phase between the two orthogonal 
vectors in the four-dimensional tensor product Hilbert 

space. 
To show this we consider four spin observables 

ol, ~2, cq and u4 which represent spin measurement 
along the directions nl , n2. n3 and n4, respectively. VI 
and 172 act on one particle and u3 and 174 on the other. 
The Bell operator for these observables can be written 

as 
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The square of the Bell operator is given by [ 61 (#I&HsH$) 

B&t =4(1 - [~I,~Zl[~3+~41). (3) 

NOW for any Ui and cj, [ai, uj] is given by 

= 2c1cz~cos(~ - +I - 43) + cost4 - 41 - 44) 

+cos(~-~2-(63)-cos(~-~2-#4)l. (9) 

[ CTi, CTj] = -2i Sifl Sii (7,,, , (4) 

where Bij is the angle between the unit vectors ni and 

Trj and (T,,, represents the spin observable correspond- 
ing to a spin measurement along the unit vector nii 

perpendicular to the plane containing ni and nj. 

Now it is obvious from (9) that the largest eigen- 
value 2[1 + Isin($t -&)sin(#~3 -~4)/]1/2 of 
BCHSH will be achieved by the above expectation for 

those fi for which ]ct( = (~21 = l/A and some 4 
depending on the 4i as ctc2 has been factorised out 

in expression (9). 

Then (3) can be written as 

BfHsH = 4( I + sin 012 sin 834 CT,,,*O,,, ), (5) 

The largest eigen-value (A) of B&t.t is given by 

A=4(1 +(sinBtz sin834(). (6) 

The corresponding degenerate eigen-vectors are either 
I+&&~ and I+!_~,~+-~~ for sin 812 and sin 034 having 

the same sign or $“,z$_nU and +_,,,z $,,, for sin 812 

and sin034 of opposite sign. Here &,,,, are eigen- 

vectors of (Taco,. 

So we conclude that the entangled states which give 
the largest possible violation for any four arbitrary 

spin- l/2 observables that are noncommuting for both 
systems, must be maximally entangled states. 

Let us make this clear from two examples. From 
the result of Gisin [ l] follows that for a normalized 
state vector ti of the form 

Corresponding to the eigen-value (6) the largest 
eigen-value (in terms of the absolute value) of BCHSH 
is 

p = 2( 1 + ) sin@tz sin834()1’2. (7) 

This eigen-value corresponds to the largest violation 

of the Bell/CHSH inequality for the observables con- 
cerned. It is obvious from (7) that Cirel’son’s bound 

(2~5) is obtained when both 012 and 834 are 7r/2. 

with cl, c2 3 0, ct # ~2, there exist four spin observ- 
ables for which the largest possible violation of the 
Bell/CHSH inequality occurs and this highest viola- 
tion depends on cl and c2 only [7]. We shall show 

that although this is the highest possible violation for 
the particular $1, it is not the maximum possible vi- 

olation for the four spin observables chosen. So this 
et cannot be an eigen-vector of BCHSH formed by the 

relevant observables. 
If we take the choice of the unit vectors (ai), = 0, 

(ai>x = sinei, (ai) = cosBi for i = 1,2,3,4, where 

81 = n-/2, e2 = 0, 

For simplicity and without loss of generality we as- 
sume that the vectors ni (i = 1,2,3,4) lie on the x-y 
plane and their corresponding azimuthal angles are &. 

We also assume that sin (4, - 42) and sin (43 - 44) 
are of the same sign. In that case, the eigen-state of 
BCHSH giving the largest violation for the observables 
concerned will be a superposition of eigen-vectors 
(clz & and $_z I+?-~, 

~0~ e4 = -c0se3 = (1+4+;)-t/2 

then 

(91 IBCHSHGI ) = 2( 1 + 4c:ci) I”. (11) 

Following (7) the largest eigen-value of BCHSH is 
given by 

Let the eigen-state be 

ICI =ct&(cI, fc2ei~$-z@z, (8) 

where ct and c2 are real and cf + ci = 1. With this $, 
the expectation value of BCHSH is given by 

Xl + W-03 - e4)iP= t1 +4cTcz),,2. (12) 

The difference between this largest eigen-value and 

(+I IBCHSHG’I) is given by 

2(1+ 2ClC2) 
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2( 1 + 2c,c2) 
- 1 (1 + 4c;c9/2 2( +4C$C$“2 

‘k,C2( 1 - 2ClC2) 

= (I +4cycy/2 ’ 
(13) 

which is a positive quantity as 2ctc2 < 1. The largest 
violation ( 12) for this choice of spin observables will 

be given by some maximally entangled state, i.e., cl = 
c2 = 1 /fi and some 4 depending on f33 and 8,. 

The other example is Bell’s original example [ 81. 

Here the state is chosen as the singlet state and the (pi 
are chosen in a plane (say the n-y plane) with two 
of them measuring spin in coincident directions. Let 
nt = 114. With these constraints the largest violation 

(5/2) will be achieved when 

Again following (7) the largest eigen-value of Bcusn 
for the above choice of observables is 

2[ 1 + si,?(rr/3)]1’2= J;i (> 5/2). (14) 

So the singlet state though the maximally entangled 

state is not the eigen-state of Bcusu for the above 
choice of observables. 

Let us find the exact maximally entangled state 
whose corresponding eigen-value gives the largest vi- 
olation for this choice of observables. Let the state be 

Then 

= [cos~+2cos(~-7r/3) +cos(++7r/3)] 

= ;(5cosf$ + &sinr$) = f(4) (say). (16) 

It can be easily shown that the maximal value for 

f( 4) = v?’ and this occurs at r#~ = tan-‘( d/5). 
So the eigen-state giving the largest violation ( fi) 
is given by the maximally entangled state of the form 
given by Eq. (15) with the above value of 4. 
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