Multifractal and generalized dimensions of gray-tone digital images
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Abstract

Fragtal geometey has found widespread applications in image processing problems. One interesting fractal parameter
is the fractal dimension that characterzes the roughness of the image. Higher-order fractal dimensions called multifractal
dimensions are used to characterize the underlying inhomogeneity of texture in an image. This note deals with the
methods of estimating fractal and multifractal dimensions of gray-lone digital images. Experimental results on texture
irmages from the Brodatz album are presented and discussed.

Fusammenfassung

Die Fraktal-Geometrie hat breite Anwendung aof Rildverarbeitunasprobleme gefunden, Ein interessierender Frak-
tal-Parameter ist die Fraktal-Dimension, die die Rauheit des Bildes charakiensierl. Fraktal-Dimensionen hoherer
Ordoung, genannt Multifraktal-Dimensionen, werden zur Charakterisierung der vorhandenen Inhomogenitiit von
Mustern in einem Bild benuizt. Diese Arbeit beschiéiftigt sich mit Methoden zur Schitzung von Frakial- und Multifrak-
tal-Dimensionen von digitalen Grautonbildern. Experimentelle Frgebnisse anhand von Bildmustern aus dem Brodatz-
Album werden wiedergegeben und diskutiert,

Résami

La geemétrie fractale a trouvé de nombreuses applications dans les problémes de traitement d'images. Un paramétre
fractal intéressant est la dimension fractale gui caractérise la rugosité d'une image. Les dimensions {ractales d'ordre
supétieur, appelées dimensions multi-fractales, sont urilisées pour caractériser I'inhomogénéité sous-jacente de la textare
presente dans une image. Cet article est consacre aux méthodes d'estimation des dimensions fractale et multi-fractales
d'images numérigues & niveaux de gris, Des résultats expérimentaux sur des images de texture drées de 'album Brodatz
sont présentés el commentis.
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1. Introdoction But most of the natural objects are so complex and
erratic that they cannot be described in terms of

Simple objects can be described by the ideal simple primitives. The phenomenon of resolution
shape primitives, such as cubes, cones or cylinders. dependence of measures emerges in neardy all

guantitative tasks of image analysis. Fractal peo-
metry supplies the theoretical basis to describe this
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phenomencn. If a scaling exponent of an ohject
remains constant over a certain range of resolution,
the object 15 said to be self-similar. Self-similarity
can be characterized by a parameter called fractal
dimension. The complex and erratic shape descrip-
tion in terms of self-similarity was introduced by
Mandelbrot [12].

The concept of fracial dimension {FID) can be
useful in the measurement, analysis and classifica-
tion of shape and texture. Pentland [135, 16] noticed
that the fractal model of imaged three-dimensional
{3D) surfaces can be used to obtain shape informa-
tion and to distinguish between smooth and rough
textured regions. Rigaut [ 18] used the concept for
image scgmentation. Some of the other applica-
tions involve sedimentology and particle morpho-
logy [13, 107, image data compression [1, 8] and
compiter graphics [21].

Fracial dimension is used to characterize sysiems
with seli-similarity of simple and homogeneous
fractals, FD is not enough for characterization of
sets having non-isotropic and inhomogeneous scal-
ing properties. For such a characlerization one has
to generalize the analysis using the concept of
multifracizls whick implies a continuows spectrom
of exponents for the charactenzation of the system.
In this generalization, an inhomogeneous fractal set
is considered to be mterwoven with infinitely many
sub-fractal sets of different dimensions.

Blacher et al. [2] used multifractals to character-
ize the morphology of polymer alloys and granular
discontinuous thin film. Kanmani et al. [9] used
multifractal formalism in  describing the in-
homogeneity of stress corrosion crack patierns.
Chaudhuri et al, [4] vsed multifractals of order
2 along with other fractal features for texture seg-
mentation.

Blacher et al. [2] and Kanmani et al. [9] esti-
mated generalized dimensions for two-tone images.
We have not come actoss any work of estimating the
peneralized dimension of gray-tone texture images.

In this paper we propose an algonthm Lo com-
pute the generalized dimension of gray-tone digital
inages. The basics of FD and different approaches
of its estimation are reviewed in Section 2. The
estimation procedure of generalized dimension
(GD) iz presented in Section 3. In Section 4 the
special case of two-lone images is described. This

section alse contains the results of using the pro-
posed algotithm on texture images and related
discussions,

2. Estimation of fractal dimension
21 Backgrotund

The Hausdorfi-Besicovitch dimension of
a bounded set 4 in B" is a real number used to
characterize the geometrical complexity of 4.

Consider the metric space {R" d), where » is
& positive integer and d denotes the Euchidean met-
ric. Let 4 = BR" be bounded. The diameter of A is
defined as

diam(4) = sup{dix, ¥k x,y & A}.

LeiO<e= oo, 0= p< oo, Lei o denote Lhe sel
of sequences of subsets [d4; = 4}, such that
A=1E, 4;. Then we define the Hausdorff p-
dimensional outer measure of A as

fphA) = inf{ Y [diam(4;)]": {4;} € 4,
i=

and diam(4;} <& fori=12.73, .. }

Note that g, is non-decreasing as & decreases. Let
fiplA) = lim, | g i,0(A) The Hansdorff-Besicovitch
dimension {Dy} is defined as

Dy=sup{peRip =0, () — ou |,

where it is assumed that sup¢ = 0.

A set is called a fractal set if its Hausdorfl-
Besicovitch dimension is strictly greater than its
lopotogical dimension, Mandelbrot [ 12] cotned the
term fractal from the Latin word fractus, which
means irregular segments.

The Hausdorfi-Besicovitch dimenston is often
called the fractal dimension (FD¥}. Mandelbrot [12]
defined FI¥ in the following way.

Let 4 € B", Foreach & = et .A47{ 4, £) denote the
smallest number of closed balls of radius & needed
to caver 4. If for a constant C

A (A, 8)=Ce P (1}

exists. then D is called the fracral dimension of A.
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Mandelbrat proposed un approach to caleulate
> white estimating the length of a coastline, Con-
sider ull prints with distances to the coastline of nol
greater than ¢ These points [t a strip of width 2z,
and the suggested length Lig) of the coastline is the
area of the strip divided by 2& As ¢ decreases, Lie)
incteases. The length L4k} can be obtained from
Eq.{lVas

Lig) = Fet" ©, (2}

The fractal dimension (FDY] of the line D can be
derived from the least-squares linear fit of the plod
of tow L) veraus log e, [Tm is the glope of the fizted
ling then FD of the curve jcoastline) is given by
1 — m. Noie that m is a negative real number in the
range of - 1 and 1 = D = 2

There exmst several approaches to estimale the
T3 o an image. For cxample, Peleg ¢t al. [14] used
ihe s-blanker method which 15 a 2.0 penerahization
of the original approach suggested by Mandelbrot
[12T. Pentland [15, 18] considered the image inten-
sily surface as a lractal Browniun function (BN and
estimated FD from the Founer power spectrum of
FBI. CGrangepain and Rogues-Carmes [6] as well as
Keiler et al. [11] used vanations of the box coont-
ing approach to estimate FD.

Of these mathods, those due to Peleg ¢ al. and
Pentlynd give accurate resulls, but they are com-
putationylly expensive. Oo the other hand, the
methods doe to Gangepuin and Rogues-Crrmes as
well as Keller et al. are accurate for only a small
portion of the dynamic range of FD, althouph they
are commputationally efficient. Here we present
2 compuiationally ¢fficient method that gives accu-
rate results over the full dynamic range of FI» The
method, calied diflersntial box counting {DRC)
method |19, 15 described below,

232 DRC estimuation of fracial dimewnsion

The concept of sel-similarily can also be used to
estimate the fractal dimension. A bounded set A in
Euclidean n-space is self-similar if 4 is the union of
N_ distinct (non-overlapping) copies of itself scaled
down by & ratio r. Fractal dimension £ of A is given
by the relation [11]

_log(N,)
T lag(ifey

1=N+® or (3
However, natural scenes practically do not exhibit
determitistic sell-shmilarity. Tostead, they exhibit
some statistical yelfsimilarity. Thaus, if a scene is
sealed down by a ratia v in all » dimensions, then it
becontes statistically identical to the original one,
¢ that Eq. i3} is satisfied.

In the DBC method. N, 15 countad in the follow-
ing munner. Consider thal the image of s12c M x M
pixels has been scaled down to 4 s17e v x ¥ where
M2 =5 | und 5 15 an integer. Then we have an
estimate of r = 574 Neow, consider the itonage as
a 3D space with ix, ) denoting 2-13 pasttion and
the third co-ordinate (z) denoting the gray level
The{x, ) space is partitionad into grids of size s x 5
On cach grid there s 8 columno of boxes of size
sx s x5, If the total number of gray levels is € then
LG/ |=| M/s| Set, for example, ¥ig. 1 where
5=« =3 Agsign nnmbers 1,2, ... to the boxes as
shown. Let the mimtmotm and maximum gray level
of the image m the (Ljith pod full in the box
numbered & and { respectively. Then

mldjy=1—k+1 {4

is the coniribution of N, in the (ijith grid. For
cxamiple, in Fig, | w(Lj1=3 | + . Taking con-
trihutions frotm all prids, we have

N, ¥ miij) {5}
1

N g counted for different values of » (e, different
values of s} Then using (3) we can estimate D, the
fractal dimension, from the least-squares linear fit
of log{ N, } against bog(1:/r). Because of the differen-
tial nature of 04, §3, we call the method as differen.
tial box counting methol,

In actnal implementation, a random placement
of bovies 12 done to reduce the quantization effect of
the approach, More specifically, the colomn of
boxes are given runcom shiflt in units of gray valuc
along the x-direction although the box size remains
the same. Shifts in the x- or p-direction are also
done in multiples of pixel length/breadth [20]. As
explained in [20], such random placement makes
a better estimate of FD for images with periodic
spubial structures. Sec Fig. 2 for horizontal smft in
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Fig. 1. Txctermination of u, by the propassed metihod.

the x-direction. Vertical shitt can be made in an
identical way.

An algorithm to estimate FTr using the DBC
approach is as follows.

Alyorithm FL
5=2
while (5 < level)
for s = 210 50
MN.o=1
for all hoxes do
it +— minimum gray value of the points of
currenl bax
max — maximum gray value of the points of
current box
#, — mox — min + 1
N.—N, +n
Call LINFIT{log N, log{l/r).m, &) [LINFIT is the
subroutine to fit a line returming the slope m and
ardinate intercept ¢ of the fitted line}
D= m
End.

Next we shall consider the generalized dimension
D, and szee that Dy is equivalent to D described
here.

3. Maltfractals and generalized dimension

The properties of self-similarity of a set of points
can be characterized by fractal dimension. Note
that only for simple cases can this be considered as
an exhaupstive charagterization. For non-isoiropic
or inhomogeneous scaling properties, the sels re-
quire a more general treatment amsl one has to
generalize the analysis using the concepts of multi-
fractals which implies a continugus specitum of
exponents for the systems characterization. During
the last few years it has been demonstrated that the
muoltifractals are necgessary to characterize the
propettics of various physical phenomena like tur-
bulence, strange attraclors in peneral, fractal
growth models, multiplicative processes. and
others.
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Fig. 2. Column shifting in the x-direction,

3.1 Generalized dimension

In computing the box counting dimension, one
counts the non-empty boxes without any repard to
the number of points in a box, L.e. no weighting is
done to the count according to the number of
points in the box. This approach describes the
geometry of the structure but ignores the under-
lying measure, ie. the density of the point distribu-
tion over it. A measure defined over a set describes
the varying density of a positive scalar quantity like
mass.

The generalized dimension introduced by Grass-
berger [7] takes into account the number of points
in a bax, Let B; denote the ith box. Then u{B,}is the
measure defined for the ith box and is equal to the
number of points within the box. Also, u{d) is the
total measure of the set 4 and is equal to the total
number of points in the set 4. Then P, = u(B,)/u{A4)
is the normalized measure of the ith box. The
generalized dimension is given as

1 w Ne D4
]imlﬂg“' il
g—1ls=0 logr

D, = , (6)
where — oo g < oo and N, denotes the non-
empty boxes.

For a homogeneous fractal, with all the P; being
equal, one obtains the generalized dimension D,

which does not vary with g. But in the case of an
inhomogeneous fractal. D, usually decreases with
increasing g. Note that Dy computed using Eq. (6) is
equivalent to the FE» of the set A.

Coleman and Pietrinero [5] defined a partition
function as

xig.r) =3 Piocrt,

The role of this function is to evalvate all the
possible singularities of the distribution by study-
ing all the 4 moments of the coarse grained distri-
bution for different sized coarse graining. The expo-
nent 1{g) defines the small r behavior of y(q,r).
Even a regular distribution can be characterized in
this way. Their non-fractal properties would arise
from a particular behavior of {g). The generalized
dimension I, can be defined as

. Inglg,r)
(g~ 1)D, =(g) = im——~—"—
(@~ 1)D, ==(q) = lim ——

(7)
Applying L'hospital in Eq. (6) we get
D, = lim 271108 Py

r=0  logr

D, is called the information dimension. Note that
the numerator term in the expression of D, is iden-
tical to classical information measure if P, denotes
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probability. 1, is called the correlation dimension
which is a measure of correlation between pairs of
points inside a box. For g = 3,4, ... one can define
a set of generalized dimensions [}, 2, assoclated
with higher-order correlations between triples,
quadruples, of points in each box [2].

3.2, Box counting approach

In this paper generalized dimensions (GD) of
texture images are estimated, which is more difficult
than finding the GD of a two-tone image described
in Section 4, At first, image intensity surface is con-
structed from the given image by connecting the
neighboring image points in 3-12. For a given box
size s the image is paniitioned into boxes of size
sxaxs. Let B, denote the (ij,k#h box. Let
ui B ) be the number of poiints counted al B,

The total number of points of the image intensity
surface is given by

wlAb= Y ul(B
Sk
then P[jl: = H{B”kj,-"u{d].
Let y(g.r) = T, P4, Then the 3-D generalization
of Eq. (6) can be given as

1 logxle,r
n=——I - 13, &1
i1 q—lrﬂ ].Ugf' Eq# .:I {.-
P log Py
D, _ i 2tfitoe
reo ogr

where r = /M as given in Section 2.2,

For a given value of g, y(q.#) is computed for
different values of r and D, is estimated from the
plot of log yig.r) against logr.

The most important part in this method is the
image intensity surface approximation and count-
ing of u(B;;.). The approximation is done at first for
all columns of the image where the neighboring
gray value points (in 3-D space) are joined by
straight fines. Then the same process is done for all
rows. For counting, at first the 3-I space is par-
titioned into boxes of size s x & x &, then the number
of points in the (i J, k)th box is counted as u{B; ;).
Mote that for a piven value of ¥ one can have
a maximum count of s x 5= & for w(B; ;1

An algorithm to find the generalized dimension
is as follows,

Algorithm for GD{(g)
{for image of size M x M, image {unction denoted
by f1i,7] and 3-D matrix denoted by F[i,j,k]}
fori=0tM-—1 '
forj=0to M 1
fork=0to G~ 1 /*G is the number of gray
levels */
FLiik] =0
fori=010 M — ]
forj=0to M -2
join (7,7, fT6,7]) and (i.f + 1, f[ij + 11} of
F matrix by a straight line
forj=0to M — |
fori=0to M -2
join i a1 and (0 + 1,4 F[E+ 1.7 of
F matrix by a straight line
for s =210 8,
Initialize N{g,#) for all g and (1.7
fori="0to Mis -1
forj=010 M/s— 1
Initialize Temp{g) for all ¢ {'Temp(g) is a tem-
porary array;
for k=01t M/ —1
Ny « number of points B,
el yil,r) + Ny log N,
Templ(qg) « Temp(q) + Ni
Nig,r)+ Nig,r} + Temp(g)
Ly (1L e N ) — log N1, 7)
Normalize Nig.7) 1o get x(g.r} (g # 1)
Forall 4 (g #£ 1)
Call LINFIT (log x(q,r). log(r), m.c)

g =M

_ s
D, = g |
Call LINFIT{zi(1,r), logr,m, )
Dy =m
End

4. Results and discussion

We compare the DBC method with four other
methods due to Peleg el al. [14], Pentland [15],
Gangepain and Roques-Carmes [6]. and Keller
et al [11] The algorithms are tested on the
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synthetic images which arc actually zern-mean
Cavssian ooise with standavd deviation o added to
an absolulely smooth image surface at gray level
128, Suitable truncation is done so that the resull-
ing gray levels lie in the range 0 -2355, It is capectad
that the FD will increase if the noise 7 imereases,
and beginning at 2.0 the F13 will asymptoticalty po
towards a value of 300 A pood estimaition methed
shonld reftect this desirable featore.

The results are plotted in Fig. 3. Tt is seen that the
method doe to Pentland, Peleg et al. and the DB{
approach give satisfactory results. On the ather
hand, methods due to Gangepain and Rogues-
Carmes and Keller ¢t al. gpve satisfactory results up
v g certnn level of roughness of the itnage intensity
surface, After a cortain value of FD, which is 2.5
and 2.75 for the methods due to Gangepain and
Roques-Carmes [6] and Keller et al. [11], respec-
tively, the slope of {he curve nearly goes 1o zero and
hence these methods do nel cover the full dynamic
range of FI3. Simlar behavior is obseryed on other
real images from the Brodatz [3] albuni.

Let the image fenction be f{x, ). Consider the
plot x, ¥, fix. 3010 a 3-D space [or all x and 3. Now,
if the generalized dimension of the above space 15
estimated without the space approximation de-
seribed in Section 3.2 then for g = 0 the estimated
vilue of Dy will be gqual to the FTY estimated using

W7

the {Gangepain and Rogues-Carmes [6] methed.
On the other hynd if the surface approximation is
made, then the estimated Dy, is similar to the FID
estmated by the TXBC methed and here I, covers
the full dynamic range of FD.

However, due to insufliciency of memory the image
intensity sudace approgimation of the whole image
may not be done at gne time, To solve this problem
surface approximalion can be done locatly. For
example, if we wanl (¢ calealate w8, ;b where the
box @ize is 5. then the lolipwing steps should be taken
Srep T Juin fliss + 8 fev +m) and  fiiss + 1,
Fes+m+Dford=las lomas
Tonn f{i=s + Lj*s + m) and flins + <+ 1,
Jest+milorl <f<s 0<m<s
Count #(B ;) as number of points in box
(g

To complete the study, 11 may be useful to discuss
the approaches to compute FD ol two-tone images,
There cxist many algerithms for Lhe purpose, al-
though these algorithms were origmally meant lor
finding the FD of curves.

The most widely used definitions of dimension of
this class are the Minkowski- Bouligand dimension
and the box dimension. These are descoibed by
Mandelbrot [12]. Althouph they are egoivalent in
the limiting case, in practice they give rize to algo-
rithms that behave quite differently.

Step 2.

Step 3.

3.
= 2.
| a.
1
1
-
5 a.
]
§ =
=
e e
o —F1 DEC
< 2.9
? G~— Gang
L 2.B8f =t Punt
! +—t Paly
2.18 BN
" t6  d@ @ 48 &4 g @ 98 g = 12%
Haise (Sigmo) Level —-=--3

Fip. 3 ML} of synthetic jnages by ditferent mstiod..
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Minkowski- Bonligand dimension: The Minkowski
cover of a get & is the set of all points E(z) defined as
follows:

Fley= 1y ye Bix)), xekE,

where B, is a disk of radius 2 centered om x. In other
words, Eir] consists in the upion of all the disks
centered om £, with radius ¢ The area of the Min-
kowskl cover is E,. From the log log plot of (1/&)
and E, an estimale of 2 — D is found where D is the
EFTy of the curve.

Box dimensior: The two-lone mage s par-
titioned into touching squares of size s x5 Now,
the number of non-empty boxes are counted az N,
ir=z'M, where image size i M x M), which is
equivalent to the number of boxes needed to cover
the image. Then the following equation holds good:

1=N,r

where D is the fractal dimension of the image and is
estimated from the lop—log plot of &, and 1/r,

Barnsley [1] and Mandetbrol [12] used these
methods to tind the FD of two-tone synthetic lrac-
tal images. Pickover and Khorasani [17] used the
box counting method to ind FD to characterize
speech wuve gruphs.,

Blacher et al. [2] siudied multifractal behavior of
granular evaporated thin gold films of different
gnld concentration. They made the following ob-
servations from the plot of D versos g for different
20ld concentration. For the smallest concentration,
with noo-cennected morphology, the generalized
dimension decreases inearly with g, For high con-
centration the curve tends toward a constamt 0,
indicating a more yniform feeling of the plane.
Multifractality means non-uniform fractal, and the
greater the difference between Dy and the other
dimension P, the more non-umform is the

Fig. 4. Maturl texlums 3]
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I, B, 0, o,

L5g

Image D, D, i B, B P 175
3 2.6% 235 235 235 2, 133 132 15t 2310 29
D4 72 2152 2.54 253 253 252 3| 250 250 244
Do}z 263 24 2 245 4% 247 a6 Xdn 245 244
CHH: 239 238 24 242 242 241 2.4 130 138 237
D 166 14 247 247 247 247 246 X6 45 45
D2 153 2142 pICE 245 245 245 243 245 L.44 T4
[ 8 166 142 253 252 R 244 248 147 243 2
2 2a6 357 .58 158 2.} 256 i 2.54 253 252
021 a2 170 .72 132 L7 27 270 268 2487 286
24 2.5% 241 244 245 245 244 244 243 243 242
2k 243 233 237 238 P 259 2.3% ! 238 238
33 ra 220 s 2340 230 2 2% i 2 22T
34 i x14 21a Ay a7 217 217 kA 216 216
Tait 253 221 225 1249 2.33 235 2,36 37 237 257
154 4 r1] 233 254 234 234 233 233 233 212
1355 i} 32 135 230 256 236 235 235 234 234
5 240 224 2 M 128 226 120 225 225 225
IR 15 244 247 148 24K 148 247 247 247 244
1277 i rad 2ok 2485 2143 2A2 2Al 2539 258 257
%2 25 246 249 250 249 249 24K 247 247 2
(RrE a0 243 245 X245 144 244 243 242 || 241
(42 v 45 248 240 249 248 248 247 247 246

] [ L 244 248 X4R 148 248 248 247 2aa 2

L, 3887

structure, Kanmani et al. [9] studied the multifrac- i

. : i 2.4

tal bebavior of stress corrosion cracks. They ob- :

setyed that the curve of D, versus ¢ indicalcs the I 2,801

inhomogeneity of the cracks, Multifractal behavior 5 2.7l

of a textural image is somewhal complicated than g 1

binary image. Textores can be described by its basic 2 ,BE;

properties such as coarseness, uniformity, rough- o 8.5a¢

ness and directionality, Soms of these properties [ " 4&[

can be described by the generalized dimension of =

the textore. We stated carlier that FD reflects the § 2.5y

ronghness of A texture, It has been obscrved that for 3 oo Y, Y

very fine stroctured texture (e.g. D21), B is a liitle —p 0%

higher than Dy, which will not occur in the case of 2.18 e (35

binary image. Usually, the value of Dy — 2, reflects . e —t—t

the coarseness of the grain of the texture, TL has also g ! Eq : e

been observed that as we increase the value of g, 1),
saturates to a certain value for a given texiore,
indicating the hmil of fractal nen-uniformity of
texture image. It is observed that for fine textnre the
curve of £, versus g is more or less straight. Similar
behavior is observed by Blacher [2], on the imape
of pold filtn with low gold cencentration. However,
the characteristics of D, for texture imapes 15 gnder

Fig. 5. Generalized dimension for texture images.

further study. Typical textures used for the comgpu-
tation of FD of different order arg shown 1n Fig. 4,
These images are taken from ithe Brodaiz [3]
album. The results are shown in Table 1 and Fig. 3,
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