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Texture Segmentation Using Fractal Dimension

B. B, Chandhuri and Miropam Saricar

Adstrpet—This paper desls with the prohlem of recognizing and seg-
menting texinres in images. For this porpose we cmploy a techodipoe
based on the [rectal dimension (FI3) and e molbi-Tractal ccepl, Slx
1Y features are based on the original Image, the ahove averagedhigh gray
level image, the below averagelow gray level image, the horigontady
smoothed image, the vertically sowthed image, and the multi-fractal
dimenshon of order two, A modificd box—connling approach is propoyed
te cstimale the FIY, in combimtivn with fealyre smoothing In order to
reduce spurions regions. To segnent a scene into the desired number of
clagses, an onsupervised K—means like clustering approach is used, Me-
sabcs of variows nutural textoces feom b Broduile album gs well as nd-
crophelographs of thin sections of natural rocks are considered, and the
segmentation resulis to show the cfficicncy of the technigue, Seperviced
lochmiques such as minimom—dlstance and k-nearest nelghbor classih-
cation are also considered. The resols are compared with wther tech-
niques.

Tudex News—Texture, sepmentation, frecial dimension, multifeoctal,
classification.

1. INTRODUCTHIM

There ace twa impotant aspects of toamre image segmentation
proscedures, namely featrre extraction and sepmenfeiior, Examplos
ol commenly uzed cxmee teanires are: Fourier transform energey [17,
Tocal extremya (2], co—occurrence sttistics [3], [4], dominanc local
orientation and frequency [5). dircctonal grayv—lsvel enerey [81, [7],
directiomat [ler masks including Gabor filtees [83], [9]. 114, linite
prolate sphorpidal sequences {111 ws well as (ractal dimersion [12],
113]. Features derived froan the amtoregressive moving average mods|
1141, the Ganszsian-Markos random fizld model [15], and the Gibbs
randam ficlid mndel [16] are also wsed. Sepmentation nethods, oo the
olher hand, ate based on region growing [1], [2], cstimatinn theury
[15], split—and—merge [1], Bavesian clessification [7]. relaxation [7],
clustering [13], 117], and nouwral netwensks 4], [9].

The textuce leatures studied here ere all Dased o the Eractal ge-
ometey of images, This chojoe is motivated hy the observation tha
the frageal dimension (FER is relatively dnsensitive o wn unage seal
ing [18], and shows a strong carclation with tuman judgment of
surface roughness. Feld [1%] bas showly il many patoral exhires
Iawe a lingar Jog poswcr specturm, and that the processing o the bo-
man viswal systen e, the Gaber-lyvpe representation) is well suitcd
Lo chatacterize such texturcs. A finzar Ing power spretnum s celuled
to the frageal dimension, bul iU is an wlealizaton (ur mony estozes, In
Lhix sense, e fractal dimension is an approximative spectral cslima-
tinn and enmparable to allermative maethods [10].

Theet texfure segmentation in this aticle is hascd on siv F-hased
features. To this purpose. a modilied busx—counting method is nsed
for estimating the FD (205, The so—called ditferential hox counting
method, deseribed in Sec. 2. 15 faster and more accurals than otber
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box—counding approsches [21], [22]. [12]. The features are defined in
Sec, 3, and the smoathing and segmentarion approaches arc freated in
Sec. 4. The methods are tested oo various combinetions of digitized
texmrzs, fivm the Brodace album [23] and microphotographs of thin
sections of natural cocks. The experimental results are presented dn
e, 5.

I§. FRACTAL DTMEMSION BR'TIMATHON

The Hausdorfi-BesicovitchiHB) or freclal  dimension of a
bounded sot 4 in R iz A el number weed to characterize the geo-
memmical complexity of A A sel s called n fraclal se il s 1TB dimen-
sion 15 stictly greater than its ropological dimension, Mandelbrot
124] eoined the term fractal [rom the Latin womd fractus, which
pans e lar segimenls.

The concept of self-similanty can be used bo cstimaie the fractal
dimension. A bounded =21 A in Buclidean s-space 3z sell—similar it 4
ix the ynion of &, distinct (non—overlapping) copies of kel sculed
up ar down by a ratio «. The feaceal dimension 12 of A iz given hy the
relation [24]:

1=N" or JJ=—-—IUE{NF) (1
leaf14 #)

There exist several spproaches to estimate the FD of an image
1231, [1%], 1221, L12]. These methods are sither compulationally &x-
pensive ar cover anly a small part of the dynamic range of Flx A
roethad, called the Ditferential Box Counting (I3BC) method [20].
that covers a wide dynsomic rarges is wsed e,

Equation {1} is the basis of estimating the FO by the DBC ap-
prosch. Here, &, 15 determingd in the (ollowing way. Assume that the
image af size M = & pixcls has been scalod dowe oo siee 5 8
whers MP2 2 5> 1 and 5 35 an integer. Then we konow that » = &/,
Mow, consider the image as a 30 space with (x, ¥) dencting 20 posi-
tinn and the fhird conrdinatz (21 denoting gray—tevel. The (x, ¥} space
iy purtitivned ionlo egrids of size s = 5. On each grid there is 3 column
of hokes of si7c £ % = 8, Let the minimum and maximunm sy ecel
af the inags in che (4, 7™ arid fall in the &™ and the ™ b, FERQER-
tively. Them

L =1-Fk4+1 (2
is the contribotion of & jn the 4 j]'h grid. Teking contributions, frmm
Bl grids, we have

M= Y ondi . i3

Y]
N, iz counted for difforent valoes of F(Le. differsnt valizes of <) Then
uwsing {17 we can eslimate £F e fracih dimension, fom the least-
guargs finear 7t of ol against g1, Because of the dilleren-
tal mature of kg2, 71 we call this ihe Differestial Box Counting {DBC)
mezthod. in the sctusl implemeniation, 2 andem placement of boxes
is applied in order to reduce quantization cffiects.

The success of the DBC jpethod 15 attnboted 1o the fact that dif-
ferantial box counting by equations (2-3) pives 4 halter approxima-
tion te the Doxes jntersecting the image infensity surface relative to
olher nes counting methods, Tn o sense, 0 is an spproximolion w Lhe
hlanket meethesd [23], Comparative results with DBC and other mech
oe are aleseribed in [20].

1. JANUARY 1905 k]

I FEATURE SELECTION

Mandelbrot and Yan Mess [28] and Voss [21] have pointed oue
thal different textures may have the same FI3. This may he doe w
eombined differances in coarseness and direcronality (dominant ri-
catation and degree of andsotrupy]. We propose o use g1 fediures o
arder to disceiminate these aspects, They are based an the F1 of: (1]
the ariginal image, (23 the igh groy- valoed image, (3) the low geay
vilued image. (4} tha borizonally smaoathed image, (3) the vertically
amoathed image and (6} the multi—racial dimension of the original
image. For any (eatare £ we e ©e §O,11

Featuere . The FD of the origingl image f; is computad on overlap-
ping windows of size (2% + 11 = (28 + 1) Thus, at podm 77 e
first Foature walue o6, 1 15 defined as

FlLiy= D] L+ j+k) —W=Lk=W } (4%
where M i Lhe Teacial dimengion derived by the methnd described in
Sec. 2. Sioee 2.0 = Fy f, ) = 3.0, we define the normalized leaturs as

S N=F o iy =250 that D=6 05 =1

Features 2-3, Consider twe modified images called Jigh and low
gray=valued imagss /- and fy respectively, defined as

I S
(i f)=1 Ll -L iF S, ,'J,.__r} ENA &
L{P olherwise
(285 f, i 0L )= (295—- L
rppel ST B HE ) (®)
: | Rin otherwise

L) = B+ 02 5 Lz = G a2 while po.. e, and G dendte the
makimum, minimoin ad dvecage geay valoe in §, cespectively. 15 twe
images £, and &y have 2 same B0, their high gray—valoed images 1
ad Jy may oot heve an identical roughoess and their Fhs would be
differest, The same belds for £y and 43 The normalized Features f;
and & are compuled Toom f> amd F similar to the somputation of f
from I

Features 4=5 The FI of an image is releted W its Toughness and
hence it is reduced by gray value smoothing, For a highly oriented
texture, the FD will be affectad loast if che texture is smoothed along
the direction of iLs domitant ofteatarion, But if the smoothing diree-
liot iz pecpendicolar, the KD will be substamially reduced. On the
ather hand, @ texiure having a low depree of anisotropy will show an
idertical effect on the FO irrespective of the smnothing dinzclon.

We take images smuothed in the hodzontl or vectical directinn
unil compute teie FO as the fouch and tifth featne. Homiontally aod
vertically smoothed versinns of the jnege are defined as

1 M
Litte—— N Wi j+E T
it 5 A8
Lii fl= _ZJ'[H & j} 3
L

[P
The normalized I features #; and §5 are compulad similer o f.

Feature 6. 'The FI measures delined above cn only chasucterize
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sel(—similarity in ideal cases. Most veal textures ane not ideal fractals.
For 5 seli-similar digtritution showing anisolropic snd inhomopmene-
sus scaling propertics, the muli-(rsctal concept is a better approach
[27], because il implies a continuons spectrum of cxponents for the
pattern characterization. Owr sixth feature is based on the mult-
fractal with exponent of order two. Following Pictromers {27] we de-
zetibe brielly the basic concept of multi=-fractals,

The pointwige dimension {or singularicy exponcat) o is defined as

lim Holx)-r® )

where [45) s the distefhution in a sphere of radius » aroond the
point r.

In practice we lake aguin r = #M, Hence the disteibution at the
¢, A% position is (04§ = &0 FWN, wrhere mgd b snd N, ame defined
by cquation (2§ in Sec. 2. We define the parlition function ylg.r as
follows

Hlarl= Z[.ur(jd‘]}‘* ]

Tlhe pale of this foncton is to evaluate all possible singularicics of
the distribution by studying all the ¢ moments. The exponcnt Tig)
defines the small r bebwvior of ¥ige.

From the point of view of the generalized FIY D7), we hawe

(g~ 1)Dlg) = 1(g) = lim ———

raiInr
Chr normalized sixeh feature f; i defined

H=TD-D(2) {10}

where T is the lepological dimension, which is 2 in this case.

IV, FEATUKE SMOOTHING AND SEGMOKTATION

If the fealures are direcily wsed for segmcntation, considerabis
misclassificatinn may oconr In the ioger remons and al tegron
boandaries. Fealure smosthinge can rodies the misclassification in-
side texfure regions, Mormal moving window aversging results
considerable hlumng at the houndarics and therefore an edge-
preserving smoothing technigque [7) should be used. For vur purpose
we use the Bdpe Prescrving Noise Smonthing Cuadrant (EPNSG)
filtering, approach [T]. Consider four guadrants within a (2wsl) =
{2w+17 neighbnrhond around the center at (7, ), as shown in Fig, 1.

- 1

Wy W,

Fig. 1. Schematic representation of e guadeants.

The m" feature value average and variance are compated on each
window

Aw li1) :1;_ me[‘.+[_”]_f.a+|]-'ajk1j ' [_1}=£}I (11

ik,

Vigw, {105] = :1; ¥ [f.,[a-+ (U 2 (1 Ay ;}]’
klew,

{12}

where Apyn (00 and ¥ e 4 035 n= 1.4 mepresent Lhe average
and variance computed on the guadrants W, around (7, f).

According w the EPNSO appeoach the feature value ad (1, j is 1e-
placed by A, g € §) for which the messured variance A, . (6 §) 18
RN,

The scpmentaion 18 esscntially based on a K-means clostering
approach. It 35 known that the resuly of the K—mesns algorilhm de-
pends on the choice of cluster seed points, A histogram-based ap-
proach of cluster seed point selection iz wied here. Tor the i feulure
£ ler F, be the Mistopram, Find the domdnant peaks of the histogram.
Let &; denote the number of dominant peaks in A and ket the peaks
GCCUE AL fipy Sz oo Sin ) An avesape noo-overlepping spaniS) of the
i featre is caloulated ag (fiw ;] — S W02N). The cot—oft span (5.} and
the average radivg (R of 4 cluster m the feamte space are defined as

5 = i.ﬂf . &

=K

where A is area of the feature image and & is the number of chusters.
The feature vector of the point at the locaton (0.0} in the [eature
itnage is chosen as the first initial cluster, Al the remaining points
arc stanned one by one. The scanned point p is considersd (o be a
seed poind O () the Euclidean distance between the feanme vector of
the scanned point p and cach of the other chosen clusters exceeds S,
and (i) il p iz ot A distance greawer tian 8 from the posilion of any
nther chosen poins.
This process is continwed until all the poings ate congidered, In this
way we ohtain &> K seed poinls. Bach sesd point generates a sepa-
ritle cluster, These Ky clusters are then iteratively reduced to X clos-
tors by redristibuting the data of smallest cJuster among the other
clusters, Onee the K clusiers fave been abtained, Lthe K-means algo
rithm [2%] is mn to ge the final clustering, Tha result, when mapped
rom feature spice b0 o spoce, vields (he texbere segmentation.

V. EXPERTMENTAL RESULTS AND DISCUSEION

To test the performanes of the zep of feactal dimension features,
dilTerent imupes were constrocted vsing Brodate album textures [23].
First, we took six mogaice of four textures, each mosaic of size
256 x 256 pixels with a dynamic cange of 256 fray levels. The six
FI featurgs were computed at cach pixel (6, ) using a moving win-
dow of size [T« 7 pixels arcond (0, j;. The [eaore smocthing was
done naing o window of size 7 7, The unsupervised approach hascd
on minimum—istance and k—earest oeighbor clussification [28]
were tested on these smonthed feanres. The number of training
swnples used 10 compute the centrodd for a mimimem distance classi-
fication was 50. In the t—nearest neighbor technigne, the chosen val-
ues of k are | and 5 whereas e oumber of training santples weee 23
and 50, The classification results are presented in ‘Table . From Ta-
hle 1it can be seen that the methedds give ronghly identical classitica-
[0 Accuracies on Whese mosaics, Also, we lested Lhe unsupervised
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TABLE |
COmMPARISON CF TNAFERERT CLASSIFICATION AFFROACILES
Plule Texture Unsuperyised 1NN SNN Min-dist
Mumber Mosaic lechniqus A B A B

1 o4 B33 0493 RT.00 47.00 58 B6.O90 £5.28
1,013 28

2 b rp 84 96,83 96,60 0. 66 08 62 95,95 0697
D45 0]

| T D55 YT AN 9680 0667 97,05 06,68 4710
077 o2

P D24 D63 35,40 94,68 04 68 94,65 94,72 94,68
THIA 77

5 D4 L ol.11 01,55 42,55 a1 .60 92.26 Q.40
D28 D34

G D 13 U163 W16 91.00 40,38 o045 91,39
D& 024

Average G4 49 93,08 93,00 92,70 Wi_0N} o2 R

A - taking 1% training zamples, B - taking 50 training sampies

upprogch on the symthelic fout—estone mosaic genecaled by a Gaus-
sian Markoy random field model [29]. See Fig 2(a-h), whore 9463
mercent correct classification was achieved.

To see the effect of increasing the pumber of textires, we consid-
ered also mosaics of 5, 6, 9 and 16 textores. Using the unsupervizsad
appranch, the classification accuracies for 5, 6,9 and 16 texture mo-
saics wers Y342 percent, 9441 percent, 3.7 peroent, and %1 peocent,
tespeciively, The scgmentation msnlt of the 6 textse mosaic in
Fig. 3{a})is shown in Fig. 3(b).

Keller ef 2 112] considarcd texture masaics similar to ours, Their
segmentaton approsch s also based on the FD of the oniginal image
and a “Tacunarity” measore. We were inspired by the work in [13].
However, & comparative study |30] of different methods showed dist
the FI} alone performs poorly in textore segmentation, 50 we used
spversl FD-hased features, alung with featnre domuin smoothing atd
clustering to obtain excellent seprmentation,

Fig. 2(a). Foar texewre nisaic genceated by Gaesian Markoy cemom Geld
modsl.

Among other methods Heido and Sawchuk [7] vsed Law’s [6]
toxdurs erwergy as a featore, They used Bayesian classification and re-
ported 35 percent, 93 percent, and BB percent accuracy for mosaics
of 4, 5, snd 8 lextures,

Jain and Farrokhoia [8] and Farrokbhia [9] vzed a Gabar filter
bank for texture featuee cxsraction. Their clarsifier was hused on a
{eed-forward neoral network model, among other lechniques, For a
synihelic four—texmre mosaic gencratcd by a Gaossian Muckoy fan-
dom field madel, an acouracy of tedrly 97 pereent wag reported. For
2 mosaie of 3 textuns 94 percenl and 6 percent  comrect
classifications wen: achieved using (0and 100 rraining cycles in neu-
ral met, respectively. For a mosaic of 16 fextores an accoracy of 87
percent and 92.5 percent using 10 and 100 (ruining cyoles, respec-
rively, were oblmned,

Fig. 2{b). Sepmentution reapping of 2(a),

To examine the elliciency of the segmentation approach for more
pnmplex  sitoations, photographs of nateeal cocks were laken.
Fig. 4(a) shows one of the miceophotographs of a thin {of thickness
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< (03 mm) mck secting ot sandsiene al a magnification of 160 =,
luken with epivcopic illominaticn, Its comstiteents are Fine grained
gquartz perticles and irnn comenting maletials, The peoblan is 0 epa-
rite the twn Lypes of malerials by fexture segmentation approach. The
segmeniation ceflt is shown in Fig. 4(b) where the black region is
cemment and the white rerion is guartz, It was compared with homan
cxport judement and chey ageeed in 91.7 percent by area match.

Fig 3n}. Texture mosgic of sixeen narcal exoenes (006, IS, D82, 192
1354, D21, D20 D34 D04, DIT, D77, D4 D68, O, TS, THOL.

Figr. b}, Segmentivion mapping of 40,
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Fundamental Limitations on Projective
Envariants of Plarar Curves

Kaulle Astrim

Abstracs—In this paper, some fundamental Hmitationz of projective
mvuriants of non-algebraic planic curves are discussed. [t is shown that
all curves within o farge class can be nuepped ot rarily dose @ 3 circke
by projective transformations. It is alse shown that arbitrarily clese to
cach of o Gnile oumber of chsed pPanur curves there is one member of o
sel of projectvely equivalent curvez Thus a continuons projective -
wariant oo closed curves is constant, This also lmits the possibibity of
finding w called projective normalization schemes for closed planar
COTFER,

Index ftemis— Projoctive and affine invariaots, recogoition, Haws
dordf metric.

L IXTRODUCTION

The pinhole camcra is often an adeguane medel for projecting
poings in three dimensions onto s plane. Using thie medel 1l o
stiadghtforward 1o predicl the image of a collection of ohjects in
specified positiops. The inverse problems, to idenuly and o deter-
mine Lthe teree-dimensional positions of possible alyjects from an im-
age, are however much more ditficult. Traditionally recognition has
been done by matchasg each model 1 o model dara base with parts of
the fmage. Recently, model based recognition wsing viewpodol ifyai-
ant [catures of planar curves and poink configurations has attracted
much attention, [7] Invariant lealures are computed dicecsly foom the
iniees and used as indices ina mode] data bage, This gives algonthms
which are significantly faster than the raditonal metheds, These
techoigques cannot. howeyer, be used to recognise gencral curves or
point foatnses in three dimensions by means ol cne single image.
Additional infurmation, e.e. 1t the ebject is planar, is needed. For
peoind confipurations the ceasom is thar anly trivial invariants exist in
the penceal cass, as is showm o (4] [9). In this paper il s shown thar
Lvere are seae fundamental [imitatons also foc planar cucves.

Wore specitically, two theomems are presented thal elucidare Ouese
lmtetions, The Tiest one. in Section 1, states chat cach curve in
larpe class can he rransformed into o cucve arbitcanly close W Q citche
in a sirenethened Havsduzlf metric. The azcond theoem, in Secticn

T it iz pewssible m constroct a set of projectively eguivalens phanar
curves Ty ..o Ty - such that 1"?, in the Hanzdorff metric is arhitrarily
close e Iy, =t o e Thess twa shenrems enlighten the Smilations
of invarianl hased mecugnition schemes. The first one tells us that
choosing 4 dislingnished frame by maximising some teatore weer all
profective teunsfirmations is nol suitable, since in tie Hmit many
curves look like circkes, The second thearcm tells us more gencrally
fhat &very continnous iMyATLant must be constant. SHme COnsequUences
of these theorems will be discnzsed i Section I'Y. Their relevance io
compurer wision is that the suchdean ermers in imege processing do
el imteract well with projective cyuivalenos,
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