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(1)
INTRODUCTLON AND SRMMARY

In recent years, several suthors (Wesley [&5], Bourgain
[57], Conzer and Mauldin [9], Ioffe [13], Mauldin [23] and
Srivastave and Sarbadhikari [317]) have established a nmuber of
results on the reasurable paranetrizations of Borel sete in the
product of two Pplish spaces, These resulis are not only inter-
esting in their own right but &leo find applications in the

integration of correspondences, nathematical econonics ete, The

¥
prototype of these parametrization results is the following result

of Tusin I If the vertical sections ¢of & Borel set are all count-
ably infinitc, then it can be written ag a couniable union of dis-
joint Borel graphs. Recent work in the area has taken off fron

this point and concentrated for the most part on paracetrizing

Borel sets whose vertical sections are uncountable. Here, of

course, the results have to be formulated with sone care, for a
classical result states that such Borel sets need not even contain

a Borel graph. Roughly speaking, the results assert that Borel

sets with uncountabls wvertical sections can e parametrized by a
function of two variables, which is a Borel iscmorphism in onegoiaff
and jointly neasurable with respect to some s-field on the product.
Begirming with Ioffe [47_), people have also looked for parametri-
zing functions that have pleasant topologicsl properties in one

variable, instead of being Borel iscmerphisms.
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In wany cases, however, while the sets being purametrirzed
belong to product o-fields, the parametrizing funciion obtained
is peasurable only with reepect to large o-fields on the preduct
that cannot be related to reascnable o-fields gensrated by rectun-
gles. In this thesis we lock at both kinds of paranegtrigaticns
and show that in very general situations parasnetrizations can be
pbtained that are meagurable with respect to natural product
o-fields, which as is well-known are of & much simpler descriptive

charactar.

Ag the above suggestz we are 1n a sense concerned with
product structure. In this apirit we next consider the question
of " approxinating " complax setsz in the praduct by sets in prow
duct c-fields. In this thesis we do this for C-sets in the pro-
duct of two TPolish spaces, We show that given any such set one
can find ¢ set in the o-fleld generated by rectanglcs with cone
side a C~set and tho otheér a Borel set which approximates it (in
neasure or catcgery) uniformly over all sections. Such & formula-
tion unifies and sinplifies many results about C~zets as then nany

guestionsg about thdn reduce to ones about scts in product o-fields.

4 feature about this thesis worth nentioning is that cven
in establishing boldface results (and nost of this thesis concerns
itself with such results) we have had to use results from the

effective theory in what appears fto us to be an essential nmanner.
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The organisation of the theais and the nain results axe
&8 follews. We fix the baglec definitions and notation in

Section O,

In Section 1, we prove the following abstract version of
Lusin's theorcm : Iet X be Polish, and (T, M) a neasurable
space, and supposs B in M (X) By has countable vertical
sections. Then, when M is closed under operation (fé), B iz a
countable union of M-measurable graphs. This answers, in part,

a question of Ioffe [13].

We then prove, in Sectlon 2, some representation theorcns
for Gy~valued nultifunctions that correspord to uniforn versions
of a well-known theoren of Magurkiewicz. A typical result is 3
Let T,X be Poligh with X pero-dinensiomal, and F 1 T —> X
a Borel neasurable Gg-velued nultifunction such that F(t) is
both dense and houndary in cl(F(t}} for each +. Then there is
a Borel neasurable map f : TXZ —> X such tnat f£($,.) is a
honeonoerphise onto F(t) for each t, Thesc resulis are used in

the sequel.

In Szctien 2, we flrst obtain a parameirized version of
the Von FNeumarnn selection theorem, nancly < Tet T, X be Polish
and B & Borel set In TXA with uncountable vertical sections,
et B(A(T)) stand for the amalytic s-~field on T. Then there
isa B(A(T)) () :EEHH_masurable map £ 0 TX(EWW) ~>X such
that £(t,.) is a one-upe, continuous map onto BY for cach te T.
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This answers & question of Conzer and Mauwldin [9] and inproves
earlicr results in several different directions chiefly in that
¥ above iy neasurable with respeet to a prodoet structore, and
in that the selections fer B induced by f are the best possi-
blce We then prove an uncountable counterpart of the theoren In
Section 1, thst is, we show that 1f M 1is closed under operailon

(4), then any B e M (X) B, with wncountable vertical sections

j2r

above properties. This improves and gives a definable version of

can be paranetrized by an M (X) B |y~ Deasurable nap with the

a result of Ioffe [137] and Bourgain {5, who showed that the
above holds when M is 2 completc o-field, We then show, in
Section 4, that nany of our results can be inproved (if the gcis
B above are assumed te bave condensed sections) to obtain uni-
forn versions of the fact that a set is condensed and Borel iff
it is a onc-one, coutinuwous dinuge of 5., Our results arc secn to

be optinal in many different ways,

Having so far gonsidered sets in product o-ficlds, we then
take up the question of approximating definable sets in the pro-
duct T XX, of twe Polish spaces, by sets in product o-fields.
Let 8(Z) denote the class of C-sets in Z, for Polish Z. In
Section 5, we show that if A4 ¢ S(TXX), then there are B and
¢ in 3(T) (x) By sucht;‘d‘.é C & (¢ and ¢t - 8% is meager for
each t. Many guestions about A then reduce to ones about the

sinpler gets B and C. We study the counsequences of this
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theoren and show that it ylelds as inmediate corrolaries many
results about Cwsets available in the literature, such as 4
recent selection theoren of Burgess [6] and some computations

of Vaught [42]. We also prove & similer statenent for measure.

In Section 6, we cstablish a paranetrization theorem of
Sarbadhikari and Srivastava [31_] in the set up of Kuratowslki
and Ryli-Nardzewskl. More precisely, we have [ Let X e
Polish, T a non-erpty set and M a field on T. Iet FIBX
be an M -nmeasurable nultifunction with Gr{F) e (UXT)s, U
being the topology of X. Then there is anap f 2 % >4 such
that f(t,.} is continwous, open, and ontc F{t) Lor TeT,
and f(.,0) is an M .measurable seleetion of F for o=Z.,
One consequence of this is that wvariocus known selection theorens
(such as Srivastava [36_), Burgess |7 ]) hold in completely
abstract sitvations. We then give two counterexamples. The first
snswers & question raised in the above paper [317] and shows that
such continunous, open Borel neasurable represcntations nay leud
to anclytic, non-Borel sets., In the secend we show that nany

nownt selection theorens do not extend to anslytic sets.

4 refinerent of the nothod in the scecond exanple above
settles the following question of J.R. Steel [417] in the nege-
tive ¢ If A is an analytic set with o-compact vertical scctions,
then does A contain an analytic set with compact sections having
the sane projecticn to the first coordinate Y This we do in
Sectian 7.
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In Section 8 we show that an coffectivization of an sxticle
of Muuldin [23] yields & criterion for Borel parenetrizations

alkin to the A-umiformization critcrion.

In Section 9 we prove an effective analogue of the theoren
in [31] on continuous, open represcniations of Ggi-valued nulti-
functions., This is fron a jeint article with R. Barua [27] where

such representations are applied to obtain basis theorens.
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Gs Definitions and notation + In this section we fix the baszic

definitions and notetion used in this thoesis.

We dencte by o the set of natural numbers and reserve I
for the get of positive integers. 3Seq will dencte the scot of
finite sequences of natural nwmbers. We will, when convenient,
identify Seq with the set of Godel numbers of finite scquences
of matural numbers, particularly in parts where we take recourse
to effective theoretlc methoda. What we mean will, in cach casg,

be clecr Trom the contoxt .

For ke, 5. will be the set of @11 elenents of Scq of
length k. For se8eq, !s| or 1h{(s) will denctc thc length
of 5 and if 1< [s| is a natural number, s; will dencte the
i+ 1% coordinate of s. Thus, we nay leok upen se 5. as
the sequence (s , Sqyeeey8 4), and wrlte s =<3 , 84,000,5, ¢>
For 1 ¢ la|, s/ denctes <S_ s Bqy--+y85_¢> ond for a,t e Seq,
we use St %o denote the catenation of s and t. If n e o, Sn

~
denctes 54> . For s5,bcfeq, we writc o <%t if + cxtends s.

JR denotes the real line and £ ihe space o~ , whore the
lattor is glven the product of discrete topolcogies onw « It 1s
well known that 2 is homeonorphic to the space of irrationals.
For oceB, o{i will denote <o{0),o(1),.s.,a(i-1)> ;here il
10, #fi will correspond to the empty sequence, €. 1f sc Beq,
the sct {ocf §a(i) =s; for 1< [s]} will be denoted by
Z{s). Thesc scts forn a base for the topology on . Finally,
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Z{JU denctes the discrete (topological) umion of & and N, &

being given the discrete topology.

Iet T and X be non-cnpty sets, 4 multifunciion

F:T—>3X is a function vhose dontin is T =nd whose values
are subsets of X. If nothing explicit iz stated the values of
F will be non-enpty. For E (_ X, we dencte by @) the set
foem s P8I NE # #}. By or(P) we noan {(t,x) e TXK:xeF(ﬁZ’}r,
znd call it -the graph of F. A-function £ T —>X is callcd
a gelector for F if {8} e P(4), £eT. We also cull £ &
sgloction or uniformization for Gr(F).

If A amd B arq o-ficlds on T and X rospectively,
then 4 (X) B will denote the product s-figld on TXXj;and if

M and W are famdlies of subsets of T and X respectively,
then MXIN stands for {AXB ! AeM and Bel}. The power
set of T will be denoted by E(T), and for 4 (C B(T), 4° will
be {EL (: i g ‘ig and the smallest counbably additive (resp.
countably multiplicative) fanily of subsets of T contoining 4
will ve denoted by 4, (rvesp. éﬁ}' If W {:T‘;{K then the
vertical (&t 4) and acrizomtal (at x) sections of W will

be denoted by W' and W, respectively.

Suppese X and Y arc separable nmetric spaces. A multi-
function F I ¥ —3 X is called A4 -neasurable if T e A for
every open V {_ X, Similarly, a polmt map f ! T-—X is 4~

neasurable LI 35‘"'1 (V) e 4 for open Vin X, Ampap f ITXY¥—>X


http://www.cvisiontech.com

(ix)

if ecalled an 4 -neasurable Carathcodery pap if for each 1t T,

the nap £(t,.) ! ¥ —>X is continucus and the map T(.,y) 1 T=>X
is 4-ncasurable for cach ye Y. A Caratheodory nap ic gpen
(resp. glosed) if, for each t, £(t,U} is relatively open (rcep.
closed) in the range of f(%,.) for open U (_ Y. Obsecrve ihat
if 4 ia & o-field on T, then any 4-neasurable Carathecdory
map s 4 (X) By - neasurable, where B, is the Borel o-ficld

of Yo

et B (. TXX. 4map g ! TXY—> X is seid 4o paro-

netrize B OAT g(t,.) maps Y onto B‘t for cach teT, If T
fnde 203D s TR oma o tack- €47,

and Y are Polisht}m g is Borel t1easurable,Athen g is called

a Borel paranetrizotion. If g is a Caratheodory nap paranctriz-

ing B, then B is said tc have a Corothcodory represeotation.

We shall alsg say “g induces BY fur "g paranctrizes B".

One can analogously speak of maps g on TXY into X inducing

a nultifunction ¥ * T —> X (instead of Gr(F)). Oboerve that

if F is induced by an 4 -neasurable Cerathecdory mop then F

is 4 -measurable.

For X wseparable metric, By will always denote the Borel
o-ficld of X, When X iz Polish, the anslytic o-ficld on X,
that is, the smallest o-fiecld on X containing the analytic sub-
sets of X, will be demoted by B(ACX)). If Y (X, B(A(Y))

stands for the trace of B(A()) on Y.
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We will say thut @ o-field 4 on T dis closzed undir opurie

tion (4) if the result of operation (4) performed on @& systen of
mﬁs{ﬁ }mihcmm A g 4

'n1n2...rzk I’l.ln.nk = 7

known exanples of o-fields closed under operation (&) are (for

belongs to 4. Well-

Polish X), any o-field conplete with respect tc a o-finite
reasure on B, , the class of universally nodsurable subsets of X,
various definable subclasses thereof, such as Selivanovskii's

clasg of C-seis, Kolnogorov's R-sets, and Blackwell's BlP-sets.

Suppese M is a countably generated c-field on T generé-

ted by {Mn¥ . Ty the cnaracteristic function of the sequence
n»l

{¥,} we rean the function £ 17 —> [[0,1] given by

i = 2
f(t) = § == . I where
n=1 3% Mn ’

IM is the indicateor function of the set M,+» Tet § = F(T),
Ly ]

Then, as is well known, £ is a binmeasurable function (that is, a
redsurable function that carries reasurable sets to reasurable

gets) between M end B, .

For B (_ X, cl(E) will dencte the closurc of E and

6(E), the diaceter of E.

We will in sorme places take recourse to effective theoretic
riethods, 411 our terminclogy and motation fron the effective
theory (subject to the oncs fixed above) is fron Moschovalds [25 .
Hore, we only fix the following ! when [ is a point clags | dencies
the boldface class corresponding to J. ~

All else is cither widely kmown or available in Kuratowski

5],
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1. Parametrizing sets with countable sections © Iusin's theoren
on sets with countable sections ia well-known, namely, that If B

is a Borel subset of the protuct of two Foliah spaces,wlth count-
able vertlcal sections, then B 1ls a countable union of Borel
graphs [197). This reises the following general question I Let
(T,M) be a peasurable space, and X a Polish space. Suppose
3elY (X) By amd B has countable vertical sections. Then, is

B a countable umdon of M- neasurable functions ;" We shall see
bolow that this is indeed true if Y 4is & o-fleld closed under
operation (4). Our proof is sinple modulc certain methods fron
ihe effective theory. It is of some interest that the above
abstract problen couched in purely boldface terms seens to require
the methods of the effective theory - any classical proof nuat
surely be wery hard. Thie method will alsc play & crucial role

in the seguel when we paranetrise sets with unccountable sections.

Before getting down to the proofs we nmight add that in
[13], Ioffe has raised a sinmilar question ! Let B be the graph
of an M - easurable, closed &sd countadle va’ued nultifunction on
T dinto X. Then, is B the union of countably many Y - measurable
selecticna ‘} However, in his specific situastion Ioffe only needs
that this be valid when Y is closed under operation (4), and
a3 nenticned above, we obitain this partial anawer to his question.

1.1 Lema 2 Let P (Ca®xo® bedn a]. Then there are
countadbly nany TTg-recurHive partial functions .1 Eqs0ee., each
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gerined on «° into o , such that whemever P*, the vertlcal
section of P at x dis countable,

(I (P(x,7) <—=> ()£, (x) | and £ (x)=y))

Proof ¢ Fix & TT.J]'arecmvsive partial function & ! 0 Xo —do”
which paranetrizes points in fs:} (x), x ranning through g
[25,4D.8). Define, for n 0, f, : & —>u” by i

) L () =y <=> dlx,n) ] and P(x,d(x,n)) and y=d(x,n),
It follows that the £,'s so defined are Tf:;'—I‘EECuI‘SiVE partial
functions. HNow, by the effective perfect set theoren [25,4F.1],
any countable ﬂ, (x) set contains omly ,5,3 (x) points.
Consequently, for any x, if P*, a set in ﬂ}(x}, is countable,
we have,

(Fy) (P(x,y) ~> (gn){d{x,n) | and a&{x,n)=y)).

The conclusion now follows,

It is clear that the above can be relativized to any
ze ® . The following ia then ecaagy.

1.2 lemra ¢ Let S‘ be sepiiable metrie ari X Polish. Suppose

B 18 a Borel subset of 3 XX such that Bt ia nonempty and

countable for gsach te 8., Then there is & sequence ’Lfnf(nz‘l

of B(4(5)) - neasurable functions such that

B = or{f. ) .
n%_'l1 .
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Frogf ¢ Let T be a separable metric conpletdion of 5. 4s B

is Borel in SXX, there is C (_ EXX, absolute Borel such that
¢[) (8XX) = B. Furthernore as T and X can he Borel iscmor-
phically imbedded in o , we may without loss of generality assune
that T=X=o®. As C dis Borel, C is in 4y(z) for some

new” . A straightfporward application of Ierma 1.1 (relativized
to =z), together with the facts that the domain of a TT}(z)—
recursive partial function is a set in I_I'::(z) andl that the
inverse inage of a basic clopen set under such a map is again a
set in TT?{E} ylelds naps {gn : n3;1}~'with the required
meagurabllity covering B. The restriction of each g, to S

is a partial B(A(S)) - measurable map defined on a set ih B(4(8)),

Tefine now g L+ 8 —>X By o
g(t) = g (t) if n is the least integer n auch that
%(t) is defined,
Then g 18 B(4(S)) - peasurable and defined on the whole of 5.,
Finally put

fn{t) ir gh(t) is defined

1]

o
~—
et
e

otherwiss.

I

L1
-~
ok
St

These do the job.

1.3 ZIheoren » Iet (T,M) %be a measurable space, Y belnga
o-field closed under operation (A). Iet X 1be Polish and suppose
B (L TXX, Be¥ (X) By and B has countable ani nonempty vertloal
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sections. Then there is & sequence an iny 1 of M-measurable
funetions on T into X such that for each te T,

t r,. r ] s -
B = !{fn{tj Pnxtt

Brogf * A5 Bel (X) By, there are countably nany rectangles

Mn><U lrn> ]+ With M el and U~ open in % such that

« Then M iz =a

B o ({M XU, } Yo Tet M =o(iM 1 s

ny 1 oty
countably generated sub o-field of M. “Let g T ~>[0,1]

ST and suppose
i X 1

the characteristic function of the sequence
“n

g{T) =8 ( [o,1]. Then g (Bgl=H4, (L H.

Define ¢ ! TXX —> SXX by I gt,x) = (g(t),x).
It 15 easy to see that # is bineasurable between (TXX, ¥ (X)By)
and (SXX, Bg (X) By). Set C = f(B), so C:cBg(X) By, i.e.,
C is a Borel set in 8XX and C has countable and non-enpiy
vertical sections. 4n application of 1.2 now yields a sequence

{gﬁl : of B(A(S))-ueasurable maps on S inte X covering C.
ny -
43 M is closed under operation (4), we have g T(E(A(S})) C M.

It follows that if we now define £, on T by (1) =g (g(t)),

then the fn's have the desired properties.

What happens for arbitrary Y ? We have not been able to
gsettle the issue., Notice however that the general question is
sqoivalent to asking the question about the Borel ofield on a
coanalytic set. For, arguing as in 1,3, it is easlly secen that
ve might without loss of generality assume that Be By (X) By
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vhere S (C [0,1]. Mow find B, s B (X) B, such that

- l: ’ j B’I ...I:D',Ij =7 =X
B, [1(§xX) = B, Then R ={re [0,7]: P 4is countable and
nonenpty lisa coamalytic set containing S. It ia enough now
to s0lve the problen for B1[1(R><K).

4 related question is the following ! suppose Bel (X) By
and BY is & singleton for each +t. Then is B the graph of an
M-neasurable function ?’This is true when M is closed under
operation (4). 4gain, the general quesiion is equivelemt to
studying the behaviour on coanalytip subsets of [0,1]. The
answer could well be undecidable in EZFC. However both theorens
are valid on an analytic set equipped with the Borel o~field,

In the firat case, this 1s just Lusin's theoren for Borel scts
with countable sections and the second is an irmediate consequence

of the first sseparation theoren for analytic seits.
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2, Honeonorphic Carathcodory representations for Gi-valucd

nualtifunctions ¢ We will now begin our study of parametrizing

ressurable sets with uncountable sectlions, In this scetion, we
establish a Caratheodoxry representation thcorem for Gg-valoed
nultifunctions that will be used in the sequel. The study of
neasurable Ggp-vzlued nultifunctions was initiated by Srivastava
who in addition to proving the basic selection theoren [36],
obtained several paranetrigation results [31,37], some in colla—
boration with H. Sarbadhikeri [317]. We will need and prove a
paranetrization theorem of a special fype, nanely one in which
the induced sectional maps are homeomarphisms: The basic result
correaponds to a * uniform ' version of Magurkiemicz's theorem
that a dense Gﬁ—subset of a mero.dimensional Polish apace whoae
conplenent is alsg dense iz a honeanorph of the space of irra—
tionals [35,P¢4¢£L,WE uge this technigue later in the section to
obtain one-one Carathecdory representations for neasurable
Gg~valued nultifunctions taking dense-in-itsclf values in &
zero-dincnaional space. Our nethod is, as vawal, to carry out

the appropriate proof for the ™ single-section ™ case unifornly.

For the rest of this asection T and X will be Polish
spaces, X being, noreover, gero~dinensional. We fix a countably
generated sub o-field A of the Borel o-field Eg} on T, UWe
also fix an A-neasurable Gg=valued nultifunction F I T —> X.
The graph of F will be denoted by G, and we will assume
furthernore that Gz 4 (X) Bye. 4Apart from the assumption on the
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dmension of X, this is the set-up in Srivastava [56] where it
ig shown that d-measurable seiectimna exist for such mpltifune-
tiona.

We begin by stating thret well-known lemnas. The first
two arc proved in [36] umd She thded 36 2 vesult of Blackwell
[37J. 2.1 iz busic o most pursuetrization results on G5-valucd

rultifunctions and is & corcllaxy to a beautiful reswlt of Saint-
Raymond [ 297.
241 Iemna I Iet T,X be Polish spaces and let 4 be a count-
ably generated sub o-field of Bn. Suppese Be d (x) By and b
isa Gy in X for each teT. Then there exist sets

e 4 (X) By such that B ) B .4, ‘B:; is open in X for each

teT and n> 0, and B = ﬂ B
n)ﬂ

2.2 Lemma o Iet (T,4) and (X, B) be measurable spaces. Let

. i
4 be atomic and Be4 (¥) B. Then B' = B® holds for t and t'
belonging to the same aten of 4.

2.3 lemma ¢ Let T be Polish and 4 a countably generated
aub o-field of Pq. Then 'Ac 4 iff 4eBp and 4 is a union

of atons of AF;L.

Imvoking 2.1 we write :

¢ = {1 a6

ny o

where G, :) G e 4 (X) By, and (}t ig open for each n) o0

n+i *
and teT. 4lso {rm , r1,.....} will be a fixed dense subset of X,
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4 a fixed complete mctric for X, and ! v(m)h a Tixed

in>Q
clopen base for X consisting of nononpty sets. Dlenote the
projectic : furetion on ITXX to T by T We will now prowve
several lermmas,
2.4 Ierma ; Iet T,& be as above. 4SsSuwie Forther, that X

T

is conpact. Suppose B ( TXX,Bc 4 (¥) By, and B® is open

Tor tcT. Then {ts T 2 Et is not clased} £ %.

Froof + It follows from 2.7 and a well-known result of Kunugul
and Wovikav [16] that no{(TXX)-B)ley and that (IXX)-3

is the graph of an %r}“T(TIKK)-B)-»measurable, conpacth valueé
multifunction H on r({TXX)_B). low use the fact that B°

is open and X 1is compact to verify ithat
t

[t : B® is not closed} = {temp((TXX) - B) (¥1)Gm) (r_ ¢ B
and  a(ry, H(6) <17,y )

As H is A-neasurable, it follows that d(rm, H{(t)) 4is an

A-meagurable function of 1, and conseguently that the set on the

left belongs to 4.

The proof given above does not ase the fact that X  1is

zero-dinensional.

T is not

2,5 Lemma I Let T,X be a8 in 2,4. Suppose G
closed for each tsT. ILet e> 0. Then there exist A-measurable

maps pl.,n) ! T ~>w for gach n)> © such that

(1) s(Wplt,m)})Y < e, e, n>0.
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(11} v(plt,n}) « || 7{pt,m))#0.

(21) 6% (C f Wt C et .
n ¢
Proof : Tet %, = tcT : ' 1o not closed! , 1) 0.

By 2.4 cach T, c 4. 43 ¢t = N G-;tl and G' is not closed for
ny

each te T, we see that for cach % there is n> ¢ such that

Gfl is not clesed. Thus || E.E."n = T, Digjeintify the T's "

n>u
set W, =T , Wy =T - [|%,n2xT. Then [|W, = [] T,
id{n ny G ny 0

W, TpeWped and the W 's are pairvise disjoint., Iet

C= [J (W, XD[]ed. Then C:4 &) By, 6 CC G,, and C
ny o
haz open, non-closed vertical sections.

Define, for n> 0, »
- 1 * - % s
R, = {t=0 2 v ¥}, 1 (v <o
= ¢ , otherwise.
Notice thet if &8(V(n})<e, tuen R is the conplenent of the
projection of a Porel subset of TXX with compact vertical
sections., It follows that for each =n) 0, B, e Bnpe Moreover,
R, is & union of 4-atoms. It follows from 2,3 that R _c4.
How deflne, by induction on n,
p{t,0) =m , if » is the first natural number £ such
that te R’I -
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p{t,n+1) =m , if = is the first naturel number
£ > p{t,n} such that V(L) .-ijajnvip{t,i)} + 4
and teRg.
{baserve that, as c¥ is not closed for every 1, the p(t,n)'s
are well-defined on the whole of T. TFor, if not, thers would e

t and n soch that |] V{p{t,m)) = Gt, which is impossible as
mLn
the TV(n)'s are clopen sets. One easily checks that the p(i,n)'s

are 4-neasurable functions sueh that || V(p(t,n)) = ct. They,
ny ¢

therefore, satisfy the corditions in the lemnma.

2.6 Temma : Let the hypotheses of 2.5 be in force, ILet &> 0.

Then there exisi 4 - measurable maps p(., n) : T —>w for each

n2 0 auch that
(1Y 6(v(ip(t,n)}} <=, teT, n2 0.

(14)  (V(p(t,m)) - | vip(t,m))) N6t # 8.
men
(111) ¢* C ) vip(t,m) ol
ny 0

Proof . Apply Lemma 2.5 to get maps q_;(’l;,n), n» ¢ soch that

8(V(g (£,m))) < e for tsT, ny0; V(g (t,m)- [] V(g (t,m))#¢
m<n
ard GO QU gy (t,m)) GS.
n>o

et T, = {teT ! (V(q (t,m) - Ej v(q;}(t,m‘}))ﬂﬁﬁﬁﬁ}. n2d.
m<n

As G is the graph of an 4-measurable nuliifunction and the
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functions qé (t,n) are i-nmeasurable it follows that T, e b for
n) 0, For the purposes of this proof we will make a fempordary
definitiom by putting V(») = #. Define, by induetion on n,
functions q (%,n) as Follows &

Put g (t,m) q_;(t,k} , waeTe J is the (1) integer £

sach that te TX , I therc ig one such
= ey otherwvige .

Then qa(t,_rl), n» 0, are 4s-mezsurable extended natural nmumber-

o
=

valued maps. Moreowver,

3t - ) -4
& U “‘J(qo(t,n)} (2 G =
ny 0
Por gach k3 0, apply the above argumment to TFESSR
Tl K! G'il %‘,Gl’l’
i-measurable extended natural nurber-valued maps g (t,n), nzQ,

n>k} . Then, for each k20, we will obtain

with the following properties &
(a) o(V(q (t,n})) < c Tor 42T, n20.

() 6% C | Ve k) C o,
ny o '

() g (t,m) <= = (V(g(t,n))- [ij Vg (t,m) (16" # 7.
rn<n

Define Cp (C TXX by *

(B, x) e € <—> xe {} V(g (t,n)).
ny o

43 the azli“:{'l;,,n}Hs are A-measurdable maps, O, el (x) By for k20.

k
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- Moreover, C:: is open, k20, te= 7, and 'k{;(}gk

Gﬁ is not eclosed for each 1, Conseguently, for

= Gs  MNow, Dy

agsunptlon,

each tc™ there is k0 souch that OF ic not closed, Pub

! { m e mb a ) . . -
5= {teT 1 0. is not closed}, n>0. By 2.4, S ¢4 for n20.

a - N - - ¢ b — N 3
iin

Hsjointify the 5;1
Men || R =T, the R_° arc paimdse disjoimt, C. is not
closed for tcR_, end R_e4 for n»0. Definc C (C TXX by:
¢ = |f (R XTIIC) .
nz o
Ten Ced () By, 6 (€ (_ G and C has open, non-closed
gsections. TFor 't:saHk, ¢t - G;:. Asg ct is not closed,

f_f; = | V(g (t,n)) is not closed. Since the T(n) ® are from
- nx0
@ clopen base, it follows that on R, g (t,n} <~ for every

ny 0. To complete the proof we now need only put,

pit,n) = qk('t.,n} , af 't-.t:.l:l]}.
247 Lerme. T Let Tand X be as in Temma 2.4, assume that for
each clopen V in % such that G°[)V # #, we have G°[)V is
not closed. Then there 1s a system {p(t,s) I scSeq)} of
a-measurable maps on T into @ such that

(1) se§, k21 = 5(Wp$,8))) <1/ for tel.

(iil) PFor s« Sk,
(7(pt,80) - {vplt, (P11 T 1<s 1IN £
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(1i1) Por se5_, nx0,
(p(t,5m)) (C T(o(t,8) ~ [T, (s[=1D1)) T8 4}
. 4 = 1 . N
(v &7 LH-I(p{t,S)) s 9% Sk;“: G e, 21,

Frgof 1 We will define such a systenm by induction on [z].

Put p(t,e) = lewst n such thet Vin) =X (we assume here for
conveniecnce that % is in af"!’(n}}n?mo). For |s|=1, we obtain
naps p{t,n) as in lemma 2.6 with e=71. Supposc p(t,s) has
been defined for == Sk. How fix s Sk » We huave to define

p(t,8n} for nzd., Let j=s,_4. For de 55,9 » define

T(d} = -;tE‘. T . p(t,(sF(k—T}}f}} = &'D’ R
correes DO ([(R=Tmy ) = ds ) .

By induction hypothesis, all the mape specified within brackeils
above are A-measurable. It follows that T(d)e 4 for each

de S, , l__i{T(d) tdeSg,q) =T, and the ™d)' ¥ arve pairwise
disjoint. Apply lemnma 2.6 with T(d) playing the role of

T, Vldg) - |J{V0a;) 1 ik j} playing the role of X,

Gf] (T(ay > (v(a ) - |J {v(ai) P ;j} }) playii the role of G,
Gmﬂf'l‘(d) X W(&j) - U{*J(di} o R }}} playing the role of G
for myk (ve ignorc here G_, Gy,ees,G 4), a0d c=1/4 4y,
lote that for cach te T +the hypothesis of the Lemma implies that
the * new " @° i3 not closed in the " new ™ X, One therefore
obtains i-measurable maps qq(t,n) defined on T(d) satisfying

the conditions in Lemma 2.6 opecialized fo the above set-upy aschan
e Jewse ey W "vaaa X Consands ML&IMLH w@ thane VW
sk V0 S V) — VIVEAD Y et thelr oveginal

s
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If one now defines p(t,sn) by
p(t,sn) = gq(t,n) on T(d)
it is cas- to verify that all the coneclusion: of the lemma are
gsatisficd.
We will now drop the techhnical zassunption on the compaci-
ness of X aocsumed since Letma 2.4,
2.8 Temna T Iet a1l the assumptions of Iemma 2,7 be in force
excaept the onc on the conmpactness of X. Then there is a
Caratheodory map f § IXE —> X such that
(1) r£(4,.) 1is a homeomorphism of £ onto F(E), 1e T,
(i1) f(.,0) is an i-neasurable selector for F, oel.
Proof I By taking a gzero-dinmensional compactification of X we
gsee that we ma2y assume X 1o be compact without loss of genera-
Lity. Tet {p(t,s) s Sc Seq} be then the maps cbiained from 2.7.

The result easily follows by defining f(t,¢) +to be the unique

element of || V(p(t,o{n)}. This definition iz legitinate and
nz1
condition {i) is easily seen to be true. Condition (ii) is esta-

blished by the identity *

£(t,9) e W ¢—> (Gn) (V(p(t,0(n)) ( W)
for each open W in X. 4s p(t,0[n) is A-measurable, the
right hand side is an 4-measurable conditlon.

Ve will now state the promised uniform version of the

Mazurkicwlcr theoren.
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Let T be Polish, X gzero-dincnsicnal and Polish,
Lot FLiT-=—>X

2,9 Theorem 3
aid 4 & countably-~generated sub o-field of B .
be an 4 -rneasurable CGg-valued nultifunction with Gr(F) g4 (%) By
ipsume further that for ecach §,cl(F(%)) - F(:) is densc in
d(‘F(‘b}}s Then there is a Caratheodory nmap f 1 ITXE —> X
satisfying

(1) For each +t:T, £(%,.) is a homeomorphism of £ and F(i).

(1i) For each o:%, £(,,0) is an A-measurable selector for F.

Pregf + Observe thet F(%) (1w is not closed in any clopen sot W
Tor which R(%) ﬂw Z @ . Iorme 2.8 now applies to yield the theorem.
2,10 Theoren s+ Iet T be a Polish space and X a goro-dimens
sional Pelish space., et 4 be a countably gencrated sub o-field
of B« Suppose F I T —> X is an f-neasurable multifunction
taking denzse-in-itself Gg~values. Assune further that
or{f) e 4 (X) By « Then there is a Carathcodory map
f 1 OXEHN) —>X such that

(1) For each te T, £(t,.} is a 1-1, continuous map of I [JN

omto F(t) such that f£(t,.}], is a2 homeomorphisn.

(ii) For each o=:2, £(.,0) is an 4-uecasurable selector for F.
Proof + 43 F is an 4f-neasurable Gy-valued multifunction, by a
theoren of Srivastavae [ 38 it adnits a sequence of disjoint

4-measurable selectors, say f£,{%t), £ (%},...... such thai
{fn(‘t)}nz.I is dense in Mt) for +te T [ Observe that we can
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take the f;'s o have disjoint graphs sincc gach F(H) 1s

L 4

infinite ]. Define a new multifunction H ! T —> X by ¢
H(t) = F(A) - é{fﬂs&t}:‘fnH ’

Clearly ol{H{$)) - H(1t) = c1(F(%)) ~ H(t) is dcnme in cl(E(t)).
Theorem 2.9 therefore applics 4o I viclding & houecnerphic
Carauthecdory representation h(t,o) for H as in 2.9, How put
£(t,2) = h{t,s) if o2, and €(t,n) = £ (t) if nel¥. This

T satisfies the conclusions of the theoren.

An easy consequence of Theoren 2.70 is its validity in any
Polish space X which becones zerc—dimensional on the removal of
countably manmy points. In particular Theorem 230 holds for multi-

functions taking values in B . Thus we have

2,11 Corollary ! ILet T be a Polish space and 4 a countably
generated sub o-ficld of the Porel o-field on T. Suppose F is
an A ~nmeasurable nuliifunction on T intg R tuking dense-in-
itself Og-values and such that, moreover, Gr(F) =4 (X) By -

Then the conclusion of Theoren 2.7¢ holds.

2,72 Remark . 4s the maps T(t,.) in Theorcm 2.10 are 1~7,
continuouws naps, they @re, a fortiori, Borel isomorphisns. We
have therefore obiaincd the " Borel paranetrigation™ result of
Srivagtave and Sarbadhikari [317] for such multifunctions when
they take valuea in (topologically) one-dimensional Pglish spaces.
However, our proof is more ™ effective ' as it does rioi go into

the Cantor-Bernstein kind of arguent comployed there. Also, as
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observed by them, we cannot drop the assunption that P(t) is
dense-in.iteelf for cach +, us then F need not cven adrit &

Borzl parcnmetrization.

2,i3 Hemark ¢ Let & bo an analytic space and X & peoro-dinen-

FiA—>X iz a B -neasurable

slonal Polish spacc. Supposu =

§,-valued nultifunction such that Gr(F)e B, (¥) By. Fix a Polish
gpace T =2nd a continuous map £ on T onto 4. TPut fi_sz"i (gﬁ}.
Then 4 is a countably generéted sub o-field of Bp. Define
ELD —>X by H(H) = P(f{t)). Then H is an 4-neasurable nulti-
fanction with Or{i) e 4 (X) By . One casily sces nuw that by
asaming various conditions on the walucs of F, which clearly
carry over to H, onc can prove theorems for 3, -measurable mulii.
functions on an amalytic space 4, corresponding do all the theorems
we have proved sc far, The technique is analogeous to the one
employed in [36_).

Finally, before moving on to the next section, we add that
in a later section we will cbtain a one-one Caratheodory represen-

tation for the multifunction I in Corollary 2411 in which the
paranetriging space I|JIN is rcplaced by I .
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2. TFararetrizing sets with uncountable seciions In this

section we use the results obtained in the previous section to
Ssolve sone guestions on one-cie Caratheodory representations.

Cur concern here is the existence, for suitable nultifunctions,
of repregentations expressing them as unions of " continuously ™
indexed fanilies of selections. The reader might see Ioffe [127]
for a discussion of this notign with reference to optimal control
theory.

Probably the first appearance of a ' paranetrigation ™
result is in & paper of R.i., Purves [27 ], who proved the con-
verse of Luein's theorem on sets with countable sections by
showing that if f is & bipeasurable map on one Polish gpace into
another {bimeasurable with respect to their Borel o-fields), then
f 1is couniable to one ocutside a countable subset of the range.
The proof essentially boiled down to looking at the graph of f
turned around and Borel parametrizing a suitable portion of it.

In the kind of paramet-ization probler. we are interesied
in, the first step was taken by Wesley [ 45.] who proved, in
conrection with certain questions in Matheraiical Econcmics, the

following ™ uncountable " version of Lusin's theorem .

Theoren ¢ Iet B be a Borel subset of I I with uncountable

vertical sections. Then there is an [ (Ix%XI)-~neagurable nap T

on IXI ontc B such that i
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(1) for each t:1I, £{(i,.) is a Borel ilsoumorphisn of I
onta ‘t? % B , and

{ii) for each selI, m,0f(.,5) is an I(T) - measurable

selectlon for B.
(Here, L{I) and L({I X1) demwi¢ bue Lebesgue measurable subsets
of T and I XI respectively).

Yhile Wesley's proof required forcing techniques, Cenzer
ard Mawldin in a subsequent paper [ 9_| obtained a nore
" descriptive ¥ result without any recourse to metanathenatical
methods, in answer to a gquestion arising in work of Oholsi on

group autenmorphisns [107). Their result is as follows ©

Theorern + Let B be a Borel subset of IXI with uncountable

vertical sections. Then there is an 5(I XI1I)-measurable map f
on IXI onte B such that (&) £(+,.) on I onto ‘Lt} % BY

is & Borel isomorphisn for each eI, and (b) =t s 8(®)-
measurable.

(Recall tiat S{(X) denotes ile fanily of C sets in X, for
metric X)

Hotice that, in the above, for each s, ",0f(.,s) is an 5(I)-
neagurable selection for B. Several gquestions now arise. Recall
that the celebrated theorer of Von Neunamm ]:26:] and Yankov [45]
states, in particular, that any such B has a B(A(I))-neasurable
selection, whore B(A(I)) is the o-field generated by the analytic

aubsets of 1. Cenger and Mauldin therefore asked whether B can
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be so paranctrized that the induced individual selections are all
B(4(I))-neasurable, Hecondly, and probably more Jrportantly, the
neasurabiiity of the maps £ in the above tlesorenis cannot be
related to any pleasant ' product strocture ™ on IXI~ it is

not true, for exanple, that the families L{JXI), and S(IX1)
are sub o-flelds of L(1) (¥X) L) (See [28]). 4s the structure
of product o-fields is in genersl nuch sinpler it wouwld be desir-
able to rectify this ™ defect ' by cobtaining pararetrizations thuat
are measurable with respect to appropriate product »~fields,
Finally, it would be wseful to replace the Borel iscmorphisms in
the above theorems by one-one continuous maps. We show that zll
this can be done., Indeed, we show that there im a one-one
Carathecdory map f on IX @G[JN) — I indpcing 3B, with f

B (4(1)) (X3 %anmeaﬂwable. This is, inj"s-ensa, the best para-
rmetrization posaible, for an arbiirary Borel set with uncouniable

sectlons,
Along similar lines, Fourgain [ 5_] acd Ioffe [137) inmproved
Wesley's theorem by proving the following !

Theorem i Let (T,¥Y,H) be @ complete measure space, with
o-finite #,end let X be Polish. Suppose Bel (X) By has
uncountable vertical sections. Then, there is a #4-null zet E and
amap * ¢ PX(E|¥} —>X such that (2) f is ¥ (x) B -

= T W
measurable, and (b} f(t,.) is a one-one, continuous map on

E|J¥  onto Bt, for each t:T7-E.


http://www.cvisiontech.com

- 21 -

Toffe then asked whether this theoren could be unified with the
theoren of Cenzer and Mauldin by replacing the compleie o-field

¥ by an _rbitrary o-field I closed under Couslin's operaiion
(i) This, as we shall see below, our methods easily acconplish,
thereby yielding an uncountelblc analogue of Theoren 1.3, In
particular, therefore, for M cne can take the class of univer-
sally measurable subsets of a Folish space or appropriate defin.
able sub o-ficlds thereof. We might add that all the maps we
construct have inverses neasurable with respeet 4o the product
o-Tield (in a sensc that will be clear on a reading of Theoren 3.11).
An immediate consequence of this is that the maps we construct
induce only sets in M (X} By with uncountable sections. More-
over, if (1,M) is a neasurable space and every Bel (X) By
with uncountable vertical sections adnite an ¥ (X) gﬂ UN-«»
neagurable Caratheodory representation, then M is closed under
operation (4). Thus the conditicn that M is closed under opera-
tion (4) 4is a necessary condition for the existence of such
paranetrizations suggesting thal such o-fields provide the natural

gsetiing for studying parametrizations.
e
Before we get to the main theorem we prove the specific

consequence of the results of the previous section that we will
require .
3.1 Lepma ¢ Let (T,M) be a measurable space. Let F:T~> 3

be an M-reasurable multifunction taking nonempty and perfect values.
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Then there is a map k U IX (s ||W) —> £ such that

(1) k¥ is M (%) B -neasurable,
=% Engw
(i1) for each te T, k(t,.) i3 a one-ome, contlnuous nap
on ELM onto Ft), and
(iii) for each +t= T, the restriction of k{(t,.) to = 1is

4 homeonorphls.

Progf ¢+ Az F is 4 closad-valued neasursble nnltifunction and

¥ is a o-rield, by well known theorcra (See [437]), thoere are
countably nany WM-ncasurable selectors for F, 88y g1,8psvesen
such that for cach t, {'gn(t)_i“ngi is dense in F(t). Moreover,
as F(t) is perfect for each 1T, {gn{ﬂ}n_};j is a dense-in-

iteelf sequence Tor every te T.

Ve will now reduce the prcblem to a form to whioh the
nethods of Section 2 can readily be applied. To begln with notice
that as cach g, is W-measurable there is a countably generaied

sub o-Ticld M, of M such that every g, is measurable with

respect to M . Tet {M ! be a generator for M amd let
=) . nﬁna"l =

niT~~—> J0,17] be the characteristic function of the sequence

i nny

Put B =m(T), The nap n is then a bimeasurable map
with respect te M anmd Bp (that iz, & measurable map that
carries measurable sets to measurable sets). Thus, to each
&n « T —>% there corresponds a By - measurable map h., + B> %
such that g, (t) = h (a(t)), t= T. Hence
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L) = cl(.{hnim(t}}}n} 1) for teT. By a well-known result

)
Pi
]35;143@, cach h, extends to a B - 1]-neaaurable nEp
< [o,1

ot [o,i]—2. let

S {rr—: Fo,17: %h:i(r); ny 1 19 @ dense-in-itsclf sequence|

i

i

re [0,107 (¥p2D @K (0<alny(e) , h(rK 1 (ma1))h s

d being & netric on T .

It follows that 3 is a Borel subsct of [0,1]. Moreover,

as Egn(t)z; ny q 18 dense-in-itself for each 1, we have,

N S M Eab
"eR. Thus, R (T 5. Define a multifunction H:!S —> T by !

"
H

iny 1 is dense-in-itself for each
r
H(r) = e1({hj(x), h3(r), neeni) .
Then, as is easily checked,
(1) H is a BPg- nmeasurable nultifunction,
(ii) or(H)e Bg (X) By,
(iii) Fis) ds perfect (and, therefore, a Jense-in-itself Gg)
for each se¢ 3, and
(iv) H@m(t)) = Pt} for cach +t& T.
Thus, ag8 S5 1s absclute Borel, Theoren 2.710 applies to

the nultifunetion H (this is, for example, ensured by Remark 2.13).

U - measurable Caratheodory map
W

k, I SX(E|JN) —> & satisfylng ®

We therefore cbiain a Bq (X) B
= I
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(a} k (r,.) 1s & one-one, continuous mep on %[N onto
H(r) for cach re 3, and
() k {r,.) rostricted to E 1is 2 homec orphisn for rsS.

Now define k ¢ IX@E||H) — % by :
k(t,0) = k_{n(t),0).
a8 R (Z 8, the map k is well-defined on the whole of T, It

is easily mecn that this X%k satisfics the reguired conditions.
The following hag been obscrved in [ 97].

5.2 Lerma ¢ Tet X,Y be Polish amd let 4 (C XXY be an analy-

tic set with closcd scotions. Then A = Ji{x,:,r} s ye the perfect
kernel of A" ! is an analytic set.

Proof & Tet {7 | be a basc for the fopology of Y. Observe
S (Y

that
R
A = {(:-:,;,r) D ()(yeV, > V, []4* is uncountable) f.

It i well known that the right hand side of the implication above
is an analytic condition [ 157], It follows that 4 is an
analytic set. '

33 lepma ¢ Tet X and Y be Polish. Suppose © (: IXY is

set
a coanalytic Avith open werticul sections. Then C = |] C XV,
ny 1 '

with C coanalytic in X and V, open in Y,

Eroof ¢ Let -{?n H n}_‘l} be a base for Y.

Put O = JxeX 3V, (C 0% axoixex 1 vV [1(x-0) # g} .
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ig (XXY-C) ig an apalytic set, ond the projoetion of an
analytic set is analytic, Cp ig casily sven to be coanslytic
in view ¢. the last cquality. Furthernore, ..o ¢® is open for

cach X G:-HGX"%F
’ n£1n n

WARNING ¢ There is no 3.4. This has boen suppressed from an
earlicer version as the lerma under this hoading was found to be
UnecoSsary.
3.5 Lenma § Let (T, 1) be ancasurable space and let X be
Polish. Suppese T & TXEZ —>X is an M (¥X) By -ricasurable map
such that for ecach te T, f(1,.) is & honcomorphism on £ Iinto
%. Then the canonical map £ & TXE —> TXX induced by f
catisfiea | Fad el () By for each Mel () By 3 wakon—€
{-U: o) -—(:I: -F&'t.n'fﬁ A
Proof ¢ Plainly, it sufflices to ghow that the m of f 'is
in Y (X) By (for then, as £ preserves sections, the m of
every basic rectangle would be sSo).

We begin by obscrving “hat for each open W (_ X, £~ (w)
is a set in Y (%) By with open sections. Let ianfn>1 be a
dense subset of T. It is easy to see then that for sach
(0, Noyenw,m ) ¢ Seq, the sets

e @)Y (B nyny, eee,n)]

= ftE T : (%12_1}((‘t i+ )E f_‘i (W) ""'":" UnE E(Il]ﬂ;, -il,:nn}c))u} EI;E ’

jten: (f"T(w))t;iﬁ?- B2 @ t,o) et ey
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Fix now for each k27, @ countable base {?(k.,n)}n> 1
for X, so that for cach n21, 8(7(k,ni) <1/ . B
Devine, for k21, 6 (L TXX by 3
(t,x) = Gy Co==d (Ju 1) (4 (n},hz,.-...,nk) £ Sk)
Mx e V0o, and (07T, NT C 2y, cenyn)
and (=T (vGe,mI T £ 6]

Pat G = {1 G . Then Gelf (X} By .

Fix te=T. ILet {t,x)am of f. Then there is
(g, evey My enes) e B such that £{t,{ny,n5,000)) =%, 43
{vGe,mb s
cnn‘binuuu;; it follows that thore is m> 1 such that n and
{zﬁ,ng,...,nk) witnass the fact that (t,x)e G.. This halfis

is & base for X and the inverse of f{%,.) is

for any k.

Conversely, suppose {t,x):« Gk’ for cvery k2 1. Then
for each k> 1, we have a natural number oy and (n:l';,.“,nﬁ)z Sk
such that xe V(k,m ),

204,07 () (O, e, 1)

and f(t,.)"r(“ﬁf(k,mk)) £#@ for each k> 1.

Consider m, and (n.‘:' Yo As xe Vk,m) for every k21
and  8(V(k,my }) <1/, it follows that there is a k> 1 such that
Ve, my ) (C v(1,m,)+ Therefore,
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£0t, 07 (V1)) C £, 07 (V0 ,m)).

1t follows that © (néf, ...,n.?g} Nz (nf%) # @, und consequently that
(n%lc, ey }E) is an extension of (I]:‘l}il

applying the same argument to Ely. and {nlf, ...,Ilkk) ang
a0 om, we Bec that there is a single sequence (ny,N5,.ce.)cE
and an incredasing sequence (kq,kp,ee..) of positive iniegers

such that
(1) for cach £ 1, {n1,n2,...,_n&) = (ny ,...n,nkx),
j_ (
(i) ¢ # f{t,.J'T{?(}cx,m‘i} C R S
(1ii) xaV(kg,mAi

Put ¥y = f(t,(n,‘,n?,.....)). The continuity of the map £(%,.)

now shows that y=x, and, therefore, that (%,x)e o T,
This proves the claim thereby completing the proof of Lemma 3.5.

The reader might have noticed that not swrprisingly we have

nade no use of the completeness of X in the above argurent.

The preliminarics couplete, we will now state the first
theorem of this szctlon.

3.6 fTheorem & ILet T,X be Polish spaces and B a Borel

t is uncountable for each te Te

subget of TXX suach that B
Then there is amap h I IX(@E[{H) —> X satisfying 1

(i) r is BAT)) X) B -~ meagurable,
=T RARL
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(ii) h(t,.) 18 a ons-one, continuous map on &[N onto

1

B® for cach t¢ T, and

(1i3) #f R I TX@E|JH) — TXX is the canonical map

infuccd by h then R as (BA(T) &) EE
1

[ju

B(u(D)) (E) Dy) - wowsureble and B0 is

(B(4(TH) (X Byl BGA(T)) {x) B ) —measurable.,

P —AB o= TR |JH

[Racall F(6,8) = (6, A(E,4D])
Stgp I  we will first prowve the theoren for scts contalned in
TXEZ with closed vertical sections. So let B (J TXE be such
that B 23 closed and uncountable for each t:=:T. Iet 4 be
the perfcet kernel of B, that is define A {J TXE by :

At = parfect kernel of Bt.

By Lemma 3.2, A is an analybtic subsedt of TXI wlth non-empty
and perfect sections. Thus (TXE) - A is 4 coanalytlic set with
open sections and we may write, in view of Lemma 3.3,
TXE-A = |) (8 XV,
ny 1

where S is coanglytdic in T and ¥, is open in E,

Consequently, B-4 = ([ (B[1(5,XV,)
nz

¥ow, B[(T x‘&fn} is a Borel set having counfable vertical
sectiona on Sy, and Lemma 1.2, therefore, showa that each
Bf1(S,XV, ) is a countable union of graphs of (partial) B(A(T))-
measurable functions each defined on & set in B(A(T)) [ Note that
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each 8, being coamalytic is in B(4(T) )]+ It follows that
B-4 iz a cowriable union of graphs of such (partisl) funetions,
84y, 51152:”"- -

If wo now define a nultifurction F 8T -=> L by o

P() = 4%,

then F is a non~emply, perfect set valued nultifunction measur-
able with respect to B(4(T)). Iemma 3.7 plainly appliecs to yicld
amap k T TX{EUH) —> % such that

(@) k is B(4(T)) () B - neasurable,

TE[fu
(b} for cach te T, k(t,.) is a cne-one, conmtinucus map
on L}/ onto Aﬁ, and
(¢) for vach t- T, the restriction of k(%,.) to = is
a homneomorphism.
Put Ik, (%) = k(t,n) for neN. Thenesach k  isa
B(4(T)) ~measurable function on T into E. Further, for cach
. 3 I . fae (et Iy _
te T, Lgn(t)?n?_ 1 U{kn(t)}ng 4 48 infinite (since ‘1_}%1&)}11_}_1
is s0). It follews that there exist B(i(T))-measurable (total)

functions f, ¢ T —>3 with disjoint graphs such that

U et ) = ¢ [ erlg S ] orle D)
nzl nx i nxi

Finally defing b 1 IXGE||N) —> & by

h(t,o)
h{t,n) = £ (£) , i neN,

k(t,ﬂ}, if o3
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Then, for each +teT, h(t,.) 1s anap on TLF onmbo BY It

ig eagily scen that h satisfics the conditions (i) and (ii)
gpecificd in the theorem. -The mezsurability >f the nap T speci-
fied in (3ii) is an casy conscquonce of the measurubility of h
and the prodoct structure of the o-Ficeld sitting on the range of T
Por if 4 XW_  is & basic rectangle in B(4(T)) (¥) gz , then
B (A XW ) = (& XE [} ﬂhd(&!n}, as % preserves scotions. s
for the medsurabllity of the map g~ specificd in the theorem,
notice that it suffices to sce that hilpyy @18 hlgy; are both
" forward-neasurable * ., The former follows from the fact that the
graph of a B(A(T)) -mcasurable function is in B(A(T)) (x) QE
and the latier is an immediate consequence of Iemma 3.5 as

hlpyy = klpyy s, and k(t,.} 13 a homeomorphism for each t.

Step I1  We will now ssiablish the gencral cass by reducing it to
the case treated in Step I, as in Cenger and Mauldin. So we now
have B (_ TXX with uncountable vertical sections as in the
theorem, As B is absclute Borel, it is the image under a one-
ong, continugus map f of & closed subset C¢ of ©. Denote by
W othe set {(%,0)c TXC ! my{f{a)) = t} . Then W is a Borel
subset of TXE with uncountable, closed scctions, and the funec-
fion g I W — B defined by g(t,s) = £(o) is a Borel isonor-

vhism of W ontc B such that .o T maps Wb *

onte B° in a
one-one, centinuous manner. By Step I, W can be " parametriged v
by a map e I IXE{|N —> B satisfying all the conditions speci-

field in the thcoren. Define h ! Tx: UH —~> X by :


http://www.cvisiontech.com

- 31 -

hit,y) = "0 7 o e(t,y) .
The map h  clearly satisfies (i) and (ii). To sec (iil),

sbeerve that hit,y) = go o (3,y}. 4n preserves sections,

T3

Tor eny basic rectangle in B(A(T)) (X) B, , say M XW ,

o
L

1l

g, XW, ) = g(TXW )1 %XX). &3 g is a Borel isonorphism,
this last st is in B{U(T)) () By . The map g thercfore
carries sets in B(4(T)) (X) B, to sets in B(a(T)) () B

It follows irmediately that ]

has the required necasurability.
Similarly % has the reguired measurability. Mhis conpletes

'hhe Bre of «

3.7 Remark I As obscrved at the beginning of this section the
Von Newmnamm sclection theorem is tho best possible seleciion
thecrem for an arbitrary Borel set, in the sense that the analytic
o-field is the amallest natural s-field with respccet to which one
can always gel & measurable selection. We are not intereste& g§;$
in the descriptive nature of the greph of the selcection. Our
theoren 346 thercfore cannct be improved in the general seliing
in which it is steted., Purthormore, Mauldin [23 ] has obtained
intercsting neccssary and sufficicnt conditions for a Borel set
in the product to be Borel parameirizable. Theorem 3.6 together
with this result of Mauldin, therefore, scems te be a conplete
soglution to the problem of paranedrizing Borel seis in the product

of two FPolish spaces.
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We might also add that in T 97 Cenzer and Munldin had
also shown that any analybtie set with uncountable sections con-
taing 2 °© digjoint seloctions nmeasurable with respect to the
analytic o-field by obtaining & pararetrization that goes into
the analytic set.

3.8 Renark * Mauldin [ loc.cit.] has shown that a Borel sed
with uncountable wvortical seections is Borel parametrigable if
and only if it contains a Borel set with conpact and perfect
vertical scetions. The oucstion then arises [ when does a Borel
get with uncountable sections in the product of twe Polish gpaces
adrit a one-one Borel measurable GarathEGdory'repreaentaﬁionm?
Iin particular, do the two notions coincide ?

Por Borel sete in TXE with closed, uncountable sections
the answer is fairly simple., Iet B ( TXE be & Borel set with
closed and uncountable vertical sections, with T Polish. Then

the followlng are equivalent o

(8) there is a Borel measurable map f on TX(E|H) into

£ such that £(t,.) 1is a cne-one, continucus map on

't for te T-

2N onte B
(b} The perfect kernel of B defined by :
(4,X) e & ¢<—> xe perfect kernel of B
is the graph of a Borel mecasurable multifunction.

(b) => (a) is an innediate consequence of Lerma 3,1 and the fact
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that B- 4 being a Borel set with countable sections is &
countable union of Borel graphs. To see (a) = (b) let

10y, be a dense subsct of £, Then the perfect kermel &

of B is

{(t,x) X2 cl{f(t o) 3 n;;TH .

'

as each fl.,0) 1is By-measurable, the result follows.

It follows irmmedistely now that there iz a set B which
is Borel paranctrizable but not induced by & one-one Borel meapur-
able Caratheofory nmap. To sce this define B {; LXE Ty B;GUD
where € 1is a Borel set with compact, perfect vertical sections
contained in £XZ(1) and D ig a Borel set with uncountable
closed sections comtained in = x#(2) that is not Borel unifor-
mizable. The validity of (b} for B would imply that I containg
a perfect valued Borel neasurable multifunction, so that D would
then be Borel uniformizable. On the other hand, according to &
result of Mauldin [237], B is Borel paranetrizable,

2«9 Remark : &s already poirted out the fir-t appearanse of a
" paranetrization  result was in Purves' proof [27_] of the
converge to Lusin's theoron on commiable to one measorable maps.
Ag an interesting ssidewe will cutline an argunment for this
beautiful result, partly as an illustration of how parametriza-
tion problems arise :m degseriptive set theory.Whilc the proof we

will present uscs cssentially the same ideas as that of Purves


http://www.cvisiontech.com

- 34 .

it is now possible o bring about considerable simplifications
in the technical dotnils.

We will prove the comtrapositive of the rosult, nancly
that if a measwrable mop 0 on s Folish opace inte a&nother
taltes on uncownbably muny values of £ unecountebly often, then

f ig not bimcasurable, Thiz will be dons in scveral steps.

Step I ¢ 1t is casily seen that one nay assune thut £ is a
continucua nap on & closed subgpuce € of B inte 2. PFurther-
more, as the sct of values of uncounmtable order of a neasurable
function is an analytic set [15] and every uncountable analytic
set contains a copy of I, due to the assumpitions of " uncounta-
bility " made on I, we nay further take it that f is on C

onto 2 and every value of I 1is itaken on uncoumtably often.
Step II i Define now & (C £XC by !
= Ny .x) @ =
G — ‘!_ F,x ] f(:':) - F} -

4 T 1is now continuous and uncountable to one, ¢ 1is a Borel
subset of EXC with closed ond uncountable vertical sections.
Forthermoere, % & & ==> C 1is one-one, and thercfore a Borel
iscmorphisan.

Step II1 © Obscrve now that it suffices to obtain an uncountable
Borel set T (C 2 and a Borel isomerphism g on 7x* into G
such that g(t,.) mape 2% imto (t)x 6% for cach te1.
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To gee this notice that as T 1is uncountable and Borel,
therc is & Borel subset D of TX 2" such that =©4(D) as an
analytic, non-Borel sct. Then as g is a Borel ischorphism and
preserves scotions g(D)  is iorel and mp{g(D)) = 71,(D)  is not
Borél. Howover ag T ig a Zorel isonorphion on G —> € &nd
gDy (C ¢, nnlg(M) =B, ssy, is Berel in C. It is caslly scen
that (B = r (g(M) = n,(g(D)), It followe that £(&) is not
Borels Thus, T iz not binsasurable.

Step 1V ! Towards getiing hold of g anmd T let A Do & non-
atomic probability measure on %, and let 4 be the (sectionwise)
perfect kernel of ¢ as in Lemna 3,2. Then A is an analylic

set with non-empty, perfect sections. Fix a base {vn} . for
ny

C. Tet A = WE(i‘iﬂ(E XV 3}, Bach &, 1is onelytic and therefore
A-resgurable. Basy argunents now show that there is & Borel
A-null set N such that & - is Borel for each nyl. Lat
T=2~¥ and By = 4[](IXC). 1t follows then that B, is the
graph of a perfect valoed Borel megasurable multifuncetion on T
into C. 4s By (T ¢ it suf.ices now to dei.ne a Borel isomor-

phisn g on TX 2% into B, prreserving scctions,

Step ¥ ¢ Standard arguments now yleld the map g on BX 2%
into By . One has only to carry out " uniformly * the methed
of getting a copy of the Cantor set inside a perfect set as in
Mauldin [23_] and Srivastava [31_]. For completeness we owbline

2 proof.
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Fix a clopen buse {_"Jn . n:i1} for € sweh that vV, =G,
apd a2 metric 4 on © conpatible with ite topology such that
5{CY< 1. We will definc a gysten of positive integer valued
functions coded by finite seruences of ("2 and 1's,

{ps tge 28 m:} gatisfying ©
(i) Py s T ooy N g gTwm:-aSur&blw, for stch 8.

{ii) ﬁw‘.{’s("ﬁ)) ¢ for each 3.

1
_2131 !
(Li1) fsql = [sp] & sy # 9y => Ty )M 1y = 2+
"1 z
Un) sy s = Ty (1) WV, 0
2 1
. : t .
() VPS(.&) ﬂ?B1 # @ for each a.

To see that such a systen exists put P, = 1.
Suppose p, has been defined for some Se 2¢@ , Satisfying the
above propertics.

Define (t) = least m > 1 for which there is n)1 such

Pso

» _ y 1. g

that 5(Vm} . 5(Vn} < ET';F-:!# : ?mﬂvn =@,

T - TLHr;:sf__,’(‘l‘:.} » o o vpa(‘t-) ’
. t o T 1

and V(]38 £ 8, V,NBf #2.

Ag EB? is perfect and by induction hypothesis, V., )ﬁB}t‘ % @,
By (%

Tor cach 1+, there is m such that ;}Bﬂ‘(‘h} =m. 48 By ia the

graph of 8 mecasorable multifunction, it is casy to see that Pao
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13 Bh-neasurable. Now define,

PSi{t) = least n  vhich witnesses the fuet that

pggit) =n, if psg('b} B I

Do v Pgq  #¢ defined satisfy the required conditions.

How put g(t,(iq,ds,sess)) =@:ﬂ v for
L 7 e 1, s
® T2 ' -1
{iq,-’igruiqi} g 2 " This docs the iji

The reader night hawve noticed that we could have inveked
Theoren 5.6 to * poardnetrize ™ ¢ and then * cut it down ™ to
get a suitable Borel paranetrizotion inte G or used Temna 3.1
in Step V. We have refrained from doing so only to clarify that

ong does not require 2ll that has gone into these results.

We turn row to & solution of loffe’s question on whether
the theoren of Cenger and Mauldin can be unified with the theoren
of Toffe and Bourgain referred to in the introduction to this
gsection, by replacing the complede o-field therein by an arbitrary
o-ficld closed under operation (4). We establish an abstract
theorem which amounts to showing that Theoren 3.6 holds even when

T is an arbitrory subsct of = Polish space.
If N is a o-field on & set T, then A(W) will dencte

the Tanily of all subsets of T obteined as the result of opera-

tion (A4) performed on 2 system of sets from N.
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Cur abstroct theorem can then be formuwlated as follows o

3.10 Theoren :+ Iet (T,H) be o neasurcble spacc. Lot X be
Poligh ar’ suppese Ba= N (&) By hos uncount ble wertieil sections.
Let M = c(4({))., Then there is nrwp h & TX(E LJE)
satisfying
(A1) n 15 M (X) B - neasirable,
- At
(11) h(%,.) is ¢ one-onc, ceontinucus map of DN ondo B

for vach t:7T, and

(iii) 4f B ! IX(2 )W) —> TXX is the cononical map induced
by h, then h is (M (X) B , ¥ () By )-measurable
= B e 2.
and B is M (X Byl , ¥ (X) B ) - neasurable.
: = il : RASE
Proof ¢ As the proof is similar to that of Theorem 3.6, we will
only outline the proof. Wotice that as Be N (¥) By, there are

countably many rectongles {Tnxvn}nl1 s with T e¥ a&nd V,
gpen in X spch that
Be o-ficld generstoed by {Tn'}{?nlf .
N
et W = off }
-° Vg 4
characteristic funcetion of the sequence {Tn\r . Put m(T) =R

) and let m 1 (T, N )—> [0,1] bve the

and let W (C RXX Dbe defined by

W = {(m{t),x} (3, e B], .

By the propertics of m, We Bg (@) By and W' is uncountable
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for sach reiB. Also obgerve that
n™ (AR (T o (AT D) (C o(alid) = Y

In this argument we will conduct seversl ™ transfers *  and ot
gach step cluim thot it suffices to poarcretrize the sot obteined
at thot stoge by o nmap with the appropriate recsurabilidy prow-
pertices., These are easy enough to sce due Lo the product siruc-
tures of the o-fields we cre conaidering and the fuoet that oll
the naps we construct preserve sections as in the proof of
Theoren J.6. 4t the first stoep we clain that it is enough now Yo
parapetrize W by @ map h  satisfying all) the conditions speci-
fied in Theorem 3,6 with T replaced by B and B by W. To
sce this one nust beor in mind the obove observations sinee, for
excmple, the compeosition of analytic o-field neasurable maps need

not be measurable with respect to the analytic o-field.

To see nov the existence of the required paranstrization
Tor W one has only to follow the various steps in the proof of

The oYem 3 .5 »

Az We Bp (X) B, thore is absolute Porel W e B

()
fpn R

such that W [J(®XX) = W, Wow find B (T [0,47]XZ,
¥ o
Be B _ (x)

B, 1 ,
lsonorphiem g of B onte W as in the prool of Theoren F.6.

B, with closed vertical sections and a Borel

Wotlee that 37 is uncountable whemever (W )¥ is so. Thus, as

before, the problem of parametrisging W on R reduces to that
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of parametrizing B on R.

Once again define A (C [[0,1]XT by 2
A= f(t,x) 1 x: perfect kernel of B't} .
srgumments idewtical to the ones uwsed in Theorem 3.6 now show that
B'- &4 can be writien as z countable union of graphs of B(a([G, TN-
neasurable functions, and consequently that (- a)[]@x3) is a
countable union cf graphs of B(4(R)) - neasurable functions. On
the other hand 4 being an analytic set with porfect sections,
Lemma 3.1 appliess o yield a suitable parametrization of 4 on
“Ej’ﬂ(ﬂ). 18 B® is uncountable for each te R, we have

R {_ ﬁ]: ﬁ(ﬁ}. Thus 4 and therefore 3B’ can be parametrized
0,
on R. This conpletes the proof.

Wow if M is & g-fleld closed under operation (&) then

a(a(M)) (_ M. The Tollowing is therefore immediate and answers
Ioffe's question.
.11 Theorem ¢ Let (T,Y) be & measurable space, M beinga
o-field closcd under operation (4). Tet X be Polish and suppose
Belf (x) By has uncountable vertical sections. Then there is a
map h 3 PX(Z[|N) —> X satisfying @

(1) h is M (X) B - measurable,

- VR
(11) n(%,.) is a one-one, continuous map of E[|¥ onto B
for each t¢ T, and

(1i1) if T ! IX(Z}JW) —> TXX is the canonical map induced

by h,then T is ( (X) B , M (X) By) -measurable,
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and h is (M M (x> B ) - neasurable .

(X) B.| 3l B
=xXig? = |

Not surprisingly maps h  with the above propertics inducc

only sets in ¥ (X) B, with uncountable ver .ical sections. This

by 4

ginple consequence we stite as the next theorenm.

3.12 Thoegren ¢ Let (T, M)} be a ncasuruble space, M belng a

.
=

s-fiecld closed under operation (A). Iet X be Polish. Supposc

B (L TXX. Then the followlng arc equivalent.
(@) Bel (x By, and B has uncountable vertical scetions.

(b) There is amep h 3 TX(E|JM) —> X satisfying properiics
(i), (ii), and (iii) of Theorem 3.11.

Proof ¢ (&) == (b) 4is just Theorem 3,11. On the other hand,
(b => (&) holds for any o-Ticld M. Ome only needs the fact

that h preserves scetiona. To sec this, fix a couniably

generated sub o-field M of M such that h is N (X)) B -
=0 = =0 “EHN

o - —
neasurable, Then h is M (x) B y M (X) By) -measurable.
=0 R D

Now get & countably generated sub o-field Y. of M sSuch that

2V is (i (X) E‘{r , K () B )-mneasurable. Futb

N=M VM, . Then h satisfies (i),(ii) and (iii} of Theoren 3.11

with M replaced by ¥. We will check the mecasurability of the
map ?1_1 .

V open in I ||W. Then T (EXT) = exxMh(rxw, as

The other arguments are similar., 5o fix. Pe ll and

preserves sections. as TXVeM (X} B , we have
=G TE)u
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5° It follows that u (PXV) 1s 1n

N (X)) By] (as P is in
= —*1B

e f Wthe characteristic funedion of a gencrator for U,

WrxM ey @ 3,

= gy

P

ard M, (;E_:_E) .

and put ¥ = £(2) (C R, Dofine the -asleeesmel mcp
g ¢ IXEYW —> X by I

g(y, z) = h(t, 2) if tef ' (y).
Then g is well-defined and if € (C YXX is defined by €= @(B)
whore PIXX —> YXX is given by #(t,x) = (£{t),x}, then
by the bimeasurability of £, g satisfies (i), (ii) and (iii)
with (T, N) replaced by (Y¥,3,) and B repluced by C. Finally,
by (iii), g is & Borel isomorphism of YX(T[JN) and C, preserv-
ing sectioms. By & well-known cxtonsion theoren [157],  extond
g to & Borel iscmorphisn g, on IRX (E[|W} into IRXX and
look at

D= {t,a) 1 (e, = vl

Then D . is absolute Borel and 3B = Eﬁ"1(g1(]})ﬂ('f><}{)}. It
follows that Be N (%) By - i (X) By « Thie conplctes the proof.

We conclode by observing that our results are also opiimal
in the scnsc that the condition in Theorem 3.12 that U be cloged
under operation (4) is nccessary if one requires that the map h

be measurable with respect 4o the product o-field.

3213 Iropcsition ¢ Iet (T,M) be a measurable space. Suppose

for every Bel (X) B, with 8" uncountable for cach e T,
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there is an M (X) B - measurable map h I TXE || -=>3T guch

- =B
that h(%,.) is continuous and ombo B, te T, Then Y is

closed und.r operation (i},

Frool « Let {ﬁn'lng'”rﬁr ? be a system of sets with

Tor each ng,Bp, a0, » Then, 4s is well-Known,

(7

A . e M
IITIIEIQII% i
there is Beld (X) B_ such that %,(B) = il “nynge.om ). For,
one need only taxe 3= [] |} (4, . X2 (g ly, eee,m )). 28
k> S’Iﬁ Ty ™ ‘
%  is homeomorphic to =(0), we may without loss of generality,

assume B (C Tx%{0). MNow put C = B{J(TXZ(1)). Then

-1

Cel (x) B, and c* is uncounmtable for each t. Iet h be an

M{E B ~ measurable map on TX (E{JF) —> £ inducing C as
- - %

R
in the theorem. Iet D = {(t,s) » hit,0) = Et}. 48 h preserves

sections, *,(D) = x,(B). also, B' is clopen in ¢t te .
Thus, as h{t,.) is continuocus, oY is open for each t. 4lso

as h is M (x) 3 -measurable, DcM (X)) B = . Fix now a

T UE T UN
dense set {rn : ng"l} in EpjN. Then

"p(B) = %p(D) = {45 11 (t,r)eD for some n21)e M.

Thus & 1‘:‘*]*111112 . n.k]E} €

M, and the proof is complete.
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4. We have go far considercd the parumectrization by appropriatc
functions of scts B in a product space TXX when (&) each Bt

ig countable, and (b) each Bt

is uncountable. To motivate the
results ¢f this ssctlon we rexall the following result of
Sierpinski [337]: 4 subset of R is condensed and Borel if and
only if it is a cpe-ome nontiruvsus image of 2. One might there-
fore ask for an analogous pasrametrization of B when (c) each pt
is condensed. OSpecifically, we improve some of our carlier resulils
by showlng that the dense-in-itself Gy~valued multifunction in
Corollary 2,11 ig induced by an 4 () By-ngasurable onc-one Cara-
theodory mapfdefined on X2 and alao that if in Theorem 3.11 it
is assumed that the set B has condensed sections, then B 1is
induced by @ one-one Caratheodory meptdefined on TXEI with all
the measurability properties specified in Theorem 3,11, These
answer in part guestions ralsed in [44]. We wlll adapt Sierpinski's
proof so that, on the one hand, it goes through for any Polish

space and, on the other, can be carried over ™ unmiformly ™.

In what follows X denctes a fixed tolish space. We also

Tix the following notation ¢ (T, M) will stand for & ncasurable

space, h I IXE —>X a fixed M (X) By-measurable, onc-one
 aas

Caratheodory mapf'anﬁ 8, + T —>X and M-neasurable map such ithat

(1) s, (t) ¢ Range (h({,.)} for +t¢7T, and

1i) ?E__(t} e ¢l (Range (h(t,.))) for te7.

Footnele , ¥ A oty map heToT —> X & ge-ong W
%v~ﬁmdu t e, YR Thlf W(E, D » tnt—onz,
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Put cn-gmx)cmxxz(aagm(hm;ﬂ&xﬁwmd B = Cfjor(s ).

Finally, let 4 ©be & fixed metric on XK.

e will break up the proof intc seversl lermas. Further-
more, we will state them se that they @pply to both the sitvaiions
when M is a o-field closcd under operation (&) «nd also when
T is Polish znd ¥ 2 countably gensrated sub v-iield of its

Borel o-field.

Before plunging into the technicalitics it would be best
to atate roughly what we intend to do. In 2.11 and 3,11 we have
a one-one Caratheodory map f on TX(E|JN) parametrizing a
given set G. Let f' e the restriction of £ to TXE., The
first step is then to redefine ' so that it takes each (<)

toc a dense subsed of Gt. AB Gt

limit point of (}t

is condensed, f(t,n) is'a
and therefore of T (t,2{(<m))} for cach =n,
for the redefined f'. Fach f(.,n) will then correspond to a
Tunetion 5, with the properties listed above where fbr h we
take f, , the restriction of £’ to S(Kw). Tix 1. It 1o casy
to ove then *het o cosplute Rlw wprold @b sufTieus 4o wedafize h
to et ' dedined i TXE(¢y, indueiung B, il $hCa e pud the
n s and Do '-"--‘;:-’,f?-"f":ht):t'.

In what follows, unless otherwise stated, Y is any o-field.
4.1 Lemma [ Suppese r I T —> X is IM-nmeasuradbie. Then
{(‘b,:{) P alx,r{t)) < L} is a set in M (X) By with non-empiy and

open vertical sections for sach e3> 0.
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Froof ° This is clear.

4.2 Temma : Supposc D (T Tx:,Pel (D) By, and T is

non-¢mpty and open for each T T 4Assume t..t Tor each open
V5, 4e? 17 (CT'}c U, Then there iz amap g ! IXIE
such that ‘
(1) g is Y (x) 24~ measvrable,
(i1) for each 1e 7, @{t,.) is & homcororphism of £
and ¥,

Proof | Fix an emmeration Uq,lpymoean of BSeq.

Define

3
i
i,
ch
3]
e

P2u) (CPY amd B(s) (; p®
for every 9 ’~< Un}‘

Then T, e¥ {(by our assumptions on M).

Define WM~ measurable maps {p{t,n], n> 1 taking velues in
[

]
J
Seq U{m} as follows {we put EZ(=) = @) @
p(t,7) = w if m dis the first integer £ sueh that

and for nx1,

p{t,n+ 1)

i

w, if m is the first integer A> p(t,n)
such that teT,, if there is one such

& oo otherwise .

A3 each Tye M, the maps p(t,n) are M- measurable. Further,
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they satisfy
(a} {E{p(t,n}) : .1’12:_1}' is a discrete family in the topology GL’
e se—itemiar wilcen, and

) PY e ) zlplt,m)), ve .

ny 1
let R = {47 :p(t,m) £= for every n21} .
n* {taT :p(t,n) £« and p(t,n+) = 3 , nx 1.

Wotice that |] R, =1, the R 's are pairwise disjoint, and
nz o
For each u,ve Seq, fix @ homcomorphism on E(u) onbo E(v)
say h(u,v).
Define f_ = R XI —>T by
£,(%,9) = hilo, p(t,k)}¥(o) if o053 {<k>) .

As the p(%,n)’'s are M- measurable, T_ has the following

prag;rtiea .
3 fG(t,.) is a homcomorphism of I onto pY for teR,

(2y £, is Y|y () B,-mecasurable.

As any finite disjsi.. o om of basic clopen sets Z(s)
in © is 2 homeomorph of &, for each n)1, we can similarly
congtruct maps fn . RHXE —> % with the above properties.
Piccing together these maps we obtain a uwap q{ satisfying the

required conditions,
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4.3 RBemark @ If in Lerma 4.2 we assume that cach P° is clopen,

-1 ]
then the condition %t U pt ve ¥ for U openin X

always holds. To see this, notice that it suffices to have

{t c vl - ..‘-?T‘) £ yﬁ} e . Lot ?rﬁ% Le & dense subset of B.
- Finy 1

Then this second condition helds iff (dnd (r .= U Kr, ¢ Pt}, as
both T and E-Pt arc opens. The result follows. The conclu-
sion of the lemma consequently holds in this situation . This
will be used in the sequel.

4.4 Temma : Suppoze T (; TX: is in M (X) B and has non-

empty, open sections. Then P has an I -measurable selecior.

-

Procf : Fix a countable dense set /r 7 in £, Put
T ns
T, = {t: (t,r,)sP}. Then T el, n>?, end |] T, =T as

n» 1

each PT’ is open and non-empty. #4s M is a 7-field there are

sets R, such that R (T T, 91R11 913?11, -and the R 's
n 1n> 1

are disjoint, St f=2r, on R , n>1. Then f is an

1

M - measurable sclector,

4

[ ]

4.5 Lemmg : TLet & <M (X) B, with SE open for every t.

p‘.l

Suppose aﬂft} ] 52 , Tc 7. Then there is & ssquence of M- measur-

o

able functions s, ¢ T —> X, n>1, such that

(i) sn{‘t)aﬂ‘tﬂsg, for teT and n)>1, and

(11)  Als,, 4 (8),8 (+)) < 1/3.a(s (£),8 (), ny 1.
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Frecof ¢ The proof is by induction on n. We will first prove

the inductiwve step. Suppose = has begn dcfined., Then conslder

P = (4, 1dGe,s (4)) < 1/3.a(s,(8),5,(8)) and (£, =8} .

1

as s, @d s, are M-neas.rable, it folluws from Lerma 441
that Fe M (5‘?—;) Eﬁ( + TPoarthermerc, P has non-cmpty and open W&a_ﬂ-

sections. Now put
2= {(4,5)=7x5 & a(4,2) e B} .

Then QeM (X) By . 4lso Q has open sectioms as h(t,.) is

continuous for ecach t=T, and further as g (%) is a limit polnt
of ¢Y for cach *, Qt is non-erpty for each te T. 3By Lomnma 4.4
there is & measurable selector gq ¢ T —> X for Q. Fut

8,,1(8) = h{t,q(¥)). The argument for the base step is even
simpler. One has only to look at T = {(t,x) s (t,x) ¢ EG} and

carry out th: above argumant.

4.6 Iemma ¢ Tet T be Polish (respectively an abstract set) and
M & countably generated sub o-field of B, (respectively a
o=field on T c¢losed under operation (4}). Suppose P (: TXE,

t iz non-cmpty and open for cach +eT. Then

PeY X By, and ¥
there is @ (; P soch that QelY (X) B, , and r;;t is non-empty
and clopen for cach teT.

Progf ¢ We will prove the lemma in the case when T is Polish.

The gther case i= even uimpler.

Put T = ‘{tsT » 2(8) (: Ft} for sce Scq.
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Then T, s & coanalytic sot and [} T, = T+ DPurther, T, is
s = Seq _
a union of atoms of M. By an inveriant reduction principle

(See [ 36.]), therc cxist scts R_el, se Seq, such that

R,MR,, = # for a#s', R, CT,, amd |JR = |[] T,. How
sc 3oy 8edeg
define

Q=[] R, X I(g).
5.!:5@(1

This docs the job.

in the other case, T =M as Y is clomed under operation

(4) and the sets T, can be directly disjointified.

447 Lenme : Let the assumpiions of Lemma 4.6 be in force. Then

there is a countable family {U;a} ] of subsets of TXE in
1
M (%) B, satisfying :

(1) U'_b is non-empty and clopen for each te T,
n

(i1) the family {U;ta} is discrete in 3, and consequently
ny i
L] U'It1 is closed in L for each t:eT,
n>1
(iii) = - U1Uit] is non-empty for each t¢ 7T, and
n

N ' oqrt .
(iv} da(s (¥), h(%,)(UDI) [0 as n—> =,
Proof : We begin by fixing a set S - (_ TXX such that

S e¥ () By, ST is open, s (1) 8, anma CP-8F £ g for cach

$: T. To sce the existence of such & set one has only to make use
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of the fact that € is induced by the Carathecodory map h.

Por, fix uasﬁl and look at f(,’ﬁa). How puot
B, =, (t,%) I alx,s (+)) < alx,f(t,0 N,
Then SQ has the recudred properties.
How find = : T —=> ¥ as in Lerma 4.5. HNow put,
for n21,
v, = iﬁt,x}g TXX I alx,s, ()Y < 1/3.a(s (2}, (1))
and  {t,x) < so} .
Then Vne i (x) B, and for each +t: T, Vi is open and non-empily,
y R, PR . A : :
alv,, V.0 2 alv,, Vo ) 2 18 als (8), s (%)), we have,
{vtﬂct - .} = s - i @ ‘t )
n . N } is a family discrete in C°. Put now
f S Y
Wn = "{(t,a)ETXE - h{t’ﬁl bl VnE-

Then, for m2 1, W e ¥ () By and W' is open and non-empty

n— Ey = n
for each t: T, upply Lemme 4.6 to pbtain Uy v if () By such
~that UE is non-empty and clopen.fai ezch teT, and U, C_ R

Ag the inverse image under & continuous map of a family discrete
in the range of the map is discrete in the domain, one easgily

verifies that the family {Un%' : obtained above satisfies con-
n>

ditions (i) - (iv). This completes the proof of the lemma.

The next lemma is contained in Sierpinaski. For complete-

ness, we outline a yroof,
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4.8 Lemma [ There exist subsets C , n2 ® of 2 guch that

Cnﬂﬂm = ¢ for n#n, each C_n ig dense in £ &and each Cn is

i

o - . " t
& one-one continuous image of I, awd UC, =77,
7o

Iroef I Put C, = ik'_uez D o(Z1) = n for all lirge m} , nx 1,

and € =% - ngiﬁn. 1t is 2aeily seen that for n2 1, O is
dense, condensed, and F_ . Thas € is & Gg. a4lso

C,=loer 1 (¥n21)((2) £n infinitely e.‘ften}} . Observe
that € 1is both dense and boundary in E, so that by the theorem

. , .. .on
of Mazurldewicz [19]), there is a homeomorphism I ° ¥ ‘9'&)60.

It 1o easily seen that

D(Fmyn) (o(m) =k) & o(2(n®1)) £kl e,
W .f.a-&z_‘,_ {'_brm')Crtmm}ﬁ'l}?s 5 Rz,
A Each of the sets within brackets is

easily seen to be a homeomorph of I, and as the above unlon is a
countable disjoint union, we can construct a map f, + I onto, '{7‘>ck ,

with £, one-one, and continuous.

We are now in a position to prove the first theorem of
this section.
4.9 Iheorem ¢ Iet T be Tolish and 4 a countably generated
gub 7-field of the Borel s-field on T. Iet F ¢ T —> IR be an
4~ measurable multifunction taking dense-in-itself Gg-values
and further satisfying G (F)e 4 (x) By, - Then there is a map

f L %8 —3» TR such that
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(LY 1©(t,.) is a ong-one, continuous map on & onto F(t)

Tor teT, and
(ii) £(,,5) 15 an 4-neasurable selector for F.

Proof ¢ 4s 7 satisfies all the hypotheses of Corcllary 2.1
there is amap h : TX(E[J¥) —> IR such that

{a) h(t,.) is a one-one, continuous map on I[N onto F(t)

for each te T, and

(t) h(.,0) is an 4-measurable selector for F for each

oe D hIN.
Get {Gn . n3 G} ag in Ienra 4.8. Thus, one nmay assume, that
for each n> 0, there is & one-one Carathecdory nap
hy 1TXE(Km) —> R inducing Gr(F)[JR(TXC,)) = 6r(F,)), say,
where T is the cancnical map induced by h. Let g, + T—>1R
be defined by g,(t) = h(t,n+1), for n)> 0. Then, as each F(t)
is dense-in-itseclf, it is apparent that gn('t.) is a limit point
of FM1t) and consequently of the demse subset F (1) of F(t),
for each teT (€, being dense in £, n(t,0 ) = F (4} is dense
in Ft)).

Observe that to prove the theorem it suffices to prove that
there 1g a one-one Caratheodory map f ! IXE(Kw) —R indueing

GY(FIw Gr(g ), for then we could define

T3 IXE ~=>1IR by ¢ £(t,0) = £ (t,0) if ceE(Km).
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We will now construct the map f,. Hotlce that without
loss of generality ve noy assaue that hy ¢ TX3 == . We will
then defie £, % ITXE —>IR. Take h, to ke the map h fixed
in the beginning cof this section, 4 1o be the o-field Y on T,

and &n Yo be the map SG:T""} IR.

Iemma 4.7 now applies to yield a family iU } satis-
L0Iny1

fying the conditions therein.
. - R t
Define U, ( TXT by U's=: - [ U,

° - © my 15

t

Then U_ ¢ 4 (X) By and U, is clopen and non-empty for each

teTe Also recall U;é is clopen for each t and m> 1.
Lgarwnna B 2 s
ByKRemark 4.3, for each m> 0, there is an 4 (X) Bj- measur-

able map p, ¢ TXZ —> I such that p.(t,.) is a homeomorphism

of & onto U;:'L for gach +.

As B is 4 homeomorph of the space 4 of ifrrationals in
(-1,1) dogether with ¢ , it is enough to define £ ITXA—IR,
Mx [r " and |4 both sequences of distinet rationala

{m"m;ﬂ {m}mg_‘l 9 4

such that r TO0 amd t }J 0. Take ry=-1, and t,=1.

Pag Ay = (xp, T )14, m2t,

Apyq = Choq s ) (14, n21.

Each Am is a homeomorph of I and we may therefore look upon

the maps px obtained above ag defined on TXhy, o0 =2
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Define £, I TXA4 ~=>IR by cascs a8 follows !

f (8,0} = h (b,p, -(t,0)), if oe i, D22,

£,($,0)

i

The nap f,, has the regquiraed prpperties, The theorem follows

immediately in vicw of the rerarks nade earlier.

4,70 Hemark : 4s any zero~dinensional Pulish spacc can be
cmbedded as & Gy in IR, Theoren 4.8 implies that the analogous
result holds in any zero-dimensional space. Howeover, our method
deea not ge through for a general Polish space. The difficulty
lies in our use of Theorem 2,10 and not in the methods developed
in this section. We add that R.D, Mawldin and H. Sarbadhikari
have independently obtained Theorem 4.9 [24].

We will now improve Theoren .11 to obiain 2 uniform
version of the fact that a set is condensed Borel if and only if
it is a one-one, continuous inmage of £, This result reads as

follows o

4.1 Theorem + ILet (T,M) be a measurable space where M is a
o-field closed under operation (4). Tet X be Polish. Suoppose
Bel (X) By has condensed sections. Then there is a map
T $TXE —> X sgsatisfying :
(1) £ is W {(X) By~ neasurable,
(i1} f£(t,.) 1is a cne-omc, comtinuous map on I onto BE for

gach t:T, and
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(1ii) if T ! TX® — TxX is the coanonical map induced by T,
then

e,

(<} £ is M (X 3, , Y & By)- rcasurable,

() 27 i W @ Byl , ¥ @ B, - neaswrable.
ByATh@c}rﬁrz 3,12, any T eatisfying the abovey induces only

Be M (X) By with condensed scctions.

Procf I As Tepmos 4.1 - 4,8 hold in this sct-up dlso, argunents
identical to the oncs wused in the proof of Thecren 4.9 show the
existence of amap f ¢ TXE —> X gatisfying conditions (i) and
(i1}, It suffices to verify (1ii){(b). By the construction of
the map in Theoren 4.8 it follows thet it is enough to sce that
satisfies this condition for each n. 3By the cief'ini—:’

T | TX A,
tion of the nap fn it follows that this wvill be established the
tromnent sach pj constructed in the vproof satisfies thig condition
(Hote that now we have by Theoren 3.11 amap h } IX(ZLW) =X
inducing B and satisfying condition (iii) (b))% But the wvalidity
of this property for P, is immediate from lenna 3,5. This con-
pletes the proof of Theorecm 4.1 .
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5. Approxinating C-sets in the product by sefs in the product

o-field I We have so far considered sets in the product of a
measurable space (T,4) and (Y, B ), with Y Polish, &nd
have notlced that sets in Y () By bhave a particularly simple
structure. Indeed, we have observed some of thedir pleasant
properties. Recall now that if X is Polish then the class of
C-gets in X, denoted by S(X), is the smallest claas contalning
the Borel seta and closed under complementation and Scuslin's
operation (4). Now let X amd Y be Polish spacea, and
consider the o-fleld J(XXY). These are in general complicated
seta that cannot be related to any reasonadle product structure.
For instance, as observed by B.V. Rac [287], it is not true <hat
every C-set in RX TR isin LR X) LR, LW bveing the
family of Lebesgue meagurable subsets of IR .

We will now see, hawover, that any set in S(XXY) ecan
he " approximated ¥ section-wise by sets in 3(X) "(¥) 8, in
the sense of category and measure. That is, we will show that
if AeS(¥Y), then there ave B and C in $(X) (&) 3, such
that B (C A (C C, and for each xcX, 0¥ =B 1in meager. 4
siniiar statement can be formulated and proved for measure. Many
propesitions about sets in S(XXY) then reduce to ones about
the simpler sets in $(X) (X) By,

In particular, various selection theorena for sets in

S{XXY) are an immediate consequence or such apprcximations.
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One can, for example, cbtain the following theoren proved by
Burgess in [6 ] * Tet 4 ¢ S{XXY) be the graph of a
Gg~valued, J(X)-measurable noltifunction into Y. Then 4 has
an 5(X) - measurable selection. While Burgess uses high power
tools from game theory ard the theory of indnctive definability,
our nethods are easentially elementary (mudulo some fairly deep
resulta about coanalytic sets), and " classical " in spirit.
Indeed, one way of looking at the content of this section would
be to view it as a method for proving selection theorens for seils
in ${XXY) by indnction, wherein a sufficiently strong induciion
hypothesis 1s stated (namely, the ™ approximsiion'™ theorem),
regulting in wnification and simplification. We pight add that
so complicated are Burgess' arguments that he wrltes down the
proof only for the coanalytic caze,

Vaught in [427] has shoum that if 4Ae SfXXY), then
{XE:{ s &* is mmeagar} cte. are sets in 2(X). An.thor
consaquence of our approxinmation theorem is that these computa-
iions Tollow from the corresponding ones for Borel sets. Bimilar
computations also held for measure and these follow again from
the computationa for Borel sets through our approximation theoren

In the mesaure case,

We will actually prove noat of our resalts level-wise

through & hierarchy of Cosecis.
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We begin with the following simple observation that s
inplicit in what we Lave done o far.

5.1 Igrma I Let (T,M) be a measurable space, M being &
o-field closed under operation (4), and let Y be Polish. ILed
Bel (x) gy have non-enpty vertical sections. Then B has anq

Ig - negaarable sglection.

Proof ¢ Argumenta aimilar to the ones we have been using show

that the problem reducea to that of finding an § Co.1 ~meagurable
4

gelection for a Borel set in [ 0,1] X ¥, But this is ensured by

the Von-Newrann selection theorer.

Ag we will prove our resulbts level by level throush &
hierarchy of C-sets, e will now specify this hierarchy (dus to
Nikodym) .

et X be Polish, For sach o< ®,, the first uncountable
ordinal define by tranafinite recursion classea 4 (X, and
S,(X) as follows 2

Put 4 (X) = § (X) = Borel sets in X.
Suppose these classes have bheen defined for all o< B,
Put  4g () ={ﬁ. (CX ¢ A is the rosult of operaiion (4)

on a system of sets {‘q‘n,[ng..»-‘nl \( vith
K]

S 1
fag e © B %

S5 (X} = o-filelu generated by 4g(X).
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Observe that 4,(X) is just the class of emalytle sets in X,
and 3,(X)} is tho anaiyiic o-ficld on X. Furthermore,
8, = 800,
a < ©,
We will need the next result to give na one half of the
base step when we induct on sets in S{&XXY), The result ias &=
in Kechyis [147].

5.2 Temma 3 Let A (C w” be a E:: (ligntface), nmeager set.
Then A 4is contained in the union of all closed, neowhere dense
sgta given by iq trees on ® ., The relativized version also
holds. (A1l the terms are the standard unes used in Moschewvakis
2571,

We will need the followlng simple fact to reduce the other

half of the base gtep to the zero-~dimension=i case,

5.2 Lomma . Tet ¥ be Poiish. Then there is a neager set N
guch that Y.-N is a zero-dinensicrnal Poliash space.

Proof ! Iet {Tfn}nw bea bise for Y. But W= | (o107,

Then W 1is clearly a meager F, din Y. rurthermore, for each
nxT, r;:l(".?‘n} (x-1) = *Jnﬂ{Y—Iﬂ. Thue Y-N is a zero-dinen-
sional G5 din Y, and therefore a sero-dimensiconal Polish space.

Towards proving our approxinmation theoren for an asnalytic
set in the product, ve will now descridbe a procedure for obiaining
& demse G, 9et inside a coreager amalytic set, The method is
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essentially in Sion's proof [34_] that ™ apalytic ' sets in
general topological spaces are capacitable in the sense of
Choquet. We are interesited here not sc much in the next resuli,
83 in the method.
5.4 Lemma ! Tet A (2 be a comeager analytic set. Then =
contains a dense Gy set 3.
Proof ¢ As A 1ls analytic, there is a continuous map f on
Z onto A, A I 1is s Gﬁ in IR and IR is c-compact, we
can lock upon f as defined on a K_; subset of IR(K, 7 o-
compact), i.e., we have continuous £ 1 D —ng-.é A, where
L= ﬂ { D(m,n), with D(m,n) a compact subset of IR for
m»1 n>
every m,n> 1. Without loss of generality we nmay asaume thai for
each m, Pm,n) T with n,
We will now define two aystems {Ils 8¢ Baq} and
{;&B P 8. Saq} of positive integers satisfying !
(1) ngeSeq and In(n,) ) 1h(s) for se Seq.
(1) s < 9" = n, < D .
(111) 1n(a) = In(s") and s#s’ = Z(nJ[)i(n,.) = 4.

(iv} |J) ={ng) is dense in =, for each k> 1.
3& Sk

(v) 1nls) =k = £{[)D01,p N)ﬂ.....ﬂr(k,ps)) is
3
comeager in I(ng).

Suppose such sysitems have beun defined. Put then
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U - |J ={ny) and B =k91 U+ By (iv), each U_ is an
8¢ Rt

open dense set, and B is therefore a dense Gg. We will now

check that [] Uy (C A,
k> 1 -

So 16t ye | Up » By (iii), for each Kk, {E(ns) ae Sk}
k> 1
iz a disjoint famlly. Consequently, there is a unique sequence

k-] sziimb-;i such that ¥Ye E(n<k1kgtilkx>) for all J{Z_'In

Purthermere, by (1), &(= (n<k1 verkpd

x }__ T r f{DﬂD(1 ’p<-k,1> } nD(E’P'{k‘ik’?}} ﬂ Faend ﬂI}(x'p':kvt .-w lk£> )}

4o, and Ly (v}, for each

is comeager in o (n< Yeesusoaso{¥). Observe that

k-! LN ] -kz}

D = xﬂ133(£,9<k1_..k£>} (CD. It suffices nov %o sce that

ye £(D'). YNow, as f 1s continuous, £(D') is compact. Thus,
ir y;"f(]}'}, there i oper ¥V _) £(D') and % such that

_ o e | -1
?ﬂztn{k“””ki}} =@, Then D = kﬂ-;mx’?(k‘l”‘k.f}} (C £ .

i

Az the Di{m,n)'s are compact, there is Jjri ouch WAt
J
) : fe B -
f(]]ﬂ{’([;]J}(,( 'P{k*‘”‘kﬂ))}} 13 contained in V. 3Rut tuis contra
dicts (x).

It remains now to obtain the systems {ns} and {_}95}, .
We will obtain these by induction on 1h(s}. Define n, = e, and

p, = 1. BSuppose n have been defined for all s with

s Pg

length < L. Tx 8e8,. We have to define ng

5t Paj for each j2C.
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Define RY (T Seq by :
R® = {ua Seq 3 ny <u Ko > £L+1 &
{10 +Pg 1 )[Tees ﬂB(I.PS) [1D(A+1,m))
is comeager in Z{(u) for some mz 1, and
£(0(1D(1,p, rh) Moo IDCL, p) M1D(L+T,m))
is not comeager in =(v) for any m2 1 and any
v such that n . <v <u and v#a}
[ For example, R® is, roughly spesking, the collection of those
seguence numbers that code the '"largest™ basic clopen sets in
which asome f{2{)D(1,m)) is comeager]. It follows that any two
distinct sequence numbers appearing in this set must code disjoint
neighbourhecods. It is also easlly seen that the union of these
neighbourhoods 13 dense in = {m,).
In gencral, we now define (flxing an enumeration uy,u5, ...
of Beq), for J 2 0,
Bgy = Yy if o, 4is the (:]+1)f' sequence number appear-

ing in Rs, if there is one such.
Since ] z(n,,
1o

) is dense in =ing), n,; is defined for all

psj = least w auch that
£(Df)D{3, py py) Moo 12,2 (1D0L+1,m))
is comeager in L‘(nsj).
It ia easily verified that {ns} . '{Ps} so defined satiafy (1)-(v).
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Th: next result is duc to Kechris [147) and Vaught [42]].
However the argument in Lemma 5.4 also vyields thls result.
5.5 Lemme I Tet X and ¥ be Polish spaces and suppose
A (; XXY. Then for any open aet V in X, A.; ={xaK:Ax is
coueager in ¥} is amslytic (coamalytic) if A Lis amalytic
{(coanalytic).
Proof § Clearly it is enough to vrove the result with ¥=Y, and
ag easy argumerts show, for A analytic. Assume first thal
Y=%. Pix a continuwousmap f on D onto 4, where D (R

and D = Ej D{m,n), with each D{m,n) compact in R.
m} T n

Ubserve that the argument in Temms 5.4 shows that
A* is COMEAZeY > [3 {ns M- X Saq}&{ps s 3¢ Seq}
satiafying (i) « (iv) in the proof of
Lemna 5.4 and satisfying, for each s,
(v} (£0[1DC1,p, {.130...01:(3‘;%9:)’“ is
comeager in I(ny)

sy [E {nslr& ps} satiafyine (i) - (iv) and
for each s, R
3 100, 5y 1) N0 DG, 2 ¥ e (ny) 46
The tirst equivalence is clear. To see that the last condition
inplies that 4% is comeager notlce that (v)' was all that was
regeded to show that the set B in the proof of Lemma 5.4 is con-
talned in A. Pinally, it i9 easy to see that the lasi condition
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is an analytic condition.

For gemerai T, apply Lemna 5.3, and the fact that any
rero-Ginensional, uncountable Tolish space Y can be written
as E5{J%, with Z countable, & sinple argument by cascs when
Z is meager, non-meager, and comeager In T now yields the

resull.

We will now carry out the argument in Lemna 5.4 wilformly
over the sections of an analytic set in the yroduct of two Pelish
apaces.

5.6 Lerma * Iet X and I be Polish and let 4 (L XXY he
an analytic set such that 4% ia comeager for each xcE, with
E analytic. Then there is a set B (T A such that Be 5, (XXX)By

guch that BX iz a8 dense Ga

for each Xe E.

Proof ¢ 3y virtue of lerma 5.3 we may asswme without loss of
generality that Y 4is gerc-dimensional. To begin with asuume
further that Y = & ., Onee again get a continuous nap

£:poB L here DI and D= [] [] Dm,n) with
n>1 nx1
D(m,n) compact for each n, n2 1, and such that D(m,m) § with n

for each fixed n.
Tet Uqylnyesres De an enuneration of Seq. We will
define two systems of §;(X) - neasurable functions defined on E

into w , \ and h that
nto w {gn—‘n;_,, '”'nk‘f a {hn‘!n?*”‘*nlz} suc &
(i) gy(x}e Seq and Ih(g,(x))> 1lh(s) for scSeq, XcE.
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(i) 8 < 8 = gg{x) < gﬂ.{x), xecE.
(iii) 1n(s) = 1n(s') and sf3’ = E(gs(x})nzigst (x))=¢, ReE.

(av) |} 2(g,(x)) is demse in £, for each k21, X:EB.
ge 5

(v) 1nda) =k => (O, D[] ... (120,00

sl
is comeager in E(gg(x)), e E.
A before we will define such aystens by induction on
ih(s)e Put g, (x) =e,xc3 [we take £(e) =],
h,(x) = 0.
Suppose g, , hy; have been defined for all o ¢ L SJI satisfy-

ALk

"ing the above properities. Fin s« S, We have to define g, b,

Tor each n 2 0.
ot Bl o ={xeE: By py CF =By e lig G =0, 85000 =}

Then by the induction hypothesis the Eé! mk's are disjoint
L k!

sets in §,(X) such that ' = B, the unicn rum

Sy Uﬁﬁ1 yoonyTly ' ming
. oyexr {;{,mj?:a.,mz{)asl{+1 .
.3t affices now to define {gsn* hons 02 G}, on each E‘é‘“ Y
Eﬂparatﬂly- So fix now (I‘m-l ' --ri‘.mk> £ Sl':"’l‘ »
Say that fn,uj} satisfics (¥) at x 4if
(£(x{}p(1 01 ] wee ﬂD(]{,mk} N2+, 000 is comeager in E(uj)
and for all ue Seq with lh{u))k+1 such that
ux-{u{uj&u#uj and m > 1, we have
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(120,07 .ou M2G,m) (1DG1,)1)% 18 not comeager
in zlul.

Define R, ( EA by
j (M m1‘-ni'mk F

E, = ' : Y .} : here i i
s {Fem n, Py &Gy 2 ket Kothere ds ny
such that (n, u:.j) satisfiea (¥) ot x} .

‘Now as f is continuous, £ (D[]D(1 ,m1)ﬂ ﬂD{k,mk)ﬂD(kﬂ,n))
ig an analytic subset of XXI for each n. By Lemma 5.5 each

"HNow define gsn(x} = uy if § 4is the (n+1)5% integer such that
& E Hj

and hsn(X} = least m =auach that (m {(x)) satuisfies

rEgn
(¥) at x.

The proof of Lemma 5.4 shows that the abovc functions are well-

defined and that g ¢, {"BH so defined satisfy (i)~ (v).

Now define B, (_ ¥XZ by !

B = {(x,0) txcE and P05, @n (g,(0) =uy &oenlupl .
Then By ¢ §y &) (X) B, and B, has dense, open sections on E.

Fut B = [} B+ Then Be §,{X) (X) B, @ond the argument in
k3 1 B
Lemma 5.4 shows that B (T 4. This proves the lemma when Y=5%,

For general FPolish Y, the argment is as in Lemma 5.5.

5.7 Hemarlk . Notice that the argument in Iemma 5.6 proves the
following theorem of H. Sarbadhikari [30] I If B is a Borel
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set in X XY, with X,Y Polish, such that B° is comeager for

each x, thern T _, [] I, uvhore cach R, is 2 Forel set with
ny 1 "
dense open sections., To see this, one haz only o go over the

abaove proof and make the necessary chanses. To begin with,
obgerve that the map f fixed in the besinning can now be taken
to be one-one. As the image of & Borel set under & one-cne Borel
measurable meyp is Borel, amd for Borel ? (C XXY & open V in7¥,
{x TP is comeager in v} is Borel, -he various sets nppearing
in the proef will now turn out to be Borel. The sets B in the
proof will then do the job. It might e recelled that this result
immediately yields a Borel uniformiration for Borel sets with
coneager, and therefore non-meager, sertions by arguments that

arc by now standard. Thic result is also implicit in the resuli of
Kechris (lemma 5.2).
Th~ next atep is to otoserve thet the counterpart of

Iemma 5.6 for amalytic sets with meager sections is & conseguence
of Lemms 5020

5.6 lemma : Iet X and Y be Polish, and 4 ( XXY an
analytic set such that A is meager for all x¢E, with E
coanalytic. Then there is Be 5, (L) (x) By such that A (_ B
and B is meager for 8ll x: E,

Proof | We shall give a simple effective-theoretic argument.
-Notice once again a crucial use of the local methods of the

effective theory (all effective-theoretic notatiocn and terminc-
logy is from Meschovakis [25]).
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Ag before, it suffices.tc prove the result for
A C xa®, For simplicity sssume thet A is I;. The rela-
tivized version can bhe argued similerly. Then, for each Xx:cE,
& isa 3}(}:} neager set, Lemma 5.2 therefore applies to show
that, for x:E, AX is contained in the (countable) union of all

cloged nowhere dense sets given by ia:i {x} trees on
Let @ ¢ @”x a=>a® ve a TT}- recursive partial funchion that
codes pointa in f.q (x), x rumning through o’ [25; 40,2}, Then
we may write
Al EX ) C {(x,y) :(Gn) (é(x.n) | &dlx,n) codes o tree T
' such shat [ T_] ia nowhere dense

&ye ET:D}

B 88Y a

1

ey C, - {x td(x,n) | Rdlx,n) codes a tree whose body is

}

nowhere dense!, n ) O.

Then €, 1is coanalytic and thus in .8y @),

Define ¥, + €, —>u? by fn(x) = d{x,n). Then £  is

54 (™) ﬂ C, -measurable., Plainly,

B = “{%a {(x,y) Pxely K (5,0, y)e F} , where

F o= {(x,y}em‘“m () (x(Fm)) = o)} . As F is closed, we
have 3B e §1.(mm) (x) gm“* Thua, aa E 1s coanalytic,

B=3 |J((«®- E)x&®) does the job. The vesult for general
X,Y Polish follows as before,
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The next result yields the approximation theorem at the

first level of the hierarchy of C- sets.

5,9 Lemma + Tet X anmd Y be Polish., Let 4 be an analydic
subset of XXY. Then there are B and ¢ in (X} (X) By
such that B (: A (: ¢ amd C*-F is meager Tor each =xe X.

Proof : Fix a base (v} , for Y.
nipy

Let T = {xe}{ : &* is comeager in vn}. Ap 4%

satisfies
the Baire property for each x,

L] T, :{xa}( &% is nnn—i:uea.ger} R €3
nyi

For each n 2> 1, apply lemma 5.6 with T, rlaying the role of
E and V, playing the role of Y. Get B, as in the lenna.
Put B = (§ (B [I(T X¥)). Then Be () (x) By smd (D)
nyl

gnsures thal for each Xe X, £ - ¥ is meager.

To get the set C one has only to carry out the above
argment for the coanalytic set (XXY)- A, That this can be
done 1is easured by Lemma 5,8.

We will now atate our main theorem for category.

5.10 (Catemory) Approximation Theorem ¢ Iet X and Y be
Polish spaces. Iet Ac § (XXY), a<®, . Then there are B ard
¢ in §,(X) @& By such that B (C 4(_C and O'-B" is meager
for each xe¢X. In particular if A4e § (XXY), then one can find
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B and C in S5(X) (X) By will the above properties.

Progf : The argument is by induction om e . For a=0,
So(XXY) 1s the Borel o-field on XXY. In tals case there
ia nothing to prove.

Suppose then that the result is true for all F<a.
Let F gtand for the class of all sets in 5§, (XXY) for which
the result holds. It is eaasily seen that [ 1a closed under
complements and countabls unions. Thus, one need oxly check

that A (XXY) CF.

50 fix Acs A, (X{x¥), Then 4 is the result of operation

(4) performed on a sysiem {ﬂni n‘2'“n1:} with each
%11. n ° U S &XY). By the induction hypothesis, for each
» B B { am
.r(n-ziiﬁolnk,) wo have Emnz".nk and cn1n2“‘n}c,hﬂ'th in
(8, (X) (X) By h that B C & (Cc ,
_Byu Ss (X) (x> By), such tha iy eeory, o fngeen G %oy
and CF

. - ig reager for each e X. Let
- g 'gI]k %‘ - v 'I’Ic

B = éc{ﬂ‘ﬁ and C = {L_:({C Theu

) | T

. - lillkl nu-l - ‘I]]{E
B C a ¢" and since any ye @H* - (F)* is in some
}Gx -5 edch of which is meager, we have (ﬂ*}x- (B*)X
.in,.{.,.]‘}lc 111..‘]’]]{5 =] L
iz meager for each x. To complete the proof it suffices to get
B(C B, cD ¢ ouhthat B,C s 5,00 @ By, (B) -3 is

. X oK o .
meager and C° -~ (C )" 1is meager for eoch x, We will obiain B,
‘the srgument for ¢ Ybeing simllar,


http://www.cvisiontech.com

- T2 -

Let §°(X) be the o-field generated by |} §5(X).
- P¢a

#® ; & —n
Now B = A( ) with each B e 8 () (X) B,
= {Bn,l P .nk.is 111 . .,nk = E}_”
Thug, thers is a countably generated sub s~field R"(X) of

$°(X) such that each En‘ is in RU(X) (X) By - Let

LR *%
m 3 (X,R°(X)) > [0,17] be the characteristic function of &
countable gengrator for }°. Put M=mn(X), and for each

Nyens,th , lot B = {(m(x),:,r) e (X,y) =B Then

) n,.l-..nk n.juonﬂl{} y
Bﬁ'"nk e By (&) By for :ach (B ave,my ). Lot
3 = {@e),; * xye3 Y+ Then

B s A({

B, I
na!rcmnk
It follows that there is an amalytic set & (C [0,1] XY such
that A [J(MXY) = B . Apply lemma 5.9 to get A (4,
P 8,([0,1]) (X B, onch that for each te Lo, 17,
@WHL ™Y 1 meager.
Let (m,1d): I XXT > [0,1] X ¥ be the map
(n,1d) (x,1) = (nxl,y)
Pat B = (m,iﬂ)"1 (ﬂ**}. Ohaerve that ag m is & bimeasurable
map of (X,R%) apd (M, B,
2 (4, (Lo,130 ¢ {A (CX: A is the result of operation (4)
| | a1
on sets in IR 7
C 4, .

Consequently o1 (321 (Lo, 1IN (; S, (XY
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Thus B e § (X} (¥} By and B clearly satisfies the other

properties required of it,

We will now set down some of the conseguences of
Pheoren 5.10.

5.11 Corollary : Iet X and Y be Polish. Suppose & {_ AXY

and A% is non-neager for each x . Then
(i) 4 e gﬁix‘.{) => A has an 8(X) - measurable selection.
(11) A e 8 (XXY),a<®, => A4 has an $,(X) - measurable

gelection.

Proot : To see (i), get Be S(X) (¥) B, suwch that A -B" 1is
meager, B f_:_ A, as in Theorem 5.70. 43 B  is then nonenpty

for each x, Iemma 5,1 yields the result.

Ac for (ii), use Theoram 5.10 %o get now Be § (X (X) By
satiafying the same properties. The result then follows from ths
rext proposition that is worth putting down for the record.

5«12 Propogition ¢ Ietu (T, M) be a measurable space and Y
Polish. Suppose B e Y (X) By has nom~neager sections. Then

4 has an M-peasurable aelection.

Proof + Let m * T —> [0,1]] be the characteristic function of
a generator for a countably generated sub o-field M, of M
such that B e M (X) Bye let M=n(T) and B be Borel in
[0,1]%x Y such that for teT, {(t,7)c¢B 4ff (m{$),y)c3B .
Let Ls{x e [0,17: ) is nn}nmmeager} - Then M (C L,amd L
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»
is Borel. Put B =3B [[{LXY¥). Then as B is Borel and hes
non-meager seddions on the Borel set 1L, by the theorem of
H. Sarbadhikeri [307] (See also Remark 5.7), B has & Rorel

selection g. Then f=gom is an Y- measurable gelection for B.

5.13 Remark .« Ohserve alsc that an argment along the above
lines also shows the following. Let Bel (X) B, . Then

{te 7 : BY ia non-neager (@@ ccme.ager)} e M. The next selection
theorem has been obtained by Burgess [ 6 .

5.14 Corollary ¢ Tet X and ¥ be Polish, Tet P X —o> ¥

be a multifunction such that #(t) is non-meager in cl{P(t))
(in particular, we may take F to be Ggz-valued).
It ? is g(}{) -measurable and Gr(F) e f_§_(X XY}, then F has an

8(X} - measurable selection.

Progi T The argument is via a useful technique due to R, Barua
(8ee [ 27)).

Defing % 1 X --> T by O(x) = cl{F(x)),

Then G is a clesed valued, 3(7) -measurable multifunction. By
Corollary 6.12 (next secction), there is amap g + AXI intc Y
such that g is §(X) (X By - measurable and g(x,.) is con-
tinuous, open, and onto G(x), for each x.
Define G (JXXT by

' . 1

&6 = {(X,U} s glx,o)e Px) 7,

As Gr(F) ¢ 8(XXY) and g is §X) (X) By - measurable, ¢ is


http://www.cvisiontech.com

—

-~ 75 -

in 8(XxZ). This Lolds because S§(Xx:2) is closed under
operation (&) and S(XXY) is the smallest class clossd unfer
this operation and contalning the Borel sets. Also as the lnversec
ipage of a non-neager set under & continuous, opel Kap is non-
meager, ¢ has non-meager sections. By Corollary 5.117, Gt hag
an S(X) - msasurable selection g « Then f(x) = glx,g (x}) is

an Q(X} ~measurable selection ior F.

It chould bo pointed out thoat an arguncent along

the above lings to prove & level-wise vergion of Corollary S5.14
would break down at the #we pointp where essentiel use has been

made of the closure of §(2) under cperation (&), for Polish Z.

5,15 Qoregliary 3 Let Z and Y be Polish, with Y dense-in-
itself. ouppose Ac S(XXY) has noh-meager sections. Then
there is an Z{XXY) -meagsurable map f on XAXY ontc 4 such
that £(x,.) maps Y onte A in & one-one fashion, and £
is §(4) -measureble. In particular, 4 has 2 ° dicjoint
§(X) - measurable selections.

Proef 3 By our approximation theorem, there is B ( 4,

Fe 3(X) (X) By with non-neager, and therefore uncountable
vertical sections. Theorenm 3.11 applies f{as S(X) is closed

under operation (4)) %o yield an 8(X) (X) B, -measurable para-

metrization on X XY onto B with the properties listed therein.

A Cantor-Bernatein type argument exasctiy as in Cenzer and
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Mauldin [ 9] now yields the result.

text is the result of R.L. Vaught [427].

5.16 Corellary : Let ¥ and Y be Polish and 4 (C XXY. Then

(1) Ae SEXT) = {xe¥x : & is non-meager (ﬂomeager}} e LX),

(1) 4eg (XXY) = {xsK‘ ¢+ 4% is non-meager (comeﬂger}} e 3,(%).

Progf : In either case get B (_ A, in the product o-field as in
Theorem 5,10. Clearly it is enough to perform the above computa-

tiona for B. But these arce valid in view of Remark 5.13.

517 Remark t We conclude this discussicn by observing that ouv
nethods yield the following. Suppose 4e 8 (XXY), with X, ¥
Polich, amd &% is comcager for eadch X . Then there is

{Bn in 1} . 8, (X) {(x) By such that E‘;; is open and dense fr

‘each x end n, and f] B, _ 4.
n> 1

To see this pet 3 (; A& ag in Theorem 5.10, 4Aa wrgument
ag In Propesition 5412 shows that there is {En 1o 1} with the

above propertics such that [] B, (C 8, because of the validity
ny i
of this result for Borel sets (See Remark 5.7).

‘3;18 We will now establish the measure-theoretic counterparts
of Theorem 5.10 and ita corcllaries. 3But first we nced a deflni-
tion. Let X and Y %bte Polish., Call & 1 XXZEY —> IR &
transition funcetion if
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(1) #“(x,.) 1is & probabillty measure on By for each xeX,
(1i) #(.,B) is 3B, -measurable for cach Borel B in T.
An equivalent formulation is the followlng @ TLet H(¥) b2 the
eclags of all probability measures on f_g_}y gquipped with the weak
topalogy. M(Y) dis then a Polish space. Iet M ¢ XX3B, — IR
satiafy condition (i) above. Define

Y i X~ M(Y) by JX) = i(x,.).

Then # i1z a transition funetion iff ¥ I X — E(Y) is
(By » By (y))-measurabdle.

We will now formurlate and write down less detailed vroois
of the measure-analogues of the results we haye proved for
calegory.

We tice first that Sior's capacitability argument adaplied
1o measure yields the following computation, implicit in Rechris

[1a7].

5.9 Iemma 3 Iet A (C XXY be analytic and & 1 XXE, inte B
g transition funclion. Then for any real r, {x s ux, 47> r} is
Proof ¢ Ag before fix a continuows map £ on D onto A4,

where D= (] (] D{m,n), D(m,n) compact in IR for m,n) 1
m> T nyt
and so that for each m, D{m,n)T with n. An easy compactness

argunent as in Lemma %.4 shows that, for fixed ael,
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£¢ ] D, a(x)) =

k=1

e k
N £eN N di,aid))
k;1 i=7

=

k
= 1z (D] D{i,adi))),
ECE R

il

and thus,

[} or 1':
(£C N DU, aeDN® = N cae@N N pL,ati) NN,
k=1 k=1 i=1

fTor each ¥ .

ere{)

Also, as for xeX, #(x,.)} is continuous from below, and for
k
each X, (£(0f] [} D(4,e(a))))*
i=1

k
= {J (f(Dﬂ(iﬂ1D(i,a(i}))ﬂn(ki-’l,n)}}x,
1 =

ny

we have,

K
#«(x,Cffﬂfk[}?mi,n(i)))ﬁ) > 7 <—>

R
Al (D¢ N DE,«@ONNDET, 0 D,
L=

for gome n)l1 ...(2}
Thus we may write,

o (by(a) p _
B> 7 s GaeD) [ Blx, (20 ] DO, T |
( k=1

'(by(?)}

, [+
== @ny1) Feen) E{"fkri)(#(x,{cl(f‘(ﬂﬂ_ RCTIGNDRE
1=

]
I"'"'fﬁ |«
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But for each finite sequence <z{1},..,,alk)> and Kk,

e1{£ (D) ﬂ D{i,a{i)))) is closed, anu the validity of the
i=1
lemma for Borel sets shows that the condition inside brackets is

actually a Borel condition. It follows that {:-: TGS I r}
is apalytic.

Hext is a preliminary version of Iemma 5.6,
5.20 Legpma : lLet 4 (Z XXY »e anmalytic, with X,Y Polish.
Suppose M4 }tx% —> IR 13 & transition function such that
#(x,&°)>a for each x¢ B, for some fixed Ec 5,(X), and fixed
0<&a<?1. Then there is & gset € (_ 4, Ce §,(X) &) By, such that

X

C* is compact and w{x,C%)>a for each xeE,

Proof : We deflne sets T(s), s Seq, to satisfy

(a) T{e} =
(b) T(s)e g,(X)
(c) MsIIT(E) =@ if s#t & 1n(s) = 1h(t)

(d) T(s) = U T anm )
my 1

(e} T(s) C ﬂxﬁmi#(x (f{Dﬂ ﬂ B(l,si),!)x}}a}*?mﬁnﬁf_
T k(s =k,

Here f ia the map on D onto A fixed in the proof of
Lemma 5,19,

Suppose T(s) has been defined to satisfy the above con-

ditions for all se Seq with 1h(s){k. Pix 5eS .
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Put
H ¢ K N . x
T (m) = qxe i) L, {Iibﬂiﬂ1ﬂii,ai)ﬂﬁik*'i,m))) }sa
By Lemma 5.19, each T’ (m} ¢ S, (X), and as in the proof of 5,19,
J 2'(m) & 7(s). Disjointify these sets to get T (m). Put

m=1 "
T{sm) = T (lﬂl}, m‘}_'l-

These sets satisfy the above conditions., Finally, take
c= 1 | P, , where
kel ge
| k
P, = (T(s)‘x.*ff)ﬂcl(ft]}ﬂig1]3(i.ai))-),55 S, «

It is clkar that Ce §,(X) (%) By . Fix x=E. Then there 13 a
undque c¢e suach that xe P(afk) for every k2> 1. Consequently,

o k
o* = (c1{£(D DE,e @ )INT
}rg*! ﬂil;h ’
= (f( ﬂ Dk a(K))Y* (by (1) in the proof of 5,19) .
k=1
So C° is compaet, ¢* (T &, and ,

k
w(x,C*) = 1in #-(K,(f{D-ﬂiﬂ1D(i,ﬂ(1)}))x}>_a .

We can now prove the anologue of Lemma 5.6.

5.21 ILemma :+ Let X,Y, and A be as above, Then there is a

Ili" such that B, e §, (X). (2} By, Bg is compact
for each x, B, (C 4, for n>1 and M(x,ﬂx—( g Bn)x)= Q0

ny 1

gequernce { Bn

Tor each x.
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Proof ¢ It is enough to sh-::w that for each nx 1, there is B,
such that #(x,4"-B}) < & n, and satisiying the other properties.
G0 fix n> 1.

Let B = {KEK + L ¢ B{x, &) ¢ Lﬂ?{ i=0,T,e00,n-1.
Clearly, the E;'s are disjoint, and by Lemna 5.19, they are in

8,(X). Apply lemma 5,20 to A with B replaced by E; and

i

a =% toget C; suh that ¢ (C A[l(E; ﬂ) c‘f‘ is compact,

and M(x,@i)}_% for cach xeE; . Then B, U C; does the job.
i=0

5622 i Note that (2s in Remark 5.7) if in Lemmas 5.20 and
5.21 one assumes that A is Borel, then ¢ amd B, , nx1i, will
turn cut to be Borel. This yields a proof of the theorenm of
Blackwell and Ryll-Nardzewski | 4 .

Next is a version of Ionrma D.3.

5.23 Iewmna & Iet X,Y, and £ be as above and let € ( X XY

be cosnalytics. Then there is a sequence {E‘- ; guch that
; -’n)

) i X
Cpe 8,0 (x) By, € CC, n31, and slx, C*- (gcn) =0
for each x.

Frocf | Just as we used an effective result of Kechris to prove
Lerma 5.8, here we will use its nessure analogue, which is also

due to Kechris [14°], namely :

let # %be a probability rieasure on £  asuch *thal the

relation
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R(k,a) ¢—> Seq(k) J Seq(s) & 1n(e) = 2 %

=3
A2 (k) > E%

is a: « Jet &> 0. Then every TT:: subset P of I containg

a &}, compact set Q_ osuch that 4(P-Q) ¢ e. The relativived

varsion also holds,

As in Lemma 5,21, it is enough to prove a version of
Lemma 5.20. 8o let Ee 54} and suppose u(x,0*)> & for each
xe B, PFurthermore, by going through Dorel isomorphisms we mBy

agsume without loss of generality that {=T= w®,

Consider the relation
R(x,k,8) <—> Seqik) & Seqls) & n(a)z2 §
wlx, 50> -Z-;“'
Ag u(,,E:k)} 1o surely Borel measurable for each k, it is
easily seen that R 1s Borel in o Xw ¥ o, Thus therec is ze®
such that R is  Aj(z). Lonsequenmtly, for each x,R' is
&g{z,x). ilsc €, being coanalytic, is TT;; {z*} for wume
z'e@® . The relativiged version of the resnlt of Kechris guocted
abore now shows that for sach xe E, ¢* contains a ﬁ%(z,z‘,x)
compact set B(x) such that 4{x,B(x))>a, and therefore for
sach xeE, therc is a g&}(z,z‘ ,X) tree T(x) on @ such that
o] C o, [T 1is compact and has 4(x,.) measure 2 &.

As in the proof of LemmAa 5.8, now define

|
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B, = {x tax,n)) and d(x,n) codes a finitely
Spiidiing tree T such thai [ 1) (C ¢, and
E{x, T > a}, n 0.
It is casily verified (as € 1is coanmalytic and #&(x,.) ig 2
transition funetlion) thet cach B, is coamalytic. Tet
£, % B, = @ be the §1(mm ) ﬂBn-me::aurable function defined

il
b’y fn(x) = &(X,n)l

Pat B = |f {(&x,a) 12 (x)(@@)) = 0, for every m}
ny o
It follows that Be §, () (X) 30,8 (CC, and H(x, B ) > u

for cach x. By remarks made earller, this completes the proof.
The following is now obvlous.

5.24 Lemma ¢ TLet X,Y, and # be as above, and let 4 (T XXY
be analytic. Then drepe are B and € such that
B,Ce 81X} (® By, B (L4 (0, and #x,CF < B*) = 0 for each

DCEI{.

To see this cone has only o argue as in Lemma 3.3,

*

5.25 Remark ! Before proceeding any further we will have to
overcong & technical difficulty that dols wot arise in the
category case. Let E (_ X. Suppose # is a trangition funmction
defined only on EXEY . One can then lock a2t the equivalent

By ~neasurable v on E > M(Y)., By a well-kmown theoren on the

—

extension of Borel measureble functions [157], v bas a By-neasur-
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able extension u' !X —> M(Y), which yields an equivelent #' o

We put down now the fact that the theoren of Blackwell and

Ryll-Nardzewski holds in an abstract setting.

0«26 Propesition ¢ Let (T,M) be a measurable space ¥
Polish. BSuppose ¢ :I;S‘Y w3 J& 15 such that for each +4: 1T,
#(t,«) is a probability neasure on By, and for each Be By,
#(.,B) is MY-neasurable. Let Bel () By such that

#(t,Bt)b 0 for each %, Then B has an ¥ -npeasurable selectdon.

Proof I Ome need only imltate the argument in 5,12, There is
however one subtle difference. Aa in 5,12, it srffices to prove
the following 1 Iet X and Y be Poldsh, & (C X, and D Bowcl
in EXY., Tet A be a transition function on Exgl,. Then if
Mx,D*)> 3 for eaca xe E, D hag & B, ~neasurable selection

defined on E.

To see this, cbserve that by Remark 5.25, » is the restric-
tion to E of a transition function defined an X)i]gg . HNow

proceed 83 in 5,12,

Virtually all the steps in the proof of Theoren F.10 go
through ditto to yield its neasure anklogue. ILenna 5.24 gives
the base gtep, and a small additional argument using Repark 5.25
is needed to carry out the inductive step, just as in the proof
of Proposition 5.26. Thus we have
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5.27 (Medgure) dpproximation Theoren +» Tet X and ¥ be

Poligh and 4 3 K}{'@}Y —>TR & transition functicn. Let

Ae 5, (XXY), s¢w, ., Then there are B and C in 5, (X) (X) By

such that B (C A (CC, amd #(x,C*-T") = 0 for cach xcX,

Purthernore, one can write B = () B, with B 8, {X) (B By
nxl

auch that Bfl is compact for each =x.

Progf ¢ One need now check only the second statenent.

Get Be §,X) (x) By @8 in the first part of the theorem.

Observe now that the required result holds in conplete generality.

For, in the setting of Proposition 5.26, Lf € e Y (X) B, then

arguing as in the proof of 5.26, we can, in view of Renmark 5.22,

by the usual Mavezowskl function argumemt get €, < M (X) By

such that [J € = C, plx, 0% . UCJ;) = 0, and Gjé is conpact far
n> 1 n
gach x amd n.

One can now, &s befare, condlude selection theorens such as
5.28 Corpllary ¢ Tet X,Y,# be as in Theoren 5.27. Suppose
A (: IXY =amid ,u:(x,Ax)} O Tor zach x. Then
(1) AeB(XXY) => 4 hag an S§(X}-neasurable seleciion.

(11) A8 (XX, aw

;=D A has an gaim-meaaurable

selection.

(ne has only to argue as in Corcllary 5.11. Once again
(i1) follows fron {now) the fact that the theorem of Blackwell

and Ryll-Nardzewski holds for an abatract neasurable space.
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One can also obtain amalogues of Remark 5.1%, and if
t{x, .} is continuous for sach x, of Corecllary 5.15. The measurc
veraion of the computation in Corollary 5.16 alsc holds.
5.29 Corcllary + ILet X,Y, and # be as in Theoren 5.27. Then

(1) 4 3(XXY) = {xe X 3 u(x, 25)> r} ¢ §(X) for each r

(1) Ae g AXD => {xeX 1 olx,4)>r]e § (), for each r.

An innmediate consequence of this is a result of Shreve [3Z]
proved in connection with Dynanie Progranning. The result reads

as follows
5.30 Cewollary ! Iet £ 3 [0,10- [0,1] ve g, ([0,17-
mneasurable, Then g 3 M{[0,1]]) —> [[0,1] defined by

gl = Jrar is 8 (M([0,1])))-measurable.

Proof | We have only to show that the function # —> £{C} io
S, M([0,1]))-measurable for each fixed € in 8 ([0,1]).
Observe that if A is defined on M([0,17)XB

B b
_E}iﬂ

¥

au,B) = #4{B), then
A is a transition funetion (because of the velifity of the result
for Borel sets). Tet A = U([0,17])XC. Then
Ae 8, MCL0,1) x T0,17). Also
{# @ > r}:: {# $ A,y s r} .

By Corcliary 5.29, the last set is in the desired o-field.


http://www.cvisiontech.com

6. Continucus-cpen parearetrigzations :+ Let X be Follah and

T an abstract soi. In thisz section we will consider the existence
of Caratheodory representations f defined on TXEI (for sets in
TxX), such that f(%,.) 1is continuous and open for each te¢l.

We have come @cross such representations in the last section,

where we have used such a representation for cleosed valuned nulti-
functions to prove selection theorems (ef. Corollary 5.14). As

the jnage of © under a continuous and open map is a Gg , one can
only hope 4o obtain auch paranetrizations for Ga—xralued nulti-
functions, Indced, Sarbadhikari and Srivestava [ 31 _] have proved
the following.

6.0 Theoren » Tet T and X be Polish spaces amd

Hio

a
countably generated sub o-field of B« Suppose F I T —> X is
a2 Bp-rmeasurable, Gg=valued nultifunction such that

Cr(F e 4 (X) By » Then there is an 4 (X) B, -neasurable map

T I TXE ~—> X such that for each +: T, fit,.} is continucos,
open, and onto P(t).

Hecall that Srivestava had earlier shown that in the above

sitoation P haa an A~ neasurabis selection.

Having proved this, the above authors then asked whether
Carathecdory naps of the above kind characterise nultifunctions
of the type specified in the hypothesis. We show in this section
that this ia not 4rue, a fact that contrasts sharply with the
situation for continuous, closed paranetrizations[ef.Srivastava[37))
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The content of this section is also motivated by the
guestion whether Theoren 6.0 can be extended to the franewcrk
of the Xuratowski-Ryll-Nordzewski selection theorem. Debs [11_]
haa congidered this problen for Srivastava's selection theoren.
By assuning that the graph is of & certain form, Debs has esta-
blished a selection theorsn for Ga-valued nultifunctions in the
get-up of Kuratowskl and Ryll-Nardzewskl. We will show that
Theorem 6.0 also holds in this situation. When gpecialized to
closed valued nulitifunctions this ylelds the paracetrization
theoren we have used in proving Corollary 5.,14. 3By the sane
argunent the existence of such paranetrizations shows that even
if, in Theoren 6.0, 4 is taken to be an arbitrary o-field cn
T, ¥ atill has an 4 -neasurable selection. Thus the Borel
gelection theorens of Blackwell and Ryll-Nardzewski, Sarbadhikari,
Srivastave all hold for abstract o-~fields (in view of Propositions
5412 and 5.26).

To return to the possible converse to Thecrem 6.0, we show,
specifically, that there is a Borel-neasurable, Ggi-valued multi-
function with analytic, non~Borel graph that admits such & repre~
sentation. Do allzzﬂalytic sete then have Borel selections ? We
shall chserve that there are analytic seis with seclions that are
" large " in every conceivable sense that do not contain coanaly-
tic graphs. Burgess [ 7] (see alsp Maitra [20]) has since
proved that the selection theoren implicit in 6.0 holds if Gr(F)
is taken to be only coanalytic.
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We will first prove a slight generafization of the selec-
tion theoren in Debs [11], prinarily because the rewriting of
Deha' proof luvolved in this, is exacily what we need to prove
the representation theorem. The next definition is from Maitra
and Rao [21].

6.1 Dgfinition ! VWe say E C P(T) (T being an absiract act)

satiafies the weak reduction primeiple (and we write WRP(E))

if for any sequance of sets By,Ep,sevas frou E such thai

U B, =T, we can find pairwise disjoint Ey,Ep,eeee from E
n=1

such that B, (CE, for ecach i amd ] By = T,
1= izt

Ve remark here that it is well known that if E is a
field, then HRP(%GJ.

i

An inportant fanily asatisfying the weak reduction principls
is, of course, the family of coanalytic subsets of & Polish space.
The statement of our selection theoren is notlvated partly dy the
desire to inclufe this famnily.

6.2 We new fix some ncotation. In what followa, X will dencte

a Polish space with & metric 4 such that 6(X)< 1. The opology
on X will be dencted by C. Vo fix 2 buse {‘Fin), ne H}fﬁr X
such that V(o) =X and V(n) #¢ for geach n. 4Alsg, in what
follows, T will be & non-enpty set and E a fauily of subsets

of T containing ¢ and 7T, closed under finite intersections
and countable unions and auch that, mereover, WRP(E).
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Suppose that F ! T ->X is a fiXed gmnaasurable
multifunction such that Gr(F) e ({i_l X Ul,5+ Set G = Gr(F) and

o0
and write G = ﬂTGﬁ, where G, )G and

T+
1=

Gn -—-mlzji_lf,Em Xﬂm) wi th Em £ g and Um e T , nnyt.

The following lerma is implicit in [ 7.
6.5 Iemma ¢ Iet X be compact metrie., If B ( XX and
He (B X U) , then for any closed set C (Z X, the set
ftexic Cubfen.

o
Proof : Iet H = U1En><un, with E ¢E and U s U.
=

Then, 2 C is compact, {teT :C (JH'}- LKEIHH.‘.HEH}(}

where the union runs throngh all finite sequences {nj....n)

such that € Un1 UTJnE....UU . Wow nge the closure proper-

% -
ties of E.
5.4 Lemng 7 Iet {T(u}}- and {U(u}} be regular systems of
seta belonging to E and U respectively such that :

(1) T{e) = T.

(J T(an) for sach ue Seq.
n=1

(1i1) W1Tv) = ¢ if w,veSeq, jul = lv] and u#v.

(i1) T(w

1

v) (v ) < 2214 gop emen w.
() W#EE = Tl #2.
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Put M = ugsim(u) X el{ U (u))) and M '}D-;Mk'

Then M is the graph of an E- measurable function f.

Purther, if each T(w)e (Ef1E°), then  is ENE™), -neasurable.

Proof ¢ Clearly M 1is the graph of a funetion £ 1 T —> X.

Now, if W is an open set in X, then

£ = ) {20 1 el TN C W}
because

£(8) e W <—> (Tv) (be T() & clW(w)) Cw).
Thus f is E-measurabls (respectively (E ﬂgc)ummaasmahle).

The following le essentially the theoren in Debs [117],
and subsunes the theorems of Kuratowski and Ryll-Nardzewski [17],
Srivastava [36], Majitra and Rao [21_], and, of course, Debs [11].

6.5 Theorem ¢ Let X be 2 Polish space, T =2 non-enpty set
and E a finitely rultiplicative, countably additive fanily of
gubsets of T, comtaining # and T and satisfying WRP(E).
let F LT —>X be an gnmeaaurable multifunetion wite

Gr(Fe (E X U) U vbveing the topology of X. Then F has

oG !
an (Eﬂge)g—me%uabm selection.

Frogf : By taking a metric compactification of X, in whieh X
is antomatically & Gy, we see that we can without loss of

generality take X to be compact.
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We shall obtain systems {T(s)} ’ {U{s)} , sSatiafying
conditions (i) - {v} of Lemma 6.4 and further satisfying
(vd) el(U(s)) C G, for sec§ and teT(a),
(vii) U@ Ne® 2P for each e T(s), and
(vitd) T(s) c E[]E® for each sc 8.

Once such a system exists, Lemma 6.4 gives an (E[]E®),-
measurable function £ ¢ T —> X with graph M. 3By condiliion
(vi), M C €. The map f is then the required selection for F.

It remains now to construct {T(s)} and {U(a)} « The
construction is by induction on k = lal. For k=0, put
T(e) =T and Ule) = X.

We will now define R(san) , Ulsn) , for all n) o,
asguning that T(s) and U(s) have been defined for fixed

EESk.

Pat AT (s)

1

1) ] {4 2 vem) MRCH) ‘ ;ﬁ} N {2 e Glﬁﬂ},
it V) (UG and 8V < g

@, otherwise.

As ¥ is E-uneasurable, {-1; PV [1Pe) # ﬁ}e E.

By Iemna 6.5, X helng compact, we have
{ts T 2 cl(V(n)) (; G}LT } e E. By the closure propertiea of I,
therefore, 4%(a) E for each n) 0. Further, the induction

hypothesis and (vii) yleld ] 4%(s) = T(s) .
n2 0
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Now, as WRP(E), we can chtain a pairwise disjoint fanily
{Bm(s} : m_);"tj} (LT "meducing® {Am(a}}mlﬂ i.e., the B(s)
satisfy B (s) C A(s) and UBm(s) = (J&"(s). Yow observe
that, E being closed under countable unions, we actually have

Bm(ﬂ} =

Put T{sn)
U (an)

ne=

ngﬁ for each .

B™s), n>0 and
Y(n) , if Tlan) £ @

= ¢ , otherwise ,

H

It is eaaily seen that {_T{s}.& and '{H{a)} g0 definsd satisfy
conditions (i) - (viii). This completes the procf of the theorem.

6.6 Remark . If M iz a field on T and we take E =1 , then,

s
- .

we have WRP(E). The thedren in [117] follows.

That the multifunction F in Theorem 6.0 has an 4 - neasur-
able selection is also immediate., The frgment that Gr(F} is
of the required fornm iz implicit in Temma 3.8 of [35:} , Tor by

this we nmay write Gr{(P) = nD‘an, where each Ena A (3}:-:) %X with

Bz open for each 1. 45 uswel, we may assume withoul loss of

generality that X 1is compact. For each n> 1, then,

= rem s vm) (Conlbxovimd).
" mg’!{ - n}

But {t 1 Ve (L= Tox (V@) (IXX) =By, whion X, and
therefore, ((T'XX) - Bn}t being compact, is a Borel set by the
result of Kunugui and Novikev [16]. Purthermore, this set ia o
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vnion of A-atons, and thus, by 2.3, belongs to A. This shows

that Gr{F) hac the required representation .

To see that the theoren of Maitra and Rao follows, suppose

F is closed valued. Iet ry,r;,+... be dense in X. Then

P N RS 1
or(F) = n& iEj]{F‘ (8(x; , 2)) X 8lrg, 7)),

where S(ri,;%) ia the open sphere with centre Ty and radius

%. Again Gr(P) has the required form.

6.7 Remark : If T 4is Polish, for E we can take the fanily
of seta of the additive elass o, for any ordinal «¢> 0, or ihe
farily of coanalytic sets to obtain selections of the respective

classes, and in the last case, a Dorel selection.

The question naturally arises 7 1s every coanalylic set
with G5 sections a countable intersection of coanalytic scis
with opven sections, for then any such set would have the form
specified in Theorem 6,5. However, J.R. Steel [417] has given an
exanple of a coanalybic sey with dense Gy sections which does
not adnit such a representation. (Sze Section T of *his thesis in

this commection).

6.8 We will now establish the parametrization theoren promised
in the introduction. The notation we have fixed so far continues.
However, we will nake iwo additioral assumptions. We will require,
firstly, that E =M _ , where M is a field on T. We will alac

add, for technical reasons, ihe innocucus asswmption that each
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Ti{n) apucars in {’V(n}% infinitely often.

ny 0
While our procf follows the general lines of the proof of
the theoren in [317], there are some technical difficultics to

be overcotie. The crux of the argument lies in

6.9 ILemma + Let X De compact. For each sg Seq, there is
amap pl,,8) I T ——> N such that

a) ple,s) is E-measurabls.

v)  8(V(p(t,s))) “"i}: for e, am tel.

o) cu(V(p(t,mm))) (C &, ) 7(p(t,8)), nyo0.
a) F(eI()vip(t,s)) #4.
el FVV(p(t,9)) C (j Welt,sn)).

n={¢

£) L) (_ V(p(t,ed).

Proof I The proof will bs by induction on |s|. Defing
p(t,e) = 0. BSuppese plt,3) has becn defined for se B, + We
shall, as alwaya, define p(t,sn), for n O.

Put R = ¢ , if Mv(m)l}'}lTT'

it}

1

(et POV A, 2@ (C T(p(s,9))
and cUT@) C G }
By Temna 6.4, {t : c2(¥(m)) (T Gp, )¢ E-

Now, {¥ 3 oL(T@)) (C Wp(t,s0} = [J |t 3 o(s,9) = 4],
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the union rumning cver all [ such thet cL(V(w)) C v{).
As p(.,8) is L -ncesurable, we have,
{t: ¢1(V(m)) Y(p(t,s))} ¢ E. Consequently, by the closure
properties of E, F being E-measurable, cach R, ¢ E.

Tet R o= |J Qq, with Qg e M.
Let 1 ~> (o;,4;) be a one-one napping from o onfo @ Xw.
Put B, =Q 4, e M.

X %i.{i =

, i
Observe now that |J R = T. Turthermore, as the base
m=Q

{?{n)} has been chosen so that each V{(n) appears infinitely
often, it fallows that, for each fixed teT, {m I teR | is
infinite, and consequently, that {i : teP; y is infinite.
Define p(t,en) =m; , if 1 is the (rr1)°% integer
As{l t te P | is infinite for every t, p(.,sn) is defined
on the whole of T for each n> 0. Now,

p(t,80) =m <> Gy [n=n; and teF =ad

(¥3<4) G¥e.

ag cach P; ¢ M and M is a field, it follows that
ft ¢ pt,80) =m}ey, =2.

Purther, for n 1,
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p(t,8n) = m <~> (i) [Eﬁ,z m and teP, and

(F39 ¢ JoCanesti <20 PJTH....ﬂPjn

and (¥3)() < 1 and j‘{{jﬁ”"jn}
— 22,0 |.

Here again the expreassion within brackets is a Boolean combina-

tion of the P;'s. Thus, as M is a field, we have,

-

{ﬁ : plt,sn) = m.}E:EU =

%3]

Consequently, p(.,an) is E-messurable for each n > O, One
gasily checks that the system of functions p(.,s) =as defined
above satisfies conditions (a)- (f)}. This proves the lemma.

We now prove the representation theorem =
6,10 Thegrem + Iet X b¢ a Polish space, T & non-empty set
ard M a fileld on T. Put E=4 . Tet P T-—>X be an
E - measurable multifunctien with Gr(F)e (E X U} ., U being the
topology of X. Thenthers exists amap £ ¢+ T X8 —> X
satisfying 3
(i) for each te T, f(%,.) ! & —>X is continuous, open, and
onte F(t),
(i1) for each o¢Z, the map f(.,0) 3 T —> X is
E - measurableg.
Proof ¢ 4s before, wlthout loss of generallty we take X 1o be
compact. By Lemma 6,9, we have a system p{.,2) of functions
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satisfying conditions (a) - (f).

Define £ 3 T XE —>X by °

8

£(%,0) = kn1clf?(p(t,ﬂ k)Y .

Plainly, for sach t amd o, the intersection on the righi
reduces to a dingleton, The map f is therefore well-defined,
Fix oe%. By (¢) f£(.,0} 18 a selectlon for F. Fix open

W in X, Then
£(t,9) e W ¢=> (Jk) (e1(V(p(t,0fk))) (_C W)
¢—> (48) (Jx) (p(t,o[%x) =8 and cl(V(a)) (C W)

As the maps p(t,0fk) are E-measurable, and E is closed
under countable unions, f{(.,s) is X -measurable. Conditlaons
{(b),(c}, and (e) ensure that £(%,.} is a continuous-open map

on & onto P+t)., This proves the theorem.

6,11 Remark I The above proof does not go through under the
weaker assumptions made on E in Theorem 6.5. Lemma 6.9 makes
egsential use of the fact thait E is of the type M, with M
a field on T. Martra and Rao [221 is of interest in this
context.

Furthermore, Theorem 6.0 iz a consequence by virtue of
the observations made in Remark 6.7. Ome can also, as in
Remark 6.7, téke for E the family of sets of additive class
@ on & metric space T, for = > O, to get selections of the

correaponding class.
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Now let T,X,M, and E be as above, and suppose
FLT=—>% is an §-neasurable, ologed valued multifunction.
Then as argued in Remark 6,6, Gr(F)} is of the reguired form.
Thus we have the following improvement of the main result in

Brivastava [35 | (In [ 35), the maps f(%t,.) need not be open).

6.12 Corollary ¢ Iet T,X,E be as aboves Iet P I T —>X
be an E-measurable, closed valued multifunction. Then there is

f 3P XE ~>X gatisfying conditions (i) and (ii) of Theorem 6.1C.

6.7% An interesting consequence of this is that arguing as in
Corellary 5.14, via the trick due to R. Barue one sees that
Srivastava's seleclion theorem holds for arbitrary measurable
spaces, Burgess has recently shown (See alsc A, Meitra [20])
in [ 77] that the following is true : Iet X Dbe an anzlytic
space and Y Polish, Suppose P I X -> T is 4 gx-measum‘ble
multifunction such that (iyP(x) is non-meager in ol(F(x)) for
each xc X, and (ii) Cr(F) 4is relatively coanulytic in X X Y.
Then ¥ has a By -measurable selection. This generalises and
unifies the theorems of Sarbadhikari and Srivastava. We can now

prove

6414 Cgrollayy : ILet (T,M) be a measurable space, and X
Polishe Suppose F o T —> X iz an ¥ - measurable nuitifunction
such that (L) P{$t) is non-meager in cl(F{t)) for sach 1,
apd (i1) (P el (X) By« Then P has an ¥ - neaouradle

aelection.
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Proof 3 Put G = Gr(F) arg define a multifunction H § T —> X
by H(t) = cl(F(t)). The H is closed valued and M-neasurable.
As M is a o-field, 6.72 applies to yleld h (T XZ —y X
satisfying

(a) h(%,.) is continuous, opven and onte H{t), te T,

(b> h(,,0) is an M-measurable selection for H, cel .
1t follows that n is ¥ (X} B, -measurable.
et 6 ={(t,crxs tnt, )6t} u @ 3.
Then, aa the inverae image wider a continocous, open map of &

? 35 non-meager in H(s),

non-peager set is non-meager, amd G
it follows that (G )* 4is non-neager for sach 1e T. Thus
Froposition 5,12 applies 4o G' 4o yield an .Igwmeasurabla sglec-
tion for G", say g« Then h{t,g(%)) is an M- measurable selec-

tion for P.

6415 Counferexamplegs ¢ We will now take up the gquestion of the

converse to Theorem 6.0. So guppose T and X are Polish spaces
and P ! T-—X is a nultifunction induced by & Bp (D) B, -
neagurable, continuous -~ gpen Cairathecdory map f § T X E —> X as
in Theorem 6.0, Then, as observed in [317}, F is B;-neasur-
able, Moreover, by a theorem of Hausdorff, conitinuous, cpen
images of abaclute Gz Scts are absolute Gy's. Consequently,

F 1s G, valuede The question has been posed in [ 31] whether
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in this situation Gr(F) 1is necessarily in By (X) B, . 4in
answer in the affirmative would yield a characterization of
nultifunctions of the type specified in Theoren 6.0 in terms of
auch representations. We remark here that in [37], it has been
shown that such multifunctions are indeed characterised by
Caratheodory mapa f ¢ T X E =>X where each f(%,.) is s

continuous, closed map onto F(t), for cach t.

We shall sese bslow that there is an amalytic, non-Borel
set that is induced by a continuwous-~upen Carathecdory map. 0On
the other hand, if, in Theorem 6.0, it is assmed that Cr(¥)

is amalytic while the other conditions remain in force, It mood
not even comtaln 4 coanalytic graph,

.16 Example 1 ¢ Iet T,X be uncountable Polish spaces.
Let A be an analylic, non-Dorel subset of T. Fix x e¢X such

that x_ 18 not an isolated point.
Let G (C T XX be defined by &
a4 b
6= (ax{x }IJ@ X E-{x]1)).
Then ¢ is an amelytic, non-Borel subset of T X X. Congider

the multifunetion F 3 T —> X defined by §

F(t) = G“h -

Then (1) As each F(t) is demse in X, F is By - measurable.

[  The assumption that x, 1s not isolated is needed to ensurc

that ¥(t) is dense |
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(ii) Each F(t), bveing opem, i a G, in X,

(1i1) 6r(F) = ¢ is an analytic, non-Borel set.
We will now show that F is induced by a continuous, open
Carathecdory map f + T X I > X providing us with our counter-

example. This wlll be done by obtaining a subset E of ITXIXE
satlsfying :

(a) for each te%, K-{x 1) XE (CH,

() H isa G in TXXXT,

cc) TLTXX(H) = 0,
Suppose, Tirst, that swh an H has been obtained. Consider
the muitifunetion X 3 7T —> XXI given by .
Then, by (2}, K is I, -measurable., By (b), X is Gy-valued
and Gr(K) = He B, (X) By gy + Thus X satisfies the hypotheses

=
of Theorem 1.7, There s therefore a Carathecodory nap

h ¢ TXE -=> X X5 indaeing K such that for each %, h(t,.)
iz a continucns, open map conto K(t). ook at the map
f i TXE —>X defined by ?
£(t,0) = !X(h(‘b,ﬂ’)).
Then, clearly, for edch o&3, h being Bp-measurable, so ls

£(ay0) IT=>X. hAs %y is continuous amd (¢} holds, we have

f(t,.) : 8 — X 4is continuous and onto F(1).
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Let U =U,;X U, (Z X XE, with U; openin X and T,

1
open in Z. Fix +e T, Then "’-‘X(UﬂHt’) is either U, or
U, - {xglj . In either casc EX(UﬂHt) is gpen. It follows
that =y, is an open map on the range of h(%,.), and hence so
is ita composition with the open map h(4,.) ¢ E —> X XL,

Thug, the map f gives the required representation.

Pinally, it remains to find Ha As A 1ia analytic there
is a closed subset C of T XE such that #5(C) = A,

L

LR

Tet  H = (OxX-{x})xD)JC {(t,x,0) e TXEXE

(t,7) e C 3(3{:1{0}} .
Thia H satisfies (2),(b), and (c).

6.17 Example 2 ¢ We will now show there is an analytic set in
X3 with dense, open sections with no Borel selection. Thus
the theoren of Burgess referred tov earlier is the best possible.
Let € (C ZXEXE be a coanalytic set inm E X% XS which
is wiversal for all coanalytic sets in 2 XE. To fix ideas, we
agaune that the scctions of € obtained by fixing the first
cocrdinate run through the coanalytic subsets of £ X2, Consider
D= {(x,z)s EXE 3 (x,x,2)e L‘}; . Then D ia coamalytic in L XZI.
By Kondo's uniformigzation "the;rem [16] there is a coanmalytic
uniformization for D, i.e., there is coanalytic B (C D such

that B is a singleton whenever D™ # @.
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Iet 4 = {(8XE)-B, and define a multifunction F I E —>T by
F(x} = AT, Then,

(a) As each A is demse in Z, F is B, -measurable.

In fact, 4 is edther £ or E mninus a point.
{p) P(x) 4is open in X, for each x,
(e} CGr(F} = A is analytic in = X%,

However, F admits no Borel selection. Indeed, & has No
coanalytlc uniformization, a fortiori, no Borel uniformization.
For if not, let E (C 4 be a coanalytlc set uniformizing 4.
As € is unjversal, there ia x" ¢Z such that E = CX*. How,
these being a unigque y*¥=3% sguch that (x*,y*)eE, we have
7 = ¥y* .« Consequently (x*,y*)eB. But E (C A. So

(x*,9%)ec &4 = (TXE) -3, a patent absurdity !

43 the sectlons ¢f A, in the above exanple, are of
nedaure one under any continucus probability on I, are comeager,
and are dense Gg"a, 1t follows that the uni Formizaiion results
of Blackwell and Ryll-Nardzewskl [ 47], Sarbadhikeri [30_], and
Srivastava [36 ] do not extend to analytic sets.
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]

To Angytic sets with g-cc :pact sectiong I We will now see

that a refinement of the method of 6.77 yields a solution to a
problem of JJRe Sieei, & problem that has its genesis in the
following guestion posed by C. Dellackerie © Suppose & {;_ wmx o
iz analytic (QE) ard haa vs-campact vertical sections. Can A be
written as {gjoan , where cach 4 is amalytic ard has compact

vertical sections. In [[417], Steel showed that Dellacherie's
queation admits & negetive anawer. Steel then formulated the
following question | Suppose A {: w? x & is analytic and has
g-compact vertical sections. DToes there exist an analytic get
B such that B (_ A, B has compact vertical sections and
%(B) = n(4), where * denotes projection to the first coordinate.
We prove in this section that the answer to Steel's guesiion is
also negative.

For convenience, we follow the notation and terminology
of Moschovakis [25].

T«1 Thecrem s+ There existo a E:if ast 4 (: o® % o heving

countable (and hence og-compact) vertical secticns such that when-
ever B is &3 .B(C 4,and B has compact vertical sections
thon ® (B) An(a) .

Proof : Fix a E; ‘set R (:mwxmmxmmwhich is universal for the

gf_;: subsets of & X«® . By [25; 4D.27], fix a TT%—recursife
partial function 4 iw N R «? which parametrizes points in
T e

Define P ( ®Xw by 3
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P(a,3) <=> Seqls) X (33)(R(s,q,B) — (Fi< 1n(s))
(@l(s)y,arl P al(s)y,0)=8)).
Clearly P is TT;: . By Fasy Unlformization Theorem [ 25,4B.4 ]
there is a TT} set G which wiformizes P. Let £1 @ = ® be
the (partizl) function whose graph is G. Then f is = ﬂ%-recur-—
sive partial function. WNext define

e, B) <—> ())& (F1) < WmlzeN &
A((2(2))g,a)) &a(ele)dy,a) =8,
Now check that
{a) @ is TT.} ,
(b) Q,={8 2 qa,B}y is finite,
and (o) 1f R, o = (P IR(s,o,p)} is finite, then R, o (C Q-
FPact (e) is an immediate consequence of the Effective Perfest Set
theoren [ 25 ,4F.17.
Finally, define
4(,8) ¢—> (Fn) ((¥1)(BL) = n) §7]Q(7,F)).
Then A is E:{ and has countable vertical sections. Moreover,

since esch Q. is finite, 1t follows that » (4) =" .

Suppose now that B (C A, B dis I and 8 has compsct

vertical sections, Fimd & code o  in «® for B, that is, find

©, such that B =R, ( {(s,8) 1 RCa_, o, B). since B, (T 4,
A, is discrete, and B, 1s compact, it follows that B, is

b

finite., In particular, B, =R, _, 4is finite. So, by (o),
o o' o
B, (C-Q, » But alse B, (C4, (C @ - q, . It follows that B, =@,
o ) G o O o
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and hence =(R) iﬂﬂ)m = ®(4), 4his completes the proof.

7.2 ERemark : The above is actually a proof that the following
weal 'reduction' property fails for amalytic setao;
W

Ir A, ,n20, are analytic aubsets of o with U h m W,

then there cexist analytic sets B, n20, such that (EéDCBn(:ﬂn),
Mm sap By = ¢, and [] iBnmfﬂm.

By 0
7«3 Remark : 4n alternative counterexample to €.17 may be cbiained
as follows. With the same notation as in the proof of the theoren,
define ﬁ* = (mm X’ ) - R« Then A* is E} and its vertical scc-
tions, being cofinite, are of measure ane under any contlnuous pro-
bability on o° , are comeager and are dense Gs'8s Dut, as is casy
to see, A Qo0es not admlt a Borel (tﬁ_‘-&) oniformization. Again,
therefore, we see that the uniformizetion resulis of Blackwell ond
Ryll-Nardgzewski [ 47}, Sarbadnikari [30_], and Srivastava [36_] do

not extend 4o analytic sets,.
of course, if one only wants an analytic set with large
sectionsnot containing a Borel graph, one could lock at
= fa,pe o xd® 1p g Al ],
It is easily checked that A is I, has cocowntable secticns,
and contalns no Borel greph.
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1
]
iranslates the preblen of undformizing & Borel set by a Borel graph

B. 4 A, " perdameltrizaticn ™ ecriterion ¢ Hecursion theory

into a "loral' condition. This is embodied in the so called 4 -
mndformigation criterion which reads as follows .« Supposc

F (; o xa® iz a &1 acte Then P 1is uniformized by & 5?[ graph
if and only if P contains a .,*:J] (x} point, whencver A,

% ¢ w”. Is there an analogue for Borcl paranetrizations ?This is

the quesiion itaken up in this section.

For notatiornal simplicity we will work in gpaces of dype w® .
In effective language the prcblem of parametrizing a Borel set by
& Borel measurable function is the following ! Let P (Co® Xa® be
a aﬂi set with non-empty wvertical scetions. When is there 2 one-
one A .}-recursive map T 1 6” xa® s o x @ guch that T(x, )
naps o’ ento %X}X P for each Xe a”fWe will show below that

the existence of such an f is equivalent to

(a) for sach X, there is a Aﬁ(x}- iocmorphiem of «° and ¥ ,
ani (a laz Mauldin) to

(b} for each x, there is « ﬁ:lt (x), compact, and perfect set

Q(E) C .

Condition (b) provides a criterion and the equivalence of (&) is
proved via (b). 4As the choice of the criterion suggests, the con-
tent of fhis seciion is, in a sense, just an effectivization of

Mauldin's article [237].
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As usual, for our notation and definitions from the effec-
tive theory, we follow Moschovekis [25_].

Hizall that = -c 2@ o oea a tree 1

~n w if
a(s} = 0 ¢—> =T, Call a tree T on » goed if it haa nu
finite branches, is finitely opiitting, and of
(i) Tvery node u in T has at least two distinet strict extean-
siona of egual length, and
(i) for each uel, if wvq,v,,vy extend u, and if
(’FS)(S;% vy K> s‘é vy <—> 8 ;a vs), then vy =v,, or
Vy =g, OF V= Vae
In other words T is good iff its body, [ T 7], locks precisely
like a Camtor set.

Bel Lemma « Lot P(:mm)(mm be ﬂ%. Suppose P* contains a

A }(:{), compact, perfect set for cach Xe w®., Then there iz a
alar{aﬂursive function f on o —> 2% such that for each x,

£(x) codes a good trec T with [T (C 7",

Proof : As cach PX eortains a ;ﬁ (x), compact, perfect set usir
[25;4F.1¢], it is casily checked that there is for esach X, a

ﬂJf (x) point a, & 29 such that a. codes a good tree with body
contained in P°, Standard argunents using the A -uniformization

eriterlon now yield the result.

8.2 Propesition I Iet P (: W’ % o be ;11. Suppose P* contains
a ﬁ} (x), compact and perfect set for each X. Then there is a
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4

. i : .
&]-racurﬁlve map g on -’-Dm‘x'.iﬂ' —}iﬂm such that glx,.} is a

1&1{3}-1‘5:&@31@ isomorphism of ©° Ses Px, %5 @,

-

Proef ¢ 43 o amd 29 areﬁ-ecursively igoorphic it suffices
to define g on o 2% , Let £ be as in Lemma 8,%. Fix
xew”, so that f£(x) ccldes 2 good tree T with [0 (C P
Give 2% the lexicographic order and [T7] the lexicographic
order derived from o« , Then, by the definition of a good tree,
therc 1s an order preserving iscouorphism between 2% and [177].
Define g so that g(x,.) is this isomorphiso for each X, Ag
f is ﬂn.:}--re-c:ursiw, it is easily checked (by writing out an

appropriate clumsy expression) that g is a:}-recursive.
Next is the criterion for ,ﬁ:}-parametrizaﬁimna.

8.3 Propoaition I Iet P be as in 8.2, Then there is & ﬁ; -

recursive map L on @ X& —>o° auch that hix,.) is a ﬂ:} -

. " R [
recursive iscmorphism of o and P, xec o .

Prgof ¢ This strengthened version of 8.2 follows from 8.2 by
carrylng cut an effective Cantor-Bernstein arzment. This we
will aceconplish by considering an appropriate pos ﬁ'; setf rela-
tion operative on «® and locking st its fixed point.

et g be as in Proposition B.2. This yields a ﬂ.?‘—isc}mur«

{8

m“DXm

phian gy on into P defined by ! gy(x,u)=(x,glx,a)).
We also hawve a &1 - isomdrphism on P into o X o’ , nanely the

ldentity map. Call thio g o
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. . o) w
We will now put down a gset relation operative on @ X

whose zssoeiated operator is the one that arises in the proof of
the classical Canmtor-Pernstein theoren (we Tollow Dedelind's (See
C17Y), iee., we will formklise the operator

p(5) = (& %) - g (B-g(8)), 5 (¥ xa® .
Uefine, therefore, for =, 2 ¢ W , and A& {: o X o
£lx,e,i) &= (x,0) ¢ g (- g (k)
> (FEM((x,0) e ? & (,P)dgy(a)) — (x,0) # g,(x,0))
<> (FBY ((x, P4 D) V (Fi D, D e b B (x,3) = g1, 7))

v (o £ BY).

<> (F0)Y L ((x,8) ¢ P) V (2 £3)]

V((x,B) e gy (% w®) & (¥2)(((x,8) m g (x,2)) ~—> (x,z)e 4)),
4s P, g1fm@>4mm3' are &%, and g, is ﬁlnrecuraive, the above
is easily seen to be a pos Tﬂ set relation. 1t 1s alsc seen to
be pos Eé throogh the equivalence
B, e, 40> ((r,0) ¥ 2, (PN V ((F2) (ze & & (x,1) = go{g;(2))).
Parther, the proocf of the classical Cantor-Bernstein theoren.shows

Fo(x,a) <==> gmb(x,m).
i o <cu$K, by a well-known theoren (See [8]), £ (x,3) is a

2:1; set. Define now h' by

n' (x,a)

L

g (x,a) i &(x,a)

{x, ) otherwise,

and take hix,a} = 1,(h"(x,0)).


http://www.cvisiontech.com

- 112 ..

Then h is ,v}.:i-recursiv@ and the proof of the classical
Jontor-Bernstein theoren shows that hix,.) maps «” onto P

in o one-one fashion.

We con now prove

8.4 Theoyer ! Suppose 7T f; P w o ig &g‘ « Then the following

are egulvalent °

(&) therc is o ﬂ.l—renurﬁive nap £ on o X — o, such

that £(x,.) i3 one-cne on « onto Px, for cach x,

(b) for each x, there is a ﬁ} (x) - isomorphisn of «* and P,
and

(e) for each x, there is a ﬁ.:(x), conpact, and perfect set

Q{X} {; Ijx-

Praocf ¢ In view of B.3 it remains now to show only (b) == (c).
We will prove the absolute version, i.e., we will show that if g
is & ﬂ.l—ismorphism of &’ and & a:; set R (T mm, then R con-

tains a a; s compact, perfect sct.

Fix then g and R, Following Mauldin [ loc. cit.],

define a measure # an - by

,H-(HE) = h(g"‘1 (Hs)), where N, 1is the basic clopen set in
o consisting of all sequences which agrec with the sequence
nmmber 8, and A lis the canonical measure on 2° given by the
o _ 1 1 o s ] : - 1
product of the (»,») measurss on {0,1y. 48 g isa Aq-

isomorphism, 4 1s indeed a measure on @ , and further #(R) = 1.
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We will now invoke & result in Xechris [14;4.3.2] to com-

plete the proofs. To apply this ane has to check that the relation
5(u,v) <—> Seq(w) & Seq(v) X 1nly) = 2 &
H{Nu) > vafv1

is a}i [Recall vy denotes the (1 + DY coordinate of v But
thia follows lmmediately from the definition of #, the fact that
g is &1-—rccursive, and a computation in Kechris [1442.2.3].
The reoult cited ctates in pourdtloular that any ﬁ; oot of
d-mcapure one containg a ﬂ}, compact, aml perfeet set. Thic

completesn the proof.
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9. Effective continuous - open representations | We will now

prove an effgctive analogue of Theorem 6.0. In [20] 4. Maitra
ghowad that there is & basis theorem for ﬁ} ,LT% subsets of o
which yielas Srivastava’s selectlon theorem for Cg-valued multi-
functiona, To do thias a local analogue of Borel measurabllity is
essential and this he formuleted as follews § Iet [ be a point
class (i.e., | is 2 collection of subsets of finite products of
«° and @ ). Tet & (Cw’. Then say that & ia [~ nornal if the

predicate R, (C w, defined by
R,(8) <—> Nsﬂﬂ £¢ 4doin [, whore
Ny, = {ﬂamm: a{ln{s)) = 5}, g e ?Eq.
Then in [[20_] it was shown that if o nonempty set 4 is
‘!'f':*j . a: - normal, and TTS (indced, 4f it is non-meager in its
o

closure) +hen it contains a :: point, We wlll now show that if
A 18 nonempty, ‘“13 , &1 - ugrnal axd ], , then there ia & .&1 -

recureive rap T on «° onto 4 which is continuous and open

(in an effeotive scnse made precise in Theoren 9.3). We will

actually prove o undform wversiom of thia for subsets of &’ X o” .

When specialized 4o ;fl'f; scts this easily extends to the
higher odd levels of the analytical hierarchy. Such & parapetri-
zation turns out to be the prineipal tool needed to extend the
above basis theoren to these higher levels. A1l this ia the
content of an article of R. Barua and the author [2 .
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We will need the following results (from Louveau rie’]’.
The second is a strengthened wersion of the A-uniformization

eriterion and follows easily from it.

9.1 Lemm i If P Co® s 4] amd TS, then ® fs T3

for sone 6 e ﬁgﬂmm .

This is the effective content of Saint-Raymond's beldface
theoren.
9.2 Iemma ! Zet P (Co® Xo® ve TTi. Iet |
B =,.{“ e 0’ 3 (dd e &g(u)) P(G,ﬁ)} . If 4 is a ‘z'::i subset of
B, then there is a _g\.; - recursive function 1 o® > such

that (¥Faed) (P(u,r(a))),

Next is our main thecren.

9.3 Theoren : Let P (Co” x«° be ,:;:: such that for each o,

T_ is non-empty and TTS . Purther, assume that the set
et

i

8= {ta,9) t 2 (N, £} 1s Aq.

Then +there is a total function © & o % WP —> w® sauch that

{a) for each «,f, takes o  onto P,

a}

(b) £ is A}-recwrsive,

(c) +there is a total function £ : ©° —> «” such that ¢ is
&é—sreuursive and for each o, f, i recursive in #{a)
(and hence continucus), and
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(4) there is a total function y :u”Xw-—> ® such that ¢
1 At AR . _
is 4y i and for each ¢ and v, f(“‘Hv) . Eaﬂlf?(m’ﬁ

(and hence f_  1is openlt .

We 313311 first prove a lerma. For each space X = (w*Hk xtnx,
Lif _ :
fiz a gaad,(finiversal set for '{Tg subsets of X and write G
o ol

(dmanbiguously) for sach of then. This can be done by [25; 38.1].

lenma ¢ There ia a total ﬁ}_—funct'ian h ;3 @ —> &° guch that
P(a,P) ¢—> G{n(a),P).

i

Proof 3 Iet d : o’ xao-—a” bea ﬂ}_racursj.w partial func-

tion waich pavametrizes A (3)[]”. Define
(e, k) ¢=> dale, k) & (¥ )(P(a,B) ¢<—> ¢{d(a,k),B).

Cleariy T is TT; » Using the relativiszed version of Towuveau's
theoren and properties of good universal sets, one can check that
(#¥a)(3k) v(e,k). Congequently, by the a -selection principle,

there 1s a total ﬁgni‘umtinn g & @° >0 such that (Fa)P(s,gla)).

Now set h{s) = d(a,g(¢)), Plainly, h is 4, and does the job.
Procf of theorem 9.3 ¢ G{=,B) ‘being 'f"}r;r , we may write

Gl2,B) <—=> (¥} (Tt} (b N, & ola,t,n)),
where Q (C o Xo Xo is 9.
Define R{e,u) <> Seqlu) }
(¥ ¢ 1h(w) (Seq(u) & nlyy) > i &ale,u)) &
(#1 < Th{w)-1)X{N_ (C N, )
P ey Ty &
(¥ < 1h(w))(F ) (Ghla),b,1) &Hui(: x,) .
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Clearly R is Al .

Next define, Q (a,u,v} <—> Rle,w) & Seq(v) & 1n(w) =1n(v) &
(Js) [seals) & th(e) = 1n(w &
r
(¥ < 1n(=a)) {8eqs,) & 1his d=v, + 1 X & = u -
1 5ealsy & sgd=vy e 14 i,ing;)-1 "% &
(¥§ < 1n(a;)) Rl ufi* <oy ) &
¥
(¥ < Thlsyy - D lag <8y 5,9 A
(¥p < ug ) (¥] < 1h(s,)) (0¥ 8y 4 — TJR(a,ufi ¢ <p>))]

Flainly O 1is ﬂ: » 1t i3 easy to see that for each o, f and

n, there is a unkque u such that Q*(u,u,ﬁtn-ﬂl)). Consequently,

we can define a total functicn f 1§ o X o - w” by
£(2,8) = 6 ¢<=> (¥n) Fu) (@ (a,u,F(m+1)) & 8¢ )

It is a stralightforward verification that for each a, f(a,.) is
onto P . Next the meighbourhood dlagren ¢ is given by

¢F(a,8,8) <> (In) Gw) (Q*(ﬂ,u,F(nH) X/N%(: H) e

Gf is ,@.1 and hence f 1is .ﬂ] .
. i
Denote the function £(s,,) by £,. Olearly G ° = G
fu 1 : fn. LG :
So G~ 1s Aq(a), But plainly G~ ia ;. Fix a set

HC o xe®Xo suwh that H is E? and a4 good universal set
for 27 {¢® X o . Following the proof of the abave lemma we can
get a ﬁ}l—recursj.fe— total fumction # ° ©° —> &  such that

f
G “(B,s) <—> H(g(a),B,s).
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Hence I, 1s recursive in @#{(a), for each a, Fipally an casy

conputatlion shows that for each ¢ and sequence nunber v,

f(a,N )} = P, [N ’
Wiy = Bl Uh(v) - 1

where u is the unique natural number such that Q*(ﬂ,u,v). We
can therefore define a $otal function ¢ o° % © > @ by
p (2,v) = 8 <—> [ Seq(v) & Qe (e,u,v) & s= (W} ¢y 1)
vL ISeqv) & =01
It then foliows immediately that ¢ is 51 and for cach

¢« and v, we have

£ (N, = By ﬂN‘F (a,v)

S0 in particular, f  1is open.

#]
It is easily seen that Tﬂ s NON= sh:i gets cannot adold
such & representation. On the other hand, an exaaple along -the
lines of 6.76 can easily be constructed to show that such repre-

sentations do not characterise sets as in the theoren.
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