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Starting from the K deformed Dirac equation we derive the K deformed Pauli equation. Aharonov-Bohm interaction is 
studied within the framework of this equation. In particular we show that the deformation parameter helps in creating 
additional bound states. 

During the last couple of years the quantum de- 
formation of the PoincarC algebra has been studied 
by many authors [l-B]. The classical PoincarC alge- 
bra can be deformed by applying the contraction 
process to the SO&~, 2) algebra. Then taking the 
limit of the de-Sitter curvature R -+ CO with a suitable 
limit of the real deformation parameter 4 such that 
.s-r = lim(R In q), one can obtain the K deformed 
Poincar6 algebra. From the K Poincare algebra one 
can obtain various deformed relativistic wave equa- 
tions, e.g., the K Klein-Gordon equation [4], the K 

Dirac equation [4,7] as well as other ones [9]. Re- 
cently, the K Dirac equation has been used to study 
different quantum mechanical models [lo-121. Here, 
starting from the K Dirac equation we shall derive a 
K deformed non-relativistic equation for a spin i 
particle. This equation is the K deformed analogue 
of the Pauli equation. We shall study the 
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Aharonov-Bohm effect within the framework of this 
equation. In particular we shall examine whether or 
not there exist non-zero energy bound states in this 
model. 

We recall that the algebraic structure of the K 

deformed PoincarC algebra is given by [7-101 (we 
take K=/?-l) 

[pi> pj] = O, Lpi9 ‘01 = O> 

[ Mi, zJj] = iEijkPk, [A!& PO] = 0, 

[Li, I’,,] = P,,, [L,, pi] = i6ij~-1 sinh( .#a), 

[Mi, Mj] = ieijkMk, [ Mi, Lj] = iqjkLk, 

[Li, Lj] = -iEijk [ Mk cosh( .P,) - $cP,P,M,] , 

(1) 

where Pp = (PO, Pi> are the deformed energy and 
momenta, the Mi, Li are spatial rotation and de- 
formed boost generators, respectively. The coalgebra 
and antipode for this algebra can also be defined. 



340 P. Roy, R. Roychoudhuty / Physics Letters B 359 (1995) 339-342 

Based on this algebra (1) the deformed Dirac 
operator can be found and it is given by [7-lo] 

8= -exp(-+&‘,)y,P,+ iyd sinh(EP,,) 

- i&Y4PiPi. (2) 

The corresponding K deformed Dirac equation reads 

.C@/=M(l+ &zMz)1’2$, (3) 

where M denotes the mass. 
To bring this equation to a more tractable form, 

we operate from from the left by exp(EPe), expand 
and retain terms upto O(E). The resulting equation 
which is the K Dirac equation to O(E) is given by 

[( Y~PO - XP,> + $Y~(P: -PiP,) -MP,] 9 

=M+. (4 

Now we introduce the gauge interaction through the 
minimal coupling prescription 

Po-+Po=H=E, 

Pi+Pi=Pi-eAi. 
(5) 

Eq. (3) can then be written as 

He= [ (Ydy4YiJ? + YAM) 

- &( H2 - $ji - y,MH)] +. (6) 

Eq. (5) is highly nonlinear and cannot be solved 
without some approximation. In this respect we fol- 
low Ref. [lo] and note that the Hamiltonian corre- 
sponding to the undeformed part is 

Ho = (‘YdYipi + ydM)* (7) 

Now substituting (7) on the right-hand side of Eq. 
(6) the eigenvalue equation to O(E) is found to be 

[H,-+(H;-@+-~~MP,,)]~=E+, (8) 

Next we choose the following representation of the y 
matrices: 

Using the representation of the gamma matrices in 
(9) we can write Eq. (8) in the following form: 

[M+ $( a*H)8e]4 

+[l+&M](u.#)~=Ec#, (10) 

[l-fsM](a+)c$ 

+[-M+iceo.H]X=EX, (11) 

where we have taken += ($), $J and x being 
two-component spinors and H = curl(A) is the mag- 
netic field. 

We shall now take the non-relativistic limit of 
Eqs. (10) and (11). Writing E = E’ + M, E’ M we 

get from (10) and (11) 

[l+~~Ml(~.~)x=[E’-f~e(a.H)]~, 

(12) 

E’-Ee/2(a*H) -’ 

2M I 

x[l+M](f~+). (13) 

Eliminating the lower component x from the above 
equations we get to O(E) 

&[ 
P2+e(l+cM)(cr.M)]+=E@ (14) 

Eq. (14) is the K deformed Pauli equation. It can be 
seen from (14) that the magnetic moment has in- 
creased by an amount proportional to the deforma- 
tion parameter. 

We now turn to the Aharonov-Bohm interaction 
[13]. The AB interaction is important in different 
contexts [14,15]. In an ideal situation the magnetic 
field is pointlike and concentrated at the origin. The 
problem can then be treated by the method of the 
self-adjoint extension [15-171. However, a physi- 
cally more appealing way to treat the problem is to 
consider a magnetic field on a ring and at the end the 
radius of the ring is allowed to shrink to zero. This 
method has been extensively used by Hagen [18,19] 
and Bordag et al. [20]. In the present work we shall 
follow Refs. [18-201. 

In our case the vector potentials are given by 

EijXj 
A,= -- 

T2 ’ 
r>R, 

(15) 
where oi are the Pauli matrices. =O, r<R, 
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where r2 =x2 + y2 and i = 1,2. The corresponding 
magnetic field is given by 

eH= iS(r-R). (16) 

We take (Y > 0 and consider the negative value of 
the spin projection. In this case the magnetic moment 
interaction is attractive and may produce bound 
states. For a < 0, the spin projection has to be 
reversed. 

Using (15) and (16) we find from Eq. (14) 

1 d d [m-cA’(R-~)]~ 
---__r_+ 

r dr dr r2 

-(l+ eM)ilS(r-R) 4, 1 
=J%&, (17) 

where ,!? = ZME’ and since the motion is essentially 
planar we have set pZ = 0, for simplicity. 

The wave functions &,, satisfy the boundary con- 
ditions 

&@+0) -4(R-O), (18) 
R+O 

= -(l+ sM)+,(R). 
R-O 

(19) 
The bound state solutions of Eq. (17) are given by 

4,(r) =A,~,m,(~). r CR, (20) 

=B,KI,-,,(G), r>R, 

where A,,, and B, are arbitrary constants. The bound 
state energies can now be determined using (18) and 
(19). Plugging (20) in (19) and using (18) we find 

qn-a,(=) 
=~,m-a,l=) 

Ii,lCz) = -(1+&f) +zm, (21) 
Iml 

where z = dz. 
Now expanding the RHS and LHS of (21) in 

powers of z we get 
^ 

-_Im-al- =‘ 
4(Im-al-l) 

=-(1+6M)u+Iml+4(,mz;+1)’ 

Im--al>l, (22) 

--JM-al-lm-ffl (;I-- “, 1 “a;, (z/2)2’m-a’ 

=-(l+&M)+l1111, 

Jm-aJ<l. (23) 

From (22) and (23) it follows that bound states with 
non-vanishing binding energy exist if 

O<m<(l+~&M) (24) 

and in the undeformed case (i.e, E = 0) only zero 
energy bound states exist. 

Nowwritinga=N+E,O<,<lwefind 

(Ii-~I)(IiI+l) ‘Ia 

Ii-al+lil I 
(a&M), 

i=O,l,..., N-l, (25) 
l/Z 

1 . 
(26) 

However, in the case N = 0 there is only one bound 
state with energy given by 

(27) 

From (25)-(27) it can be observed that with all other 
parameters held fixed, the limit R + 0 would make 
the energy levels infinite and so is not admissible. 
However, if both E + 0 and R + 0 such that 
sM/R2 = finite non-zero constant, then the energy 
levels in (25) become finite while &, behaves like 
(EM)~/‘-~, 0 < i2 < 1. In the N = 0 case the correct 
limiting behaviour is E l/‘/R2 = finite as E+ 0, 
R -+ 0. Note that this limiting behaviour is not ad- 
missible in the case of (25) and (26), since this 
would make (26) finite and (25) infinite, 

Another approach which is perhaps more sensible, 
is to consider a small non-zero value of R and a 
suitable small value of 6 120,211. In this case all the 
energy levels i.e., (25)-(27) will remain finite. 

Conclusion. Here we have studied the 
Aharonov-Bohm interaction within the framework 
of K deformed Pauli equation. It has been shown 
that the deformation parameter creates non-zero en- 
ergy bound states. We can hope that some future 
experiment would detect these states. The existence 
of non-zero bound states can also be understood in 
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the following way: the Pauli equation with g = 2 is 
supersymmetric [22] and hence admits zero energy 
bound states. However, in the the case of the de- 
formed Pauli equation g # 2 and so SUSY is bro- 
ken, giving rise to non-zero energy bound states. 
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