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CHAPTER T

INTRODUCTION AND REVIEW

1.1 Circular data = ecxamples and special statistical

Eroblems

In meny diverse scientific fields, one comes across

experiments where the basic variable under -observation is a
direction. We shall be concerned, throughout this thesis,
only with directions in two-dimensions and we refer to such
a collection of directions as ‘circular data' or 'directional
data's 1In order to make a statistical analysis of circular
data, the first prerequisite is to put them in a quantitative
form. One way of doing this‘is to repregent the directions
as 'anglesg' measured with respect to some guitably chosen
gero direction. Alternately, since a direction has no magni -
tude, it can be represented as a unit vector i.ce, as a point
on the circumference of a unit circle in two dimensions.
Neither of these representations for a direction is uni que

or absolute since the angular value assigned to a direction
would depend on the choice of the zero direction as much as
the components of the unit vector depend on the coordinate
system chosen for representing the direction. Therefore, it

is important to see that the conclusions arrived at on
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analysing the circular populaticas, are independent of

these arbitrary values assigned to the directions.

Examples of situations giving nise to circular data can
be found in variocus scientific fieldse For example, geologists
study the orientations of cross-beddings and particle longe
axcg to interpret the direction of depositing currents of
winds or waters OStudies of the directions of remanent magne-
tism are sometimes made to interpret palacomagnetism and
possible magnetic pole migrations during geological times.
Similarly biologists working on bird-migrations pecrform
oxperiments on ‘homing~in-pigeons' which involve observing
thé direction of flight of thc birds as they go out of sight
after releases Begides such cases where directions are
observed as a direct result of the experiment, observations on
any random phenomenon occuring over time or space with a
regular period of known length L, can be conceived as obser-
vations on a circle with circumference of length L. Thus
the study of any periodic phenomenon, with a period of known
longth,gives risc to an essentially similar problems For
exanple, if we are gstudying a phenomenon supposed .50 have 8ay
diurnal variation, we can treat the 24 hours of a day as
making up a cycle and thus obtain a distribution of the

occurrenceg on the circumference of a circle, pooling up the
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observations over several such periods 1f necessarye Studies
of say the plane=-crashes around the year or the biological
rhythmé of living organisms, fall in this category and can be

treated as studies involving directional or circular datae

The analysis of circular data gives rige to a host of
novel ptatistidal problems and does not fit intoe the familiar
patterns of &tatistical analysis ‘on the line. Suppose the
directions have been given in tarms of angles, then th#ir
arithmetic mean would not, in general, give us a meaningful
mean direction of the sample, nor would the usual 'standard
deviation® give a good measure of dispérsion, in general
(Cefe Batschelet, 1965). The redson for this is simple. If
the zero direction is shifted through a fixed angle, the
values of the arithmetic mean and the standard deviation
calculated on the basis of the new values of the observations,
bear no reagonable algebraic relation to the original values
gince the directions arc measured as angles modulo 2m., Thus
it is not possible on the circle to define an arithmetic mean
or standard deviation in such a way that it 1s invariant under
rotation of the circle in 1tself, the equivalent of a shift
of origin on the straight lineces The higher moments and cum -
lants also suffer from the same draw-back and this deprives
one,of the set of valuable analytical tools like the various

S S ol [eD.-Oontm 10 nNE a-WE [a P an S . AT
gmw¢ac.uag il U3 RO RVIVE S cuid SC Odie a.'u.uueu. she diregticons ¢l Lo
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repregented as vectorg, the usual multivariate gtatistical
technigues can not be applied readily since the vectors are
all of a resgtricted nmature namely that they all have unit

length. This restriction drésfically altersg the probiemg.

1.2 Probability distributions on the circle

BEven from the distributional view point, the standard
linear models like the 'normal' do not, in general, provide
the appropriate statistical models for describing the circu-
lar data. We describe, hore, some probability distributions
of a special nature which give a better description of the
angular data. We call a probability distribution in two-
dimensions, which has its total ﬁrobability concentrated on
the circumference of the unit circle, a ‘circular distribu-
tion' (CD). Clearly 1t is singular with respect to the two-
dimensional Lebesgue measures However, if it is absolutely
continuous with resgpect to tpe Lebesgue measure on the cir-
cumference of the circle, 1t can be gpecificd by its density
function f(a), which is a periodic function (with period .2n)

satisfying

(1.241) £a) >0, J f(a)da=1.
(¢}
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In general, a CD will have one or more preforred directions
(also called mean directions or polar directions) and cer tain
dispersion around these directions. ‘ We give here a few pro-
bability models for the-circular data, to which we will have

occasion to refer later on.

A uniform distribution on the circle has the constant

density

A1l the directions arc equally likely under this distribution
and there is no preferred direction. Among the wmimedal
CD's, the one that occupies a place of prominence is called
the circular normal distribution (CND) or von Mises distribu-
tion after von Mises (1918) who first introduced it. A
random angle o, with reference to an arbitrary vector in

two-dimensions is said to have a OND if it has the density

-ol_
(14243) fla) = [2nI (k)T exp {xcos (a-Y )1,

O La<2n

where 0 € Y < 2n is the population mean direction and

0 £ k <o .ig a parameter of concentration, large:¥alues of
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k standing for more concentration around the mcan direc-
tion Y. When k¥ = 0, (l.2.3) gives the uniform density
defined in (1.2.2)."IO('k),‘here, is a Bessel function of

purely imaginary argument and has the expansion

(Le244) I(k) = = (k/mgr(b%ﬂz.

I'=0
The CND 1is a sgymmetric unimodal distribution, More details
regarding the distribution can be found in Gumbel ‘et al
(1953). We will discuss more about this distribution in

Chapter II.

One can obtain a CD by 'wrapping a linear distribution
around the unit circle's The process of 'wrapping around the
circle' amounts to reducing the linear random variable modulo
2n “and adding up the probabilitics that correspond to the
game point on the circumferences For example by wrapping the

linear normal distribution with density
Y - Sl 26 2 ‘o
f(x) = (/27 ¢« o) exp [-x"/206° ], = x <

we get the so called wrappod normal distribution with density

[e o]

(Le245) f(a) =1/2n +1/n I cos ny cxp [dn202/2].
n=1
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And similarly a Cauchy density.

£(x) = A 5=y =2 < x (e
n 1 + (x/o)*]

gives rise .to a wrapped Cauchy distribution with density

_(1-0%)
on(l+ o° - 20 cos a)

(142,6) fla) =

Both the last montioned distributions are sgjmimetric and unie
modal and resemble the CND closely.

When the circular data has more than one preferred
direction, we have to consider. multimodal‘ circular densities.
‘Por instance, the i‘oliowing is & bimodél density which gives
rise to an axially symmetric Cj)

, -l )
(Le2e7)  £la) = [2n T,(k )] exp [k cos 2(a= ¥ )1.

Another interesting bimodal density, which can be obtained

from a spherically gymmetric bivariate normal distribution
is given by
/(1= 9%)

(1.208) ' f(a) = . ‘
© on {1 =9 gin 20 }

S LR IR ST
44 =) =y

detoty ‘@ pady i randva varlavics Laving s viverzs
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correlation 9, and X = R-e9os A, ¥ =R .sin A, then the
random angle A has the dengity given in. (1.2.8). (1.2.8)

becomes a uniform distribution if and only if § = O.

1.3 General review of the thesis

In Chapter II, we give a general method of estimating
the parameters of a circular, distribution and show that this
method ensures us of congistent and asymptotically normal
(OAN) ostimators of the parameters, We then discuss the
circular normal distribution (OND) from estimation and dis~
tributional view points. We verify that the maximum likeli-
hood (ML) estimates of the Gﬁ parameters are asymptotically
independent go that one can construct simple large=-sample
tests for any hypotheses on the parameters. We give a heuris-
ti¢ motivation for the circular measures of dispersion and
find a simple relation between the circular and linear measure
of dispersion, when g1l the sample points are restricted to
an arc of sufficiently small 19ngth on the circumference, We
then, utilise thig relation to get the approximate distribu-
tional results in CN populatidns, which are basic to the
approximate analysis of variance (see eege Watson (1966))
for angular populationse We discuss some sampling distribu-

tions for the ON - populations and obtain a generalisation
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of a conditional distributiosn involving the lengths of the
pampleo regultantase Finally we derive gome likelihood ratio
(LR) tests for single-sample and two-sample situations in ON
populations and show that some approximations to these IR
tests for emall and large values of k, yield reasonable and
ugeful tests, in general. They also provide further likelie

hood support to some of the known approximate testse

In Chapter III, we discuss the basic problem of finding
whether or not a sample indicates a preferred direction iece,
the problem of testing for uniformity (or a uniform distribu-
tion for the observations) on the circloe Since the problem
of goodness of fit on the circle is canonically equivalent to
festing for uniformity, the discussion and results of this
Chapter can also be related to the cage of goodness of fit
problemg on the circles When testing for uniformity on the
basis of a grouped data, we consider an invariant vorsion of
the ugual Xg test and find its asymptotic distribution. Further
if a specific class of plausible alternatives are given, we
show that a special XE test (See Rao (1961)) gives rise to a
test based on the length of the sample resultant,s We then sug-
gest tests based on the sample arc lengths i.e., the differenceg
between the guccegsive observations on the circumferénce. We stu-
dy in particular, a statistic Un and give a table of percentage

2 oan - I s - o o e . e . Y ] -
DR itipresaibnyCRy el optimzhldmusiiiy & Watésmaried GyaluationftbippdfIGyISTON BbRCorilipie
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distribution of 'circular range' under uniformity, making use
of the distributional results on arc lengths stated earlier

in the Chapter.

In Chapter IV, we obtain the asymptotic efficiencies of
tests based on arc lengths, which have been introduced in
Chapter ITIl. We derive Pitman}s asymptotic relative effi-
ciencies (ARE's) in this Chapter in a completely *igornus
forms We prove many useful convergence theorems involving
the empirical stochastic processes and then, appealing to
thege general theorems, obtain the asymptotic normality of
the test statistics under the alternatives of interest,
gince there ig osscentially no difference, in thc asymptotics,
between the circular and linear cases as far as the regults
of this Chapter are concerned, the results proved here also
hold good for the spacings tests on the 1line. Thus the
results of Chapter IV are gquite general and illuminate the

thoory of spacings tests on the line,

In Chapter V, we compare the liniting efficiencies of
the several tests that have been suggestecd for testing good-
negs of fit or uniformity on the circlees We compute the
Bahadur efficiencics of the following tests: Rayleigh's test,
Kulper's tegt, Watson's test, Ajne's tests and a spacings
test, U, . . The results of a small Montecarlo study, whicl. shc
that the spacings test U, has quite satisfactory performance

in small samples, are also reported ia this chapters.
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In Chapter VI, we go into the two~gample problem and
®iscuss two nonparametric temts for testing the identity of
two circular populations on the basis of independent samples
from thems We also evaluate the asymptotic relative effi-
ciency (ARE) of one test againgt the other.

In the final Chapter, we give some large sample
homogeneity tests for comparing several angular populations
with resgpect to their mean directions and dispersions. These
tests do not assume any specific distribution for the obsger-
vations and are quite robuste In testing the equality of
polar directions, we shew that the homogeneity test, besides
.being valid without any restrictions on the concentration
parameters of the different populations, is asymptotically
as efficient as the Fetest due to Watson (1956, 1966). We
then give the large sample standard errors of estimates of
the parameters, if the underlying distribution is circular
normale Finally we illustrate these teshs by means of &

nunerical example,

e

i
:0‘

/~b /
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CHAPTER IT

A GENERAL METHOD 0F ESTIMATING THE PARAMEBTERS OF A
CIRCULAR DISTRIBUTION AWD SOME RESULTS CONNECTED
WITH THE-CIRCULAR NOLMAL DISTRIBUTION

2el Batimating the parameters of a circular digtribution

Let Appeeey Oy be n independent observations from a
parametric family of unimodal circular densities, f(a/Y, 9)
with parameters )Y and 9., Generally, Y gives the polar
direction and 9, the concentration. The maximum likelihood
(ML) method of eatimating the parameters, often turns out to be
very much involved and tue likelihood equations some times
become intractable. In this section, we suggest an alternative
mothod of estimating the parameters of a circular distribution

(0D) which ensures us of consistent and asymptotically normal

(CAN) estimators of the parameterse

Firat represent the observations as unit vectors

i= l,c.tog n
and write
W

(241.2) V = 233_00:3 Ay W= ‘f gin ays R =/V" + .
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1%~

For the parametric family under consideration, expréss the

contre of gravity or the polar point,

(2¢1.3) P = (E (cos a), E(sin a))

Cz (Y, ), n (), 9)),

i

in terms of the original parameters )Y and 9. We now estimate

the parameters )Y and ¢ by minimising the quantity
F) 2 2 1
(2.1.4) D= E L (xg =2 (Y, 9074+ (yy-n (), 9)) ‘i

1e0e, by minimising the sum of squares of distances of the
observed points Uy from the polar point P . On differentiating
(2ele4) with respect to Y and 9, the estimating equations

become
n n )

(241.5) i: (%;=2) -%-{ + § (yi~n)ﬂ7‘ =0
n 3 n
513 (xi-z) -a-g— + }:E (yi-—ﬂ) %—g— a 0 .

We might call this method of egvimation, the 'minimum distance

method', about which we have the following simple
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~lde

Lomma 2.1.1: The estinmates of )Y and ¢ obtained by minimising

(241.4) are consistent and asym totically normal (CAN) provided
the first order partial derivavivas of ¢ and 7 are continuou

and the dacobien

(241.6) J = or/ ay an /a)y
ar/ 8¢ an/ 3%
is non-vanishing.
Proof: If the Jacobiaun in (241.6) is non-zero, the equations
(241.5) yield

X n

(241.7) §~§:——1-—1 and §ayodo ¥
Fete B Jo= In T n

as esgtimates of § and 7n vrespectively. Now by the
Kolmagorov's version of the strong law of large numbers (see

€ege Rao (1965)), as n =>

(20108) :‘:' - E(X) = E
y => E(y) = ¢

with probability one, And further, the multivariate central
limit theorems ensure the bivariate normality of the sample
regultant ( X, ¥)s One sufficient condition for the distribu-

tion of the resultant to approach the normal law, is that all
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the second order moments of xy and y; be finite which is
trivially satisfied in our case'since Xy = 008 ajy ¥y = gin oAy e
Tms ¥ and y provide CAN estimators of f and n respec-
tivelys Now under the conditions of the Lemma, the new paras
meterss ¥ and 7 are one-one functions of the original para-
metors Y and Q. TFurther, they are invertible and the

inverse transformations, say

Y
9

g(Es n)
h(g, n)

it

admit continuous first order partial derivatives. The CAN

property of the egstimators

ral

N

(2.109) ¢ )’ = g( E’ zl\)
”~ A ~
9 = h( ) 'n.)

is an immediate consequeonce of the fact that the functions g

and h are continuous and totally differentiable.

As an example, consider the circular normal digtribution

(OND) definod in (le2e3) for which

(241410) B(cos a) = (), 95 =9 cos Y

E(sin a) = n()Y, §) = ¢ sin ¥
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with 9 = 8(k) = I, (k) / Io(l{ )o Hence from the estimating

equations (241.5), we got

n
(xi-Q cos ) ) s'in)/+2(yia-9 gin ¥ ) cos Y =0
1

HMB HEMe

n
(xi-Q cos Y ) cos )’+2(yi~9 sin Y ) sin Y = 0.
5 1 )

These equations lcad to the estimates

(241411) S/\'a Pan™L - (W/V)
(201.12) ¢ =R/n

where the quadrant in which ;; of (2cTell) lies is determined
by the -signs of V and W. These estimates coincide with the
ML estimates of Y and ¢ (gee e.g. Gumbel et al (1953)) in
the case of the CND.

When we apply this methed to estimate the paramoters of

the wrapped Cauchy distribution with density

(241.13) fla) = — oLz o)
2n (1+ 0" =20 cos (a- yn

or the cardioid distribution with density

(241.14) ) = Lt 262%03 (a= Y ))
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Fa¥ P
we get similar results, o being given by R/n and Y as

in (241411)e This is because.,of the fact that the centre of

gravity in both these situations is given by

P=(occos Y, o gin ) ).

The minimum distance method thus avoids the lengthy computa-
tions involved in the ML method, for instance, in the case of
the densities (241¢13) and (241l.14). When: the Jacobian is
non-zero, this method is equivalent to estimating the pole P
by the sample resultant, which is intuitively appealing for
any unimodal CD.

In view of this, the fact that the minimum distance
method and ML method coincide in the case of the OND is no
surprise since the OND has been characterised (sce cege
Gumbel et al (1953)) as the distribution for which the dircc-
tion of the sample resultant provides the ML estimate of the
polar direction Ys The ML estimate of the concentration

parameter k 1s obtained by solving the equation

(261.15) Il(lc)

N
Tables for getting k from this are given in Gumbel et al
(1953) end reproduced in Batschelet (1965)e The ratio of the
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Begsel functions Il(k )/IO( k), we shall write as 8(k ) and
gome times more briefly as Q.. 9(k ) 1is a monotonic incrca-
ging function of Kk , increcasing from zero to one as Kk goes

from zcro to infinitye When k is large

(2.1.16) $(k) ~ 1 =g -
where ' ~, ' mecang that the ratio of the two sides goes to one

as k~> «, Becausc of this, when therc is a high concentra-

tion, a fairly good estimate of k 1is provided by

n

(2elel?) Th-®y) °
By standard calculations, the asymptotic variance-
”~ N
covariance matrix of the ML estimates Y and k  (inverse
of the information matnix) can be shown to be

&) | 1/2k 0

(241.18) Vo= (%

H

0 1/(1~ 8k - 8°)

. A N
Thus the ML estimatecs )Y and ¥ are asymptotically uncorre:

lateds PFurtier, they have asymptotic normal distributions frer
the ML theory so that one can, when dealing with large sample
construct tests of gimple and composite hypotheses involving

the parameters )Y and k .
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2¢2 Circular moagures of digspersion ahd some approximate

gampling distributions in circular normal populationg

In this 8ection, we give a heuristic justification for
some meagsureg of dispersion on the circle and then using a
simple relation between the circular and linear measures of
dispersion, establish some approximate dlstributional results
for circular normal (CN) populations. These results, due to
Watson (1988), arc basic to the approximate analysis of

variagnce on the circle,

Let ajseesy oy be n independently and identically
distributed angular observationse. They can be written as unit

voctors
(24241) uy = (cos a;y sin oci) i = 1lyessyn

or as points on the circumference of the unit circles IT

A= (a, b) be any fixed arbitrary unit vector, a measure of
distance of the observed point uy from A 1is given by the
‘eircular' distance between uy; and the point A i.e., by
the smaller of the two angles uy makes with A, say Q:L'
Olearly O < ©; < ms Since for oy lying between © and mn,
(1= cos Gi)t,is & monotonic function of 6;, anh slgebraieally

more amenable measure of distance of u; from A is given by
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d(ui, 4) =1 = cos &,, Tnerorore whe guantity

i

In
(202.2) DA. (ulgot-,un) = ?E d(ui, A) :

nay be taken as a re&sonable meagure of gample dispersion as
neasured from A. This quantity takes large values when the
observations u; are far removed from A &@nd inversely. Now
1f we lock upon (R.2.2) as a function of the arbitrary vector
4, from which the dispergion has been measured, thce natural
question that arises is about the choice of A...It is simple
to verify that the quantity (R2e2.2) is minimum, for given
(ui,..., un), when A is

n

(242.3) A = ( Z cos o./R,
1 1

sin oci/R)

e =

which is the vector resultant, appropriately normalised. This

minimum value corresponding to  A* ig
(24244) Dy (ul,...,un) =n =R

which, thus, represemts the sample dispersion about the estima-
ted mean direction i.e., the dircection of the resultant. This
quantity (n-R) 1lies between O and n taking large values
when dispersion is high and small vaiues when the dispersion
is small and serves as a usciul measure cof disporsion on the

circle.
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Supposge, on the other’hand, the polar vector
P= (cos Y, sin ¥ ) is known. Then it is natural to measursc
the sample dispersion mbout this point P and then the quan=
tity D, given in (242+2), turns out to bhe

(24245) Dp (uyseee, w)) =m, - % cos {ay =Y )

mn - V*

where V* 1g the length of the projection of the ?esultant on
the polar directions This quantity (ne V*¥) may be called the
'gample dispersion about the population mean direction's The
quantities (n=R) and (n- V¥) have been used as measures of
dispergion in the approximate -analysis of dlepersion due to
Watson (1956, 1966)s The relations (2e2e2), (24244) and

(242.5) serve to illustrate the analogy bBetween circular mea-
gures of dispersion and the measures on the line where we conpd-

der

n )
(2.2:6) .Da (:X.-l,“-’ Xn) “—3% ]E-I (Xi"‘ a)

for measuring the disporéion of the semple (xl,...,xn) from

an arbitrary point t'at.
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We have renmarked earlier that the quantity

o . no g n o
8 = [ o - ( 2 a,)/nl/n
1t 1t

computed directly from the observations Opsees sl ig not in
general, a good mocasure of scatter in the case of the circle,
However, it can serve ag a»ﬁseful measure of dispersion in
situations, where the sample points are all restricted to an
arc of gnfficiently small length on the circumference of the
circles Several attempts have been made to link this quantity
8° with the circular neagures of dispersion (see €e4ge |
Pincus (1956), Batscholet (1965)). s~ is easier to compute

than (n~R) and a relation between the two may be desirable

in situations where both the quantities are meaningful.

Suppose the observations are all regtricted to an arc of
sufficiently small 1ength. Then, by a suitable choice of the
origin, one can agsume that the angular values themgelves are
smalle, Suppose 91,...,9n are theaobservations and the ©'s,
in radian measure, are so small that nowere of © of order

greater than two can be ignoreds Then

#

o n n
Rg/nz n o (£ cos Oi)2 + ( Z sin 91)2]
1 1

fie

- n n, .
n [m-ze?/2% + (( T6)f)
L i -

~ n n s
(24247) 1- [ z6l/m - (2 0,/n)%]
1 1 '

L&
le 8@

il
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where the symbol, 81 here as elsewhere stands for 'approxima-
tely squal to'. Thus. the sample wvarilance sg of the ©'s is
related to the length of the vector resultant, R by the rela-

tion (242.7). Pincus (1956), based on empirical studies, con-
cludes that s> and R2/n2 have a high negative correlation
'and Reiche (1938) finds that & = R/n and s have a corrc-
lation of =« 0.87 for the samples he congidered. These

results are only natural in view of the relation (2. 2.’?),.

Now suppose that the obaervations Oi come from & cir-
cular normal (CN) population, with a high velue of the concenw-
tration parameter k & Then using the relation (242.7), we

show that

2
2 k (n=R) ' X
(242.8) n-l

2k (nevx) v Xi

where ' . ' stande for 'approximately distributed as' and

Xi denotes a chi=gquare distribution with p degrees of
freedoms If « has a CF distribution with parameters )4

end k , then it is known that g8 = ./ k {(a - Y ) approaches

a standard normal variate for k 1large (cefes Gumbel ot al (1993)).
The CN parameter k , thus plays the role of 1/0‘2 where

o 1s the variance of « when it is treated as a linear

normal variate, Jome further gimilaritiesg regarding k and
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e

1/62 are given in Gumbel et al (1953). Further, for k large,
R ds near n with high probability, sc that thc relation

(242.7) gives
2
(2e249) g = £ 2(n-R)/n.

Thus for k large, from (2.2.9) and the fact that k = 1/02

2 k (n=R) & ns*/c"

which from the normal distribution theory, is known to have a
Xﬁ-l distribution, Similarly if the polar direction Y is
knmown, writing

(2. 2-10) g*

and using similar arguments, it can be shown that
© s

which, from the known linear normal theory, has a Xﬁ distri-
bution. Thus the approximate distributional results (2.2.8),
nay be - established following an essentially linear approach,
which is not quite so apparent in the derivation of Stephens
(1962). It may also be observed that the estimate of oF vize
92 given in (2.2.§) is the reciprocal cf the estimate of k
given in (2,1.17) for large k e This provides a justification

for making an approximate variance-ratio P-test for testlng the
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hypothesis 1{1 = ko in two OCN populations or for naking
uge of the Hartley's maximum F-ratio for testing the equality

of concentrations for several populations,

Re3 Some sampling distributions associated with the CND

and a generalisation

The density of the length R of the resultant of n
'random' unit vectors (unit vectors with the direction having
a uniform density) is well known (see e.ge. Greenwood and

Durand (1955)) and is given by

R [ J5(%) I (Rt)tdt, 0 <

0
= Re (T) (R), say
n

where Jo(t) is the Bessel function of first kind. We will

(2e341) fO(R)

- H

A
j=s)

IA
o]

uge the suffixes 'k ! and 'e® for the density functions (or
sampling distributions)  to indicate that the observations come
from a CND with parameter k > 0 and from a uniform distri-
bution corregponding to k =0 regpectivelye When n 1is
large, an approximation due to Rayleigh (1919) for fO(R) is
given by

(20342) £ (R) & (2R/n) exp [-R%/n]
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] [»]
which implies that (2R"/n) 1is distributed as a X° with two

degreeg of freedcm,

If - B denotes the angle between the zero direction and
resultant of n 'random' unit vectors, then g ig uniformly
distributed and is distributed independently of R. Hence the

joint density of R and ¢ = cos B 1is

(2e843 ) (R, ¢) = R() (R)/n /1-c”, O0<R<m,
11

Now the density of R and c¢ for observations from a CND with
k > 0, may be obtained by utilising the fact that Rc 1is

sufficient for k « Therefore, we got

. . o kRre
£, (Rye) = ?n(y) fO(R, ¢)
(2.3.4) oMt
o kRe B n(R)
= y OCRSn, ~1<c<1.

From this, one can obtain the distribution of R, when the obscr-

vations come from a CND with concentration parameter Xk > O,

namely

(243.5) T (R) = == "{(y) (R).
k e
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Suppose now that R; and R, denote the lengths of the
resultants based on samples of gigzes ng and n, respectively
from two ON populations with the same concentration k o If
R denotes the length of the overall resultant based on
n=n, +n, obsorvations, Watson and Williams (1956) give the
conditional density of Ry and R, given R and this .is

2R R, (| (r
Rlnz(_’)nl(zzl)(_’)nz( 5)

b A

. .
m (_!) (R) / (ﬁllﬁg - R®) (R -R| =Ry )
n

(20306) £ (Ry,RolR) =

OLRy<nys i 21,2, [Ry-Ry|<RCR.+R, .

Its importance lies in the fact that it is independent of the
parameters and can be utilised for constructing significance
teste for CN populations. Watson and Williams (1956) sugges-
ted a conditional test based on the sum § = R, + R, @given R,
for testing the hypothesis of equality of,polar directions for
tw CON populations with common concentration parameter k .
The eritical point s, 1is %o be chosen so as to satisfy the

equation
B(s 2 s | R) = a.

Similerly if kl and ko denote the concentrations of
the two CN populations, an exact conditional test of the

Mypothegis of equality of concentrations can also be made using
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€
o () -

(Ce346) as this gives the null distribution under the hypo-

thegis kl = kg. The approprinte test statistic is the

R Ro
difference D = ,»-1- -~ =£| which simplifies to D = |R,-R,| in
n, n, 172

the case of equal sample sizes. The critical difference

a, = do(n, Rya) 1is to be obtained by solving the equation

P(D> d, | Ryn) = a.

Work on the construction of the nomograms for these gituations
is in progress. We now obtain here a gencralisation of the

conditional density (2.3.6) for the case of gq (g2 2) samples.

Suppose we have ¢ samples of sizcs nl""’nq from
ON populations with the same concentration. TLet Rl,..., Rq
denote the lengths of individual sample resultants based on
the nl,...,mq obgervations respectively of the ¢q samples
and let R denote the length of the overall resultant based

on N = % n, observationse We derive, here, the conditional
i=1

distribution of Rl"“’Rq given R. Following Watson and
Williams (1956), wc obtain as a first step, the joint density
of Rl"“’Rq’ R and ¢ 1eee, I, (Rl""’Rq' R, ¢), where
the gubscript ‘ *o¥ for the densi t’y denctes the densgity when
ka0, 1e€s, under uniformity, Once this is known, the

dengity for k > O can again be obtained using. the relation

k Re
(2.3.7) f (R X X ,R R,C) = 'E:::N

fo(Rl, .o ,Rq,R,c).
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Fow to obtain the joint density IO(Rl,...,Rq, R,c), we ghall
meke use of the conditional density fO(F{Rl,...,Rq). It is
difficult to obtain this straight forwardly as has been done
for q =2 by Watson and Willlams (1956), though one can
oxpress R explicitly as a function of Rl,»...,Rq and the
gmgles in. between them. Using a special case of Weber's dis-
gontinuous factor theorem (gece cege Watson, G.N. (1944)), it
¢an be shown that

e 4
(2348) Po(RE | RyyevesRy) = T RS E 7 (Ryt)]at

where R dis the resultant of q vectors of lengths Rl,...,Rq,
any two of them making a 'random' angle in between them. This
1s a generalisation of Kluyver's solution of the famous

Pearson's random walk problem (gece eege Watson, GeN. (1944)).
Yow fo( r lRl,...,Rq) is obtained from this by a single dif-
ferentiation with respect to » and we get

o q
(203.9) £ _( rlRl,...,Rq) = rgJo(r_t)[ TlT.JO(Rit)]tdt.

Bince B , the angle made by the resultant with the gzero direos-
tlon, is rectangularly distributed when kX = 0, ¢ = cos B8 has

the density

T"““"""
[243.10) . fo(c) = 1/1; JL1= e® , -1

A
o
I
-
L]
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= 5(0) o=

Thig ¢ 1is further, distributed independently of the lengths
of the resultants ‘Ri}...,Rq atid R. The density of Rs,
which is' the length of the resultant of n, Trandom unit

vectors is given by

H

0 n.
(243411) £ (Ry) = Ry S I (Ry®) T (6)] 1 tas
0

R, (+%10Ri).

Now from (2e3.9), (2e3610) and (243.11) and becausc of the

]

independence of ¢ with the lengths Rl""’Rq and R when

k = 0, wo have

(203012) fO(Rl’...’Rq’R’C) =
f = qQ
1RSI ®OLTT I (Ry8)Itat

S i=l 1

e

—— "}

q
1T 5, 0

T Jle e

Using the relation (2e3.7) and integrating out ¢ in the den-

Sity £ (Rl,otn’Rq, R, C), we obtain

k

(203‘13) fk (Rl,..-,Rq,R) =

Tt R) R fmJ (Rt) [ ‘[ﬂ‘r ; (R t)]‘tdt}
) i N ¥ B
R, (R.).
1=l 1 I, 1

1
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And since the density »f R Tor k¥ > 0, is known, from
(24345), to be

I ( kR)
(243.14) fi. (R) = 5 o R Q_% (R)
i

IO:

we find the required conditional density by dividing -(2.3¢13)
by (243.14) to get

(203015) fk (Rl,oon,R:q*.R) =

-

4« oo J
4 T4 A {'T"g'
i{ JO(RU)[ 1[; _l._ Jo(Rit)_rtd‘t ::[ Ri( (Ri)

‘ i ny
(_‘_) (R)
i

This expression, which gencralises the result of Watson and

Williams (1956), can be utilised for constructirg exact con-’
ditional tests for q (> 2) populations, since it is indepen-
dent of the nulsgance parameters. For instance, in tegsting the
equality of polar directions of g CN populations, given that
they all have the same concentration, we car use the tast

statistic S = R, + ees + B, large vealues of 8, for given

1 a

Ry being eriticals Similarly the distribution of any test
function for tegsting the equality of concoatratiors will be
free of k , if it is obtained from (2+2415). The expression

(202415) looks apparently quite involveds An interesting
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¢

epproximation, in this conncction is given in Ugspensky (1957,

pe 329) which says

w a

(203.16) [ I (RE)[ T d (R t)]tat & —E— oxp [-R%/5.RT]
0 el a o
(i R:)

3/2

a q
12 ZR/(ERY) =0 as g -> o If the voctors
1 1 :

Rl""’ Rq are cach of unit length, this is the same as the

Rayleigh's approximation given in (2.3¢2).
In particular, when gq = 2, the expression: (2.3.15)

gives

(203417) £, (Ry,Rg IR)

H_) (R )R, (T) (Ry)
4

The integrsl involved here, can be evaluated using equation (3)

f J (Rt)J (R t)J (R t)tdt.

an pe 411 of Watson GeN. (1944) and we have

0

(243.18) [ I (Rt)J (th):_r (Rot)tdt = 1/2nA
o O (9] &

where A  is the arca of the triangle whose three sides are of
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lengths R, R1 and Roe This, from a gtandard formula, ig

(243.19) A

/s(s=R) (s Ry ) (a-Ry) where o = (R+ Rj+ Ry)/2

) .

i

1y /(=2 2 (n"
($) / (R85~ %) "~ B R

Do

From (2.3.17), (2;3018) and (2.3.19),

2R (R, )R (R, )
1 1772 2
fx (Rl'Rg‘R) = (t%l (+%2

v J(BRE-R") (R*~ B]RZ )

There seema to be an omission of the factor B in the numerator,
in the dérivation of Wateon and Williams (1956). In fact the
conditional density f_ (RIR ,R,) which they denote by
GUH}Rz,Rf, over the appropriate range, integrates only to

1/2« 8imilarly when q = 3, the integral involved in (2,3.15)
can be expressed in terms of complete eolliptic integrals of

the first kind, using equation (9) on pe 414 of Watson (1944).
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Rede Likelihood ratio tests for circular normal populations

R ——

and some approximations

In this section, we derive some likelihood .ratio (TR)
tests for circular normal (CN) populations in one-sémple and
two=gample situations and show that their approximations for
large or small values of k , turn out to be reasonable tests
of the corresponding hypotheses, in general. In some cases,
they coincide with the known approximatce tests derived by other
means, thus giving further likelihood support to the latter.
And in all cascs, the approximations uscd give simple and mcan-
ingful testse Some comments, regarding the range of situations
where the tests given here may be used, are given at the end
of the section. Congider, first, the one-gamplec case, where
we have n iIndependent obgervations from a CND with parame-

ters Y and k .

(a) Test for Hy: k = 0:

This 1s a test of the hypothesis of no concentration or
uniformitys The LR for the hypothesis T turns out to be

(refs cege Grecnwood and Durand (1955))

n O A
(2e44l) Mo=I (k) exp [- & RJ

N
where R i the length of the sample resultant and k is tne
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Ml estimate of %k e This, for fixed n, is a decreasing func-
tfion of R alone and hence is equivalent to a test in which
large values of R are criticale. The null distribution of R
18 given by (24341) and Greenwood and Durand (1955) give a
gshort table of percentage points for this teste When k 1is

small, we use the approximationsg

(24442) I k) &1+ k°/4
(2043) 9(k) = 1;(k)/I (k) & k/2

go that for small values of k¥ , the ML estimate of k
(from (2¢1el5) and (R2e4.3))is given by

~
(2ed4d) k & 2R/n
end hence
(20445) log IO(?C) 2 R%/MmP

Using these approximations (2e4e4) and (2e4eb) in (Pe4.1),

' A N
(2¢44e6) =2 log A = =2n log I(k) +2 kR
2 2R2/n

which is the statistic of the well~known Rayleigh's test (see
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' [»] (»}
also Sgction 3,1)e Under Hjy =2 log A = 2R”/n  has a Xg

1 I 3

distribution, which agrees with the Rayleigh's approximation

given in (2¢3.2).

(b) Test for Ho: Y = )

This is the hypothesis of prescrihed polar vechor for

which the

Ao

[

#

where Vg

of 8(k)

i

large using

(2e4e7)

LR is

i

[T, () /1o (XY T2 oxp [k 75 - R]

n FaS FaS

T cos (ai— VB) and k dand k' are the solutions

1

R/n and Vg/n regpectively. For k sufficiently

the approximation

I(k) te™ / fARE

N\
along with the approximation (2641.17) for k

A A N A A
~2 log Ay £ 2k (R=n) + 2k'(n-V%¥)+n log (k / k)

% n log [(n= Vg)/(ﬁ-iR)]

=n log [1 + (R - Vg)/(n-R)]

i

n [(R- V) /(n=R) = (&-V%)%/2(n=R)%4... ],

This has a X? distributicn under Hoe Since for large k ,
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i

V’S is near to K with high probability, one csn ignore terms
other than the firet in (2.4¢8)a This gives the approxXimate
test statistic suggested by Wabtson (1956, 1986) for testing
Hos OQur arguments show that this toet Aang thoe flavour of a IR
test, for large values of k o On the other hand, if k  is
small, the approximations (2e4e4) and (D44¢5) glve

. o
(24449) - les e & 2(RY - W )/1»

24

which again has a )(:T“ digtritution in large samples. This
statictic (2e449), with )(;3 Alstribution has heen utilised
earlicr by Stephena (1962, teut 2w0)e Our derivatizn again
provides an alternate argument and support for the same on the

basis of the LR principles

Coming to the two~sample gituation, suppose we have two
0¥ populations say with parameters Yl, ‘k:]) and()/g, k?)
regpoctivelys Supproce we have ny independont obgervations

frem the first and n, ind ienondent obgervations from the
2

£

gecond and let N+ N, = O 2t R, and Rg denote the

&

lengths of the individugl sample resultants and R the length

of the overall resultant.

'(c) Test for H3: kiz kz.

" ——

This is & test of the hypothesis of equal concentrations.

ATE

: . o ey L . 3 enradn padisin s oo o @i -
. L:.L ad KE N0PUNBZENoN USING 8 VatemaretGVariasonnCoE 'ecas \1;,4‘}:0 2


http://www.cvisiontech.com

and (24445) yield

fie

(204,10 -2 log A, & 2RE/M + 2R5/ n, - 2(Ry+ Ry)P/y

2n1n2 (R /n - / )2
A VA | o/ Ny

i}

where Az 1s the IR corresponding to the hypothesis HS.
(244.10), under Hy, has Ao . as the large sample distribution.
Since the statistic (R2+4.10) depends on the difference between
the ratios (Rl/nl) and (R,/n,) of the two samples, it may

be used for testing the equality of concentrations for unimo-

dal circular populations, in general,

(d) Test for Hye yi = )é ( k same).

This is a test of thg hypothesis of the equality of
polar dircctions given that the two CN populations have the
same concentrations When the common value of k is large,
the LR test for the situation yields a test based on the

statistic

(Rede1l) (n= 2)(R) + Ry = R)/(n= Ry = Ryp)

suggested by Watson.(1956), This statistic has a F distribu-
tion with 1 and (n-2) degrees of freedome. However, when Xk
is small, the approximations (Re4.4) and (244,5) give the log

likelihood ratio
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(2e4412) -2 log A, % (2/n) L(Ry+ RE)B—RZJ

wiich has the null distribution Xow

This is a test of the ldentity of the two CN popula-

tlongss The IR for thig hypothesis turns out to be

n A Ny A A A A A
Mg = I E)T FCEIITN(K) . exp [k R= TR = KR, ]
A A Y
where kl’ k, and k are respectively the solutions of
9(k) =R/, Ry/n, and R/ns Using the approximations for
gmall k

. |
(204.13) =2 log A & 2(R] /n + R5/n, = R°/n)

2n. n
gt

- - - -\
—E R - T)%+ (7= )71

]

where (nl ;l" ng 3?1) and (ngiz, nzjfz) denntc the resultants
for the two samplese The statistic in (2e4e13) has the large
sample distribution ](g, under the hypothesise The statistic
(2¢44,13) tests the difference in the means of ‘'cos' and tsin!
values between the two samples and hence is reasonable, in
genersl, for testing the discrepancy between the two populations.

Mo X5 distribution for (244.13) may also be alternately

fwetd F1ad freom tha fact that foar ¥ am3ll and » Jarge. (X, =%)
- . 1 kel


http://www.cvisiontech.com

w40 -

and (fl—iz) have independent normal distributions with means
zoro and variance (1/2ny + 1/2n,) = n/2nin, under the

hypothesgis.

The hypotheses H, and H, involve the polar dircc-
tiong. At the same time, we assumed k to be small enough
for the approximations (2s4.2) and (244.3) to hold. Clearly,
a test involving polar directions becomes meaningful only
when a preferred direction has been established i.e., when

kX 1s so large that the hypothesis of uniformity is rejected.
We remark herz that there is, in-.fact, a large range of values
of k¥ under which a preforred direction is indicated and the
required approximations alsc hold goode For instance the
approximations (2¢4.2) and (2+4.3) hold with good accuracy
(involve less than about 1€Aen10r) if k 1is less than about
0¢9, which corresponds to a value of 0+4 or legs for the ratio
R/n. The Rayleigh test, for example, favours the hypothesis
of preferred direction for valucs of R much lesgs than (0ed)n
(In fact, for any R > R, = /n log (I/a) at level «, using
the approximate distribution (2.3.2)):providad n is large.
Thus there is a wide range of situations (n large,
R <R < (0e4)n) where the approximate IR tests given in

o)
this dection could profitably.be utilised in fai®ly large

gsamplesa
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CHAPTER IIT

TESTING FOR GOOINESS OF FIT OR UNLIFORMITY
ON THE CIRCLE

3¢l Introduction and Surmary

One of the basic problems in the analysis of circularly
distributed data is tc find whether a given get of ohserva-
tlons on the circumfercnce of the unit cirecle indicate any
preferred direction or whether the data can be considered to
have come from a uniform distribution -~n the circumferencee
Wo shall assume, throughout this digeuseicn, that the obscr-
vations arc given in terms of angles measured with regpect
to some ‘suitably chosen origin (or zero direction), taking
say, the anticlockwise direction as positive, Then a
goodness of fit' problem, on the circle, is to tcot whether
& random gsample ((x,l,..- y0,)  comes from a population with o
completely specified distribution function Gola)y 0L a < 2
If the specified distribution function is continucus, then
the points Xy = Go(ai) may be considered as obscrvations cn
the circle of unit circumference, where now, the problem 1is
to test whether the observations (%pj,ee., X;) come from a
umiform distrivutions Thug a goodness of fit problem on the

¢ircle can also be reduced to testing for uniformity on the
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circle and the two problemg are canonically equivalent just

as they are on the lines

Broadly speaking, the test procedurcs available for .
this purpose on the line magy be groupcd into three categories
vize, (i) the methods based on X2 (ii) the methods utiliging
the empirical distribution functions and (iii) these based on
gample gpacings, lecs, differences between successive order
gtatisticse However, these methods are not, in general,
directly applicablc for obgservations on the circle because of
gpecial problems posed by the arbitrary choice of the zero
directions. A test statistic should, clcarly be independent
of this arbitrary origin, in order that it can be nmganingfully

uged with the circular datae

In some cascg, modifications of the usual test statis-
tics on the line, so as to make them independent of the choice
of origin, have been introduced for uge with the circular data.
For instancec, when employing the methods based on empirical
distribution functions, Kuiper (1960) and Watson (1961)
suggested such mo@ificationg for the standard Kolmogorov=-
Smirnov and Cramer-von Mises tests respectivelys. On the other
hand, if the Xg methnds were to be explcited for testing
uniformity, one can make the usual X2 test for uniformity

invarisnt under choice of origin (or equivalently, the choice
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of different class intervals), by considering the maximun
popsible value of )(2 (for a given number of class intervals)
Zor by taking the average guch )(2. We obtain the asymptotic
fistribution of the latter, in Section 342, by using methods
gimilar to those in Watson (1967). Lonking at the problem
from gnother angle, if one has a suitable class of parametric
glternatives for the observations, one can improve on the
usual )(2 test by concentrating on those'altcrnatives. We
show, in Section 342 that a special type of 7(2, due to Rao
{1961), gives a tést based on the length of the samplc resul-
tent, when testing for uniformity amongst the class of tcloge
N alternatives'e In Sections 363 to Jeb, we 5ug;;oszt and
ptudy the third group of tests, based on sample arc lengths,
viich correspond to the spacings te‘sts on the line (cef.
breenwood (1946), Kimball (1950), Sherman (1950), Darling
(1953), Pyke (1965) etce)s We congider, in particular, a

bost suggested by Kendall (c.fe Discussion on Greenwcod (1946))
nd studicd by Sherman (1950) which has a particularly nice
Interpretation in the case of the circlees A table of percen-
jage points and a numerical cxample illustrating the simplie-
bty in uging the test, are given in Secticun 3454 Finally in
pection 346, we find the null distribution of the 'circular
tange', the length of the smallest arc containing all the
paple observations, ‘using the distributional results of

gction Bed
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A remark regarding the wider validity of thc tegts bascd
on arc lengths than, for example, the clagsical Rayleigh's
test, is in order. The classical method for testing unifor-
mity of circular data is based on thc length of the sanmple
resultant R, large values of R Dbeing criticale This test
is known as the Rayleigh's test (cefe ege Batschelet (1965))
and is valid, in general, against any unimodal circular density
but should not be uscd when multimodal alternativeg are sus-
pected since R can be small not only under uniformity but
also under a gymmctric multimodal alternative, But the arc
length tests, suggested here, are clearly valid over a much
wider ‘class of alternatives as they detect any sort of clus-
tering of the observations on the circumference. Pyke (1965,
Discussion) remarks that the tests based on spacings would be
sengltive to differences in density functinons wherecas the
methods based on empirical distribution functions dctect signi-
ficant differences in distribution functicnse Apart from such
general commcnts, no effort has yet been made tq compare the
efficiencics of the spacings~tests with otherse. In the
next chapter, we study in detail, the asymptotic relative

efficlencies of the tests based on arc lengthse
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©
3.2 Some variants of the X* for testing uniformity

In this section, we consider the problem of tegting lov
wiformity on the basis of a grouped data,, by using the XS
methods which involve comparing the nbserved‘fr‘equcncies with
those expectedse The value of the usual )(2 statistic depends,
in general, on the particular grouping adopted and we therefore
quggest an average type of )(2 and find its asymptotic distri-
bution (aede)e We then consider this problem from a different
view points Suppose a gpecific class of parametric distribu~
tions can be considered as plausible alternatives to uniflormity.
One may then compare, ags we do in thig section, the estimated

frequencies under the alternative with thoge under the hypothe-

#is by using a XB statistic suggestced by Ran (1961).

Suppose the circular data consisting of m independent
obgervations Ay seee s, is grouped into m class intervale
of equal width, the first clags starting with a suitably chozen

firection «oe The number of classes, m, is held fixed through-

out our discussione. TLet the ith clasg interval be

altl) ,pay, for

Lie) = [a+ (1=1)2 45 o + i2m/m) = (o™,
1=1yee., me Suppose n, = ni(a) ig the number of observa-

m
tlong that fall in I,(«) and let n = Zn, be the total number

1
of observationse. For testing uniformity on the basis of this

grouped data, the usual )(2 statigtic with equal expected
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frequencies under the hypothesiy is

Xﬁ (a) = J‘zn: [n,; (a) - n/ml~/(n/m)
l .

(34241) m o
= n f (p;(a) = nz(a)]“/ﬂi(a)

where pi(a) = ni(a)/n and ng(a) = 1/m denote the observed
end hypothetical relative frequencies in the ith classe The
gstatistic given in (3.2.1) has, for n large, a x?m—l) dig=
tribution under the hypothegis of uniformity. But this statis-
tic clearly depends on the particular grouping adopted or in
other words on the starting point o« However, this dependence,

it may be remarked, is not peculiar to obgervations on the
circle aloneca.

[»]

The X statistic (3e4241) can be made independent of «
(or the particular choice of grouping) by cdnéidering, for
2T
[»] o

instance, Sup X (a) or [ X;(a)das We shall now find the

o o

asymptotic distribution (aede) of the statistic

I LI
Xn = B £ Xn(a)da

(3.242) 2n n o
I U
= 5o £ iEi [1n,(a) -~ =] da

under the hypothesis of uniformity. (Here the subscript n
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for X2 is used to denote the number of observations on

which it is based)s The aede of Xﬁ can be evaluated by
adopting the following standard methodes First, it can be
established that the empirical process {~%— (ni(a)- %),
l2lyeee,my O < a < 21 } converges to a m-variate Caussian
process om [0, 2r). Then appecaling to the invariance principle,
the aede of Xi ig the same as thiat of the limiting statistic
Xz,oxpressed in terms of the Gaussian process. The Fourier
repregsentation of this Gaussian process reduceg thig Xz to
en infinite summand of me-variate complex Laplacian variables,
whose theory is by now well ‘known (Scc ege Goodman (1963)).

A more elemcntary but essentially‘OQuivalent approach is given
in Watson (1967) and we adopt this approach to find the aede

in our capes Define the indicator random variablosos

. if ai <a, < ai+l
(30203) X_](a) = J .
‘ 1ece, if the 3% obgervation,
x4€ I,(a)
Q otherwise

fOI‘ j = 1,..., n arld i = 1’..-, m. T}len

n .
(34204) () =) = 2 (0 ()= 2)

ich, being a periodic function, may be expregsed in Fourier

(d n o~
L1 R CREN F N
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o0

(3el2eb) (o, (u) - %) = Ay, * 2 1("“1 Jk Lo + by ¢ sin La)
where
21 .
1 1
o = T% §(x3(“)’m>da=0'
and for L # 0
o .
1 i 1
a = = 2 Q)= >=) CO8 i
1A= x : ﬁ' (XJ(J) =) cos fada
(30246) ol
aj__ Llﬂmgl..-lz
= -‘;-i- 2 S cos fadu
J _ 2x4
%=
since
I>} 1 ¢
: 1 if .- =E < at<q. or
(3e247) ;(3'1:(@) = 3 n J
211 2r{i=-1)
Oy o S Cay= Ty

0. otherwise.

Thus, from (3.246),

O o &‘E
& 81n n .
(34248) aq =~ z con 4 (a- 2201,
J=

Similarly bi" the coefficient of sin f«, can be shown to be

2 ;.7]..1'1‘A"£ n .
(302.9) bi/( = e E gin /( (a- - ‘Z‘ELI%::L‘))O
j=1 !

—

Now for a fixed A, consider the set of 2m coefficients
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{(ai/(, bi)(), 1= Lyeas, M }given in (3e2a8) and (3¢2¢9)e

fince the @y arc independently and uniformly distributed on

[0, 2x), it is easy to check that

E (ai/() = E(blx) =0

(5t2'010) P .2 3‘)‘:
' B (any a.g) = B (byy bap) = e B o (3-1) 2%
L i "L L2 7o ‘om

1>
2n gin® L’-!
B (ayby) = —g g sin (1-3) 2l

T

for 1, = lyees, Mme Purther, for every fixed A, when n is
large, by the multivariate central limit theorem, the random

vector of 2m variables

(502011) ’n;)/( =% { 81/( b]_/( ag)( bgl( ' 'clm’( bmx }

converges in distribution to a random vector n/% which has
a 2m variate normal digtribution with means zero and variance

covariance matrix
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(2ﬁ§ 2m) A k n? A*
C mA X
| 1 0 ceesse COB{(Qwl )=t —-c*]_n(m-l)——-o-
0 1 eoseas Sin(mel)—= 1 (m_1)~11
cou(mﬂl)izé ulﬂ(ﬁ“l)&mx ceeine 1 0
—sin(m-l)~%£ (m—l)““X crenes 0 1
(342412) -

with the elements corresponding to those defined in (3.2.10).
Moreover in view of the orthogonality of the Fourier coeffi-
cients, for f # /', the random vectors 'nnx and "HX' corne
verge to independent normal:vectors n[ and ﬂ&" How fron

(34242) and (3e2e5) ’

Eoo y (a>-~i32da
n -1 o i

]
oS
>
i 8
|_l
—
3
£
3
2,

(342413)

it
o |
i
FJ&GS
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where Qn,( = ”:r'),( nnx is a quadratic form in -nm(a However,

gince Ml converges in law to ng  as n => w, the aede of
Qﬂi( is that of Q/( = ”/t ng “where ny igs the random vector
with means zero and covariance matrix 8/( given in ('3..2.12).
Becauge of this and the indcpon&emo of the quadratic forms

an and Q'ﬂ/(' for A¢A', the asde of

N

(302.14.-) SnN - >
L=l

ig the same as that of

(342415) 8y = Q.

for any finite Ne l1eca,

(3e2416) g . =iy Sy

ni

where -L-> denotes convergence in lawe If Snw and, S

gtand for the corresponding infinite summands of the quadra-

tic forms, we show below that

I
(342417) Spee =2=> 8,

by arguments similar to those in Beran (1968).
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In FX(°) denoteg thie distribution function of the
subscripted random variable X, then for any arbitrary con-

tinuity point x of TFg (x)*, we have
o0

(342418) IFSnw(X) - st(x)lg | an (x) - FSnN(x)I

"’10 - r i - ¥ <
+ irunN(x) 1SN(x)| + lFSN(X) Sm(k)'

But since

uh
E|S = .
l noeo an| =§+l E(an)
and
Bls, - 8yl = & E(Q)
N X:N-f-l X

are the tails of convergont seriese Therefore By Markov's
inequality

neo

P
(8, = 8y) ====>0

uniformly in n as N «>» «, Hence for any € > 0, there

exists an N independent of n such that
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(342419) IFS (x) - Fo (x)| <€/3
nee nh

[Ty (x) - FSN(X)I <e/s

Now for this choice of N, we can get a n,  such that for all

no n,,

(342420) |FSnN(X) - FSN(X)I < e/3

in view of (342¢16)s For guch an n, (3.2.18)v(3.2.19) and

(3.;.20) inply

(3e221) IFSnm(x) - Fsm(x)| < €

Purther since the distribution function of Se 18 continuous,
by Polya's theorcem, this convergence in (3e2421) is uniform

©

in xs Thus the distribution of X; =

b F=

o0
b converges
(o ok

not only weakly but uniformly tc that of

o0
Ll

Now the distribution of Q('= 7! ?k i@ not difficult to

obtain but notice that %, = ((0)) - if is a multiple of m
A
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and for L £#0 (mode m), it is only of rank 2 as can be seen
from the fact that the third ordeér principal minors of z/(
vanishe Thercfore U can be reduced to a two-dimensional

random variable Y,( by neans of a transformation

i

" B, Y
(2m X 1) (2m x'(z) (2 X/(l)

where B is such that B, B, = & B is of rank £ and
L I G ¢ S A Gl

%& is distributed as N(0,T,) (See oge Rad (1965), p 440).

Bocause of tho fact that Y. is distributed as T(0, T,), the

characteristic function (cefe) of
Q =n'n, =Y (B! B,) Y
S S S G S S
is given by
1/2‘

(5e2423) b (t) = dets

A

In our case, }.’X given in (342e12), can be written as BX B,('

I, - 2it BXBXI .

&

where
/2 sin’-g}-
(3e2e24) By = ooy
. n
') (o]
1 0 ¢ n S s COS(m“l)&%an "'Sin('m"l) -‘;’ET)A

ong -~ing-g&
2 2%;“ crens sin(m—l)%‘{- cos(mwl) ?-73-’(—

0 1 sin=BA cos
- l’n *

6]
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Por this Bj yaince

o 2 AR
- <M Sl"l m
n — i
(3e2425) B/( B = /(2 > Tos

the cefe of Qs from (3e2428), it

4 /6 sinz X‘
(34242G) 9’,((’6) = det."l/’;llz-@it mo - L;’ T, |.
K ¥ n ’
©
4m sin® ; 1
= (1 » —g————= 1t)" .
PG

Fow from the independence of n and e for L£ L', the
. 3
ssymptotic * cefe of XI can be written down using (3e2413)

and (342.26) as

(.2.27) PO =TT (O - . e 1)
A=1 %

= T—T (1 - it 7\/()-1

with
o 0
(3.2.28) ?\/( = 2 sin“’ A‘;“n"" /(&1%“:) T e
If £ dis a multiple of m, the corresponding xx is zmero so
o
that it does not contributc anything to the cefe of X¥e We

‘mentioned this earlier my saying that for such an A 5 o= ((0))
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go that the contribvution of the corregsponding quadratic forn

\
(% ig zeroe Prom (34227), the asymptotic distribution of the
X2 statistic can be formally written downe If f(x) denotes
the density function we have by the inversion formula

[

(3:2429) £(x) = - Jooeitx ft;T(l—it AT ate

Since the %K are positive and distinct there are only simple
poles for the integrand and they occur in the lower half cif the
complex planc at ?K = T%" o The integral (3e2629) can then
be evaluated by closing a contour in the lower half plane and
f(x) is given by i +times the sum of the residues at the

polese Thus

(362430) f(x) = & cy exp [=x/2,]1 for >0
1A *P A o X

where

-1
(= [>\/< ,(:[;T/((l- Mo /x)()] 4

and zero otherwisce IFrom (3e2e27) one can write down the

pth cumidant, K, of the distribution and we have

<) o

o T L 2uimy .2
K, = (1)) B M =2y Bz ean®R /0K,


http://www.cvisiontech.com

0l -

Por getting the percentage pointg for thig distribution, sowc
mrerical approximaticons may have to be found or-use may be
pade of the first fouroumuwlants te find a suitable Pearson
gurve approximatione
2 : '
The gtatistic xn given in (3e2e2) in the integral
form can now be expresgscd ac a finite sum and given the

following computational form

' ar n 2
& m 4 n4~
Xn = mn £ ifa[ni(“)"ﬁ]" da

i

’ e o . 2
mn 2 F3(o) - 2Bz 43010+ By Y ae

(3e2e31)

"

o1t . -
m 1 .l
tmn 2/ {[gz X5(a)J1= 3] +

.
m

+ E‘Z_'Xg‘(oc) Xﬁ’-{?(a)] + E;y}da
JFJ c

since [X%(a)]z = X;L(oc). Now

2wl

_ 2r(ie=l)
m

. s 1 if .= ~= < a < o,
(342432) Xﬁ(a) = JoH J
: 0 otherwige
and similarly
(342433) . o
S 1 1f cither a, -'%% La < gem i“l‘%':l-—)-
i 1 ’ J J !
Xj(a) Xj!(d) = o N
{ ni L emli-
j or ay" T S < ayg m
i e G J[.‘)‘ \.j_[ |
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Using (342432) and (5e4233) in (3.2.31),

2 _ _inypy fx
(5a2434) Xn = Prn % { (1 ln]L§ rn] +

(Bn - D ) & Pnn }
|

PN
i e
2ﬁ
{(J]) 'JF/ DJJ'S"F}

where D denotes the 'eircular' distance (iecse, smallor of

3t
the two distances) between the obsecrvations aj and aj, on

the circumferences Simplifying (3e2e34) further

3
2R RN

2. , .
ko = Onn{ (m-2n ‘;ﬁ rTEt z#; (<4 - D i)}
373
{(3,3108D5 52 27 3
2 <
- t-jn -
= M~ I +-‘21—t~ﬂ j‘:ﬁ;l (Tn- - Djj')
3 .‘ . ﬂ
(342435) { (5,39 Dy <58}

Thus the invariant version (3e42e2) of the usual X2 stabistic,
depends on the sample arc lengths between the obsecrvationse
These arc lemngths play a crucial role in the case of the gir-
cle ag any invariant test statictic has to be a Tunc tion' of
these valucse We will discuss about thoese arc lengths in

[}

much greater detail in the other sccticns of this Chapter as

<

woll as in Chapter IVe The statis'ic X, in this form
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(3¢2435) , looks like a 'U-statistic' (Sec ege Fraser (1957))
mich it is not in the strictest senses The usual central
Mmit theorem for the Ue~statistics thus fails in our casece
Mnally it may be remarked that the Ajne's statistic A
dscussed in Ajne (1966) and Watson (1967) ia a svecial cage
of our )(2 statistic when the number of clags intenvals inte

mich the circumference is divided is only 2.

Now we look at the problem of testing for uniformity on
the basis of a grouped data from another directione If the
ialternatives of interest can be specified, at least approxie~
pately as can be done in most cases, the )(.2 given in (3.2e1)
tan be improved by concentrating on the specificd class of
ﬂtornative distributionse Suppose it is degired to test for
miformity, as against the class of unimodal symmetric densi-

ties given by

(342436) g(af®, ¥) ==+ 2 cos (amY), 0<ac<2n

~

mere 0 < Y <2 and 9 >0 denote the location and concen=-
tration parameters rcaopectivelye 1t may be observed thot
kircular normal densities close to the hypothesis of uniformity
{ie€ey with a low value for the concentration parameter) can
Je put in this forme Under these alternatives (3e2436G), the

th cell has probability
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a+ 12%7/m
ui(a) [ (1/2% + % coo (p- YY) )48

J ,
Co4(d~1) 2% /m

m

% + ¢ cos Y { 2 gin % cos (@+‘L§i:“la)}

(342437) + 8 sin ) { 2 gin % gin (a + L&%:Llﬂ)}

i
Bl
——

L +gxi-+7)yi}

where
r =9 cos ) , n =29 gin Y
23 e
x; = 2m gin % cos (q +(—£ﬁllﬂ),
(3e2438)

i

y; = 2m sin % sin (a+ Lgiﬁil£)~

Now in order that the required asymptotic didtribution holds
good for the statistic given in (3.2.44), these ui's should
be estimated by any method of estimation that is 'efficient}
in the sense of Rao lsee, satisfying the assumptdten (3) of
Rao (1961)s The validity of this assumptioiican be verifiéd

N ~
caglly for the estimates ¥ and % obtained by minimising the

]

quantity
Il . 2 o
(Bele39) I = f (pi - ni) /7!:1
] .. 2

On using the trigeonometric relations
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m O m (()g“ ‘ | m OF ad
2 coeBIERIR | 5 oo (Bl oy oo (2lolin oy, (2od)n
) ‘ 1

1 - m I m m
(Be2es0) ) Om
2 (21im ‘ 2 (21
T cos” (2i-1)m = % sin (—“3-:—1—2—75 = mn/2
1 nl 1 m

the egtimating equations gimplify and we get

¥
1

A n /mo
¥ =mZpg X/ Ex
7 i i 1 1

= ¢ / n sin %
:(50204.1) ,/; = I{l': .7 % 2
.l 171 1 71
= p/m gin %‘;
vhere
(302042) ne = %ni cos (o+ (E%‘)-E) snd ng = ?: n, sin(\x+(§i‘§%l‘l)

are nothing but the components of the vector resultant based on

the grouped datae Thus from (3¢237) and (3.2.41),

>

~ A
(5e2443) 1/m (1+ £y + 'nyi)

]
]

- O'—V - '_
1/m + (2/m) { & cos (a+ “(:.;%ﬁ;tlz),* = gin (OH_(_Z_%l 1 w,)}

0 ~ . .

Y e = . s = . Sat 2 regpectTl” . 1 3] ad

let Eon. n oy and Byo =1 R, denote regpectively the esti
mated frequencies in the ith cell, under thoe restrictions iupo-
sed by the hypothesis, and when there are no restrictions on the

parameterse Then Rao (1961) suggests the statistic
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10
<

(Y
[ ]
)

it} 2
el . - T - NN /T
(L)Ilv.44.) T — 'f (Lli DOi) BOi

to test the hypothesis that the data follows a uniform distri-
bution given that the admissible set of probabilities
%y =n;(%, ¥V ) have the representation given in (3e2437)

Using the relations (3e240), the statictic (5e2e44) reduceg to

=1
L

mn - 93 a1 ! - T 2
nm 3{ (2/m) [c cos(a+ ("“'2';1‘1')‘&)+ 5 sin(a+ (23_%1_1_&2)3 }
1 L

2 2
on(c + s )

ERB/n

where R is the gquarcd length of the resultent based on the
given grouped datas The value of this RQ, computed on the
basis of the groupcd data obviously depends on the particular
grouping adopted or in other words on «e But as is well
known, the length ol the resultant based on the ungrouped {or
raw) data is independent of* the choice of the zero direction so
that the statistic (5.2.45), remains invariant if the effect of
grouping ic ignorede However, gince the grouping correetion
necded for R2 turns out to be quite negligible even when we
have only sbout 10 to 16 class intervals (see ege Batschelet

(1965)), the statistic is almost as good as an invariart one

if m dis not too small,
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Now, under the density (3s2436), the cell probabilities
%y have a parametric representation in terms of two indepen~
dent parameters ¢ and ) or equivalently in terms of
{=9%cos Y and m =9 sin Y « On the other hand, the hypo-
thesis of uniformity is equivalent to the simple hythhesis that
the parameter point is the origin iees, £ = 0, 9 = Os Hence
the statistic T, given in (Z42445), has asymptotically a Xg
distribution with 2 degrecs of freedom (cefe Ran (1961)). Tt
is interesting that the gpecial type of XB tegt (Feled4)
reduces to an anclogue of the Rayleigh's teot for grouped déta

on the eircle.

3¢ Bample arc lengths and their distriovution under the

hypothesis of uniformity

o s -

In the rest of this chapter, we cugcest tests based on
sample arc lengths for testing uniformity and discuss some of
themse As we mentioncd in the beginning, we take a fixed: sense
of rotation (éay, anticlqckwise) ags positive throughout, If,
however, one takes a fixed point as the origin (o1 zero direc-
tion), then it can be shown (see eoge Teller (1966) pe 22) that
the length of the sample arc containing this fixed origin would
be equivalent distributionally to thn sum of the lengths of two
other simple arcs, whercas on gyumetry conpiderationg, we should

expect all the arc lengths to.be itdentically digtriluted. To
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steer clear of guch apparent paradoxes, which are peculiar to
the gpacings on the circle, we set forth the main distribvu-

tional results for the arc lengths on the circlcoe

Let Uy gees sty be -the n  angular ovscervations from a
density f(a), 0 £ a < 2n, umeabured with respect to some arbi-
trary origine We.will arrive at thp digtribution of the arc
lengthg via the digtribution of maximal invariant in our ocasces
We consider the problem of testing the hypothesis 11 : f(a) is
uniform density, agaiﬂst the alternative Hl: f(a)(}dﬂ y Wiere
A is a family of circular densities which is invariant under
the group of all rotations iece a density corresponding to a
randoﬁ variable continues to belong to jl even it fhe origin
of moasurement of the random variable is changeds The choice
of such a family of alternatives is natural for the circle
since it makegs the testing problem invariant under rotations
of the circle within itself and has been suggested by Ajne
(1966). From the theory of invariant tests, an invariant test
must depend on the obsgervations only through the nmaximal inva-

riant, which, in this case, is the set of differences

(30301) 92 = O ™ al’ 93 = Ola - alyooay 91’1 = an" al

<y
[

where the sums or differences are to be interpreted properly

iet¢e modulo Zme This amounts to taliing «, as the new origin
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md renaming the cther obgervations as ©a,ee., e s Clearly

«1

the joint density of Bogeeey @n i

2n n
(34842) g f(al) J:L f(@k+-m1)dal.

Putting ’91 = 0, w2 gee that 91,92,..., @n are iﬂantically
iistributed with.a density h(8) = f(o+ al), rotationally
e@dvalent to the dengsitih f(m), and hence gtill a momber of

the family'ha,. Thus ﬁhp problem of testing (al,...,an) have
jensity f(a) is equivalent to tegting (Gl,..., Qn) have a
density h(8). . ThHe property of rotational invariance of a dig-
tributional or tcoting problem ig preserved if one procieds

through ©5's dinstead of the origingal obgervations «.'se
i 1

22

The sample arc lcngths, {‘Ti } arc new defined as follows.
If
(34343) 0 =07 €8, < ees <O <om
denote the ordered valuecs of (81,...,@n), then the gample arc

lengths are

t 1 [] t 1
(30304) Tl = a??’ T’? = 95 - 953,000, TI]."‘l = g:n"' On",].
and T =01 -0,
i n n

Thege are, in fact, the lengths of the
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segments into which the circumference is broken up by the
sample observations,'(al,...,an). These arc lengths, defincA
in (3e4344), depend on the observations through the maximal
invariant (92,.., 9&) and hence tests bascd on the arc lengtis
are rotation invariant, a fact, which is apparent cven other-
wises If aq is Taken as the new origin iee., 91 ié taken
to be identically =zero, the likclihood of obtaining a sample
in en infinitesimal volume element deg eve 48 .is given by

Tl
(3¢3.5) (n-1)¢ TT h(g%)d@%, if 0 £ 08! < ee. <6 < 2m.

I - 1L -

=
When in particular, the observations are from the uniform den-

sity, the joint density of (8g,ee., 8!) is

(3e346) (n-l)l/(gn)n—l . d@é ee. G0

which is also the unconditional density given by (3e63.2), in
this case. The density of (le;..,mn_l), under the hypothesis
of wniformity, is thereforc obtained from (3.3.6) an

) :1./(.1’1"1)‘ «dT

(30507) g(Tll..o ’Tn"'l 2 /(:ﬁn‘)l’l.!"l l"'dTn-l’
\ n=1
& 020, BT L

\ U villerwLsce
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since the Jacoblian of trangformation is wnity. The frequency

dement of all the arc lengthe iece, (T),ee.,T ) is etill

iven by [(n—l):/(zi)n—ll but now the digtribution is degencrate
n
wcause of the restriction = Ti = e

1
Clearly, the marginal distribution of any subset of k

ges say (Ti ye ey Ti ) would be the game whatever the indices
k
(il""'ik) ares In other wordgs, thege. Ti's' form a sct of

Interchangeable random variables under the hypothesis of unifor-

iitye From (3e347) the density of any single arc, say Ty, is

303.8) g (%)) = (n—l)/(m)n_‘l.(2n-t1>“"“

for 0 <t <2
Similarly the density of any subset (Ti seersTy )y (k< n=-1)
1 k

of gaps is

w.Sog) gk(ti goc-,tik) ]

1

1;: + )n"k"l

(2n - -
j=1 3

={(n~1)! J
[(n ])./(nuk—l)](gn)nnl'

b

<
+ti _Stoo _S E t
1 2 1

for 0 < t, <+, . £ 2n.
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3e4 Tasts based gymmetrically on the arc 1engthé;:‘_,
Un statigtic and its exact and asymptotic distributions

On the line segment, tests based on sample spacings are
used in a number of gituations as for examplé in goodnesshof
fit problems and in testing departures from exponentiality
(See eege the literature cited earlier)e The main’ idea éf
this section is to introduce similar classes of tests, based
on the circular spacings or the arc lengths deflned in (343, 4),
for testing for uniformity or goodness cf fit on thé circle,
The essential difference, with regard to spacings £y between the
line segment and the circle is that whcreas n obgervationa
on the former give (n+l) spacings, we get only n arcs on the
latters Howevery as can be seen from the results of Section
33, the distribution under uniformity of the n arcs made by
n sample points on the circle, is the same as that of n
spacings made on the line segment [0, 2n] by (n~l) sample
points from a uniform distribution on [0, 2x]. This analogy
tolls us that we could apply any of the spacings tests on the
‘line, to the cireular case with only minor modificationse. A
test gtatistic based symmotrical;y on the arc lengths T. can

1

be written in the form

(3.401) All = l/l’l .Iél m(n’l‘i)
1=
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mere m(s) is any reasonable function of the arguments nl,e
fuch spacings tests have been made uge of on the line (refs cege
ke (1965) and the references contained therein). For instance,
n{x) = xr, r >0 gives a class of~statistics due to Grecnwood
(1946) and Kimball (1950)e The cases m(x) = |x=1| and m(x) =
log x are gtudicd by Sherman_(1950) and Darling (1953%) respec-
tively. We consider these different classes of spacings tests

in more detail and compare them from the point of view of their

efficiencies in the next chaptere

We now discuss a particular test statistic bascd on the
arc lengthg, whicﬁ has an attractive interpretation on the cir-
cles First we obgerve that the expected length of. T;, under
ﬁuformity, is 2n/ne. Given n samplc points on the circum=-
forence,‘ccrresponding to the ;th gample point, we cut an arc
of fixed length, 2m/n, starting with the sample point and in
ﬂm'ppsitive (anticlockwise) directions When n such arcs,
each of fixed iength 2n/n, ‘are placed corresponding to the n
gample points, a complete covering of the circumference occurs
only if the n sgample observations happen to be eqgui-spaccd on
the circumferences Stevens (1939) and Rac (1942) conaider the
probability that the circumference 1g completely covo?ed when
n arcg of arbitrary 1eﬁgths Byseesy A, are randomly placed on

the circumference of the circle with givén radiuse In our case
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the probability ol such a couplete coverage is “CTO gince, as
we have noted, this can happen only when the sample points are
oqually spaced on the circumfercnces On the other hand when
the observation are not equi=~spaced, some of the arcs of fixed
length would overlap, and to that extent. a portion of the cir-
cumference would romain uncovered by these arcse We shall
denote this uncovered portion of the circumference by’ Un‘ [
takes large values when fhere is a clugtering of the sample
observations in one or more placecs, tie maximum value, vizs

(1 - %)Bn, occurring when all the sample points happen to
coincides Thus

(3eda2) 0<U, < - L) o,

large values of Un indicating clustering of the obgservaticns

or departures from uniformitys. The quantity

(Bo443) 8; = max.[T; = &n/n, 0]

. . . .th
gives the uncovered portion as contributed by the i sanple

arc T. . and thon the gtatistic

1
) Y.
(3adad) Ull = i::l 8
1

= z Hld,X.L bad ‘J‘{/]l OJ.

L=l


http://www.cvisiontech.com

~71~-

S's are acain  interchangeoable ronden variablva and have tho
game rang.o , Uh. Teing the regultn in Secition Seo and the
interchangeability of Si's, one can shew that

{1 L Azl
(3.445) E([Yn> = O (L~ H)

| S 1y =i )
Var (Uy) = 4nl8) g o =) Gty (-2
g 1yPn-
-~ (J..o ;ij) J.

The exact distribution of Un can alse boe derived rather
pagily, following an elegant approach based on Daplacn trans-
forms due to Darling (1353)e Dut a moment's reflzction would

show that the U, defined in (Bed.4) is the same as the

n
uantity
n T e
(30446) L x|, 2%
“q=1 -

studied for the liac by Sherman (1200)e Iy view of the remarks

made earlier, regarding the sample gpacings on the line gnd the

sample arc lengthg on “he circle, *the distiribution of U cun

imediately be written down from that of Shcrman (19850) or

Jrline (195%) . Tu Tact] the denaity funetion nf U do givon

]

he
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. Nel . Cf.(nu)
A n o\ =] =1 B
(Bede?) g0 = (n-1)} j:l‘sj)(u/wn) (n—j-i}!njFQ

for 0 < u g 2n(l=2)

where fj(x) is the density function of the sum of j inde=
pendent uniform random variables on [0, 2x] and has the
expression

oo

| o1 ~0)E 3y ¢ XA S iRt

k=o i

with the notation < x> =x 1if x >0 and =0 if =x < O,

The asymptotic normality of the statistic U, has been
shown by the cumbersome method of moments by Sherman (1550) and
by the method of gteepest descent by Darling (1953)e A more
general and e¢legent method, which also establishes the asympe
totic normality of the statistic under suitably chosen alter-
natives, is given by ug in the chapter that follows. For the
present, we simply state the asymptotic normality of Un in
the following theorem, whose proof follows from the more gene=

ral results of Chapter IV and hence is omitted here,

Theorem 3edel: The statistic /n (U, = 2n/e), where U, is

as defined in (3e4e4), has an asymptotic normal distribution

e - 2
with mean mmoandvmimmov%f(mzln56').
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The property of consistency (power approaching unity as
Emesamplc slizge inecreases indefinitnly) of the test procedure
based on Uh} is élso ostablishod'in Serman (1950). But we
give here a simpléf alternate proof of the same, Tor doing
ﬁMs, it is sufficient to show that Uu converges inAprobahi—
lity to a value different Trom (2n/¢) under the alternatives
gince the variances both under the hypothegis and under the
dternative tend to zeros Thug the congistency of the tegt
equence U, for a large clags of alternatives with continuous
densities g(a) differing from the uhiform density on [O,Bﬁ],

is established by the fcllowing

Theorem 3ede2: Under the sl tbternative distribution Tunction

8e) on [0,2%]) with continuous density g(a), the spacings

statistic Un defined in (Beded), converges in probability +o

o
exp [=2n gla)ldae
0

Procf': Liet ORI i independently digtributed with

distribution function (defe) () on [0, on]., Tr
0 a] L eee 61 < 27 denote the ordered valuca, then
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from the defe Glw)e Using the fact that if A 1is a random
variable (reve) with defe C{a), then the reve U = G(A) has
the uniform distribution on [0, 1], we now relate these spac-
ings Di to spacings from a uniform distributiones Let
Ujseesy U, Dbe independent observaticns from the uniform digs-
tribution on a circle of unit circumference and let

0 < Ui
order. Then

L oeee <UL C1 Dbe the valucs arranged in increasing

Ti = Ui - Ui—l

with Ué = (Uﬁ-l) give the arc lengths Trom the uniform disg=-
tribution on the circle of‘unit circunference. For any two
random variables X and Y, writing X~Y +to mean that X
and Y are distributionally equivalent (that is the distribu-
tions of X and Y are idontical), we have

{ Dy=(al=al3)y 1 =T5eee, n}

~ 6T (o) - 67HUI )y 1= Lieeey n )
={‘(U5~Ui_l)/k(Ui), i = lyeeay I }
- Lt ‘_‘ l‘(f.-]— N
(Ze4e9) wherc U! < U; U and k(p) = e(a™ (p))

ie]l—=

z{.Ti/k(Ui>’ i = lyas., N }.

This relaticn (3ede9) connects the cirveular spacings D fron
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te density g(a) and the spacings T; from the wuniform den-

itye If Wl”"’ W, are mn independently and identically
fistributed exponential random variables with demsity <™,

12 0, and \W; = Wi + een + Wh, then it ig well krnown that
(5.4.10) { Ti’ i = l,an-, Tl}N{ Wi/‘i’l " i = 1,,.lu, n} [ ]

Mus from (3e4e9) and (Bedel0)

(504011) {Di’ i = l,..o, n}/\/ {Wi/W;l k([\ji>, i:l,..n ,1’1}-

Therefore the empirical distribution function of

{nDi, 1 = 1yess, 11} y Sy

]

= n"t [ number of nd, < a ]

(344412) Hn(a)

-1 . ~ ~
11 ( (1., -
~ n [ nunber of Wi/Wh L(Jl) < al

- 5 . . ‘ ~
mere W, = W, /he low in view of the facts that for any

4> Oy
1
-’5—6 ~ P
n® gup |U, = i/n| =-t=> 0
’ i
i
1
-0 - P

n |w =1 <=e> 0
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large enough n, stochastically equivalent to

(3404013)  Hyp(a) = 0™ [numbor of W, < a k(1/n)l.

But
n .
BIf(a) = 1/n g (1- o~8k(1/n),
n =1

which can be written, as n => c, in the integral form

1
(Bedeld) (1 o~ak(p)

)

)dp

2
=1 = f “e-ag(x) AG(x)
0

e—ak(i/n) (1= efak&ﬁ/n))

Ha s

* 1
Var (#5(a)) = =55
n’ i
which tends to zero as n ~> «¢ Thug for each fixed a,

*
H (a) and hence Hn(a), converges stochastically to

'~

{1= " oxp [~aa(x)]ac(x) |
O

2
/

and hence from Polya's theprem, the convergence in supremum

nornm algo takes places, Now
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U = 2{(On/n = D.)
n irp < 2n/m} Y
27
= [ (2n- a) dH (a)
°
on
= [ 1, (a)da
,
2n - 27
i Y -y pr
(8e4415) > [ [1=/ e “‘“’(O‘)d(%(oc)]da
" o
25t _
= [ cexp [=n g(a)id g
0

%This probability limit of U, differs from (2n/e) if g(a) ig
tontinuous and differs from the uniform density on a get of
positive'ﬁebesgue measure, thus establishing the consistency

of the Unftest against guch alternatives,.

55 Table of critical valucp for usiang U, and an illug-
trative example

In this Bection, we give a table of percentage pointg
for the test gtatistic Uy Tor sample sizes n = 2(1)20 and
for three levelg of significance, o 2 401, 0,05 and 0,10,
ﬂis table is obtuined by o medificalion of Shorman"s table
(1957)s  We illulstrate, by menans of a mamerical example, tho

plmplicity in using the gtatistic M, fer testing uniformity

M a circular distribution,
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Table 3Jel

Table of ctitical points Uo(a,n)‘ (in degrees) for the
statistic Un'

r—— — o ———— e o ———

L 0401 0405 0410
2 178420 171400 162.00
3 219e24 103468 174424
4 221 604 186 448 17172
5 212404 185,460 168,84
6 206404 180,472 166 ¢32
7 202468 177 e84 164488
8 198436 175468 163¢44
9 195412 173452 162436

10 192424 172408 16128
11 189472 170428 160420
18 187456 169620 159,48
13 185476 167476 158440
14 183496 166468 157,68
15 182416 165460 156496
16 180472 164488 156,60
17 179464 164416 - 155488
18 178420 163408 155416
19 177812 162436 154480

176404 - 161464 154.44

4]
O
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If for a given sample size n and level n, the calculated
value of the uncovered length U Qxceeds the tabulated

value Uo(a, n), we rejett the hypethesis of uniforﬁity. The
critical points have been given in terms of degreeg for ready

gpplicability.

J

Example: We consider here example 2C&1 given in Blacsoholet
(1965)

'In an experiment on homing orientation in pigeons, 10
birds were released singly ‘at 25 Km west of their loft.
Meld glass obgervations yielded the vanishing pecint of each
feparting bird meapured to the neareat 5% dnterval in true ‘

.0

o gex . - ez O
bearingss These ten vanigshing points are 209, 35°, 350 ,

120", 85°, 345°, 807, 320°, 280° ana a5°r,

It is required to know whether the birds have a
preferred orientation of flighte The arc l.engths' { Ti} made
by these observations on the cirecle are easily scen to be
15%, 45°, 5°, 0°, 35°, 160°, 40°, 25°, 5° and 30° and the

fixed arcs are cof length 360/10 = 36° in this casee Therefore

2 max [ ]
U, = % omax [T, = 36, O
10755 i
10
= (1/2) = |7y - 36 |
i=1l
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This value of 1370, for n = 10, i8 not significant even at
the 10 percent level of sgignificance as the critical point

in this case is only 161.28 degrees. Thefefore we conclude
that the observations could have come from a uniform distrie-
butiones The same conclusion is reached usiné the Rayleigh's
tcot (See esge Batschelet (1965))e Fut the test based on U,
is not only very much gimpler computationally and concepbually
but is also valid against a wider clasé of alternatives as

we have remarked in the beginninge

3e46 Other tests based on arc lengthg =~ circular range

As we have mentioned in Section 3e4, any of the spacings
tegts for randommess om the line can be adopted to the circu-
lar case with ease, in view of the distributional results of
Section 3+3. Ancther simple statistic of interest in this
connection, ig tlic Tcircular range',’R, which is the length
of the smallest arc that encompasses all the sample observa-
tionse 'This is the' correct analogue of the linear range to
the circular situation and may be used in testing uniformity,.
Small values of R should be considered critical as that indi-
cates clustering of the observationse The distribution of R,
under uniformity, can be obtained directly from its defini-

tion ard the results of Section 343
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Since, for an T 8uch that 0 Lr <Zn, R can bhe
less than or eyual to r if and only if at least one of thx
L ares { Tye 1= l,..., n} exceeds (En~T) in length, the

digtribution function of R, say %(r), can be written as

Pr) = P(R ( 1)

t

P( L_)E

i=1

where Ei gtands for the event that the ith gpacing T,

oxceeds (2rm=T)e Because of the identical distributiong for

Iy this gives

F(r)

i}

n
r(Q) ®y)
mph

Hi

. IlP(Ei ) - (E)P(E (-_).Ll ) 4+ oo
(34641) 1 E

4 (_-l)c-ﬂ(x)'p(b (“)..- C-)Eilb)

bhe serieg terminating with a k, where Xk is Bhe integral
part of (2r/2m-r)s This ig clear since, if the integral part
b (2n/Sm-r) is k, thon at mogt k arcs con excoed (2m=T)e
lbw the probabilities P(I‘ ), ]“(F (—\L ), etce, in (BeGel)
jan be computed eansgily from the resuT s ni Section 3e0e It

jan be checked, for ingtance, thath

54642) P(EL(_) ....("713i ) = [mr--fan(m--l)Jn”l/(&c)n"l

if m < ¥a
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From (3e641) and (3e6e2), the distribution function of R,

comes out to be

F(r)

i

k , = -
B DR [ - )™

(3e643) -1

H)

2 (D™D CEE L(ne1)>
M=l ’ ~N

with the notation <x> = x if x > 0 and zero otherwisese

The circular range R, as dcfined here, is very closely

related to the maximum arc length

(3;6.4) T = MmaXe Ti
1{ifn

and in. fact
(34645) R =~ (8n = T).

From (34643) and the relation (3.6.5), onc can cbtain the dis-

tribution function of the maximum arc length, say G&(t) as

8

(3eBe6) G(t) = 2 (nl)j(?) <1 - At > -l
j:O J 2“

It may be noted that a distribution of similar form was
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obtained by Fisher (1929), who used it to construct a tpst

of gignificance of the largest amplituvde in harmonic analypis.
e also gave a table of percentage points for sanple simes
n=5(1)50 at two levels namely, 5 per cent and 1 per cent,
which can as well be uged for festing uniformity on the

tircle, But the test based on the circular raﬁge, R (or
squivalently on the maximum arc length, T) is howover not
likely to be as good as that based on Uh. Some further
comments regarding this will be made in the next Chapter.
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CHAPTER IV

PITMAN EFFICIENCIES OF TESTS BASED ON ARC LENGTHS

441 Introduction and Summary

In this chapter we study the Pitman's asymptotic rcla-
tive officiencies (ARE'g) of tests based on arc lengths, that
hagve been introduccd in Chapter IIT for testing uniformity on
the circle, The investigations contained in this chapter are
quite general and apply with equal force to the goodness of
fit problems on the line, as will be clear from the remarks
that follows Tests based on spacings have been used for
goodness of fit on the line by several authorse See €efe
Greenwood (1946), Kimball (1950), Sherman (1950) and Darling
(1953)s Given that Xl,...,'Xn' are n independently and
identically distributed random variables with common distribu-
tion function (defe) G(x), the goodness of fit problem on the
line is to tegt whether G{(x) is a specified def. When the
latter def. is continuous, a simple probability integral
transformation on the random variables (r.ve's) would permit
us to equate the preassigned def. to the uniform d.f. on [O,l].
From now on, we assume that such a reduction has becn effected
and that under the hypothesis, G(x) i1s the uniform defe on
[o, 1] 1If X! < aes < X} arc the order statistics, the
sample spacings, (n+l) in number unlike on the circle, are

defined by

b5 b
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(4e1el1) D. = X! - X!

5 i oK 1 = Lysesy N+l

where we put X! =0 and )%'1-4-1 =le 1In order that this defi-
nition of sample spacings be meaningful under any altermative,
the defe G(x) must have the carrier [0,1]. (The carrier of

a def. is the smallest closed set with probability one),

Now let Apseeeyly be n random variables distributed
ihdependently énd identically on a circle of unit circumference.
The null hypothesis i1s one which states that the distribution
is uniform on the circle.' Ordering thc obgervations as |
0 £ oos L af, the n sample spacings which are the arn
lerigths between the successive sample observations are given

by

(4!102) :Di = 0’,]'- Land aj‘.."l, i = 1’000, n

where we put a! = af=le The letter T, as used in (3eT0d),
wlll be reserved for spacings from a uniform distribution
while the gspacings in generzl will be denoted by Di' As we
have noted in Section 343, under the null hypothesis, the
distribution of these n circular spacings is the gsame as

fhose from a sample of size (n-1) from a uniform distribu-

ton on the unit interval [0, 1]s Under the alternative, we
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can choose and fix an arbitrary point.on the circtmference as
the origin ané cut open thé circle at that point to get the
line segment [0, 1]s Now (n=l) of the circular spacings
which do not contain the cut-off point, will have the same
distribution as\ (n=l) spacings on [0, 1], not' containing
the end-poiﬁts 0O and 1, while the nth circular spacing
‘contalning the cute-off point will have the same distribution
as the sum of the remaining two linear spacingse It is easy
to see therefore that the limiting distribution of the empiri-
cal defs of the spécings, which forms the basic tool in our
study, remains the same in the circular and-linear,ggses.
Hence gll1 the statements regarding the ARE's of spacings tests
made in this chapter hold for the c¢ircular as well as linear
situations. We shall, therefore, deal with the spacings on
[0, 1] from the next section, keeping in mind that all -the
results hold equally well for the circular situation, in
which our main interest liese It is fortunate that the study
of the circular gituation fits nicely into the linear case in
the asymptotics and helps throw light on the spacings tests
on the line,

To compute Pitman efficiencies, one usually obtﬁins the
limit distributions of the test statistics under the alternative
which, in genersl, poses a diffioult problems However,for

calculating the Pitman's ARE's, it is enough to obtain the
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limiting ¥stributions under n seoquence of alternatives which
converge to the hypothesgise This problem turns out to be
gomewhat simpler., We, therefore, choose the following sequence

of alternatives
G(x) = x + L{x)/n® , 0<x <1

where @9 1is a number > 1/4 and IL(x) is twice continuously
differentiable on [0, 1]. These conditions already imply our
sarlier requirement that the carrier of G(x) be {0, 1]

Wo shall say that this alternative is at a distance of order
1™ from the hypothesis. TFor example, we may choose

L(x) = (sin 2rx)/2%n, O < x < 1, in which case the def. G(x)
refers to close CN @glternatives or one may take for instance

L(x) = (° = x)a

For the D, defined in (4.1.2), E(D;) = 1/n for all
1 under the null hypothesise We will therefore call
{nDi, 1 =100y Il} as }normalisod' spacingse Further if

hnl""’ hnn be gome positive numbers, then we shall call

{nDi/hni, 1= L1yeesy rx} ags 'modified! or ‘'adjusted' spacings.
The ratiénsle behind dealing with these modified spacings
is that, in some cases, one may choose to adjust the spacings

1]

by their expectations under some alternate distribution, or

otherwise to enlarge the clasgs of statistics based on spacings.
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This may be thought of ac being analogous to the use of

'normal scoreg' and other scores in rank testse

In Section 445, we obtain the limiting distributions of
the empirical defe's of the normalised and modified spacings
in the sense of weak convergence of measurcg in an appropriate
complete separable metric space. These results are the most
crucial ones in this chapteres Their proofs are gquite long and
require Sections 4e2, 4e3 and 4¢4 in which, after describing
.some distributional equivalences, many interesting results of
independent interest, concerning the cmpirical defe's of
'porturbod random variables! and 'rendomly scalced random
variébles' are proved. Appéaling to the invariance principle,
we immediately have the limiting distributions of a large class
of gtatigtics which are symmetric in the normaliged and modi-

fied spacingse

From this, we deduce in Section 446 that tests which
are symmetfic.in the normalised spacings can have limiting
power greater than the test size only if 8 = 1/4 ise., ‘they
can not discriminate alternatives which are at a distance of

0 from the hypothesis, for any 8 > 1/4.  This

order n~
character of the symmetric spacings tests has been pointed out
in a paper of (ibisov (1961), which has not attranted the

attention it deserves., The importance of our results lies in
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the fact that they allow for the computation of the ARE's of
symietric sample spacings testse We find that among the meny
such standard tests die to Greenwood (1946), Kimball (1950),
Sherman (1950) and Darling (1953), thc one due to Darling
based on n™F 3 log (nD;) has the maximum AREe We note
wwthef interes%ing feature of the tcgts symmetric in normali-
sed gpacings, namely their ARE's do nov depend on the particu-
lar choice of the alternative sequence choson iece, on IL(x).

However, this feature 1s not shared by tests synmetric in the

modified spacings, which esre discussed belowe

The theoorems of Sechtion 445 also enable us to gtudy the
BRE's of tests which are symmetrically based on the modified
spacings. A aew Tcature ariscs herce Consider for instance
the modified spacings {(n»i+1)Di, i=1l,eeey n } and congi=-
ter the tegt based on their sume This is essentially a test
baged on the sample mean and hence can distinguish alterna~
tives at a distance of nrder n"Y2  from the hypothesis if
the mean under the alternative is not equal to. 1/2 dece, if

1

[ x an(x) # 0.
(@]

*
fen J x dL(x) = 0, thig test may still have limiting power
0

groater than the test size when the alternative is at- a dis-

tance of order n"L/% from the hypothesis and 50 be on a par.
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with tests which are gymmetric in the normalised spacingse In
Soction 446, we denmonstrate this behaviour of tests symmetric

in modified spacingse.

It is however true that therce exist tests which always
distinguish alternatives at a distance of order n"l/2 from
the hypothesise The Kolmogorov-Smirnov test is an example,
That tests based symiwbrically on normalised or modified
gpacings can not do &s well is quite disturbings One point
to be learnt from the debacle of the symnetric sracings tests
is thise The gample spacings form a sufficient stafistic.
They come quite close to the case of independently and iden=-
tically distributed re.ve's in the scnse that they even form a
get of interchangeable Teve's under the hypothesis. But the
order of their occurrence is quite important in the case of
thege spacings,in completé constrast to the general principle
of basing tests symmetricaily on the available data, whenever
it consists of independently and identically distributed

observationsge

442 Prelimingrisg

Let X)sXpseee, X 4 be (n=l) independently and iden-
tically distributed random variables with a continuous defs
Gn(x), whose carrier is [0, 1]y N = 2,3,e4. o Xyseees X 4
may also depend on n, but we shall suppress this in our
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notations throughout. Gn(x) is a sequence of alternative
distributions, which converges to the uniform distribvution on
(0, 1], the distribution specified by the hypcthesis. In
particular, wc assune Gn(x) to be ol the form

(44241) Gn(x) = x + L(x)/mn°

for x¢ {0,1] wherec 9 dig a fixed congtant > 1,74, We irmose
the following regularity ccndition on L{x). L(x) i1s twice
continuously differentiable on [0,1]. (4-2.1) togebher with
this condition will be referred to as assumpbion (A). If
A(x) and A'(x) denote the first and second derivatives
respectively. of 1.(x)}, ‘then we note that there ie a congtant

Lo such that

(4e242) (=) | < Loy P L) < Ls FEEEDRIKS L,

for all  x¢ [0,1]s

. -1
The inverse function of G, (x) is dencted by G (p),

n
0 Lp £1l. We define

i

(44243) K (p) = g, L6 ()] = L ac i (p)/an]™
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It may be verified that in our case

(4e244) G;l(p) =p = L(p)/n® + o(1/n°)

(4.2.5) kn(p) =1 *’A(P)/na - L(p) K'(P)/nga+-o(1/nga)

where of(e) is uniform in p.

We wil; obtain several limit distributions under the
sequence of alternatives G, (x) satisfying assumption (A)e
It is clear, however, that the limit distributions under'the
hypothesis arc obtained by putting TL(x) = Os We will make
gome further remarks about these alternatives in Section 4.6.
Let the random variables (reve's) Xpseee, X, 5 Dbe arranged

in increasing order of magnitude thus

(4e246) 0 L X Loee XL, <10

The sample spacings have been defined in Section 4.1 as

(4.2.7) D. =X:;- ..Xf ’ i-’—‘-l,...,n

where we put X(') =0, X =1
We first relate these sample spacings Di to the
spacings based on uniformly distributed reve's on (0,11 (to

bo called uniform sample spacings )e Lot Ujyeee,U be
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{ndl) independently and identically distributed reve's with
gwmiform digtribution on [0,1]. These are arranged in inecr-

tasing order of magnitude thus

The uniform sample spacings are defined by

(4.2.8) Ti '--'-U:!L “U:;_“‘l, i:—"l,.oc, n

vhere again, we put U(; = 0, Url = 1.
For two reve's X and Y, we write X ~Y +to mean

that X and Y are distributionally cquivalent, ‘that is,the

digtributions of X and Y are identical. We know that

(X, 1 =0y00ey 0) ~ (G7H(U), 1= 0yeu.,n)

and thus
. -1 -1 .
(Di, 1 = l,..., n) ~ (Gn (U:;-) - Gn (U:;."‘l), lzl,ooo,l’l)
= (Ti/%(Ui)’ i=Jsee.y 1)
'.J

. ' t
where I‘Ii-l UL Ui

(40209) = (Ti/a:li, i= lyewey n)
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where
* a * 2 *
(442410) =1+ ph/n% w YL/ 00w R
with
* Yt d
(4e2411) Bry = A(Uy)
* wt N ~t

= - '
(402,12) Yo = = L(U;) A1 (uy)
and
(402413) sup /1 IR;iI -> 0 almost averywhere

i

in view of (442e5)e Also, from the existcnce ol the limiting

distribution of the Kolmogorov=-Smirncv statistic,

(4e2014) sup /Z,JUi -i/m| = Op(l).
3 :

Thus from the continuity of I, £ and A',

(4.2.15) sup JB gy, - p/m)] = 0,(1)
(442416) sup | Y;i =Y (i/m)] = 0,(1)
where

(442417) glp) = A(p)

(4,2.18) Y (p) = = L(p) A*(p)y O <p < le

Now let - W]

. . -
distributed exponential reve's with density function, e " ,w20

seesy Wh be n independently and identically
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Let w; = (W + ses + W) and let W, = w:/n, Then

it is well known that

(Ti, l-—-l,..», n)"‘ (W/Tl, i:l’ﬁut, Tl)-

Thus (4+2.9) may be rewritten as

(402419) (%,i=1”“,m,IW/ 1 = 1lye0e,n)

ni 11’

where

(442,20) gt 5 1 =1,kee, m) . (a7, 3 1 =1,ee., n)

In vi ew of (4e2e20), wu save on notation by writing anl for

;; and retain its structure defined in (4.2,10) and will

later on utilise the properties (4e2e13), (4.2.15) and (4¢2.16).

(1

The distributional equivalence in (4,2 19) is well known
and has been -used by others, es.g. Weiss (1965), However, this
is the fi:st time a systematic use of (442.19) has been made
to obtain the asymptotic distributions of the empirical «defs's
of the normalised spacings and modified spacingd under the

general alternatives described in (44241).

The empirical def., Hh(x). of the normalised spacingg,

which is of central interest in this chapter is defined an

follows
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n
(442421) H(x) =2 I(nDys x)/n, x>0
1

where

-

if 7 < x
(402.22) I(Z; X) = {

O

if .2 > x.

The -ratlonale for using nDi's has been explained before.,

Using the equivalence (4¢2.19), we note that

;[Hn(x), x > r)}r,,[ 2 I(w /ani v?n; x)/n, x>0 }

(402025) * s
= {F(xw), x>0}
where
(x) = 3 *
[»] - .
(402424) n(x) = 2 1 /an, 5 x)/n. .

(4.2423) says that the, distribution of the stochastic processes
{ H(x), x>0 } and { E I(W /a in’ x)/n, x>0 } in some
suitable svace (see dlscu581on after(4 3,11))coincide and this
distributional equivalence is stronger than the distributional
equivalence ®f the finite dimensional marginals. Anticipating
our later definitions in Sections 43 and 4.4, T (x) 18 the

empirical defe of Wl"“’ Wh with random perturvations and
F;(x ﬁn) is the empifical defe of Wy,es.,W, with random per-

turbations and a random scale factor Wn’

If (hyyy hyoseesy N )y 0= 1,254 be a triangular

array of positive constants, define
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(4e2425) D; =D, / b, 1 = lyee., MNe

fo shall call (I),ee., D}) modified spacings and the empiri-
cal d.fe of these modified gpacings is defined by H;(x)

where

T
(402426) H;('x_ - ;L;I(D;“ s x)/n .

Prom (4e2.19), it follows that

B

(442427) { H::(X), x _>___O},\, {F;(x b.%;n), x>0 }

where the a;i's used in the definition (4.2e24) of F;(X)

here are distributionally equivalent as follows:

(4.2.28) { a:;i, 1 = 1,.0., n } Fau.

9 ) * .
{ hni(l-f-sgi/n + yn*i /n“a + Rni), coi=1l,e0., n}

where 'Q:li, )’ni and R;i gatisfy the conditions laid down

in (442415), (4e2e16) and (4e2413).

is in the remark after (4+.2420), we replace the symbol

in (4.2428) by '=' in order to avoid introducing new notationas.
Thus we have .reduoed the problem of finding the asympto-

tic distributions of H, (x) and H;(x) to finding taat of

F(x W )e In Section 4.3, we derive the asymptotic
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distribution of un empirical defs with non-random perturbations
and then allow for random perturbations. Finally, in Section
4e4 we allow random scale factors. Thesc terminologies are
made precise in the following sectionse The results presented
in these sections are more general than are necessgsary for our

purposcs and are of independsnt interest by themselves.

4¢3 Asymptotic distribution of the empirical defe of random
variablcs subject to perturbations

Let Zl’ZZ’°" be independently and identically distri-
buted reve's with a common defe F(x) with F(0) = 0. We
assume that ®(x) 1is thrice differentiable. Let f(x), £'(x)
and f"(x) denote the first, second and third derivatives
regpectively of P(x). We impose the following blanket condi-

tion (B) on F(x)
(B) xf(x), x°f'(x) aund x°f" (x) arec bounded on [0, ok

Le—t {a:nil’ i = 1,..0, 1’1, "" n =‘l"2’... }.

be a triangular array of congtgntse Then the randopm variables

{Zni = Zi/anil’ 1=1yeee,m }

are sald to be perturbed random variables, N = 1,2,ee0

Let
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n
(40341) Pq(x) = §I(Zni3 x)/n
n

To refer to Fnl(x) as the empirical defs of (Z9,..., Z,)
under a perturbation hy the non-random quantities

{“‘ml’ 1 =1l4eeey n } « The following structure is assuned
of { tpipr 1= 1lyess, n} « There exist continuous ‘fu.nctions

8p) and Y (p) on [0, 1] such that
(40342) iy = 1 o+ g(i/n) md 4y (i/n)/nga-i-Rni

wiere 3 1is a congtant > 1/4 and

(40343) sup /o [R | => 0 as n = =,
1

If 3 >1/2, then the second and third terms on tbe right hand
side (RHS) of (4e3e2) can be absorbed into R,; and if

1/4 < 3 £ 1/2, then the third term of the RH3 can be absoried
into Ryie We note that a4 -> 1 uwniformly in i, so that
vithout loss of generality we may assume that '

<2

(40344) /2 < agyq £

for all n and 1. Let
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it

(44345) F () E(F 4 (x))

i

B( 1%Iil_I(Zi/ocm_lé x)/n)

i

1
> P(x apyq)/m -

It is oasy to sec that F;l (x) tends to F(x) uniformly in x

The main theorem of this section will establish the
limiting distribution, in an appropriate sense to be made

precisevery soon, of the stochastic process

_ R
(4e346) { nnl(x) = /n [Fnl(x) Fnl(x)], x>0 } .
We now state two lemmas required in the proof.

Lemmg 4e3sl: For n = 1,2,ee., let {’Y 1=1,0e.,n}

ni’
be independently distributed with '

(44347) P(Y ;= 1) = Dyt P(Y, .= 0) = 1- Ppis 1 =1,ee,m4
Let L

1 ‘ n
(403.8) Ty = 12 (Yni— pni)/ f:‘ pni(l' RERRY

Then as n => <«,

P(Y, <x) => & ()

for each x, where

x. o
5 (x) = J exp (=t7/2)dt / /n

- (D
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if and only if

n
(405.9) = %pni(l"'pni) > g

o

See for example Flsz (1963) pe 207 for a proofs. A
gufficient condition for (4e349) to hold is

n
(443,10) T pni/ n’  is bounded away from O and 1,
1

Lemmg 4¢3e2:
Let (Y¥y,Y5,Y;) be a trinomial rev. with Y +¥o+ Y;=1,

Y, =0 or 1, P(Yi=l)=pi’ 1=1,2,3 and py+ po+ pz=1.

1
If Y; = (Y,=py)y 1=1,2,3, then

2
(403411) E(Y;): 0 , B(Y]) = py(1-p;)
*
E(Yi Y:‘) = - pipj

. \

i

*2 ¥2
E(Yi Yj ).
i ?é jy i, 3 = 1,42,3.
Yo now briefly describe the space in which our processes
{nnl (x),x20 } , defined in. (443+6), lie and define weak

convergence of processes on this spaccCe Congider the space

D[0,~] of functions, p(x), on [0,~] with the properties
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1) p(x+0), p(x=¢) oxist for each x in (0,«) and
p(x) = p(x+0)
ii) p(0+ 0) ecxists and is equal to p(0)

iii)  1lim p(x) exists and is equal to p(w).
Koy O

A sequence {pn(x) } in D[0,%] converges to p(x) in
D[0,«] if therc exists a seguence {xn(x) } of one=to-one
monotonic continuocus maps of [0,«] onto [0,~] such that
sup lxn(x) -x | =0

X

and

sup Iprﬁln(x)) - p(x)| => 0.
X

Thig convergence corresponds to the Jl~topology of Skorohod on

the space D[O,]s

A sequence of stochastic processes {pn(x), %> O.}convor-

ges weakly to a process {p(x), x> 0 } in DLO,>] if

(403012)  Bls(p,(+))) => E(sl(p(=)))

for every function s(.) on D{0,»] which is bounded and con-
tinuous in the topology just deseribeds When this happens,

we have by the invariance principle, *the most useful conclu-
gion that the distribution of the real valued TeVe s(pn(°))
converges weakly to the distribution of s(p(e)) for overy
function s8(e«) on D{0,x], which is continuous &almost every-.

wiiere with respect to p(e).
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Let wu(x) bBe a one-to=one monotone continuous map of
[0y ] onto [0, 1]a For any function alp) in plo,11, 1let
p(x) = q(u(x)). Then this mab from D{0,1] to D[0,«~] is con=-
tinuous and has a‘bontinuous inverse (when D[0, 1] is
endowed with the I, =topology of Skorohod (1956)) and is there-
fore a homeomorphism. Thus the study of probability measures
on D[0O,] can be rcduced to the study of probability measureg
on D[0, 1], which is by now olassicale Sen for ingtance
Skorohod (1956), Scthuraman (1965). A sequence of stochastic
procosses{ qn(u), 0 <uxl } ig said to converge weakly to a
stochagtic proceas { q(k), 0 <l } if for any bounded

continuous function r(e) on D [0,1],
Blr(q,(*))] => BElr(q(*))]s

We shall make use of the following standard theorem of compac t-
ness and convergence of a gsequence of gtochantic procegsen in
DO, 1]

Theoren 4-3.3: et {qn(“)’ 0 S v £ 1,} n = 1;2,... and

@(u), 0L u( 1} be stochastic procegses with values in
D [0, 1] such that

i) The marginal ‘distributions of{ qn(ul),...,qn(uk)}con-
verge to those of {q(ul),...,q(pk)}weakly, for every finite
subset “1"';’"“k of [ O,l].

ii) There exists a constant € guch that

edets) B | (uy )= A e ) 1™ L ay (ke) = gy (k) | } < oh
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whenever. 0 il HaS =<l and  puy - Mplhy ug- ty £ he
Then the SOquenoe of gtochastic processés { qn(u), Osu x1 }

converges weakly to {q(u), O;ﬁ;b'ﬁ:l}

This theoroem is essentially due to Chentsov (1956) and

can also be found in Secthuraman (1965).

Now, let p(x) be a one=~to-one menctone continuous
transformations of [O,m] onto [0,1]s Let pn(x) = qn(u(x))
and p(x) = Q(u(x)), 0 L x < » Bince u(x) is a homeomorphism
the gequence of sgtochastic pfodessos {lqn(g), O <l } conver-
ges weakly to { al)y © ¢ p < } if and only if the sequence
of processes {pn(x), 0 {x £ } converges weakly to

{ p(x), 0K x< = }-o This provides us the technique of investi-
gating the convergence of our cmpirical defs. procesges.,

After this digression on the definition of D[0,~] and
weak convergence of processes on it, we return to our empirical
defs processese We note that for each n, { nnl(g), x>0 }
defined in (4e346) is in D[0,>] and is measurable if we put

"’nl(oo) = O,

Theorem 443.,4% Let condition (B) hold. The sequence

{ nnl(x), x>0 }‘considcred as & stochastic process in  DLO, =]
convergepn weakly to a Gaussian process {nl(x);‘leo } with mean

zero and covariance function

(443414) Ky (x,y) = Ky (yyx) = F(x) (1= F(y)) for x

I~

N
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pof: Define the processes { yn(u); 0L g l} ’ {Zn('\) )y
1} and{yw, 0<us1}in D{0,1] by

43.15) Vu Py () = n 1 (x)
2, (P0) = ()

y (F(x)) = ‘nl(X)-

r method of proof is to establish the following in order.

1. The sequence of'processes{ o)y 0 < g 1} in Dlo,1]
mverges weakly to the process{ yluw)y 0 < w1 } .

&% The sequence of processes {zn(*() )y 0 <P 1 }in DlO,1]
mverges weakly to the process {y( V), 0 <y<1 .}.

3 The sequence of processes {nnl(x), x> O} in D0, ]

mverges weakly to the process {nl(x), x>0 }.

Fix xe Then,

ﬂnl(x) /‘/I% P(x ocnil)(l— P(x anil))/n

n i . //n )
= }i'.‘ (I(Z'i/anil’ x) = P(x anil))/ - § Mx ocnil)(l- F(x anil))

mwerges to the normal variable with mean zero and unit variance,

n =>o, This can be seen casily from Lemma 4e3e.le Since

I;1:1 P(x oy3) (1= B(x ays1))/m => P(x) (1= B(x)),


http://www.cvisiontech.com

=106~

nnl(x) convergens to a normal Tev.e with mean zero and variance
P(x)(1-P(x))e A similar application of the multivariate version
of Lemma 4e3s1 will ishow that the finite dimensional marginal
distributions of {nnl(x)’ x>0 } converges weakly to those of.
{nl(x), x 20 } ilence the finite dimensional marginal distribu-
tions of {yn(u), 0L gl } ooﬁvcrge to those of the Gaussian

process {y(u), 0L gl }. Next, let 0 < py £ Mg £ Mz £ 1.

Then
yn(ﬂa) = ‘nnl(XJ)
n . .
¥here
rz 1+ - 1
(443416) Fra (%50 = 1y 7 = 1,2,3
Thus
: n

(443417) Inlup) = ¥plwy) = T Vyy /Jn

n
Voluz) =y (u) = = Vo //m

k=1 *~

where

Vpi= 1023 0505 %) = 1023/ 0515 %) = Flxpupyy )+ B(Xyapyy)
(443.18)
Vor= T2/ oqs Xz) = T2 /o0 5 %) =Flagag g0 + Flxgo )

i,k = Lyeaey N Since 1/2 < i1 from (4e3.4) these are bino-

mial Treve's correoted for their meanse Then
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B { (.‘/‘n(ug) - y11("11))2(3)’1&(“5) - 7’711(“2))2 }

L

n"EE{(}; Yli)‘z (1% "Vélc)z }

2E(ZV+EVV)(2V+Z:JV)

(443419) i 14 1i
-5
,x 5‘39
+ E(V11V°kv?,()* B(V1 Vg3 oxVeq) § o

i k;é 1#£] ,k;e/(

The second and third terms of the last expression vanish whereas,

in the last term non~zero contributions occur only when i=k,

j=f or 1=/ and j=k. Let

) - F(x

i

Prg = Flxpupsy 1047

(403'20)
Poy = Flxgapiq) = FlXpoyn ).
from Lomma 4e3e2

11 91{)
= Py 1Py (1= 1074) (1= Dgy) = P14y (1= 2py ) (1-2pgy )

for i=k

hich in any case is smaller than P11Pox" Also

B(Vy3Vp4) = = DPp3Poye

btituting these in (4.3419)
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E{ (7. (o) = ¥, (i Ny () = v, (e ® }
o n n
L 'v(]z:. Pli/n)(§ pgi/ﬂ)

£ 2C|/~£2"“J_|'Iﬂg"’ Flgl'

Thus from Theorcm 4¢3.3., the scquence fyn(/.z), 0 ul }conver-
ges weakly to the Gaussian process {y(u,), 0 sl }. Congider
the gequence of homeomorphisms An(O) of [0,1] onto [0,1] given
by

-1
(443.21) N () = F(E (W)

18
where FY (¢) 1is the inverse function of F;l('). It is

ni
easy to see that
sup A (u) = u| => 0,
M
and

2. (V) = 2,0 () =y ().

Hence the weak convergehee.of the sequence {yn(u), 0< ugl }
implies the weak convergence of {Zn( W), 0<Y L1 ],to the
Gaussian process {y({) ),0 £V < 1}e The transformation

x => F(x) 1is a 'homeomorphism between [0,] and [0,1] under
our assumptionse. From this and the relationships (443415), it
follows that the sequence of processes {nnl(x), x> O} in

[0, =] converges weakly to the Gaussian process {‘nl(x), x> 0 }
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vhoge mean is zero and covariance is given by (4e3eld).
Remark: When condition (B) holds, we can replace F;l(x)
wich enters the definition of m,3(x) in (4¢3.6) by

P(x) if 8 > 1/2

(
) 1
{P(x)+ x£(x) [ p(p)ap/m®  if 1/4< a<1/2
(%)= { °
(%)=

1
#(x)+ xf(x) [ plp)ap/ls*
(0]

1 o - 1 y
+lx2(x) J Y(p)ap+ 287 (x) [ 8%(p) ap/2]/ml/?
0 o}
if 93 = 1/4 ;

after omitting terms which are of smaller order than n-l/é
uniformly in xe¢ The most general conditions under which
ﬁ&(x), can be replaced as above must depend on 3. However
since we are contemplating only the application with
Mx)=1=exp (=x) din Section 4.6, we will content ourseclves

by imposing the blanket condition (B).

To allow for perturbations by constants which are more
general than given in (4e3e2), we consider a triangular scquence
{an3gr 1 = 1yeeey, n} , 0 =1,2,ees with the following

gtructure

(4.3.22) o .-= o(1/n) [148(1/n)/md+ Y(1/n) /m*d4 Ry ]
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where g(p) and j{p) are continuous functions on [0,1] and
R,; satisfies (4e3e3)e We pul the following condition (C) on
e(p).

8(p) is continuous on [0,1] except at a finite number of
points and, for each x, the integrals of PF(xe(p)), o(p)f(xe(p)
and Gz(p)f'(XO(p)) as funcfions of p on {0,1] exist and

are finitec.

We shall see later that this generalisation generates
theorems from which we will be able to obtain the limiting
distributions of staﬁistics based on mcdified spacingse
Define the empirical def. an(x) of the Z's perturbed by
the“{ ani2} given in (4e3e¢22), by a formula similar to (4e3.1),
Let Foo(x) and Nyo(x) be as defined in (4e43e5) and (443.6),
with the perturbation constants { aniS} instead of { anil} .
The following theorem is proved exactly as Theorem 4.3+4 and

is stated without proof,

Theorem 4.3.5: Let conditions (B) and (C) holde The sequence

of stochastic processes { nnz(x), x> O } in D(O,w] converges
to the Gaussian stochastic process {ng(x), x>0 } with mean

gzero and covariance function Kg(k,&) defined by

(443.23) Ko(x,y) = £5(y,%)

m’;ir’~ﬁg {1= Pva(p))ldp for i,ﬁ Ye
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Remark:  Under conditions (B) and (0), F;;?(K)’ which is defined
by (44345) through the congtants { O‘nif’} of (4e3e422), can be

replaced by

1
J P(x6(p))ap if 3> %
J g

e Lo

1 1
J P(x8(p))dp+ [ xp(p)e(p)f(x6(p))dp/n® if ‘}j<6.<.
0 0

Bel®)= ! o 1
\ 1/4
gF(xe(p))dp»ff xB(p)e(p) £f(x6(p))dp/n
(o]
1 . 1o o o %
+[/xf(p)e(p)ftze(p)) dp +J x"B"(p)e (p)fr(x6(p))ap/21/n
0 (o]

if 98 =

AN

. -1 /2
up to terms of smaller order than n 1/2 uniformly in xe

We now proceed to establish a 1imit theorem for the' empi -
rical defe of randomly perturbed rTeve's. A star will be, in
general, used as a generic gymbol for denoting random quantitieg
or the agsociated functions and processes. Let {“?111’ i= l;...,n}

]
B=1y2yee. be a triangular scheme of random variables with the

form
* * 4} * 29 *
(403424) Gpgp =1 + Bpy/ 10+ Yyi/ m + Ry
where
b 3
(44 3.25) sgp/ﬁ 'Rni‘ = op(l)

and there are continuous functions g(p) and Y(p) on [0,1]
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such that

*
] 5] * .
(443.26) s;:lp n' ani--B(l/n)l = 0,(1)
(443427) sgp | Xgie Y (i/n)]| = op(l)
where
. E -2 if 3<%
d ={*~
{ 0 if 3.
Let
* n % |

This is the empirical d.f. of 2&,...,25 perturbed by the
random quantities { a;il’ 1=1yee., n} o Let the non-random

quantities { “nil} be defined as
_ . ) < 28,
(403.29) api1= 1+ 8(i/n)/n°+ Y (i/n) /*n°%% R4

in terms of the new g(p) and Y(p), and le(x) be defined
by the relation (4¢3.5) with the new anil's. Consider the

stochastic process

(4830)  {n) () = /A(Fy (0 - ¥y (x)), x20 }

Theorem 4¢3.6: Let condition (B) holde The sequence of -
processes { n;l(x), x > 0 } in DLO,=] converges weakly to

the Gaussian process {m(x), x> 0} with mean zero and
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covariance function given by (4.3e¢14)e

Proof: Given €160 > 0, there is an ny such that for n > n,,

.
(443.31) P { sup n® |pps=B(1/m)l > ey }< e
(403.32) P {~s§p l )’;i =Y (i/m)[>e } < e
and

(403433) P { ou /AR | > el) < €y

85 can be readily seen from (4¢3+26), (4e3¢27) and (4.3425)

Let
Ty ,1= 1+ {B(i/n)+ el/na* }/na+ {)’(i/n)-o- €y }/1126+ 61/ /n

e e R R R S

and

n
(403434) Fnl,j(.x)z %E I(Zi/anil,j; x)/n, j =1,2

It is easy to scc that{anil,l’ i = lyeeey n} and
{ Opgy,2? 1 =1,00ey n} satisfy the structure definedin {4.3,2)
md (443e3)e We may also assume, without logs of generality

that “nil,l>o and 0ni1,e >0 for all i and n_>_.nl. From

(4e3e31), (443e32) and (4e3¢33),

(443435) P{an:g ol 0018wy 10 1 =1yeee, ny 21=36,
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for n 2 nje. This can be rewritten as

. £ S
(403.36) P {Bq o(x)< By ()< By 4 (x) for all x}21- 3¢,

using the monotonicity of I(zj x) in xe Appealing now to

Theoorem 4.3.4 we have

{ ﬁl [Fnl,l(x) = F;ll,l(x)]’ X 2. 0 }
{ /m By o) - .;1,2(}:)], x 20}

with F;l’j(x) as defined in (4e3e5) with perturbation cons-
tants {“nil,j }s» J = 1,2, convergs weakly to Gaussian pro-
cesses { m (x), x20 } in D{O, ] with mean zero and covariance
function given in (4e3.14)s The functions le,d (x) differ
from F;l(x) by constant times €, uniformly in x. Since

€, and €y are arbitrary,these assertions, along with (4e3436)
ogtablish Theorem 4e346e

Remark: The rcemark after Theorem 434 18 applicable to the

above Theoreme

!

Now suppose that a*.q, i = lyeesynn} .1 = 1,890ce 15 a
P nic

triangular scheme of Teve's with the form

*
* * * 9 29 *
(4e3437) Cie = o 01+ Bpy /B + Ypi/ @ SRy

* ) ) . - N R ——
where Rni’ ﬁ*‘ and Azi satisfy the assumptions (4e3¢33),

ni
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(403031) and (4e3432) anc further there is a function 6(p) cn

[0,11 such that

*
e a .« - i = )
(443.38) p | oy =e(i/m)| = o (1)

mi 6(p) satisfics condition (C)s How define Fuo(x), Fiy(x)

and 77;‘;2(:{) gimilar to the expressions in (4e3428), (4e3e29)
* 3

1 nJs ] i wi 1 . 1ngt 3
and (4+3,30) respectively with { 0ps 0 } ingtead of {”‘nil JL_.

.

Te following theorem then follows from Theorcm 4e3.5 in

exactly the same way as Theorem 4306 follows from Theorem

43ads

Theorem 453.7: Lot conditions {B) and (C) holde The sequence

of stochastic procnsses .{ ﬂ:lz(x) y %20 } converges weakly to
» &4

the Gaussian process { 1o(x)y x 20 " in D[0,>] where
{172(}(), x > O} has mean zero and covariance function Kg(x,y)

given in (403e23)

Remark: The remark after Theorem 4e3e& 1o applicable to the

shove Theorecme
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4e4 Asymptotic distribution of the cmpirical defs when

the random variables are subject te perturbations

and a random gcale factor

Wo retain the notations of the earlier gections. Let
My (X)  be defined as in (44346) through F (x) and le(x)
which are in turn defined as in (4e3el) and (4e3e5) and the

@41 '8 have the structure (4e3.2).

Let ZZ be a reve and let g, =/n (Z:;- 1)s We now
assume the following condition (D) on the stochastic process
{ nnl(x), x> 0 } and g,: Por any finite collection (x]_,...,xk)f
the distribution of | m;(xq), My (xp)seeey My (), £ )
converges weakly to the distribution of { nl(xl)~,..., nl(xk),g }1
which is multivariate Normal with zero means and covariances

given by

(4.401) cov (nl(xi), "l(xj)) = Kl(xi’xj)’ ;S i!jSZk

where Kl(x,y) is as defined in (4.344) and

(4e442) cov (”l(xi)’ E) = al(xi)’ i‘; lyee.y Xk
and
(4.4.3) var (E) = 1l

We add the following to the assumption (B) madd on F(x) in
Section 4e¢3. (B*) There is an « > O such that

(1- M%) => 0 and xf(x) => 0 as x => = ,
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Theorem 44441 Let theg conditions (B), (B*) and (D) hold. Let

(404.4) S (%) = VAR, (x7) = I (x) ]
Shen

(40445) o(s;p< . I gnl(x) - 'nnl(x)-gnx f(x)]| = op(l).

-

Thus {{;nl(x), x> O} converges weakly to the Gaussian process
61(x) = nl(x)+ xf(x)r, x> 0 } iljl D[O,Oﬂ.{ﬁl(x),l x>0 }

has mean gzero and covariance function

(40446)  Kz(x,y) = K5(y,x) = Ky (x47) + xyf(x) £(y)

+ xf(x)a (y) + y£(y) a; (x)

for x £ Ve

il

Proof: ’%nl(z_c) \/r_l[Fnl(xz;"l) - le x) ]

1

SR P (x) = FE (x) ]+ /A (P (x20) - 7 (x)]
, -
= My () (2= 1) 3 weny flxayy)
+ 0B (x27) = T (x) = (3= 1)
(40407)

‘f Xty g9 £ (%apy59)/ml

n
= nl(x)+ En ;)ZL: xanilf(xanil)/n+ Rn(x) (say).

§ince Uil «> 1 uniformly in i,

n .
% xo .- T(xauq)/n => xf(x)
J.._l_i P U § | I
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uniformly in xe Thus to prove (4e4¢5), it is sufficient to
prove that

(4e4.8) Oisii . IR, (%) ] = op(l).

The proof of (4e4e8) is completed in (4e4.31l)s The main steps
are (4e¢4.9), (4e4e24) and (4¢4.30)s Let

n
Rh(x,c)a Q:E [I(Zi/canil; X) - I(Zi/-a‘nil" x)
- (C—l)xanilf(xanil)] /‘/ﬁ .
Then

R (x, 3,) = R (x).

Because of condition (D), for any given #> 0, we can find an

L such that

(44449) P{lz’r“l-:;l_gL//ﬂ}_g;é.

Wo first obtain a bound for

(444.10) P { O_{Slalc%K Ic—illl}; L//ﬁl R, (x, )| S}

This involves the following standard but lengthy methode

Let €, ® > Os We will chcosc thesc congtants suitably

later on., The interval [1-1/ /n, 1+ L/ /u ] is covered by
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L= [2L/€]+ 1 semall intervals of length €. = e/ /n each, the

n
rth interval being

(444.11) L: = ot c. e <o

r r+l Jt

where ¢ = 1=L//% + ré&,e Similarly, the interval [0,K]is
covered by kh, ® [ /n K/8] + 1 intervals of length 8,=8/ /n

gth

each, the interval being

sk
(4e4.12) K = {x. Xg £ x < xgyd

where Xy = sQn.

Let
By = inf xa g, T(xe )
XE€ Ks

M. = sup xa.- F(xXo .,)e
g1 x€ K¥ Mi1 %’lll

Fix an xe Recall that 1/2 < ayi1< 2 for all n and i,

For ce LY,
n
R, (x,c.) - ¢€ § Xopqq T(xo )/ n < R, (x,0)
n
< Rn(x,cr_'_l)-&- € 212 X 37 Flxe4)/m

due to the monotonicity of I(z; x) in ze Therefore
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(x,L) = sup IRn(x,c)l

(404.13)

Next, for x€ K

n
2 1(2y/cpomgn s Xg) = T(23/0n31% Xgq) = (Cp=DAgyd/ /B

(404414)
n
Lz LI(2; /575 Xgaq) = 1(83/0niq5 Xg) = (ep-DAg; 1/ /n
where lsir will be used generatively and will be mg; Or

M s depending on whether (cr— 1) is negative or not and
whether it enters in the expression for a lower bound or an

upper bound. Thus

*
(444.15) sup sup IR (x,¢)] = - sup |R (x,I){
0< x< K |e-1]< 1T/ /A % 0< k< K s
<  max max R (s,r)
0L s Ky 0L r< Ly
where

n
L F3 " — . - 9
R *(8,r) = § L1(2,/c 0513 %s) I(Zi/“nil’xsil)

0036 1) ag /R e

In (4.4.15), we omit any term 'in which the suffix of x becones

negative or larger than Kje Tet r anf® 8 Dbe fixeds Then
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* %
Rn (s,r)__<_ ' f (I (Zi/cr“nil; Xs) P(x Cro’nll)
- 1(Z; /0515 s+ 1)+ F(Xsﬂ“nil)”/ /n
+ 1B [Plagopayy ) = Flxgy qangy ) =(ep=trg; 11/ /5
+ € sti/ n
= | 2 {x(z. /c roni1’ xs) F(x «Cp l’lll)
= T(B3/an15 Xgyq)+ Flxgqanyy) 11/ /A

(444417) + r, (say)

tere r, 1s non-random. Given any w > 0, we can clearly

thooge € and @ such that

[m]

(404418) r, < «/2

uging condition (B)e Thus from (4¢4.17) and (4e4.18),
* % f - - r .
4.19) PRy (oyr) > @} <P { |ZL0(2y/0pmms05%,)

= Pxgopaniy) = 134/ 0p515 %g, 1)
+ Plxgy 1oy )1/ /A > @ /2 4

fe now obtain a bound for the probability on the RHS of (4e4e19).

f$imilar bounds are known (Refe 0e.ge Bahadur (1960a)), but none
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suited to our gituation is readily available in the literature.

Let

(4.%.20) wni"z [I(Zi/cranil; Xs) P(x, Cranil)

- I(Zi/anil:-' Xs,-g;l)+ F(Xsil OLnil)]'

If

- P(x

(4e4421) Ppi = [F(xgepay;q - s+1 i1

and Bni is a binomigl random variable such that

P(B

hy = 1) =p

ni

P(Hy3=0) = (1= Pni) = Anj

then Wo. of (404eR0) may be written as

< Bpi= Ppi it xge, 2 X541

"Bni"' j if XgCop < x

S_-_l-:l

In either case, the required probability is

P {|§ W1/ /o> W/2) =P {1§(Bni—pni)|>ﬁw/2 ¥

it

{‘“(B -p,y) > /0 a/2}

(4e44R2)
+ P {?(Bni" Pni) < -/iw /2 }e
1

Now for any t > 0, in the region in which the moment genera-

ting function of Wni exists,
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| tf(Bmen) t /B o /8
P {f(%u-pm0>/ﬁqu@}=P{e > o

J

< n t(B .. =p,..)
- =t /n w/ZT—T ni~ Pni
e ia Elo ]

= aln, t, w), say.

The moment generating function of the binomial random variable
Bni is
tB
niy _ ty _ - _at
B(o ) = (g, ¢+ Ppie ) = (1=p s (1=-e”)).

Therefore
% log a(n,tyw )==tw/2 /n -t z pni/n +
1

1 _ %
+ = ? log {1-py;(1=e)]

. %
= - tw /2 /0 -t f ppi/n= (1=o )f P,;/M

* s 0 L

£\ 2
-(1-¢") inni/?,n -

It is oagy to sce from the definition (4e4e21) of Py that
/o p, is bounded uniformly in i. Thus 1f we write

1p,;/n @s P, then /n D, -> ¢y, a positive constant. Hence
i = ’

4 - % -
%—llog a(n,t, w) = - ulf (tw /2+ t /0 p +(1=e") V/n p )+
=

+ 0(1)

AF - i (tw /24 cyt+ (1~ et)cl)+ 0(1)

= - % 4+ 0(1)
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for a suitablec choice of t, which makes c¢ > Os For examplc,
it is sufficient to choose +t = o(cu/Ecl). One can proceed

on exactly similar lines and obtain a similar bound for

P {E(Bni—pni) <-/nw/2 1.
Hence the required probability

Ly . - \ - -
P {l§£ I3y /epongns %g) = Plxgpay g} = T(25 /0y 445 Xsil)

+

E(XSilanil.)J‘/ﬁ{ > w /2 }

(H

P { I;;: Wal/ /A > w /2

(444423) = oxp [~ constant /m J.

Thus, combining (4e4¢15), (4¢4419) and (4.4.23),

’ *
P {OSS“%K'RH(X)'”’ y 12,=1]<1/ /o)

< IRn(x,o)l > %

P
bk ol sz
< (L /R K/61+1) (21/e]+ 1), o"c0nete /M
<¢

for n gufficiently larges Uow, consider, on the other hand

(4e4e24)
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P IS I . *"’ )
{qu%é IR ()] > wy |2-1]| <1/ /n ]

<P {/A(1=F (K)+ T (x£(x))> @}

sup
x> K/2

P/ [Ty (K) - By (K)]> o- L};‘l;ullz/g(v:i‘(x)-) -

/0 1= (K)] }

Se{valFy (K) - F(0]> @-1 quﬁ/zf.xf(:m-

(404425) - /1 tl— (x/2) ] }

since we can assume that a, .9 > 1/2 for all n and ie Let

us choowe a K, which will depend on n, such that

(444426) sup (xf(x)) £ w/4

: x> K/2

and

(404427) /o (1= FE/2)] < w /4.

(learly (4e4+426) is satisfied if K 1s large enough because
of the condition (B*'). We Tow 'show that X can be chosen to
satisfy condition (4e4.87) alsoe. Bince the rale of decrqqsc

condition (B*) on P(x) gives

¥x* [1-7(x)] => 0 as x => oo,

we can choose an x, such that for x 2 x|

(1,4.29) b opdnitzdblots bding adwaldir
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o
When n > xga, putting xa? /N, from (4.4.28) we obtain
J/n Ll-F(nl/za)] < w/4.
Thus if we choose

(444.29) K > 2nl/20

it satisfies (4,4426) and (4e4.27) for sufficiently large n.
Further since Jn [Fnl(K) - le(K)] is asymptotically normal
© with mean gero and variance \F(K)(l- F(K)),'(see Theorem 4e3e4)

uging (4e4.25), (4e4.26) and (4+4427)

P{ ?SCEPK an(X){ > W ]Z;‘l-ll <L/ /n }

SP{ /AL &) - B 0] >e /2 ]
=1 =90 (w/2 F(K)(1~ F(X)))

(444430) < g

by choosing n sufficiently largee. Our conditions assure us
of a X which satisfics (4e4e26) and (444.27) and at the same

time. the probability in (4e4e30) can be made arbitrarily small.

Now combining (4.4¢9), (4e4.24) and (444430), we have
E sup IR (x)] > w
{ OSX-S.CO n }
SP{WQ~1|>wQG}‘

SR W LKCIEPPRL SEPENS
N w oy ¥ e1|< L
(444.31) + B B0 125 -11<1/ /3 }

P+t =34
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for sufficiently large ne This completes the proof of
Jheorem 4edsls

We now extand this result to the more general non~random

perturbation factors { 30 } defined in (4+43¢22)e Let Fno(k),
F;z(x) and nn?(x) be as defined and used in Theorem 4e3e5.

, : * o

If Z; be a reve, we assume that Ly = \/E (Zn-L) satigfico

the following condition (D*) with the process { Nyo(x)y x 20 }
For any finite collection :(Xl""’xk>’ the digtribution

of{ "nz(xl)""’ nnz(xk), En } convergegs weakly to that of

{"2(X1)’°"’ no (%), £ which is a‘multivariate Normal dis-

tribution with zero means and covariances given by

(’404052) cov (nz(xi), ﬂz(XJ)) = K?J(Xiaxj)y 1 ,<, i! J _S_ k

where Kg(x,y) is ag defined in (443423) and

(404433) cov'(nz(xi), £) =~a2(xi), 1= 1,000y K
and
var (E) = la
Then we” have the following theorem whese proof fol}ows on the

lines of the proof of Theorem 4e4el and is omitted.

Theorem 4e¢4.2. Let the conditions (B), (B*), (C) and (Iﬁ)

holde Let
(408034) G o(x) = /A [Fp(xg) = Fo(x) 1
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1
0 xK = 0

—— X--

= O (1).
Thug f;nq(x), x 2 0} converges weakly 1n {0, ] to the
Gaussian process { Solx) = no(x) + £x (/‘9(p)f(x9(p))dp), x> 0 }

which has mean ,zero and covariance func tlon
o 1 1
K (x,5) = K, (y,%) = Ko (x,7) + xy (J 6(p)£(x6(p) ) ap) ( 8(p)£(y&(p)dp)
: : 0 0
1 1
+ xa, (3) (S ¢(p)£(x6(p) ) dp) + yas (x) (S 8(p)£(ye(p))dp)
0 @)

(444436) for+ x <y

with Kg(x,y) as in (443¢23)e

Now coming to the case of random perturbation factors,
let{“;il} be as in (443424) and ‘F;l(x),_F;l(x) and .n:fil(x)
be as defined and used in Theorem 443+.6e Let {o‘nil }, the non-

random constants generated from { oF } be as in (4¢3+429)

nil

Let z* be as used in Theorem 4e4el and satisfy the condi-

n* &n
tion (I) with the precess { “*nl(}f)” x>0 }. Then we have

\
the following extension of Theorem 4e4el to the case of random

perturbationsa

Thoorem 4dede3: Tet the conditions (B), (B*) and (D) hold, Let

(404.37) € () = VA [F(xd) - (0]
Then
(444438) sup lﬁ:l(x) - n*nl(’}:) Ly, = op(l) .

0 x£ =@
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Tllus{S:le) y X2 O} converges weakly to the Gaussian process
{gl(x) = nl(x) + ¥xf(x), x 20 }doi‘inod in Theorem 4e4sle

We will omit the precf since it followg from Theorem
4,441 in almost the samdé manner as Theorem 4ene6 was deduced

from Theorem 4e3eée

Finally let {“:112 }bo the more general random perturba-
tion factors defined in (4e%e37) and satisfy the conditions
stipulated therce Let {“nifz } y the nonerandom constants
generated! by {ql’:‘liz})bo as defined in (4¢3+22)e Tot
F;z(x), F;z(x) and 'n;z(x) be as defined and used in Theorem
44307« Let Z:, £, be as used in Throrem 4e4e2 and satisfly
the condition (D*) with’ the process {ﬁig(x), x > O} « Then
the following theorem can be deduced from Theorem 4.4.2' in the

usual waye

Theorem 4s4e4: Let the conditions (B), (B*), (C) anda (D*) hold.

Let

(4eaa39) S 00 = /B [Ep(xg0) - B0 ],

Then

(424000 aup | | €5 (x) = mig (%) -_gnx(glg(p)f(XG(p) Yap)|
. - op(l).

Thus the process '{Q;Z(x) sy X 20 } convorzeg, wokly s DO, o]
to the Gamssian processy $o(x), x 2 0} defined in Theovenm

1,1.2 wi+h mean =ero snd covariance function given by (404436).
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4e5  Asymptotic distributions of the cmpirical defs's of

normaliged and modified spacings and tests based on them

In this section, we relate the results of tné last two
sections to the spacings statisticse. First we give the asymp-
totic distributions of the empirical defe's of the normalised
spacings Hn(x) and of the modified spacings H;(x), defincd
in (442421) and (4.2426) respectively using the distributional
equivalences (4e2¢23) and (4e2e27)es We then establish the

asymptotic normglity of some classes of test statistics based

on these spacingse

We shall first consider the empirical defo of the norma-
lised ‘spacings H (x), which from (442423) is distributionally
equivalent to F;(x ﬁh). The rew's W ,Wy,..s have the expo-
nential def.

(44541) Flx) =1 = %, x>0

which satisfies all the regularity conditions of Theorem #e4sl
and the assumptions (B) and (B*). Further the { a;il } used in
the definition 04.3.%8) of,kF;l(x) satisfy the conditieng
(4¢3425), (4e3s26) and (4e3427) with B(p) and Y(p) given by

(442417) and (4e2el8)s Hence we have from the definition of

B(p) and Y(p),
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1 1
(44542) S eplap = S L(p)dp =
O (@]

-

g 1 1, 1.
S Y(plap = = [ L(p)ft(p)ap = [ A% (p)dp = J 8" (p)dp.
o] (@] O

O
Let
(44543) g‘:l(x) = /A [zingx) - Fy ()]
v VR LE () - T (0]
where '
(4e504) (1=-e™) for 3> 1/4

Fl':l(x) =
(1=e7%) % (f L) dp)e ™M (x- x°/2)/ /i

for 3 = 1/4:’

~1/2 .
ignoring terms, which are of smaller order than n 1/ uni-

formly in x. Turther since the random scale factor here is

ﬁﬂ condition (D) is satisfied and e&(x), defined in (4e4.2)

is casily seen to be (—XQ"X). In view of the these temarks we

have the following theorem as a congequence of Theorem 4e4ede

Theorem 4e5el: The scquence of stochastic processes

* . .
{grﬂﬂxj, x>0 } converges weakly to a Gaussian process

Fa(x), x>0 } with mean zero and covariance function

(4e545) Kg(x,y) =0V (1lme™ = xy e , X £ Ve

This theorem together with Theorem 4.5.4 on the empirical
defe 0of the modified spacihgs, form the basic results for deri-

ving the agymptotic distributions and finding the efficiencies
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of the spacings tests which we do in this and the next section.
From the invariance principle, in view of Theorem 445.1, we

have

Theorem 4eDel: Let g(e) be a real valued function on . D[O,w]
which is almost everywhere continuous with respect to the pro-
bability measure induced by the Gaussian procoss{'fi(x), x2 0 }
of the previous theorems Then the distribution cof the real
valued TeVe g(*g;l(x)) converges to the distribution‘of
g(81(x)) as n => =,

As an application, we have the following

Theorcm 4e0e3: Let m be an absolutely continuous function

on [0,o] with m(0) < = Let mf(x) be bounded on every

finite interval and let

WMs

m(nDi)/n

(44546) P =
n 1

i

be a statlistle based on spacings from the d.f, Gn(x). Then

(445e7) Jn [Tn - fwm'(x)(l— F;l(x))dx+ m(0) ]
o

has an asymptotic normal distribution with mean zero apid.

variance

(44548) [ [ ot (m (7)) Kaglx,y)dxdy <=
o O

if the function g(e) on DLO,= ] defined by
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o0

(44549) g(y(x)) = [/ ot (x)y(x)dx, y(*)e Do, ]

0
is continuous almost everywhere with respect to the probabi-
lity measure induced bty the Gaussian process{’%l(x), x >0 } .

(This condition will be referred to as Assumption (E) later on.)

n :
Proof: T, = % m(nI&)/n
= f m(x)d}%(x)

0

=ﬁ£ m(x)d[1—4Hn(x)]
= [ m (o[- 5 () ]ax = m(0)
0

o integration by parts. Now from (4e5e3), we got

(4.5,10) T, = Jomt () (- i, (x) Jax= (1/ /)t (x) §rp (1) ax
: 0 O

- m(0) .
Thus the quantity defined in (445.7) is equal %o

o0

(445411) £ n' (x) ﬁ?nl(x)dx .

The result follows immediately in view of Theorems 4e5.1 and

4,542 and because of the assumption (E).

Remark 1: From the gtandard law of the iterated logarithm

for the Weiner process, we can deduce that

‘31(x)

gr— ’ =
) el

V 2(l=e¢"")Log Log (L=e™)

=l}=l

P { T

‘
LG ]
N
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S L N Y

X=>e /20 log‘;

Thus if m(x) 1is an absolutely continuous function smd m'(x)
is bounded in every interval of the form [¢, K] with

0 <€ <K <o gnd satisfies

i —— —

J m'(x) ¢Ql-—e ) log log (1= ™)™ 4 {
0

S mi(x) Jo X log x dx < o

then the assumption (E) of Theorem 4e¢5¢3 1s satisfied. Examples

of such m(x) are

m(x) = xr, r > =-1/2
or m(x) = % |x=1].

The spacings tests corresponding to these two classes have

been studied by Greenwood (1946), Kimball (1950) and Sherman
(1950) .

Remark 2:  The function m(x) = log x (c.f; Darling (1953))
does not satisfy condition (E). However, [ log xd &7 g (%)

and f log xd.*?l(x) may be considercd asostochdstlc integrals,
ox1stence of which can be proved using the tied-down Weiner
process:on [0,1 ] after transforming [0, <] into [0,1] by
the transformation x -> (1= e"™), Thus it can be shown that

Darling's statistic,
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n
L(n) = % log (nIH)
i=1 :

g Pl

has an asymptotic normal distribution both under the hypothesis

as well as under the alternatives (4.2s1).

Remark 3: We assume the condition (E) to holde Under the

alternatives given in (442,1), the statistic T, has an asymp-

totic normal distribution with mean, say

o0

{ m'(x)(l—ﬁFgl(x))dx

it

Fin

oo

[ mt(x)e™ ax if 3 > 1/4
(o]

i

S o (x)e™ ax + (1/ /A L7 (p)dp)
(0] 9]

oo 2
S mt ()T Fre x)dx
0o - 1
if 8 = 1/4.

and with variance

o0 oo

2 o2 S M om (e (L o Fxye M ax dy .
0 X ’

(405013) Gln= ‘I'l"

I
Under the hypothesis, the dtatistic Tn has an asymptotic

normal distribution with mcan, say

oy .,.x
(445614) Hon = £ m'(x) o "ax

and variance

™,

(445415) n = %1n®
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The distribution under the hypothesis follows from Theorem

4453 by putting L (x) = O.

Comparing the diptributions of Tn under the null
hypothesis and under the alternatives Gn(x) of (4e241), we
observe that the null distribution coincides with the distribu-
tion under the alternative if the alternatives are such that
d > 1/4. In other words, the test statistic Tn is incapable
of discriminating the uniform density from the densities of

the form (l4-[(x)/na) if @8 > 1/4. But when we consider the

sequence of alternatives

(45016) 0 (x) = x + L(x)/n%, o0<x<1

the means and  Hyp of T differ, though the varlances

Hon n

agree up to order 1/n. TFrom this we conclude that 1% is only
the‘alternatives converging to uniformity at the rate of n"'l/4
that give us.an idea about the power behaviour of these

gymmetric spacings testse Hence we should concentrate on the

alternatives (4¢5416) for making efficiency compariscons of

thage tesgts.

We now consider each of these spacings statigtics in
turn and give their means and variances under the hypothesis
ag well as under the alternatives (445416)e The Pitman effi-

cioncies that we compute in Section 446 depend on these
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expressionse. Congider, first, the statistic

(445417)  V,(n) = (nD)*/n, r > -1/

i v 3
i

i

due to Kimball (1950) of which Greenwood's statistic is a
psrticular case for r=2, We havc the asymptotic nermality
of this statistic from our theorems both under the hypothesis

as well as under the alternatives (4e5e16) with mecans
(445.18) " Kop (vr) = - [T+l

1,

(445419) (V)= T3+ v(r=1) ([T+1)(/ f%(p)ap)/2 /m
6]

and variance

(4:5.20) 0% (V) = o5 (V)= {Brai- ("4 1)(FH1)? } /e

The statistic

(445421) Uln) = 1/2 % le—-l/nl
: i=1 ’

was suggested by Kendall (refe Greenwood (1946) discussion)
and its asymptotic normality under {he nnull hypothesis wae
shown, by using the method of moments, by Sherman (1950). We

have discussed this statistic in gsome detail in the earlioer

chapteres We have
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- U(n) = 2 (1/n=- Di)
{i =D; <1/n}

1
= { (1= x)dH (%)

i

I d

i

1 1
(445.22) JFL(Rax + (1/ /) B (x)ax.
0 0
Now appealing to our thecorems U(n) has an asymptotic normal
digtribution both under the hypothesis and under thc alterna-

tives (445e16) with means

1
(405023> “’ln(U) = f le(x)dx
(@]
1
=l 4 o™ (S A ap)/2 /A
(@]
and
(4e5424) Hop(U) = o™t

with variance

. P o . -] -
(45425) " (U) = o5 () = (2™ = 5e™)/n,
We consider next, the statistic

n
(4¢5426) L(n) = '21 log (nIE)/n
1=


http://www.cvisiontech.com

=139~

mggested by Darling (1953). We have already remarked about
the asymptotic normality of the statis‘gic L(n) (sce Bemark 2
lfollowing:'.[‘heorom 4¢543) under the hypothesis of uniformity as
wll as under the alte;rnatives (4e5el6) e The means are givon
by

oo

- ~+
(4,5427) My (D) = { 105:5 X anl(x)

B

RPN
- Y - (JL%(p)ap)/2 /n
O a

where ) is the Buler's constant { Y = 0i5770 ee.) and

o

: -
(445.28) Hon(T) = [ log x.e™Fdx= = ¥
0
vith variance
-2 2 2
(405029) Gon(L) = Gln(L) = (T[I /G-l)/n.

Consider now the modified spacings .

>k
(4,5030) D; =nD; /hni

were h . satisfy

(405431) sup /| hyy = ha(i/m)| = o(1)
1

sere n(p) is a function on [0,1] having atmost a finite

mmber of discontinuitiese. Then the empirical defe
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* ~ * * . . . .
{Hn(x), x > o} of\{ DisesssD ) diflned in (442426) is dis-

. . . Sk . *
tributionally equivalent to { EnB(Xerx)’ x 30 }\where an(x)
is the empirical defe of the exponentially distributed reve's
Wl"" ’Wn perturbed by the random factors { a:li.?’ 1= 1,...,n}

which have the structurc defined in (4e¢3e37) ieCey

* _a* * ) * 29 *
Opjp = Opg (1+Bpy /% + Vi MO+ R 5D

* * * * . o
where. € ., B9 yni and R, satiofy (4.3.38), (4434287,

(4.}3.2’7) and (4e3425) respectively with

e(p) = h(p)
(445432) B(p) = L(p) .’
y(P) =-L(P) /('(P), OS.P‘{-. 1e
Let
- > ¥ ¥ +
(445433) Saelx) = /M H(x) - Fa(x)]
where N
Fo(x) =/ (1-—0”@‘(13))@;3 if a8 > 1/2
0
1 1
ey 4 @ P haps (e () n(r) ap) /i’

if 1/4 < 3 £ 1/2
1

1
J = o™y apa( fre™B0) ((p)n(p) ap) /4
" O o]

1
# f [-a(p) A (p)n(p)e 0P
0

- xghg(p)Xz(p)Q“Xh(P)/E]dp/nl/2
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. 2]
to terms of order n”l/“. As an immediate gonsequence of

Theorem 4e4e4, since ay(x) defined in (4.4433) ia

1
(=x [ h(p)O—Xh(p)dp), we have the following
0

Theorem 4e544: The gequence af gtochastic processes

fgzz(x), x>0 } in D[0,=] converges weakly to the Gaussian

process{ 'g;(x), x 20 } with mean gzero and covariance function

1
(405.35) K (x,3) = K,(y,%) =/ o=yh(p) (4. e—xh(p))dp
(0]

1 1
= (S nlp) e PP ap) (S Tn(p) e TR gp)
0 O

for x <y
Theorems corresponding to 440e2 and 4453 and remarks analogous
to those following Theorem 445.3 can be immediately written for

the case of modified spacings;

Theorem 445453 Let m(x) Dbe an absolutely continuous function

on [0,] with m(0) < =, Let m'(x) be bounded on every finite
interval and lct the function

[ee]

{;fﬂ'(x)y(X)dx, y(+) in D[0,c]

be almost everywhere continuous with regpect to the Gausgsian

e
process { do(x), x 2 0} defined in Theorem 4s5e4s Lot

n
E3
(445.36) T, = z m(nZD_.L)/n.
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Then the distribution of
(4eliei87) A LT = ) m (x) (1= P () dax + m(0)]
0

where F;n(x) is defined in (4e5.34), converges weakly to the

normal digtribution with mecan zero and variance
(445438) S [ K4(x,y) m'(x)m'(y)dxdy
o o

where K4(x,y) is as defined in (4¢5e35)e

This theorem covers a very wide range of statistics

based on spacingse

446 Asymptctie relative efficiencies of tests based on,

arc_lengthe

The Pitman asymptotic relative efficiency (ARE) of a

tegt relative to another test is defined as the limit of the
inverse ratio ol sample sizes required to obtain the same limit-
ing power at a sequence of alternatives converging to thé null
hypothesis. This 1imiting power should be a value in between
the limiting size, a and the maximum power 1, in order that

it can give 'an insight into the power behaviour of the teste

If the limiting power of a test at a sequence of alternatives

is o, then its ARE with rcspect to any other test whose
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limiting power (with same size) is greater than a, is zero. On

the other hand, if the limiting power of a test at a sequence
of alternatives converges to é number in the interval (o, 1),
then a measure of the rate of.this convergence, called '‘efficacy!
can be compufed. Under certain standard regularity assumptions
(gee ege PFraser (1957)) which include a condition about the

nature of alternatives, asymptotic ncrmal distribution of the

test statistic under thede alternatives, etc., this 'efficacy'

is given by

Jav ]

(4¢641) efficacy = Wy / A

Here My and 68 arc the mean and variance of the limiting
normal distribution under the sequence of alternatives when the
tegt-statistic has becn normaligsed to have a limiting ncrmal
digtribution with mean zero and finite variance under the
hypothesise In such a situation, the ARE of one test with

réspect to another is simply the ratio of their efficacies.

We 1llustrate this concept by first computing the effica-
cies of some tegts which arc symmetric in the normalised

As we have scen in Theorem 4e5e3, if

spacingse
n
(406.2) Tl’l = m(nDi)/n
g
then

/A LT, = [ mt(x)e ™ ax ]
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hag a limiting normal distribution with mecan zero and variance

(%e643) ¢ = [ f mt(x)m (y) KS(X',y')dxdy
.0 0

under the hypothesise Again under the sequence of alternatives
(44241) satisfying apsumption (A), the normaliscd statistic in

(44642) has a limiting normal distribution with mean My and

. 2
variance o where

Hy=( 0 if 8 > 1/4

1 o o
tbo2) (S @) (U (0™ /2= x)ax)  ir 8 =1/4.
o} 0

Thug if 3 > 1/4, the efficacy of such a test is zero. The
correct rate, therefore, at which the alternatives must converge
to the hypothesis to give a non-zero efficacy is n'1/4. When

8 =1/4, the efficacy of thec test based on T, is

15 N > .
(44645) LA ap) (f m' (x)e ™ (%" /2 = x) dx) ]2/
0 5

S S w(x) m(y) Ko (xyy) dx dy
0 0 ‘

The following table giveps the efficacics of some standard tests

et the sequence of alternatives in (4e2e¢1) with 3 = 1/4a
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Table 441: Efficacies of gsome teat atatistics basced on
arc lengthoe

—v—

Test Statistic Efficacy/ (f%(a(p)dp)g
0
v.(n): r = 040 0.0000
T = 0eb 066760
r = 140 040000
r = LeH 069700
T = 240 140000
T = 245 0.9728
T = 340 049000
T = 3¢5 047976
r = 440 046792
Uln): 045726
L(n): 165505,

—

From this table, we conclude that Darling's test statistic
I(n), defined in (445426), has maximum efficacy among the tests
consideréd aboves This is not altogether sufprising in view of
the fact that IL(n) corresponds to Bartletts' M-test for homo-
geneity of variancen, gsince each (nDi) has, under the hypothesis,
asymptotically the game digtributivn as that of a varianece with

2 degrees of freedon from a normal gsamplee

1 a
It is interestinge to note that ( J £"(p)dp) enters in all
=

the above efficacies in a multiplicative way. Thus the relative
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efficiency of +two tests which are symmetric in the spacings is
independent of the particular scquencc’of alternatives (the
choice of L(x)) in (4.2.1). The test statistic Vz(n) has an
efficiency of G4eS per cent as against the statistic L(n)
whereas Ul(n) has,an efficiency of only 36.9 per cent_when

compared with L(n).

The above discussion presents for thq first time a com-
plete and rigouroué account of the computation of the effica-
cieg and efficienciecs of tests based on spacings. A number of
previous attempts at the computation of thevARE's (sec ege
Pyke (1965), Proschan and Pyke (1965) apd Jackson (1967)) have
not fully justified the me thod of computing the efficiencies.
They obtain the limiting distribution of the test statistics
under fixed alternatives and the efficiencies were.then
obtained in terms of the derivative of the asymptotic mean and
variance under this alternative. Weiss suggested the use o7
alternatives (4e2el) in the discussion of‘Pyke (1965)?foilow—
ing the work of Cibisov (1961)s Weiss (1L965) himself obtained
the distribution of g D? under these alternatives, following
a gpecific methods Tio idea of finding the power function for
near alternatives brings to mind the Lecam-Hajek's concept of

'contiguous' alternatives, which however, does not turn out to

be very fruitful in our case.


http://www.cvisiontech.com

.-.147..

Similarly using Thcorem 44545, we can compute the ARE's
of tests which. are symmetric ih modified spacingse We defincd
* P ; . .
{Di = nDi/ hni’ i‘= lyesey n } ag the modified gpacings whore
the factors.{ h; } satisfy the condition

(446.6) sup /R iy = b(a/m)| = o(1)s

If m be any function on [O,m] gatisfying the conditions of
Theorem 445,5 we define a gsymmetric statistic basced on the

mdified spacings

(44647) T =

B

m(nIg)/n.

i=1

the mean under the hypothesis of this Ty is
a— ~xh(p) 5 .
(44648) wr = [ [ m'(x)e " dxdp
on 0 o

and under the alternatives (4e2el)
* * . ’
Hip = Hon if a8 > 1/2

il

(40649)
[»)
= ”zn + A(m,L,h)/n1/4+ B(m,L,h)/nl/“,

say 1if 8 = 1/4

yhere
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Alm,Th) = - S mt(x) o (p)h(p)e P axap
oo -
=1 ~-xh(p)
B(m,T,h) = [ [ m'(x)e PITsn(p) A (p)nlp)
o 0

(4,6,10)

+ (Xg/,%‘),(g(p)hz(p) J dxdp.

1f A(m,L,h) # 0, thon the scquence of tests based on T can
distinguish alternatives of the form (4e2e.l) at a distance of
order n"'l/2 from the hypothesis. This shows that such tests
have a better performance than tests considered eaylier which
are symmetric in the normalised spacingse However there is no

gurety that A(m,L,h) # 0 for all L. Consider the following

example. Let
(406411) hi = n/(n=1i+ 1)
h(p) = 1/(1=1p), 0<p <1l

D;_ = (n- i-t-.l)Di

m(x) = x .
Then
* 2 *
T, = f m(nDi)/n
n .
(446.12) = I [(n=1+1)D;1/n
i=
n
= % Xi/n+ 1/n.
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Lsimple computation shows

1
(406413) AMnm,L,h) = [ p A (p)dp
‘ 0

fhich is na times the excess of the mean under the alterna-

tive over that under the hypothesis and is zero for alternatives
mder which TF has a mean 1/24 But if this excess is non-
ero, the test based on b anDi)/n has a better performance
than symmetric nofmalisedlspacings gtatictics considered in
theorem 44543« However if A(m,L,h) = 0, this test statistic
T; discriminates such alternatives, if at all, only when they
we at a distance of n'l/é, which puts this on par with the
gmnetric spacings tests. This phenomenon was mentioned and
femonstrated in an easier fashion in Section 4ele It therefore
ems that if we take tests which are symmetric in modified
fpacings, we may gain over the tests which arc symmetric in the

promalised spacings on the swing but lose on the round aboutse

Another final remark before we conclude. Tt is known that
the Kolmogorov-Smirnov gtatistic discriminates alternatives of

-1 /o
1/2 from

the form (4e241) which are at a distance of order n
the hypothesis and henee compares favourably with any aymmetric
kst in the spacings (sece egs, Cibisov (1961)). However, Weiss
(W62) has given an example of a sequence of alternatives for

hﬁch the Kolmogorov-Smirnov test of level « has asymptotic
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efficiency zero as compared to the symmetric gpacings test

based on D(n) = max Di' The gsequencec of alternatives-conside-
: i
red there by Weiss, do not, however, have a constant carrier

(0, 11 tbut only a subset of the unit interval for each ne

As we remarked earlier, the definition (4.2.7) -of spacings is

not very meaningful for alternatives with 2 non-constant

carrier. The anamolous situation degeribed by Weises arises

possibly because of the lack of this Teature for the alterna-

tive scquence considered by him.
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CHAPTER V

BAHADUR EFFICIENCIES OF SOME TESTS F¥OR
UNIFORMITY ON THE CIRCLE

5¢1 Introduction and Sumnary

In this chapter we compare the asymptotic efficiencies
of geveral tests that are gvailable for testing uwniformity on
the circles The alternatives to uniformity considered here,
wre the symmetric unimodal distributions, the circular normal
distributions (OND's) ihtroduced in Chapter I. We take the
(ND with density

(5¢1el1) gla) = [EnIo(k)A]m1 exp [k cos al,

-t fa <n

for convenience, When k = 0, this gives the uniform density

g0 that the null hypothegis is one which formulates H : k = O.
The tests compared here are (i) Rayleigh's test, R (ii) Kuiper's
teaty, V (iii) Watson's test, W (iv) Ajne's test, N (v) Ajne's
test, A and (vi) Spacings test, U e BEach of the tests is

briefly described beforc its efficiency is computeds

~151~
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We compute the asymptotic efficiency due to Bahadur
(1960b), of each test, by evaluating in most cases the
'exact slopeg'! of the test statistics, using large deviation
results. In gome cases we take the fapproximate slopes' as
given by the asymptotic distributionss On the basis of these
comparigsong, we find that the limiting efficiecncies of the
three tests vize, Ajne's teast A, Watson's W and Rayleigh's
test based on R are identical while the other tests have
agymptotic efficiencies, which are lowers Further conclusions,
based on the compariscns of Bahadur efficicncies, are given
in Secction 5e9. Finally in Section 5610, a simple inequality
between the Ajne's W and Kdipers V, whose asymptotic per-

formances are identical,has been noteds

H5e2 Some preliminaries

In this section, we first briefly set forth the concept
of Bahadur efficiency and give some results that would be used

later on. We shall say that a scquence’of test statistics

{ T, } ig a 'stondard' sequence for testing the hypothesis
e

HO : = 0, if

(a) Under H_, there exists a non-degenerate defe F,

such that

(5e241) }9% L‘mn < t] = Fn(t)

for all real T


http://www.cvisiontech.com

-1‘53-

() There exizts a non-negative function s(e) on [0, )

such that for aeny sequence of numbers {)?1}' such that -

2
n/n

A -> A, we have

(5e242) -(2/n) log Py LT, 2 2 1 => s(¥)

and

(¢) There is a non-negative real-valued function b(e)

such that

(5¢243) -> h(8)

T
1/ /o
almost surely or in probability, for € in the

alternative,

If F,(x) denotes the exact null dafe of T, , then the

level of significance attained by the test T, is given by

(50204) =1 = Fl’l(TI’l) .

“n

If Fn(x) is continuous, then o, 15 uniformly distributed
in [0, 1] wunder the null hypothesis and, under the alternative,
o, => 0, usually at an exponential ratce Thus for a suffi-
ciently small lewel of significance, if © # 6, is o porameter

point in the alternative, then
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in probability if ©b(®) 1is the probability limit of (Tn/_/ﬁ)
as in (5e2e3)e This function, s(bg(é)), ig well=defined and
we shall call this the 'exact slope' of the test sequence

{Tn } « It is a measure of the performance of the test sinec,
the larger this quantity, the faster the test based on T,
rejects HO, for an arbitrarily fixed level of significance.
Therefore the ratio of the slopes of two standard gequences of
test statistics {Tgl) }and ,{Té?? }for the hypothesis ,H_,

gives the 'efficiency' at o
S ' 2 2
(5e246) El,2 (0) = Sl(bl(g))/sg(bg(g))’

of the sequence -{uqﬁ}) }relative to {Tég) }. The limiting
efficiency of {Tél) }relativo to {Tﬁz) } is defined as the
1limit of (5e2e6), for a sequence of parameter points {'9} in
the alternative, converging to 90 of the hypothesis iece,

the limiting efficiency is given by

(5e2e7) L, (8) = lim B, ,(0).
1,43 6] oy -> @ 1,~

)

When the exact slope is difficult to compute, onc finds the

Yapproxinmate slopef (see ege Gleger (1964)), which is generally
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nuch easier to obtaine Let. F(x) be the asymptotic aull

defe of the test sequence {ﬂal} e That is

lim Py (T < x) = F(x).
o Fo Ty ) (x)
Suppose as x => ©, TF(x) satisfies the condition on the tail,

namely

(5.248) -2 log (1= F(x)) = ax (1 + o(1))

where 'a' d1s some positive constants. Then
' o e
(54249) s*¥(p7(8)) = a [b(e)]

mould be referred to as the 'approximate slope' of the test
sequence {Tn} where b(95 is the funchtion given by the con-
lition (c) ie€s,. (5¢2s3). One can, then, compute the effici-
encies as 1n (5.2¢6) and (5¢2.7) on the basis of this approxi=-
nate slope s*(b?(@)). We now give here a few lemmas that will
be ugeful in the computation of the sglopes of the test statis-

ticas

lemma Helel If Xi

diigtributed binomial random variables with mean 'p', then

y Xo ee. are independently and identically
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n .
- X
(5.2.10_) (1/n) log P { 'ifl Xi/n - pl > } =-> log- 8 (p,yN)
where
*

(Se2411) ¢ (p,n) = Max [97(p,2N), 85(p,N) ]
with
(5e2412)  91(py2) =&‘ 0/ (penyd LDV (3 pen) ,

N for 0L pLl=-A

{ 0 otherwise

\.
and _

1ep+X p=A

by

(542413)  95(py}) = K'l(l'lﬂ/(l—pml
for »{pL1l:

0 otherwise.

This result may be found ege in Chernoff (1952). The following

useful generalisation is due to Sethuraman (1964).

X
Lomma 5¢242 Let ¥ be a separable Danach space and  %qs

the gpace of all continuous lincar funetlonals.*%,on £ ,with
norm unity. Let X% (), X5(w), es. be a sequence of randon
variables, defined on a probability spaco: ( D, S,P) with
values in % , which are independently and jidentically distribu-
ted with a common distribution P(e). Let

(542414) [ X (X(w)) P(dw) =0 for a1l x ¢ %
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nd let
(5e2e15) Joexp (tll x(@)|l ) P(a@ < for all te

Then for €> 0O,

Xi(w)4-... + Xh(w)

5e2016) g log P{ @: | . I>¢}-
*
-> log 8(¥%;,¢e)
yhere
\[*
(5042417) 9(%,, €) = sup , 9(x*,¢€)
X* €

1
and
(5.2.18) g(x*,e) = M{_‘{X{ 91(};*,8) = m.;noe"'te E(CXpltX*(X( w ))]>’

>

Qg(x*,e)z'min o ¥E E(explt x*(X(uﬂ)])} .
£<0
fTe now state and prove a simple lemma which tells us scmething
about the behaviour of 9(*?,6) defined in (5.2417), for
mfficiently small €. Since b(8) is gero for © in the
mll hypothesgis, it is only the behaviour of 9(*;, €) for ¢
}mall, that counts in the computation of the limiting effici=

eneiess

lemma Seled For €>'0, sufficiently small

(542419) 3(¥) €) ~ oxp [- €°/20%"]
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where

(542620) *Y = L SWL Var xk((w ).

Proof:  For any Tixed x*¢ ¥, » we have from Lemma

&)1
L ]
fav]
[ ]
ey

Q(X*,C) o= max{?l(x*,e)_, 92(}{*9 e) }

where Ql(x*,e) and Qg(x*,e) arc as given in (542418). Now
let 8, (x*,c) attain the minimum. at the point  t= t;.. Then,

for sufficiently small €, in view of (SeRel4),

—t - C 2 O(G)
1 //O.A,
]

T

where 6% = var x*(X(@)) and o(e) consists of terms in
82 and higher powers of ¢, the cocfficients of which
involve the mements of x*(X(w )). But since the moments of
*(X(w )) are bounded by the corresponding moments of

| %(w@ )]}, which are all finite by (5e2el5), this o(e) holds

*
uniformly for all x* in X] « Now for ¢ small,if G(t)
denotes the moment generating function of w*(X(w)),

log Ql(X*,G) = = 6t1'+ log Q(tl)

2 pe 2
= e /ij + 8720.? + 0(6 )

- CJpg2 + ole”)
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where again of(e) ig uniform in =x*¢ ii because.. of the
reasons given earliere An expression, similar to (5.2¢21),
ig valid for the other term, namely 9o(x*,€ ) and hence for

their maximum 9(x*, €)es Thus for € sufficiently small

o
(5e2422) log 8 (x*, €) = = 6320.2 + o{e®),

' *
Now since o(e) is uniform in x%*¢ *1 y taking suprenum over

*
X* g *1’ on either gside of (5.2422) we have the required result.

5¢3 Rayleigh's test

Let apsees sty be mn obgervations on the circumference
of the unit circles They may be ‘expressed equivalently as
mit vectors u, = (cos ay, sin ) =(xi, ¥i)s 1 =1,e0., e
The Rayleigh's teat for uniformity, as mentioned in Section
3ely 15 based on the length R of the vector resultant of

these ui's lecey, On

/n 2 n 2
(5e301) =y (i: ;)" + (:’f vi)

12
o

+ ¥

V)

-

»t

=In

-_ 3 - 1 N .
there X = % Xi/n and y = i yi/n d We reject the hypothesis

f uniformity when R 1is too large. The null distribution of

I 18 miven 4n (24%,1).  We naraider
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(o342 Tfll) = Jo/0 R

as the ‘'gtandard sequence! in this casce Let us denote the
probabilities under the hypothesis of undiiormity .y by Po'
Now we rcquire

p 1) 5 Aal=p (R, >/ /E )

12

P [(Z° + FOYE o a//E )
Pl 12 uy/mliza/ 7 )

it

(5e343)

i

(9]

l denotes the usual Buclidean norm in R7e

where |

We now appeal to Lemunas 54242 and 54243 where the Banach space
) "

is simply the Buclidesn gpace R° with the usual norm. From

(5e2416), (5.2419) and (5.2.20), for A small, we have

H

PO[R/n >N JZ]
p L % wi/n >/ /2]

ENTIOIPRVEN

it

(5eRs4)
< 2
= exp [-n(n/ /2)%/2 Go]
where
(5e345) ci sug Var ( £ cos o + m sin a).

+m2=1 }

{( K,ﬁ0=x

O ) - . - -
The ag (variance under ho) required here is simply the
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maximum latent root of the covariance matrix of the componentsg
'cog o' and 'gin ¢'e Sincc the variances are 1/2 each and

©
covariance gzero under uniformity, Gg = 1/2 =and we got

(54346) RUINVESVIES N PR VIV

[»]
~exp [-n A°/2],

for A @malle Urder OCN alternatives (Selsl), it is easy
to gsee that

(5e347) Tél)/,/ﬁ = /% R/n 3—>_/§ (k) = by(k), say

were  9(k) is the ratic [I;(k)/I (k)] defined in Chapter IT
1 1

am.'-2> denotes convergence in probabilitye. Thus from

(5e347) and (5e3eB8), the exact Bahadur slope of the Rayleigh

statistic,. T;}) is given by

i

(b, (1) J°
2[9(x) 1%,

(54348) 8, (k)

i

H5ed Kulpor's togt

Kusper (1960) proposed a variant of the Kolmogorove-
mirnow statistic for testing the hypothesis thal the obgerva-
ions come from a population with specified-def. F(x). IFf

h(x) denotes the empirical defe, then his statistic is
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(5adel) vV, = Ji{ sup [F (x) - P(x)]-Inf [F (x)= ¥(x)] }
X X

which is egpccially guitable for testing goodness of fit on

the circle, as the statistic Vn igs independent of the origin

used for measurement of oe We consider the 'standard!

sequence

O
(544e2) r'ugl") =V e

Kutper (1960) found the distribution ol V., and we have

o0 ' >R - 2 2
(5e4e3) I%\{ﬂég)z Z}= T 2(4m“z~ - 1)e™0 2
' =1
-3 R v (An” 2zt e 3)e T
/3 ‘/ﬁ M=1
+ 0(1L/nj.

In view of the fact that under the altcernatives G(x) # F(x),

(5e4e4) TIEE)//H if’:»{s;pm(x)—b‘(x)]—Igf[G(x)—F(x)]} |

’ !
Qe . .
> denoting convergence aluwst gurely or with proba-

(with

bility one )the approximate slope of thig sequence of sgtatise-

tics is given by

2
(Fedeb) a8l (G) = 4{ Supla(x)=F(x) ]~Ins {G(x)rF(:{)]} .
& X X
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The exact slope of { Vn } ig also not difficult to obtain but
this approximate slope is sufficient for our purposes as it
has been shown to be reliable (cefe Abrahamson (1967)), in *he
genge that the ratio of the approximate‘sibpe to the exact one
tends to unity for alternatives approaching the hypothesise
Now for the CN alternatives (5el.1l) and the null distribu-
tion of uwniformity, it is easy to see that

sup [B(x)=P(a)] is attained at o = n/2 and the
e A A

Inf [G(a) = P(a)] at o = = n/2. Thug, from (Heled)
-t a<l ®

7(2) ~2a8, jﬁ/z[r() 1/2n)d Jﬁ Ev( )~ 1/2=]a
n //ﬁ - g\ ) - T8 LO(.("'—T: g\ SRIAE

/o
=[2r T ()17 J oF 0P % g -1/m
-r/2
= [P(k) - 1/2]
where P(k) 1is the probability that a O¥ random variable

lies within an are- of length =/2 from its mean direction.

Hence from (5e4e6),
(5e447) sh() = [2B(k) - 13%.

P(k) may be expressed in the following series
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n/e .
P() = [2n T (0)]7H S oF 009 @ gy
/7
(5e4e8)
n/2 (=)
= [2n lo(k)]'l S [z (k¥ cosT a)/rt] da
/2 r=0

i

¢ K "'l 2 r -~ -
[on Io(k)] ri:o k /et p(r-i-l/g, _L/g).

Ded  Watson's teat

Watson (1961) proposed the statistic

(645,1) W, =n [ {Fn(x) - P(x) - foo[Fn(y)—l'*‘(y)]dF(y) }"'dF(x)

for testing the hypothesisc that the sample,with defe FnQX),
was &rawn from a population with continuous d.fe F(x)e It
can be used on the circle, since its value remains independent
of the choice of the arbitrary point from which we begin cumu-
lating the probability density or the masses corresponding to
the sample pointse The asympto%ic distribution cf W, is
given by (cefe Watson (19¢1))

€
2

‘ «® Tl 2
1lim Prob.[Wn> v} = 2 }:‘(—1)m 1 exp (=2m"nw V).

(5e542) N =y co m=1
Woe consider

3 -
(5e543) fpf,l ) . W,

as the 'standard' gecquence in this casce Since
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log P(Wh > v) = - 2n°v (1+ o(1)) ag VvV e>

vthe asymptotic digtribution of W, 8.tisfies the condition on
the tail, (502.8), With a = 4m% Let G(a) denote the cunu-
lative distribution function ccrresponding to the alternative
density (5el.1)e Then in testing for uniformity iec., when -

the hypothetical defe F(o) is the distribution function cor-

responding to the uniform density,

21

5u5ea) (277 /707 = 202, > {ota) = a

N‘n

29 2

.g [G(p)-ﬁ/gnjdﬁ/gn}w da/zﬂo

Therefore the approximate slope of the standard gequence { Tr(10)}

is given by

(54545) o5 (k) = an” IM{G(a)- & fon” Tn[(%(ﬁ) /enlag/2n }
0 0
dd/wﬂo

1 .-

546 ' Aine's tesgt, W

Given n observations on the circumference of the unis
circle, let N(a) denote the number of points on the half
circle {a, a + ®), taking say the antlelockwiso dlvection an

positive. Then Ajne (1966) utilises
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{5e6el) N = up M(a),

which is the maximum number of points in any semicircle, for
tegting for uniformityes We congider, herc, the 'standard!

‘sequence

(W= n/2)/ /n

i

(5¢642) T§l4)

i

v [N/n -1/2] = N;}l , 8aYe

Then we want the probability

. (4) N I ‘ o "4
(54643) Pr).[ T2 ,/Hx} = ro.[(n/n 1/2) 2 x} .
We shall ncw obbain this by’getting upper and lower bounds for
this probabilitye 8ince, for any fixed «

N o= Sup Wla) > (a),
(5e604)

(1/n) leg PQ{ (N/n—- 1/2) > x}
> (1/n) leg I’O{(I\J(a)/n - 1/2) 2 2}

But N(a), under the hypothesig has a binomial distribution -

with paramcter 1/2+ Therefore, from Lemna Detel,

(54645)  (1/n) log T, {(N/n- 1/2)2n } 2 log (1L/2y N
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In order to get an upper bound for the probability in (5¢6e3),
for some @ > O (to be chosen suitably later onf), we divide the
whole length of the circumference into W(a) = [Zn/o] + 1

arcs of length 3 each and define

(FeBeb) N(a, d) = number of observations in the arc
Ly o + T + 3)e

Then, clearly

(54647) N(oy 3) > M(a)

for all ae Purther since any o lies between [ra, r+l @)
for some r, the corresponding N(d) < ¥(ra, '8) so that
(5e648) N = gup N(a) < Max N(ré, 9).
o r ’
Thus
Po { IV = 1/2] 22} <Py Mz;x [N(ra,a)/n-l/fZJ 201

i

P { [N(ra,a)/n - 1/2] > A,

(54649) for at least one T }
N(a)
£ rfl P, { [N(ra,a)/n— 1/2]1 > 7‘,}?

Yow HN(a,d) has = bincmial distritution with parancter
(1_,z +'9) and all the terms in the summation (5e6e9) are equal
’

go that
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P, {w, ~1/2) » N ESUEIN ) N(ra,a)/n-l/g.. 82 1=}

(546410) n
= N(a)s ¢ (Lo + 35 2 = 9)

whera 9(p, A} dis as defined in Lemma Selele Now if we chicose
0 = 1/n, say, then the term on the RHS of (5¢6¢10) is

n
27n.9 (1/2 +1/n, A - 1/M) g0 that

1im (1/m) log P, {u%@f-l/zjg A }

(546411) ——
¢ < Iim log 9 (1/2 + l/n’ A - 1/n)

i

Thus from (54€e¢%) and (He6ell), we have
(5e6a12) (1/n) log P, {(N/n-l/z) 2 X §= log e(1/2, )
N - sz

for A sufficiently amalls

Now, in order to get the probability limit to which
(3) ) T OO R v Ed 1 ternati a 1 T ]
T / /1 converges under the CN alternatives, we observe

that gince N(g) is a binomial sum, for any fixed a,

D
(5e6413) N(a)/n RN pla) =P fa <6 <@+ m}

where © d1g'a ON random variable with density (Selsl)e
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Tis stochastic convergence is uniform in o gince the random
variables involved in the gummation N(a«) are clearly uniformly’
bounded in n and ae (See ege Parzen (1954)). Thus

' D
(5¢6014) N, = sup N(a), , === gup pla) .

But for the density defined in (5elel), this supremum is attai-

ned when o = = n/2 so that

. -1 m/2
-n/2

= P(k) |

where P(k) d1s as defined in (5.4e8)es Hence

Té4)/,/ﬁ = (N/n-l/z) s [P(x) - 1/2]

and the exact slope of the sequence{ T;4)I ig given by

(546016 ) 8,(x) = [ 2 P(k) - 13°

yhich is the same as that of Kuiper's test given in (5¢4¢7)e

We remark, in passing, that the statistic N 1s similar

to the Hodges' (1955) bivariate sign~test. statistic, wherec
for testing the equality of two bivariate defs's, he proposes
the maximum number of vector differcnces (differences between

the obgserved vectors in the £ populations) with positive
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projections on gowe line through the origin, as the directicn
of thig line is varicde Similar interesting relations

between non=parsmetric tests in bivariate situations and tests
for ecircular distributions cxiste Another case in point is
the test proposed recently by Mardia (1967) for bivariate
populations and the circular test suggested by Wheeler and

Watson (1964).

57 Ajne's teot A

If H(a) 1is as defined in Section 546, due Lo Ajne

(1966), is also the statistic

o
] SR 2
e v ved T y - 2
(Q.’?.l) A't'l = T‘——‘Mn ‘{3 LJ((;{,‘) 1’1/ ] do

which can be used for testing unifornmnity on the circlece. Ilere

we take

(547.2) = VB

as the 'standard' test sequences Define, corresponding to

any fixed o and the ith obgervation, ay,

1/2 if af ay <a+w

(5e743) Y. (a) =
) * -1/% €+ Ly < e RE,
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for i = l,eeey, Ne These, Yi's will be treated as random

variables (reve's) in L, (0,8m)e We may then write

(50704) (1/m) [(a) - n/2) = (1/m) 5 7,(a)
i=1
= §n(“)‘
Therefore
P {7 2 1 /Y= oy S @)= B° dap 4

s

(5e745) N o ) “ q
) n -~ [
Po{zn {) [E(W(a) =71 da 2 A7}

it

P { 11T 00 1P 227

i

where
2 _ 1. .2
12 IF = 2= S () aa
~ 0

(5)

is the usual norm in L,(0, 2x)e This way of looking at T,

allows us to make use of the Lemmas 5e2e” and 5e2e3, with the
\‘* - of
Banach space ¥ as the space LZ(O’ 2n) @nd ¥p, the space of

all continuous linear functionals on il with norm unitya
For utilising Lemma 5eRe3, we reguire

2
(5.7.6) ¥ =  sup , Var [x* (¥)]

¢ ¥y
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under the hypothesis of uniformity. Corresponding to any

element f(*) ¢ Lf_,,(o,iln), define the real-valued random varia-

ble
(56747) 2 = (£(¢), Y(¢))
‘1 2T _
= -_?’E“'R f f(a,) Y(CL) Ao e
0

Then, from the definition, (547e3), 0of the random variable

Y(a), under the hypothesis of uniformity,
(5e7e8) E(Z) =0

. 1 Zn 2N
Var (2) =—= J J £)f(p) K(a,p) dadp
4~ o ©

where
K((],B) = Jov (.Y(CL‘), 1({3))
= (B+1t-a)/.‘31t'-% it p;__(_a(ﬁ-pn
(5e7¢9) { E
(a=p=mn)/2m -«%I if f+nm L alp + En.

e ; rz -
The o*° of (5a7e6), then, is the supremum of Var (2) over
all f(e) in L,(0, 2m) such that || £(e) | is unity. To
‘o
obtain this, we use the following standard Fourier expam;i;imy

methodse For oxample, it can be ‘checked that the covariance
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. karnel K(a,p), given in (54749), has the eigen functions

(5.7010) {Oinﬁ, n =+ l, _-I_'_ 3y + 5, sen }

with the corresponding eigen values

0 if n 1is even

(5e7e11) k_;n =
——r (2

2/n"n if n is odde
Therefore, we can write
(547412) v(a) = 5 x, oM%

ng#Q

where ’ .

2n .

-in
X, = -—%‘-;-‘ ‘({ Y(g) e noe 44

is a random variable with mean wero and variance

Zn 2n . )
- 1n 1
== [ Klasp) o7 oM daap = gy
47 0 0 7

I
with A, as given in (5e7¢ll)e Further if f(g) Thas the

fourier expansion
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then from (5¢7¢12) and (5e7e7),

o

\("n
(547413) 7 = -55%— S Y(a) £la)da
O
o= & e
ngo M *n
n odd

whoge variance we can now rewrite ag

L (2]
Va - o
r (Z) 2 nj@ lcnl A,
(5a7414) ndo
z ® 2] 2 2
N k:é(x !02k+1l (1/(2k+1)" =]

Thus, we require the supremum of (S5e7el4) subject to the reg-

triction

(5.7.15) lsolf = e

A o
Clearly this maximisation occurs when [eq|® =1 with &1l the

other Pouricr coefiicients of f(e) vanishing. Hence

(Be7418) o+ - sup Var (£(e), 7(#)) = 1/n2.
I eil=1

Now, appealing to Loemua OeZed,
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(5e7417) (1/n) log P, {Té5) > a/n }

.= (1/n) log P, {}lfn(.)iﬁ 2‘x2 ]

o >}
~ = AT/ Ro*”

= - 7‘2"2/2

for A sufficiently smalle Tt may be noted that this exact
slope function agrees with the approximate slope (Equation
(6e5)), obtained by Beran (1968), using the asymptotic charac-
teristic functione Beran (1968) also showed that if {dm }be
the Fourier transforms of  the alternate defe G(a) and {cn }

those of [N{a) ~ n/2], then

Se3 2
(5e7418) Ay /n =22 3 e [Tla,
In our case, it can be seen that

(57419 c, = {ﬁ/%im if w  odd

0 otherwi se

and that the TFourier transforms of the CN distribution

given in (541.1) are
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Hence Trom (567e17), (5e7e18), (5e7e19) and (5e7¢20), the

5)

exact slope of the scquence { T( } is given by

i
aw

-
v m#EO

o7l 8 : <
(5e7e21) (%) ) Im(k)/ n”mg Ii(k)
m odd '

— 2 ) 14
= JLO I J+l(k)/( 2j+1)° I (k)

58 The spacings test Un

If { T;5 1 = lyee.y n } donote tho longths of the n
arcs made by the sample points, then we considered in Chapter

IIT’, the spacings test bused on the statistic

n
(5eB4l) U, = I wmax [T, - 2r/n, Ol
1=1 1
1 o /
= £ |1, = 2n/n|.
2oyt ,

In this case we take the test scequence

(5eBe2) Té“) = /i U =2n/ed; op Joo-l. Bam2

as the 'standard! gcquences We have seen that this has an

asymptotic normal distribution with mcan zero and unit variance,
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80 that this sequence of test statistics satisfies the condi-
tion (5e2e8) on the tail with a=le. TPFurther, from Theorcm
304e2, under the alternatives (5elel),

an
(QOBQ‘) y Un -?--} f 9"2‘“15’;(05) da
0
_ fgﬂ 2 («1)J oK o8 B 3
- o] j.—:-.O jz Io(k)

s

© j ) .
I S TR 21 eoF

Thug the approximate slope of this standard sequencc, {Té6)},

is given by
()l I0k) w112 10l o wE
(5e8e4) sk(k) = [ jEO =T S 1*/[2c™ -5 1.
(0]

5¢9¢ Comparison of the limiting efficiencies
/

In this sectipn, we compare the limiting efficiencies
of the gix test statistice.that have been studied in Bections
5¢3 to HeB, on the bagis of the slopes given in (5e3e8),

(50447), (5¢5e5), (546416), (5e7421) and (5eBe4) respectively.

First we note that Kuiper's statistic V and Ajne's N

sme ecually affjiciont cayvmatntically feor tectime unifornd by


http://www.cvisiontech.com

=178m

as their slopes are identicale The comparison of the liniting
officiencice is made oagier by considering approximations for
the slopes when k ig small, since in any case, we let k
tend to zero for obtaining the limiting efficicnciese (See
;4 PRz o ' N 4
definition (5+42e¢7))e Since ¢(k) 2 k/2 for k smallfy: ¢

2]
s

(6e9e1) s (1) = 2[e(0) 1% 2 ¥ 2

for small %, Moreover, for k sufficiently small, the CN

density (Selel) can be approximated by the density

(5e9e2) g*¥(a) = (1 + Xk cos a)/gﬂ, - {a<=n
go that

- 3 o - ‘7‘/2 ‘ ~
(509e3) Plk) & (563 (L+ Xk cos a)dua

-/

(%’ “+ k./"t Yo

i

Thercfore
g5(k) = s,(k) = [2 P(k) - 1}
]
_‘_ o 2 .
(5aSed) =4k

Using the distribution funmection

G*((L) = oy

Jen T (k sin “)/Bn
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corresponding to the approximate density e*(a), we obtain

from (5e55),

. o 275 . 21t - . 2
s%(k) L 4n £ { (k gin d)/zn - £ (k sin y)/2n’dy/2n }
(5.9.5) da/Zn
= 4ne (K%, 3) fzn sin® ¢ da
[ ] [
/8n’ Y

Similarly since the Bessel function of Imaginary argument

I, (k) has the expansion

9‘2 94
(54946) I (k) - LEZEI_ {1 (k /2) . (g/2)

Fress F IOy Y Tea(mel) (nee) T "'}’

ignoring terms involving Besgel functions of higher orders in

(5e7e21),

H

(5494%) 85 (k) B[Il(k)/lo(k)]
PR /2 o
And finally,using again the density g*(a), since

2 21
I ﬂe'zng*(“) Apm = [ i o=(1+k cos o) Ao,
o

0
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we got

- » cl M2 a e
'sg(k) 3 Lio(k)o Lo e“l]‘/(be L L 5e™)

¢

i

(I (k) = 1]2/(80 - 5)

il»

a )
¥/ 16{2em 5)

from the expaasion (leiled) for Io(k).

The following tavle gives the limiting efficliencies o

the gix test statistics gtudicd in this Chapiora ere

LX % (0) dis usad to denote the limiting efiicionecy of the
y )

test scgucnce { X} relative to the test pagquence {lf},

when K dg allowed to go to zero.

Tavle el

Table of limiting efriciencies.

=
L

Y ~> . . - -
Ly v (0) y | R W A v N

2] [»]
k 1 1 1 1~/ 8 1~/ 8

o 2, N
1 1 /8 /8



http://www.cvisiontech.com

]88l

Thus the three tests due to Rayleigh, Watson and Ajnes A
turn out to. have the same limiting performance for testing
uniformity against the ON alternativese Kuiper's V and
Ajne's N have algn asymptotically identical performances
but they do no; fare as good as the firgst threee If the effi=-
ciency of R, Wor A is taken to be unity, then V and ¥ have an
officiency of 8le/e. « That the asymptotic efficienhcy of the
gpacings test Uh .is zero as compared with the other tesﬁs
againgt the CON altcrnativos,is not altogether surprising in
view of the results we obtained in Chaptcer IVe However one
need not abandon the gymmetric spacings tests because of thig,
since thege limiting Bahadur efficiencies seldom throw suffi-
cient light cn the relative powers of the tests in small
samples, with which most practical investigaticns are concerned.
Hence it is not always wise to rely on thege efficiencies in
preferring one test to another, A modest simulation study was,
therefore, undértaken‘taiasgess the small sample performance of
the spacings test qn.as compared to the Rayleigh's test Rz.
It may be reccalled tﬁét the Rayleights test bascd on the length
of the resultant, is the likelihood ratio test for testing

uniformity in circular normal populations and is by far the

begt test for the situatione
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950 gamples of gize 10 each were generated from the
circular normal distributions (CND's) with concentration para-
meters k =1 and k = 3. The Rayleigh's statistic R° and
the spacings statistic Uh were compbted for each sample and
compared with tho corfosbonding S5e¢/a and 1le/y critical
pointg, obtained from Greenwocd and Durand (1955) and Tablo
3¢l of Chapter 3, The proportion of samples, which, these two
tests reject at these two levels of gignificance have been

tabulated belowe

Table 5,2
Monte Carlo powers of the tests R2 and U, .

CND with k=1 (sample size n = 10)

- ——

TLevel of significance

Test statistic 5o/, 1 o/, _
Rayleigh's test, R° 044073 001891
Spacings tesuv Un 0eR636 060927

OND with ke 3 (bample gize cn.=10):

Level of gignificance

Test statistic 5”4 lyﬂ
Rayleigh's tost, R~ 049854 09636
Spacings test, Un 009636 048200

From these comparisons, we find that the small sample
power of the spacings test statistic U, 1s quite satisfac-

tory as compared to that of the Rayleigh's test, even for
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observations from the ONDs Besides its satisfactory small
pample power, the test based on U,, as we noted elsewhere,
detects clustering of any sort and is a valid test for a much

wider class of alternatives.

5¢10. A simple ‘inequality between Kuiper's V and Ajne's N

As we have remarked in Section 5e6, the slones of
Kuiperts V and Ajne's N are ldenticale We note in thise ‘section.

that Kuipers V, = T;E) defined in (Bedel) is always larger

*

n = Tyl) defined in (5¢6e2), whatever the sample.

than Ajne's N
If F () denotes the empirical defe as measured from some

point, define F.(«) and F (a) on the interval [0, 3m) as

followse

K
(541041) F (a) ={ Fpla) for 0 < a < 2n

14 Fn(oc- 2n) for 2= __<_ a < 3x

and

% .
(5¢1042) F (a) = a/2n for 0 < a < 3m.
Then

N(a) = number of observations in [a, a+ =)

* *
nlE (a+ 1) = Fala) ], for 0 (a <2

o7 P
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*
Nn

H

/ﬁ. [Nn "1/2.]
S { - Sup [F:(a + W) - F;(a)]} - /1 /2

#.

0L a < 2xn

* x * *
Jo{ sup (F (a+n) = F (arn)+ P (a) = I (a) ]}
0L a< Zn

i

[ 7N

. * *
/ﬁ.{ . Sup LFn(a+ n)=F (a+ n)]
0L u< 2n

* *
Inf F - F
g Inf (F, (a) ()]}

i

vi{ suwp [F (a)=Ple)]= Inf (F («)=Fla)]]
0L a< En 0< a< 8xn

i

In.

Thus, whatever sample ig congidered, tine value of Ajne's Ny

can not exceed that of the Kuiper's statistic Ve

From the equivalence of the Bahadur slopes of V, and
N:, we may conclude that the two statistics have asymptotic
distributions, which are of the game exponential order in the
‘tails. But ginceoe Vn 2 N;, the limiting distributions rust be
quite dissimilar in their main partse Thus, in view of the
fact that the tails and main parts of the sequence of distrie-
butions do not necessarily have the same limiting properties,

one might doubt the reliability of the Bahadur comparison

*
between V, = and Nn' However, as Abrahanaon (1967) puts it,
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the Bahadur efficiency concerns itself with how well the null
hypothesis explains the sequences of test statistics, when in
fact, the hypothesis is false and the sgtatistics are growing
roughly in proportion to /me Thus the fact that Kuipers V,
oxceeds Ajne's N; in value, assures ugs in view of the
equality of the glopes, that V, attaing a smaller level of
significance than does N;; and rejects the null hypothesis

more often,
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CHAPTER VI

SOME TWO~SAMPLE NONPARAMETRIC TESTS FOR
THE  CIRCLE AND Al EFFICIENCY COMPARISON

6,1 Introduction and Summary

We consider the following two-sample problen on the

circle: Given ajjseee; @ and  Byseeey @n{ two independent

n
gsamples from distribution functions TF(«) and G(B) res-
pectively on [0, 2x), we wish to test if the two populations
are identical iscs, the hypothesis I  : ™Ma) = ¢(a) for all
a» Kuiper (1960) and Watson (1962) gave two=-sample extensions
of the test statistics V,, and W, defined in (He4el) and
(5eBel) respectivelys These extensions are again based on
guitable measures of divergence between the empirical distri-
bution functions of the two individual samples. Since there
is no natural way of ranking the observations on the circle,
one can not make use of the scveral rank tests that are avais-
lable on the line with the circular datas. However, Schach
(1968) defines a class of none=parametric two-gsamplc tests for

the circle which are closely related to the class of rank

tests for distributiong on the line.

Presently we discuss herc a two=-sample non=paranmnetric

test, called the 'Va test, which is analogous to Dixon's (1940)

=186 =
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statistic for the lince It is based on the number of obser~-
vations, { Si} y- of one sample in the sample arc-lengths made
by the othere The usual run test for the circle can also be
expressod in terms of these Si's and we also compute the
asymptotic relative efficiency (ARE) of the run test on the
circle as compared with this V2 test. This ARE has been
derived earlier by Blumenthal (1963) but unfortunately his
‘derivations made use of a result of Weiss (1957) which is not
quite right, as has been pointed out by Pyke (1965), We
utilise the results of our Chapter IV and the conditional
approach of Blumenthal (1963) to obtain the distribution of
V2 under the alternatives of interegt and show that the ARE
2

of the run test on the circle as compared to the V test is

1/(1+9) ~where @ is the constant ratio between the two

sample sizese.

6¢2 The V2 test

Let aly...;am and Byjses.,B, be two independent
samples from two circular populations with Aefe's F(o) and
G(g) on [0, 2n), on the basis of which we wish to test the
hypothesis H) ¢+ F = G, Without loss of generality, we may
take m > ﬁ. If 0 < By' £ wee £ B, £ 2n denote the order

statistics from the second sample, define
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(662e1) 8, = number of a's in between [5{~1’ﬁi)’
i = 2,..‘, n
n
and Sl=m~ ZSi-
2

Thesge Si's denote the number of observations from the first

¥ . .
th gample are made by obscrvations

gample falling in the i
from the second samples. For testing the hypothegsis HO, we
may consider tests based on these values{ Si, i=l,ee., n }.

For example, one may use the statistic

2]

n o
(6e242) V¥ =1/n % 8%
1 1

which is eguivalent to the statistic

2
C =

Hi B

/m - 1/1’1)2

suggested by Dixon (1940) for thc twoege ple problem on the
lines Following Dixon (1940), we can show that

(6e243) E(Vz) m(n+ 2@- 1) /n(n+ 1)

.9
Var(Vv®)

4m(m-jl)(n— 1)(m+ n)(n+ n+ 1)/

nz(n+ 1)2(n+t2)(n+-3).

Since the values { 8;} remain invariant under a probability
integral transformation on the driginal observations, it is

more convenient to consider
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(6.204) Xi

F((Xi), i-—"-l',ooo,m

it

yj‘ F(8 )9 j = l)cc-, n
which are now on the unit interval, with the X's having a

uniform distribution on [0,1]s The Y's have the density

(64245) g (y) = Ei—r(;;; 0<y <1

2

Blum and Weiss (1957) have shown that the V° test is consisce=

tent against any alternative gl(y) such that

1 “l
f gl (Y) dy > 1.
O

They further demonstrate that this V° test is the locally most

power ful spaéingé test against linear alternatives of the form

gg(y) =1 +9(y—%), 0< el <2.

These conclusions apply equally well to the V2 teet we have
defined in (64242) for the circle, since the distributicn of
the 8;'s dees, {Si, i= l’f"’ n } on the cirecle is clearly
the same as those obtained on the line, when there are only
(n=-1) observations in the second sample. If -

h8124R) m., n > o auch that % - 2 >0
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then under the hypothesis W : F a G (or equivalently

2 e
(6e247) Jn V5 =9 - 29%]
has an asymptotic normal distribution with mean zero and
o o
variance 48%(1 + 8)° as can be demonstrated from the results

of Blumenthal (1963)e

6.3 Runs on the circle

The thecry of the run test on_tho circle is well-kncwn
by now (Refe cege David and Barton (1962))e The run statis-
tic on the circle can be exprescsed in terms of the Si's
dofined in the earlier Section (equation (6e4241))e Let

P(Sl,...,Sn) denotc the proportion of 'Si's which are gzero

1e€e,
n
(6e341) P(8 gee,8,) = 2(8) = % z 8(s;)
where A
(64342) 3(x) = 1 if x =0
{' 0 otherwise.

Since the number of runs of X's, say Ry, 1s the sanme as the

number of Y-spacings containing at least one X, we have
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(603e3) Ry =m(1 = P(8)).

On the circle we always have an even number of rungs, exactly
double the number of runs from either sample. Therefore, if
R denotes the number of runs on the circle in the combined

ordered sample,
(6e304) R =2n (1 =~ P(S)).

The asymptotic (in the sensc of (6e4246)) ncrmality of the run
statistic under the hypothesis Hj, has been established by
Wald and Wolfowitz (1940) and we have ah‘asymptotio normal
distribution for ‘

(64345) /A G-

N P4 .
with mean gzero and variance 492/(l+ 9)”s The congistency of
the run test against a large class of alternatives, follows

again from the results of Blum and Weiss (1957).
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6e4 The ARBE of the run test on the circle as compared

to the V© test

Blumenthal (1963) attempts to derive the distributicns
of the V2 test and the run statistic R under general alter-
natives gl(y) using an elegant conditional approache. But
in obtaining the éistribution of Vg, the distribution of

g 2 th
z (DYi) , where DY; is the i

1
under the alternatives, for which he uscs a result of Weiss

Yespacing, is required

(1957)s This result of Weiss (1957), however, is not true in
that generality as has been pointed out by Pyke (1965).
However, as we rcmarked earlier in Chapter IV, in computing

the ARE, what we need is only the distribution of the statistic
under a suitable sequence of alternatives which converge to

the hypothesiss In this case again, the relevant alternatives

turnn out to be of the type
(6+401) g () =1+ AWM 0y <

which were dedalt with in detail in Chapter IV. There, we
obtained the distribution of I (DY,)® where Yi's have a
distribution of the form (Gedel)e

Tor the sake of completencss, we briefly outline the

conditional approach of Blunenthal (1963) which is gummarised
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in his Theorem 261 and which we reproduce belowe Let
Hn(Sl,...,Sn) = H (8) be ady function based on B5yjee.,8,
and let E_ (H (8)|Y) denote the conditional expectation of

Hn(s) given‘ Ylyooo,Yno Then

Theorem 6,41 (Blumenthal): Tet H (8) and B (1 (8)]1)
be as defined aboves If /n [En(Hn(S)[f) - E H (8)], congi-

dered as a function of (Yl,...,Yn),has a limiting non-degene=

rate normal distribution, N(O,cl) and if

(64402) m nP/% B, 1 [,(8) - E, (H,(8)}1) P}y }

(p-1)(p~ 3)...'5.1.Cg/a if p ig even

0 if p is odd

with probability one (where ¢, is some constant), then

(6e443) /o [H,(8). - B 1, (8)]

has an asymptotic normal disftribution WN(0,c) where
()
Now since our V° defined in (6e2e2) 1is

n S;
T (),
1

i

Si0a

L
n

it has the game linmiting distritution .as
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S,
(64404) 422 2(0]

Hp B

=8 4+ 2 Hn(S), say.

Now consider all the (5) pairs (Xi y X5 ) of X'se Among
[ l N : 2 .
these, the number of pairs that fall in the same Ye-arc is

given by the following two ways

n Si
(6.4.5) : f (o7) = n H(S). ...

where

if Xq and x2 fall in the same

.

Yeare

(Gedeb) 6(x) %) = S’ 1

\
\ 0 otherwises
Clearly
E(t(xl,xg)if),= PLt(x) 9%5) = 1Y}
(60407) n P
= :‘La(DYi)"

where DY, is the length of the 1™ Y eare as defined ear-

1iers Thus from (6e4e5) and (Gode?)

i
jod Lo
o]
-—
HMB
~~
|
<
T
| -]

(6¢448) B[, (8) Y]
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where @8, -> O stochasticallye Hence the asymptotic norma-
lity of B(H, (@)|Y), under the relevant alternatives (6e4el)
is established by our Thcorem 4453 of Chapter IVe From the
expressions (4+5¢19) and (445.20) for the‘asymptatic mear and

variance under these alternatives, we bhave
[

2 1 4
(64449) VB 4B ()] ¥) = 0% - S ([ AP (p)aw) ]

n

i1s asymptotically normal with mean zero and variance 94;
Purther, for the alternatives (C€.4,1) cf interest,

Blumenthal's Theorom 3,1, in particular, gives

(694020)  1im n®/? 5 {Ir ()= B(L () '0)IF ¥ }

oy
, j (p=1)(p=3) ... Jel cg/“ if p is even
=), ,
i

(S 0 if p ig odd

[»] .
where co = 97{1+ 29]s Therefore, appealing ncw %ic Theorenm

(Bedel), we have

e _ 9% 1 e
(644411) /o [ (8) -9 - WG (g £ (p)ap) ]

o
“

[»]
is asymptotically normal with mean zero and variance 97(1+ 9)°
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under the alternatives (6.4.1?. Hence from the equivalence
o b
of  the asymptotic distributions of V¥ and: % + 2H (8),

[
[

ng~ L N
(644,12) i (2 -9 - 29 B (S (p)ap) ]
Jh o

is asymptotically normal with mean gero and variance
49°%(1 + 9)2 under the alternatives (6:4.1);‘ Now comparing
the null distribution given in (6.247) and the distribution
under the appropriate alternatives as given in (6e4412), the
tefficacy! of the V2 tost (Sec €ege Scétion 446) is

o

o 1,
(644413) e(VR) = S (J'X“(p)dp)z
(1+9)~ o

On the other hand, from the results of Blumenthal (1963)
the ésymptotic distribution of the fﬁn statistic, Rs defined
in (6+344), can be immediately written down for the alterna-
tives of intorest, namely (6e¢4s1)s In fact, under these

alternatives,

[§e]

12
(S A% (p)ap)
29 29" o -

+ = ]
1+9 ‘(1"_9)0 Vfﬁ'

(6edald) LS -

has an asymptotic normal distribution with mcan zero and same
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variance as under the hypothesis. Therefore the efficacy of
the run test for testing M , agalnst the alternatives of

the type (6e4.1) is

> 1 5 .
(Godel5) e(R) = —— ( S A% (p)ap)?
14+ 9 0

Thus, from (Ge4el3) and (6.4415), the ARE of the run test

as compared to the V2 test is
2 N
(604:.16) C(R, ) ) “--‘ _m)

: o
which shows that the run test is always inferior to the VvV~
teste PFurther the ARE of the V2 test as compared to the

run test increases as the relative proportinon of obgervations.

in the two samples, increasesge

sig
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CHAPTER VII

LARGE SAMPLE TESTS FOR [IOMOGEJEITY OF
SEVERAL ANGULAR POPULATIONS

7.1 Introduction

e v oo

So far we dealt with single gample and two—éamplo
problems for angular populations and discussed some test
procedures, parametric as wélllas nonparamctrices In this
chapter, we deal with scveral sample situations and propose
two large sample tests based on the *homogencity statistic',
H of Rao (1965) for testing the equality of példr directions
and for the cquality of dispersionse The tests given here
have alrecady appeared in printe. (Ref. Sengupta and Rao (1968))
These tests do not assume any specific circular distribution
for the observations and are generally valid provided the
gamples are not too smalls 4And if, in particular, the data
conforms to a CN distribution given in (1.2.3), one can
derive as we do in Section 745, the standard errors of esti-
mates of the CH parameters through a large samplec approach.
We show in Scction 73 that the limiting power of the homoge-
neity test, for testing equality of polar directions, coincis
des with that of Watson'sg approximate snalysis of variance
test, under the asgumptions under which the latter is valide
We also give a numerical example to illustrate the use of

these tests.
=] 98 e
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7e2 ITegting for equality of polar vectors

Suppose we have q(> 2) populations of angular
variables and samples of gizes 'nl,.n.,nq regpectively from
thege populationse Let us dencte the ith gample values by

\{O‘ij’ ] = I;tt*s ni} v L =1,eevy g

Let
Xij = CO§ Ay 49 yij = fin %3 4
(7e241) ) ‘ ‘ni _ ng
x; = jil Xg 50/ vi= jil Yi4)/04

lece, x, and y; stand for the means of the 'cos' and 'sin!

i
values regpectively from the 1 %0 samples Furthér let
Séi), Séé) denote the sample variances of the 'cos' and 'sin'
values and S§§), the sample covariancc between the 'cos' and
'sin' values from the ith sample., That is
(1) _ & - %)% /(n, -
SXX = & (Xi,'] xi) /(ni 1)
j=1
(7e242) n
(1) _ 5 S 32
S .z (yy5=97/ (ny=1)
and (i) ny - -
S = .5 (x,, = Xi)(yij-'gg/(ni-il)

where X, =and vy, are as given in (7.261)s Now if Y,
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denotes the polar dircction of the ith population, we know

that a consistent estimator (Ref. Sawction 241) for tan y&

is provided by the statistic

(74243) Ty =¥y / x4

which has an asymptotic estimated variance

vy/ e XX, xy/

(7.2, £ = m) @'Y a7 55)-4 - 25 5500 |
.i i i

in the notations given in (7e2el) and (7¢2.2)s Thisc cun be
easily’shown by the method of differencing (Sec ecege Rao
(1965))+ TFurther the quantity /m; (T, = tan Y& ) is nor-
mally distributed in large samples. Now we consider the null

hypothesis
(7.2.5) HOS tan )’l = tan )/2 = gee = Tan yqo

Since T;jee-, Tq are independent, ccensistent estimators: of

the same quantity under the hypothesis H_, based on samples

O’

, L . 2 ,
of gizes nl,...,nq with variances o] given by (7e244), we
can uge the statistic
q o

2 d 2\, Lo ,8
(7e246) H = 121 Ti/sg - ( %Ti/si) /( ]Fjl/gi). ‘
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This statistic is appropriate for tegcting HO' gince 1if each

Ty doecs not estimate the same quantity, the diffcrences arc

reflected in the test-statistic H given above. Under cer-

tain very general conditions, H Thas an asymptotic X8 dis-
tribution with (g=1) degrees of freedom under the null

hypothegis (See Rao (1965)).

Rejection of HO leads us to conclude that the polar
vectors are different,- But on the other hand, cven if HO
is not rejected, it is pogsible that the mean directions of
the q populaticons are different since our hypothegis does
not distinguish between the 'pole' and the 'antipole', tan Y
being the. same as tan (n+ ) )« But such wide differences
in the polar directions can ecasily be found out by a simple
examination of the datas The procedurc for applying the
homogeneity test is simple and consists in ge?ting Ti from
(7e2e3), si from (7e2e4) and then computing H using the
formula (724604

7e3 Comparigon of the asymptotic powerc of the homogeneitby

tegt and the analysis of variance tegi

For testing the equality of peclar directions of several
CN populations, Watson (1956, 1966) gave .an approximate
analysis of variance (ANOVA) test which depends on the lengths

of the resultants, R,4ees,R, of the .q independent gamples
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and on R, the length of the overall resultant based on

q
n = & ni observationse. The test statistic is
1

q
- R)/(q-1
. ( ¥Ry = R)/(a-1)

(76361)
(n - % Ri)/(n- q)
1

which has a F distribution with (g=1) and (n=-q) degrees

of freedom, provided the q 'populations have thc same concen-
tration parameter say k, which,is highe For large k, this
corregponds to the linear ANOVA statistic and can be derived
ossentially from the approximate distributions (Re42¢8). In
this section, we show that the homogencity test statistic
(74R46), besides being valid without any restrictions on the
concentrations of the different popu%ations, is asymptotically
as efficient as the F test given in (7.3.1), for testing

the equality of polar directions,

As the P-test (74341l) corresponds to the linecar ANOVA
tegt for large k, we show that the homogeneity test (7+246),
has asymptotically the same power as the linear ANOVA teste.
It ma& be recalled that when k is large, the CND becomes
essentially normal, We theroforo connider the following
ANOVA set up: Supposec we have q normal populations and a

th

sample of size ny; from the 1 populatione Let «

denote the jth obgervation from the itn population

1]
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th population is

(j:-’ 1,.-.,111, i = l,.o-, q). If thO i
~ 2
normelly distributed with mean ). and variance o, then

under the hypothesis
(7.3.2) HO : }’1 = }’2 = ewe == )/q

of equality of means, the statistic

- - 2
Znyley, =a,,)/(q-1)
(763¢3) g = < :
z

;3 (“ij -a; ) /(n=q)

i
has a F-distribution with (q~1) and (n=q) degrees of freedon.
(The notations in (7«3+3) arc standard and need no explana=-
tion)es Under the alternative, i.c., whon the - 7& s are not
all equal, the statistic 8, given in (7e3.3), has a noncen=
tral F-distribution, F(q~l, n=q, A;) where the noncentrality
paramcter Kl is given by

v A2, 2 ,
(7e3e4) A o= § n, (Y=Y )/c" where Y= § ng Vi /ne

However, since our interest lics in making an asymptotic powcr

comparison, we consider the following limiting situation

(7e345) n,,n => @ such that i -> g

O Cms <Ly  1'="Lysesy Qe
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Now since any reesonable test turns out to be consistent
(in the gense, the power tends to unity as the gample size
increascs indefinitcly) against any fixced alternative, we
consider the following .sequence of altcrnatives ccnverging
to the null hypothesis in the limite.
(74346)  Alte: The i popwlation mean Y; = Y + 85/ /i »

i= l,o:o, q

where Y, RLLEE aq are some fixed constantse Then under

the asymptotic situation considered in (7e345), the statistie S,
has a Xi~1/(q-l) distribution under H_, while 1t is‘a 1.on -
central Xg_l(hl)/(a-l) under the altornative (7.3.6).

Here, in the limiting situation, this non=centrality parame-

ter kl, turns out to be

-2, 2 -
(7e347) A o= § ni(b,- 8)° /o where o = f n, 0.

On the other hand, the homogeneity statistic H of
Section 7.2, requires the following simpler sct up: Tl,...,Tq
are independent consistent estimators cof yi,...,yq based on
samples of sizes Tyjeesy Ny and Jﬁz (7,= Y;) is asympto-
tically normsl with mean zero and variance qf( 7&). Then

under H, given in (7e3e2
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A
v V2
(74348) H= fni(Ti - ¥R/ )
where
~ ng Ti n
y=3 431/ &z
1 of(ry) oy (1)

18 asymptotically (lece, in the.sense of (7.¢345)) distribu-
ted as a Xi_l (See Rao (1965)), By exactly similar arguments,
it is oasy to show that under the alternatives mentioned in
‘(7.3.6), H has again a noncentral Xi“l (XB) with the none-

centrality parameter xz, saye Writing

q T, V- q .
(7:349) . Y =2 =L /3 i
0'1( )’1) 1 ol )/1)
I R B SRR .31‘,,::__,]//—
i a7Y,) i o7 (V)
1 1 1 i

the non-centrality parameter, Aoy Can be geen to be

o [
(743410) Ao o= Z g3y = 0N /e5(Y ).
2 5
Now, clearly, one should consider the gituation where

o
ci(y ) = oo = ai(y) = 0~ (le2e, equal variances in all the

Popuravloily;,y 1t older O colpare rnc asyimpuovic periocmnance
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of H with that of the ANOVA statistic Se. In this case, the
non~-centrality parameter kz gi?en in (7e3.10) is identically
the same as Ay, given in (7e347) s0 that both the tecsts have
asymptotically the gamc poweres Thus when the .agsumptions of
the ANOVA set-up are satisfied, the limiting efficiency of the
homogeneity test, (7e2¢6), equals that of the ANOVA test
(7e3e3) which corresponds to.the approximate statictic (7e3el)
for large k. On the other hand, the homogeneity test, (7e2e6),
may still be used in large samples even if the conditions of
the ANOVA set up do not holde But however, when dealing with
small samples, only Watson's T=test given in (74341), is

available for testing the equality of pnlar directions.

7e4 Tegting for equality of dispergionsg

We shall consider the same sete-up as in Section 7.2 and
also retain the notations (7«2¢1) and (7.2.2)s Now consider

the statistic

2 2

o
A I o _ p& 2
(7e4el) U, = (xi + yi) = RY /ni
where Ri denotes the length of the rcgsultant for the ith
gample of n; observationse. This Ui is a measure of con=-
centration for any unimodal circuwlar population as we have

noted in Section 2e2. Large values of U; 1i.e., values near
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unity show high concentration of the observations and values
of Ui near gzgero indicate a low concentration or a high amount

th populationes It is easy to check

of dispersion in the 1

that the estimated asymptotic variance of this statistic U
(1) (1) (i)

in terms of SXX ’ sxy and Syy is

(74442) = (4/ng){ %4 : "(1) 5o sé;)+ RX;¥4 s§§) .

If now the null hypothesis gtipulates the equality of the
concentrations of the q poPQlations, then all these gtotis-
tics Ujsess, Uq are independent consistent egtimators of
the same gquantity under the null hypothesis. Hence we can use,
again, the statistic H for homogeneity and compute
q 2 4 25,4 o

* %* * I ﬂ*z:.
(7ede3) H = fu‘l /s T - ( zl Ui/si ) /(f 1/u].L )
which is distrib#ed asymptotically as a X° distribution
with (g~1¥. degrees of freedom under the hypcthesins of equality
of dispersionse Thus a test for the homegenelty regarding the

dispersions of the ¢q populations may be made in large

gampleg, using the testestatictic H*, given in (7e4e3).
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7e5 Standard errorg of estimates in circular normal

populations

In this section, we assume that the basic distributiocn
underlying these observations is CN  with density given by
(Le2e3) so that the maximum 1ikelihood method of egtimating.
the parameters ) and k as described in Section 241 holdse

Thus we have the ML esgbtinmate

% =
(7.541) Y, = ren™ 1,

for the polar dircction ), of the 1 o0 populations From

this one gets, by the'usual differencing method, the standard

A
error (sees) of ). as

A ~ 2
(7-502) SeCe ()/1) = Si/(l"' Ti)

where s, is given by (7e244)e Similarly we can get the seee

of ﬁ;, the ML estimate of the concentration parameter ki
of the ith populations 8ince the ML equation for estima-
ting k; 1is

A

(k) A~ Ri/ni = /Ui ’

(74543) Il 1/1 @) =
(O &

differencing method, gives
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A ~
(7.5.4) SeCe (ki) =

: T T \
U, ( = - - JU)
i i E} i

1L

where s; is as given in (7e4e2). Thua, in fairly large
samplesg, one can get the gtandard errors of the CH parameters
of the ith population from equations (7e5¢2) and (7.5e4),

when a ON digtribution can be assumed for the obgervationse

7«6 Comments on the robustness of tho test procedurcs

and a numerical examplg °

The tests described in Sectiong 7e£ and 7s4 do not
apsume any speclfic distribution for the observations and are
valid whatever the underlying wnirodal distributions Watson's
approximate F-tegt for ﬁesting the eguality of the polar vecw
tors, given in (7e3¢1) has also been shown to bé robust for
dewlaticons from circular normality of the observations, as
one should expect from the linecar case of gnalysis of variance.
But however, the test holds good when the soncentrations of the
geveral populations under comparison, are high and equal. The
statistic H given in (7.2.6) for testing the equality of
polar vectors, 1s not based on any such assumptions regarding
the concentrations and is valid more generally provided the

samples are large.
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In the following numerical example from Sengupta and
Rao (1966), we have threce populations referred to as upper,
middle and lower Kamthi rock formationse The CN digtribu-
tion fails to give a good fit to any ol thesc three popula-
tions. PFurther tho concentrations arc quite low and they are
also significantly different as tested by the statistic H*
given in (7+4¢3)e ' In spitc of these many odds, the homoge-
neity tests H and H* for testing the equality of polar
directions and concentrations hold good as our samples arc
quite larges The gample data is presented below in Table 761
in a grouped forma

TABLE 741

Frequency distributions or cross-
bedding azimuths in the three Kamthi

unitsg.
Azimuth class interval Upper Middle . TLower -
(in degreesg) Kamthi K.amthi Kamthi

0 - 19 75 o0 14
20 - 39 75 2 14
40 = o9 15 33 11
60 - 79 25 9 13
80 - 99 7 1 9
100 - 119 3 3 16
120 - 139 3 - -
140 - 159 - - 4
160 - 179 - - -
180 -~ 199 - - 3
200 - 219 21 2 4
220 - 889 8 8 -
240 - 289 24 - -
260 - 279 16 11 -
280 - £99 26 ) 6
300 « 319 75 20 7
320 - 339 90 03 1
340 -~ 359 107 4] 21
ﬂ.l = 080 112 = 298 1’15 =1

- P
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On the basis of this data, we want to test whether the
threeo Kamtht populations have the same dispersion and whether
they differ significantly with regard to their mean directions.

Some of the computations are given in Table 7.2 below.

TABLE 742

Some compu¥ational details.,

Kamthi - - *
formation ™4 X4 Y3 Ty 84 Yy 83
Upper 580 066299 ~0e1993 =0¢3164 040323 004365 0,0322
Middle 298 047389 040119 0e0161 040440 0,546 040318
Lower 123 064106 043090 047524 0,1863 042640 040487

The computed values of H and H*¥ as given by (74246)
ard (7e4e3) turn out to be very much larger than the 5e/e
critical value, vize 5499, thus showing significant differences
between the Kamthi populations with regard to both the mean
directions and dispersionse Thus the polar azimuthal angles
in the three Kamthd rock formations differ significantly and
further the dispersions in the three populations can not also

be considered enual,
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And finally, assuming a ON distribution for the
obgervations, we find the ML estinates §2 and £; for
the polar direction and concentration of the ith  Kamthi
unit. We also give below, in Table 7e3, the large sample

svandard errors of these estimates, obtained from (7e5.2) and

(7eBe4d)e

TABLE 7.3

N A
ML estimates ); and k; and their gtandard errors.

—

Kamthi A A A A AN

formation )& s.c()&) ky s.o(ki)
Upper - 342°27! 649 1,7895 041254
Middle. .0%51 - 20311 2,2893 041643

Lower g6%e6' - 1°41! 141910 041556
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