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W demonstraie the existenee of a social cholee Fenction i an cnvigonment
where thers are twn sutcomes and iwo players cach of whom can be of two Lypes,
which can only be implementsd in Bayesian ™Nash equilibrivm by 2 mechanizm
where Bl plavers have an indinite avmbes of messages. This slands i dramatic
conerast o the gase of hash implementarion e complete mformation, finite
enviranments. fowrnal af Eesnomic Literatere Classification Numbers: 0325, (26,

bOINTROVDLCINON

The theory of implementation is concerned with the decentralisation of
decsion making when agents have privale information. The heart of the
implementation problem is the construction of g mechanism or decision
procedure which will induce agents to reveal their private information. This
need 1o pive sgents the riphl incentives acls as g constraint both on the
kind of decentralised procedures which can be used as well as on the class
of social objectives which can be implemenicd.

Of course, the choice of mechanisms as well as the natare of implemen-
table social goals wili depend on the environment, in particular on the
strocture of information. In a classic paper, Maskin [6] considered the
case of complere fovmarion, that 15, a frumework in which the state of the
world is known o all agents. Various issues in the implementation problem
with complete mlomnation have been analysed subseyuently !

One aspect of the literature which has come in lor a 1ot of criticism is
that many of the positive results are obtained with the help of mechanisms
which possess undesitezhle features, For inslance, Moore [7] remarks that
the general theorem on implementation in subgame perfect equilibrium

*We are prateful 1o Rabmdran Abrahaml, Maw Jackson, and an anoenymous ceferee for
themr commenls,
"Sex Maare 7] far a recent survey of tis literadure.
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DAYESIAN IMPLEMESTATICN 131
involves ... the congiruction of an enormously eiaborate mechanism, with
several stages of simultanecus moves. Worse, the mechanism appeals 1o
clevel but unpalatable devices which exploit the Bnite details of what con-
stitutcs--of rather does not constitute an egquilibrivm.” Moore goes on to
st some of these “unpalatable” devices, one of them being the use of
mechanisms whose message scts arc infimte even when the environment is
fimite.

In this paper, we restrict attention to eovironments with incomplete
informuation, in particular o those in which agents possess evefisive [nfor-
mation.? We show that in uoneconomic ennfrorstents” with {exclusive)
incomplete information, there are social choice correspondences which can
ouly be implemented in Bayesian - Mash equilibriam by mechanisms with
messape sets which are not Minite ever in the simplest Minite environment.
Thus, our result shows that the very nalure of Bayesiun implementation
invalves the use of mechanisms with “unpalatable™ devices.

This result alse underlines the difference between Implementation in
Mash eguilibrium and in Bayesian—Nash equilibrivm_ In the lormer case,
upwanted equilibria can be destroyed by making mdividuals eycle endlessly
over a [inite set of strategies. This is accomplished by means of the
“modulo game” construction. Indeed, an upper bound on the size (that is
the number of messages) of individual message sets can be obtuined as a
function of the environment.” Our result demonstrates that this idea cannot
be used in the incemplete inlormation context. Atiempls Lo climinate
equilibria with a finitc number of sirategies may result i the creation of
new unwanted equilibria, Consequently, the general principles underlying
mechanism design in incomplete information environments are far more
subtle than in the complete information setting, It is also important to
realise that the usoal “integer games” will nol suffice either. Although such
games have an infinite number of strategies, it is always possible o
teplicate them perfectly by using appropriate modulo games.?

2 An alternative framewark is one where information (&8 nenesgfusiaoe: that (5. cach agent’s
information s redundant i the other agents pool thor information. Sec Postlowatie and
Schmeidler [18] and Palirey and Srvastava [2] for analvess of maplementation in ks
sedling.

W are [ollowing dhe tecmimology of Tackson 13]. Tackson defined an ecomomc cpitivon-
wichd s oorte it which e leasd $wo agents are nover sadisled.

1 8ee Danilov [1], Dutla and Sen [2, 3], and Moore and Repulle 18] for some recent
applications of madule vpe consituctions o the context of jmplementation in the perlect
mlarmation setling

! The referee has drawn our attendion o e need for caulion in the use of the lerm “ioeeer
gamie,” e points aut that the imfioie mechanism we emplaoy o our exalople can be described
g5 an mteger game o the following kind: Roth players annougsce integers and rhe outcome i
2 1T apent ome has a higher inesper end o, otherwive, By “integer pame™ we celer 1o games
where the player with the higher inlepger dictales e oulcothe.
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The most general result on Bayesian implementation is that of Jackson
(5]. Jackson formulales 2 condition on sooial cholee functions called
monctonicity-no-vero, He shows that if there are thres individuals, then the
condition is sufficient for implernentation. Moreover, implementation is
achicved by means of a mechanism which 1s hinite in finite environments,
Our exampie is not covered by Jackson's sufficiency theorem for two
rcasons. We have two individuals and the social choiee function does not
satisfy monotonicity-no-veto, IHowever, we show thai it is possible to
cxtend our two person example to i thmee person cxample where two
players require infinite message scrs. Therefore, the lack of finiteness iv 2
consequence of the failure of monolonicity-no-veto,

2. Notanon aND DEFINITIONS

In this section, we describe the general framework of Bayesian
implementation. For any collection of sets (&), ief B and B ¥ will
denote the Carwesian products [T,., 8 and [T, rin 87, respectively. The
vector (b A~ '}e B denotes the wvectar (&', .., 5 L& B+ L BY)L o
general, lower case detters will denote elements of sets which are repre-
scoted by corresponding capital lelicrs,

The set of individuals 15 a fnite set f= {1, .., ¥ | Following the formula-
rion of Harsany {4]. the ser of repes of individual i e f will be denoted by
&0 Throughout the paper, we assume thai 5 is finite. An element xe 5 will
be referred to as a stare of the world, ar simply as a state. A complete
descraiption of individual preferences is associated with each state.

The sel of feasible oulcomes will be denoted by 4. Elementis of 4 may
b interpreted as allacations of commaodities across individuals, candidates
in an election, and so on. It is assumed that A is Nixed and independent of
the state.

An gffocation x 15 a mapping x: S — A4 Forall xe & x[v]1=s A4 is the out-
come spectfied by x. Let X denote the set of all allocations. Mote that when
A s hoite, the set of allocations will also be fmte. We will refer 1o this case
as the finite eruiremnean!,

Every individual i € § has a prior probability disteibution ¢ defined on the
scl & We assume thal {8 g4 > 0] =5 for all fef

ForallieZ #e8 and s '8 ' g's ‘| s} is the conditional probahility
af 7% piven thal " has occurred.

Each individual | has a stefe-dependent wtility function wi Ax&—+ R
Note that the utility function depends on the entire state 5 and not just on
individual /s type 5 in that state.
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For all red and '8 the hinaey relation RY{s'} is defined on the
elements of X as follows:

forallx, ye X, xRe)ye ¥ (wix[s] s)—w'(p(5]. s)g'ts ™ i 5120

One feature of the binary relation R(s'} deserves special mention. Pick
an arbitrary icf and 56 8% Lel x, 3. % §e X be such that x[f. s ] =
¥f5. 5 '] and p[Fhs '1=7[f%s 'Y for all 5 *e 5% Then ERYEF i
and only if x®Y7' v, Thus, for the purpose of rankiog any two allocations
x and v under R}, only the values of x and y in states whose fth
component is 7° matler. This lael llows immediately from the definition
of Rs').

A socied cheice function |SCF) F is an element of X

A mechanism G 15 an (N4 1) tople (M, . M" g), where M' is the
message set for individual 7€ f and y is the outcome lunction g: M — 4

Let & be a mechanism. The collection {7 8, 1¢'} .., {v' }or. G} con-
stitutes a game of incomplete information. We shall refer to this game as
the game associdled with 7, or Lhe G-game. A strategy lor individuoal §, o,
is a mapping o S’ = M’ The set X7 is the set of all strategies of i For all
ae Z, ais} represents the vector (g5 1. ... ™5™ 1} and glo} (he allocation
which results when o ts played.

A Bavesian-Nesh equifibrium of the G-pame 15 a veclor of strategies
g L such that gla }R'(s") gle’, o, ') Tor all a'e XY, s'e 8 el Let
Z 0] denote the set of all Bayesian -Nash equiliboa of the (-game.

Dermioy 210 A SCF F is implementable if there exists a mechanism
G such that {g{a,) | o, e Z, (G) =£

Juckson [5] contains a review of other definitions of implementation in
the mecomplete information context. The reader is also referred to Palfrey

[10].

3. THE NECESSITY OF INFIMITE MECHANTSMS

We present an example to demonstrate the striking fact that implementa-
tion ¢ren in fimite environments may involve the use of mfinite mechanisms.
This has scrious implications, The most general resull on Bayesian
implementation sa far (Jacksonm [37]) uses the Bayesian equivalent of the
“modulo game” widely used in mechanisms for implementation in eomplete
information settings. These mechanising are finite when the environment is
finite. In our example, the unique implementing mechanism is infinile even
though the environment is finite. This suggests immediately that it would

- R AT
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be impossible o use “integer” or "module game” constructions e obtain
a necessary and sufficient condition.

The necessity of infinite mechanismy also stands in sharp contrast to
cancnical mechanisms in the compiete information case. Here, it is well
known that il a SCF is implementabie. we need not look bevond the class
of modulo pames in our search for the mechanism that implements it The
cxample shows that this resubl does nol carry over (o the incomplele
information case. We now proceed to the example.

Let 7=11,2}, §'={s" ¥}, §7°={1" ), and A= {a, a,}. An ailoca-
tion will be represented by a 4 teple whose first, second, third, and lourth
components refer 10 the culcomes o states 5'+', 5'0%, 5%, and 5%, respec-
tively. Thus, (&, 2. &,. -] 1% the allocation which specifics a,, t-. 7y. and
ay in states s't' T, o' and ¢, respectively. There are 16 allocations
altopether and they are numbered as follows:

I:ﬂ],d],ﬂ],{!l}=xl1 [airul1ﬂt1a1}=x31
1 1

la . d, @ ay=x". (d.d, 8,8 )=X",
(e, e et @3 =27 lag, ds, 0, a;)=x"
o B K I I i e | LaWea e, Haf=A
(e, tr.tr, 0, hb=x"y  {a, s, @, @)= x",
[y, dry ey, i ) =x" (@ g, a,a)=x"

{a.a.aa)=x"" day e, a,ab=5"%

{ﬂi1ﬂ11ﬂ|,ﬂ|}_—x”1 1:‘1111a21':zl'lal]'f'-".l.'{t

135

lét, day etz =X {ﬂ:sﬂ?s”zsﬁ?}=xm-

The vtiiity funclions of the individuals are s follows:
wa, (D=2 w'la;, (5'1'))=1
wia, (SEN=1  wHas, (s*F))=2
w'ia, . (&2 N=1; wiag, (7' =12
wia, (#*N=2; u'la, (5*7))=2
wia, (s'0'N=2 u’la,, (&' =0
Wl (=2 wa, is4'))=2
e, (FEN=15  wla,, (51PN =2

@ia, 872N =2 wllag, (511 =0,
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The prior probability diseributions for the players are given by
gt sl =g'1® V=gl s =g'(1F, #2)=05
and
Q’E[-¢1 | .fl}l - fi"?[-ﬁ“: | JII}I__ q}[ﬁl | Ir}.}: t"r:[.i‘: | :?]I__{'.S

It 15 casy to verify that with thesc data, the binary relations R'(s'), R'(s"Y,
B4, and R are as Tollaws:

Rlsy
L P

4 Fl 3 1 x 3 4
.#;"J'm.l‘l "‘-’.'L']"'“.THI"‘-’.'C e "“.TJ"‘-’..T

.-"fl?"'."l-'m"‘"x!l _‘-___xll
R][SZ}

] 12 14

4 7 -1 (] A 3
e A . S, RS i s T S T Nt 4

.tl‘-xﬁ-‘\-'xm‘-.\.'u-‘- x] _‘_xS“‘__.{l} n..,_r”'
a1
R

xl ~.rz-e.t""--x"n-xijﬁm.x?--x"

g .
S I, SIS T e 16
20,2
RE(1*)

xi . .,(.'.‘ ~ .5{'” dv_):lﬁ

L 4 H L
o R e

4
B R

x}. "'-‘_"CJ P xlﬂ =8 x[l.

In ali the four binary relations, any two allocations on the same row are
indifferent W cach other. I one allocation 15 above the other, then the first
iz strictly preferred to the second.

Consider the SCF, F={x"}1* Let & denote the mechanism deseribed
below:

# Obeerve that x7 is {weaklyh maximal for players of alb tvpes bal is not . Therefore, & doey
net satisfy Jackson's monotonicity-oo-velo condilion.
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1 2 2 2 z
fily . My Mz W, Moo

my &, & 4 a u
my @, @ @ a4 4
TR O PO N PR A
L R SO R P TR B

M s I iy o,

{Here, player | chooses rows, while player 2 chooses calumms).

ProrosiTion 3.1, The mechanion & fmplements F. Moreover, ft iy the
wnigue (upio o relabeliing of rowy and columns mechanizm whick fmplerments
it.

Proof. We Nirsl cstablish that 7 implements £ Let ay(s'h=m],
g (=}, oLt = m}, oL(r*)=m; Cleary. gle, )= x* We first show
that m, &' (7}, where X ({7} is the sat of equilibrinm sirategies in . By
deviating from &, player 1 can get any of the allocations x'. x°, 2", 5",
and x" However, x* is weakly preferred to all these allocations according
te both R'(s') and R'(5%). Similarly, deviation from o, allows player 2 to
get allocations x7, x°, and x7. However, none of these are beter than xf
under either R*(:') or R4} Therclore, 7,2 X {G).

We now show that if el then gla)=x" Pick an arbilrary el
We first claim thal it canmal be the case that gial= x7 or x'Y To see this,
suppase that glo)=1v=x" Assume without loss aof generality rthat
alisti=m!. Let e¥(t'y=m] and #2(42)=m]. 1L must he the case that & </,
Otherwise, one of the following must hold: (i) v[s'¢' ] =1[s"¢] =a,,
() vl ] =y =a,, or (HiYr[s']=a, and ¥4 =4q,. In cach
case we contradict the hypothesis that y = x'" Suppose that a2(s7)=m]
and t=r. Then ¥[s%*]=a, or y=x'" Therfore. v>r But now
V[a't' ] =u, implies that p[s%' ) =a,. Therelore y# x". Supposc that
glal=x" Lot #eX be such thal &'=a!, &' i=o¥t' 1= and
e 1=a{¢') Then, g{7)=x'" However. this is impossible. Therefore,
glo)#x".

Let gla) =y Player 1, by playing a sirategy &' such that §'(x?)=m!
with ¢ sufficiently laree, can ensurc that g(&', ¢¥1=2z, where z[s'¢' ] =
yLatet ], 2[5 = pste? ], z[#%' ] =z[#%7 ] = 5. Supposc that glo)=x%
By deviating, plaver ! can get x’. Since x*P'(+*}x', ¢ cannct be an
equilibrivm. By & similar arpument, ¢ cannet be an equibbrivm if
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efah=x® x% 2" 2% x% or x'% In these cases, plaver 1 has a deviation
which will give him x* £ %' %, x% and x"%, respectively. In each case,
the deviation is strictly preferred pecording 1o P For all ge 2,
player 2, by playing &° such that #°[¢'y =} and ¢4’} =m; with & and {
sufficiently large, can cnsure that gle', 82)=x'. This imphics that il gla)e
fa w1k x' 'L then o cannot be an eguilibrium. Player 2 will
deviate to get ¥ and will be strictly better off according to R3¢ It
alse implies that if g(r)=x* or x", then o cannot be an equilibrium. Once
agairl player 2 will deviate (o get x' and will be strictly betier off
according to K*{r"). This anly leaves the case where gig)=x* It is accept-
ahle for o to be an equilibrium since F={x*}. This cstablishes that 7
implements F.

We now demonstrate thal & s the unigue (up (o a2 permutation of rows
and columns}t mechanism which implements F, Let G=(M' " g} be an
arbitrary mechanism which implements F, Let £ denote the strategy space
of player i in the G-game. There must exist o, € £ such that gla, )= x*
Assume without loss of gencrality that o!, (') =wm]. alis®)=m], ailt')=
mi, and a3(7*) =i The part of & we have constructed so far Tooks as
foliowes:

Hi

=]

gy

WY ou.

Consider the strategy de X, where ¢'is'|=nrl, #1407 ) =m}, &) =m3.
and d%(¢"y=m?. Then, g{d)=x«" Since x ¢ F, some player must have a
profitable deviation from 4. This pliyer cannot be player 2, since x° is both
Ry and #*+*) maximal. Therefore, player 1 must destroy & as a poten-
tial equilibrium. Moreover, since ¥ is BYs") maximal, player | must have
a profitable deviation according to R'{s”). Suppose this deviation yields the
allocation v, where y=x* 17, x"", or &' All these allocations shave the
common feature that in states s%t' and %%, they speeily outcomes g, and
@, tespectively, This implics that player 1 must have a message. say ml,
such that Zi# ), i3} =a, and R}, m5) = a;. Now consider & € X such that
glishi=m}, a5y =ml, #")y=m3, and F(F)=mi Then giF)=x"
Since »7 is simultasecusly R'(s'), R'(5%), R%r'). and R3r°F maximal, &
inust be an equilibrium of G, However, <7 ¢ £ and we have a contradiction,
Therefore, the plaver T deviation which knocks oul & muse yigld
peEdix? o x 1" Al these allocations specify «; in states 57t and 57r%;
hence, there must be 2 message for player 1, say /i, such that giwmy, i) =
ey, il =a, Now ( looks as follows;
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Consider the strategy o= X, where a'(x'y=sl, slis?)=mi. a'(t')=m;.
and ¢(1')=m:. Then gim)=x" Sincc x*¢F, some player must deviate
ftom ¢ Since & is both R'(s') and &'(57) maximal, it must be player 2
who deviates, Let the allocation which player 2 gets by deviating be 1.
Since x¥ is R2(HY) maximal, it moust be the case that vP % )x® There are
two cases to consider. In the frst, ve {x°, 57 x'%, x's';. In this case, there
must exist a message for player 2, say /2, such that giml, mi)=a; and
g}, Wit=a,. But now. if plaver | plays ¢' and player 2 plays /3 when
of type ¢ and a3 when of type %, the outcome 1s x°. We have argued
garlier that such a strategy must be an equilibrium. We are led to a
cotttradiction since x"¢ £ Therelore ve [x', x* x% 'L This implies
that there is u message for player 2. say w3, such that ghal,ml)=
gim), mit=u,. Suppose that g, smit=g.. Then the strategy where
plaver | plays #t) und /) when of types &7 and o, respectively, and plaver
2 plays 4% and #1; when of types ' and (%, respectively, gives rise to the
allocation v, We know that this jeads to a contradiction. Therefore,
gtm!, ml)=wu,. The part of & constructed so far is shown helow.
1

Wy Ao

= [
Myl ey i

Hio @2 &y d,

m_-!_ [2E T £y

Now ook at the strategy deZ, where d'(s'y=m?, &'(s%)=ml,
gty = m?, and %¢") = w1 Then g{é) = x° Duplicating earlier
arguments, we deduce that there must exist a message for player 1, say i),
such that giml, miy=g(m}, M2 =a, Moreover, there must exist a
message for player 2, say ml, such that glmi, m3)=g(mi, #wi)=a,. Ako,
glm, mii=a ; otherwise il would be possible to canstruct a stratepy
whose oulcome s x7. We claim that gisey, sl = a,. If gizmy, mil =2, then
the strategy where player | plays ) and M) when of types &' and &7,
respectively, and 2 plays w3 and #2] when of types ¢ and %, respectively,
yvields the allocation x”. After the messages my and @2 are added, & looks
as fullows:
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23 eT o3 om3d
R R T T

=]

7 ST PR SR PR

-

s S EO T PR

=4
my g, #y, 4, @

Ry @y oy dy

Starting with the strategy ¢ such that &'(s")=#), &'(s*)=sml.
#l e y=m3, and #*(rV=m], we can repeat all the earlier arguments
te infer that there must exist messages #. and i for players | and 2,
respectively, such that gtml miy=a, lor i=1,2,3,4, giml mi)=a for
k=1,2.3, 4. and g(mL, mil=a,. In fact, it is clear that this argument can
be repeated ad infinitum so that & must contain an infinite number of
messages for hoth players. Inspection confitms that & = G, This proves the
praposition. |

Why does Bayesian implemeniation require infinite mechanisms in finite
environments? More specifically, why is it not sufficient to restrict attention
to module games? Consider the example presented in this section and the
mechanism G which implements F= {x}, We can think of ¢ as a matrix
whose entries are elements of 4. The only allocation which can be sup-
ported by stratcgies in the (F-pame are those which form the vertices of a
rectangle in the matriz. This is, of course, due to the deflinition of a player's
slratepy in an mcomplete information gune—ihe message sent by a player
depends only on his own type. Lot X*(&) be the set of allocations which
can be supported by strategies in G. Observe that x" ¢ Y*{). Now let &'
bt ancther mechanisn which implements £ and let ¥*(&'} be defined in
the same manher as Y*(Gh Since x’ is maximal for all individuals of all
twpes, it must be the case that x7 ¢ X*(C' ). However, i ¢ incorporates the
module game [specifically, we mean that G is a mechanism of the type
used m Jackson [5]), then it is impossible to ensure that x" ¢ X*(G'). In
peneral, modulo game constructions do offer the players the largest set of
devigtions (rom stralegies which are not equilibrin. However, in doing so,
ther may enlarge the set of allocations which can be supported by
sirategies. 1f any of these newly created allocations are maximal or players
of all types {as in the cuse of x7), then the mechanism may pick up non-
optimal equilibria.

The preceding  discussion  supggesis that  the pecessity of  infinie
mechanisms does not depend on a two persen assumption.

We confirm this by means of a smple modification af the cxample, Sup-
pose there iz a third player. player 3, who is either of type r, or type r,.
If she 15 of type ry, player 1 and 2 have the same wtility lunctions as before,
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while Il she 15 of type r., all outcomes have a atility of zero. Player 3 gets
4 constant uhlity {say zero} for all outcomes in all stales. Formally, the
utility functions 2', &%, and &7 are given as foliows: For all £, j, &, 7= 1, 2,

u':{.:.r.}, (5™ ) = ul{a;, (£*¢')) i m=1

=1 i m=2;
Farall j, &, fm=1,12,
ﬁj[ﬂj, [S.icfn'r.lu}] =0,

Assume further that player types arc distributed independently and that for
all plavers, cach type is equally likeiy.

We now represcited an allovation by a pair such s (x, 1) where x and
v are the 4 tuples of ouleomes in siates where player 3 is of types r) and
ry, respectively, Let R'(s), R'(s7), R, ete, denowe the ordenings
induced on allocations. Crbserve that for players | and 2, differences in
utilities wssocigted with outcomes arise enly when player 3 is of tpe v,
Thus, for all pairs of allocations {x, ¢} and {w, 2), (x, V1 B (&%)w, z) iIf
AR v k=12 and (x, v) BROC Ww, 2 iF xRS w, =1, 2 Of course,
R4t = B(¢?) is the trivial ordering which ranks all pairs of allocations as
indifferent.

Let F={{x,, xr,)}. We claim that the mechanism & of Proposition | is
the unique mechanism which implements . Thus, player 3's message set
contains only one element. while players 1 and 2 have an infinite nomber
ol messages. We omit a proof of this clam which hinges on the relationship
between the B and R orderings and the arguments used in Propasition 3.1,
Let es bricfly consider the argument o estabiish the unigueness of &
Starting from the revelation game, observe that players 1 and 2 have a
deception which gives rise 1o the allocation {x°, x¥). Sincc player 3 is
always indifferent. either plaver 1 or 2 must have a deviation to upset this
potential equiibrium. The siructure of preferences is such that thizs can
oceur if and only if one of these players has a successiul deviation against
x% in the oripinal G-pame. In addition, ihese oew messages cannct be
permitted to allow supportable allocations of the type [x7,-). Similar
arpuments can be made to establish an exact correspondence between
this construction and the mechanism . This allows us to deduce the
uniguensss of 7

In this three player example, it suffices to give player 3 a singls message.
However, in spite of her trivial preferences, player 3 is not 8 “dummy™
player because the utility functions of the other players depend on her type.
It is possible to construct exampics with more than two players when all



RAYESTAN TMPLEMENTATION 141

plavers have infinite message sets? The logic of our examples leads us o
betieve that it is possible 1o do so. We do not attempt such constructions
hecause of the formidable compuatational difficultics involved.
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