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A b s t r a c t .  The estimation of the asymptotic variance of sample median based 
on a random sample of univariate observations has been extensively studied in 
the literature. The appearance of a "local object" like the density function 
of the observations in this asymptotic variance makes its estimation a difficult 
task, and there are several complex technical problems associated with it. This 
paper explores the problem of estimating the dispersion matrix of the multivari- 
ate Li median. Though it is absolutely against common intuition, this problem 
turns out to be technically much simpler. We exhibit a simple estimate for the 
large sample dispersion matrix of the multivariate Li median with excellent 
asymptotic properties, and to construct this estimate, we do not use any of 
the computationally intensive resampling techniques (e.g. the generalized jack- 
knife, the bootstrap, etc. that  have been used and thoroughly investigated by 
leading statisticians in their a t tempts to estimate the asymptotic variance of 
univariate median). However surprising may it sound, our analysis exposes 
that  most of the technical complicacies associated with the estimation of the 
sampling variation in the median are only characteristics of univariate data, 
and they disappear as soon as we enter into the realm of multivariate analysis. 

Key words and phrases: Asymptotic dispersion matrix, consistent estimate, 
generalized variance, L1 median, multivariate Hodges-Lehmann estimate, n ~/2- 
consistent estimation, rate of convergence. 

1. Introduction 

I t  is a well-known fact t ha t  if t)n is the sample  median  based on a set of i.i.d. 
univar ia te  observat ions X i ,  X 2 , . . . ,  X~, which have a c o m m o n  densi ty f sat isfying 
cer ta in  regular i ty  conditions, 0~ is a sympto t ica l ly  normal ly  d is t r ibuted  with  mean  
0 and variance ( 4 n ) - l { f ( O ) }  -2,  where 0 is the unique median  of the  densi ty  f 
(see e.g. Kendal l  and Stuar t  (1958), Settling (1980/, etc.). Since bo th  of 0 and 
f are usually unknown in practice,  the  es t imat ion  of {2f(0)}  2, which is the 

a sympto t i c  variance of nl/2(0~ - 0), has received a great  deal of a t t en t ion  in 
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the literature. Using some asymptotic results established by Pyke (1965), Efron 
(1982) showed that the standard "delete one" jackknife leads to an inconsistent 
estimate of {2f(0)} -2. Shao and Wu (1989) used a generalized jackknife technique 
that deletes a set of k _> 1 observation(s) for computing each of the jackknife 
pseudo values. They proved that if k grows to infinity at an appropriate rate 
as the sample size increases, the "delete k" jackknife yields a consistent estimate 
of {2f(0)} -2. However, with k tending to infinity as the sample size grows, the 
practical implementation of "delete k" jackknife will require prohibitively complex 
and expensive computation in the case of large data sets. Maritz and Jarrett  
(1978) and Effort (1979) introduced the bootstrap estimate for the variance of 
univariate median. It is known that unlike the "delete one" jackknife, the standard 
bootstrap, which resamples from the usual empirical distribution based on a set of 
i.i.d, observations, does lead to a consistent estimate of the asymptotic variance of 
rtl/2(O~-O) (see Efron (1982), Ghosh et aI. (1984), Babu (1986) and Shao (1990)). 
However, Hall and Martin (1988) proved that this bootstrap variance estimate 
converges at an extremely slow rate, namely rt -1/4 (see also Hall and Martin 
(1991)). The appearance of the unknown density f in the expression {2f(0)} -2 
implies that rtU2-consistent estimation of the asymptotic variance of n 1/2 (0~-O) is 
impossible. Nevertheless, as pointed out by Hall and Martin (1988), in view of the 
estimate of the reciprocal of a density function considered by Bloch and Gastwirth 
(1968) and the kernel estimates studied by Falk (1986), Welsh (1987), etc., one 
can estimate {2f(0)} -2 at a rate faster than n -1/4, and under suitable regularity 
conditions, the convergence rate can be made to be very close to n -1/2. Hall et 
al. (1989) demonstrated that one can greatly improve the convergence rate of the 
bootstrap variance estimate by resampling from kernel density estimates instead of 
using the naive bootstrap based on the unsmoothed empirical distribution. But in 
order to actually achieve such an improvement, one may have to use higher order 
kernels, which will lead to negative estimates of density functions and unnatural 
variance estimates. 

One can extend the concept of median to a multivariate set up in a num- 
ber of natural ways. An excellent review of various multidimensional medians 
can be found in a recent paper by Small (1990) (see also Barnett (1976)). We 
will concentrate here on what is popularly called the L1 median that was used 
in the past by Gini and Galvani (1929) and Haldane (1948) and has been stud- 
ied extensively in recent literature by Gower (1974), Brown (1983), Isogai (1985), 
Ducharme and Milasevick (1987), Kemperman (1987), Milasevick and Dncharme 
(1987), a ao  (19s8), Chaudhuri (1992) and many others. For a given set of data 
points X ~ , X 2 , . . .  , X ~  in R d, the L 1 median ~)~ is defined by ~ i ~  Ix~ - 0wl = 
minecRd ~ i~1  IX~ - ~1, where I I denotes the usual Euclidean norm of vectors 
and matrices. It has already been observed by several authors that in dimen- 
sions d _> 2, the L1 median retains the 50% breakdown property of the uni- 
variate median (see Kemperman (1987)) and has many mathematically surpris- 
ing and statistically attractive properties. For example, Kemperman (1987) and 
Milasevick and Ducharme (1987) proved that in contrast to the nonuniqueness of 
the univariate median when there are an even number of observations, the L1 me- 
dian in dimensions d >_ 2 is always unique unless the observations X1, X2, • • •, X~ 
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lie on a single straight line in R a. Many interesting asymptot ic  properties of 
the multidimensional L1 median have been established by Brown (1983) and 
Chaudhuri  (1992). 

In this paper, we consider the estimation of the dispersion matr ix  of the L1 
median 0~. In the following section, we will exhibit a simple estimate, which 
is consistent when d _> 2 and does not require any computat ional ly intensive 
resampling technique like the jackknife or the bootstrap.  Further,  we will establish 
tha t  under certain s tandard regularity conditions, this est imate is nl/2-consistent 
if d _> 3, and when d = 2, it converges at a rate tha t  is arbitrarily close to n -1/2.  
In other words, as soon as we leave the univariate set up and get into the analysis 
of da ta  in multidimensional spaces, the technical complexities associated with the 
est imation of statistical variability in sample median quickly disappear! We will 
briefly indicate how our result and related observations extend to the est imate 
of the dispersion matr ix  of a multivariate extension of the well-known Hodges- 
Lehmann estimate (see Hodges and Lehmann (1963) and Chaudhuri  (1992)). 

2. Description of the estimate, main result and discussion 

From now on assume tha t  d _> 2 and X 1 ,  X 2 ,  . . . , X n , . . .  are i.i.d, d-dimensional 
random vectors with a common density f ,  which satisfies the following condition. 

CONDITION 2.1. f is bounded on every bounded subset of R g. 

For a non-zero vector x in R a, we will denote by U ( x )  the unit  vector Ixl-lx in 
the direction of x and by Q ( x )  the d x d symmetric  matr ix I x l - l ( zd  - Ixl-2xxr), 
where Id is the d x d identi ty matrix. Any vector in this paper is a column 
vector unless specified otherwise, and the superscript T indicates the transpose of 
vectors and matrices. For the sake of completeness, we will adopt the convention 
tha t  if x is the d-dimensional zero vector, U ( x )  is also the zero vector and Q ( x )  
is the d x  d zero matrix. Let 0 E /~d be the median of f ,  so tha t  E ( ] X ~ -  
01-  IX~l) = mincsRd ECIX~ - 4)1 - IX,~l) (see Kemperman (1987)), which implies 
tha t  E { U ( X ~  - 0)} = 0 for every n _> 1. Define two d x d symmetric  matrices 
A = E { Q ( X ~  - 0)} and B = E [ { U ( X ~  - O)}{U(X,~ - 0)}T]. Under Condition 
2.1, the expectat ion defining A is finite, both  of A and B are positive definite 
matrices, and the asymptot ic  distribution of nl /2 (0~  - O) is d-variate normal with 
zero mean and A - 1 B A  -1 as the dispersion matr ix  (see Brown (1983), Pollard 
(1984), Kemperman (1987) and Chaudhuri  (1992)). Hence, in order to est imate 

the asymptot ic  dispersion matr ix  of t)~, we need to est imate the matrices A and 
B from the data. 

Let S~ be a subset of the set of positive integers {1,2,...,n} and S~ be 
the set theoretic complement of Sn in {i, 2,... ~ n}. Define an estimate 0* of 0, 

which is constructed in the same way as the L1 median 0n but using only the 
Xi's  with i C Sn.  In other words, }-]-i~s~ IX~ - 0"1 = min¢eRd }-]ics~ IXi - ~bl. 

Consider estimates of A and B defined by A~ = (n - k~) -1 }-]-ies~ Q ( X i  - 0~) and 

= ~ - ] i e s ~ { U ( i - O ~ ) } { U ( X i - O n )  } respectively, where k~ = ~(S~)  
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and n - k~ = #(S~); We have the following theorem describing the asymptotic 
behavior o f - ~  and B~. 

THEOREM 2.1. Suppose that both of n-Xk~ and 1 - rt-lkn remain bounded 
away from zero as n tends to infinity, and Condition 2.1 holds. Then, for d >_ 2, 
the difference B~ - B is O(n -1/2) in probability as n tends to infinity. Also, 
for d >_ 3, the difference An - A has asymptotic order O(n -~/2) in probability. 
However, when d = 2, the asymptotic order of ]t~ - A is o(n -~) in probability for 
any constant r E [0, 1/2). 

In view of the positive definiteness of A and B, the above theorem guarantees 
that ~jIB~I will be a consistent estimate of the asymptotic dispersion matrix 

of nl/2(0~ - 0 ) ,  and in dimensions d >_ 3, this estimate will converge at rt -1/2 rate, 
while for d = 2, it will converge at a rate arbitrarily close to n -1/2. We can use 
the determinant of n - lA~ i / )~A~  1 as an estimate for the large sample generalized 

variance (see Wilks (1932)) of the multivariate location estimate 0~. Further, 
A~I/)~A~I and 0n can be utilized together for constructing confidence ellipsoids 
for 0, and Theorem 2.1 ensures the asymptotic accuracy of such confidence sets. 

Before we get into the proof of Theorem 2.1, it will be appropriate if we try 
to understand what exactly causes the problems encountered in the estimation of 
the variance of the univariate median, and why these problems do not exist in 
the case of multidimensional median. As pointed out and extensively discussed 
by several authors (e.g. Efron (1982), Hall and Martin (1988, 1991), Shao and 
Wu (1989), Hall et al. (1989), etc.), the univariate median is not a very smooth 
function of the data, and this is what lies at the root of the problem associated with 
the estimation of its variance. The lack of smoothness in the univariate median 
necessitates strong smoothness conditions on the distribution of the observations 
X~'s to ensure its asymptotic normality (see e.g. Bahadur (1966), Kiefer (1967), 
Serfling (1980), etc.) and is responsible for the appearance of the density of the 
Xi's in its asymptotic variance. There is a marked difference between the behavior 
of the function g(z) = Ix[ near the origin when z is real valued (i.e. when z E -~) 
and the behavior of the same function near the origin when z is vector valued 
(i.e. w h e n z  E R d a n d d  >_ 2). Also, note that for d_> 2 a n d z  ¢ O, U(z) and 
Q(x) are nothing but the gradient (i.e. the first derivative) and the Hessian matrix 
(i.e. the second derivative) of g(z) respectively. In a sense, the multivariate L1 
median, which is defined through a minimization problem involving the function 
9(z), is a smoother function of the data than the univariate median. This is also 
the reason why we are able to work with Condition 2.1, which is much weaker 
than the standard smoothness conditions necessary on the distribution of the Xi's 
in order to establish asymptotic results about the univariate median. These issues 
will become more transparent in the following section where we give a proof of 
Theorem 2.1 (see also Chaudhuri (1992)). 

Chaudhuri (1992) introduced a multivariate extension ~ of the Hodges- 
Lehmann estimate (see Hodges and Lehmann (1963), Choudhury and Serfling 
(1988)) for location based on i.i.d, random vectors X 1 , X 2 , . . .  ,X~, and it was 
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defined by 

E X~+Xj ~ : min E X{+Xj 0 . 
l<i# j<n 2 ~Et~d l<i# j<n 2 

It is worth noting here that the asymptotic variance of the univariate Hodges- 
Lehmann estimate based on a set of i.i.d, observations with a common density f 
depends on the quantity f ~  f2(x)dx (see e.g. Lehmann (1975), Hettmansperger 

(1984), Choudhury and Serfling (1988), etc.). The estimation of f ~  f2(x)dx, 
when the density f is unknown, involves several complex technical problems (see 
e.g. Lehmann (1963), Schuster (1974), Schweder (1975), Aubuchon and 
Hettmansperger (1984), etc.). However, as we will indicate below, the estima- 
tion of the dispersion matrix of the multivariate Hodges-Lehmann estimate does 
not pose any of those complicated problems[ 

Assume that the average (X1 +X2) /2  has a density h that is bounded on every 
bounded subset of R d (cf. Condition 2.1), and ¢ is the median of h. Consider 
positive definite matrices 

C=E{Q( XI+X22 ~)} and 

m : E [{S < me ~X22 ~)} {S < X�--X32 

It was established by Chaudhuri (1992) that nl/2(~ n - ~) is asymptotically d- 
variate normal with zero mean and 4C -1DC-1  as the dispersion matrix. Following 
the basic idea in the construction of A ,  and /)n, we can estimate C and D as 
follows. Let S~ be a subset of {1, 2 , . . . ,  n} with size kn as before, and define 9~ 
by 

E X i+Xj  ~p~ = rain E Xi+Xj  ¢ 
i , jCSn,i#j 2 " 

Then consider 

and 

= E<jcs  Q ( x{ + ) 

We can use On and /)n as estimates for the matrices C and D respectively, and 
4C~-1/9,~C< 1 will be a natural estimate of the asymptotic dispersion matrix of 
nl/2(~ - ~). In view of the analysis and the arguments used in the following 
section and the standard asymptotic theory of U-statistics (see Sen (1960, 1981), 
Serfling (1980)), one can establish an analogue of Theorem 2.1 for the estimates 
C~ and D~. 
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3. Proof of Theorem 2.1 

The following proposit ion will play a crucial role in the proof of our theorem. 

PROPOSITION 3.1. Let M > 0 be a constant, and f be a probability density 
function on R d satisfying Condition 2.1. Then, for any constant e ~ [0, 1), we 
have 

f I x + ¢]- (d- l+~) f (x)dx  < s u p  o<3. 
¢~Rd,I¢I_<M JRd 

PROOF. The proof of this proposition is immediate  once we observe the ap- 
pearance of the (d - 1)-th power of the length of the radius vector in the Jacobian 
determinant  associated with the s tandard d-dimensional t ransformation of Carete- 
sian co-ordinates to polar co-ordinates, and note that  the function Itl-~ with t C R 
is integrable in a neighborhood of zero whenever e E [0, 1). 

For ¢ E R d and using notat ions introduced in Section 2, let G(¢) and H ( ¢ )  
denote two d × d symmetr ic  matr ix valued functions defined by G(¢) = E { Q ( X ~  - 
¢)} and H(¢ )  = E[{U(X~- -¢ ) } {U(X~- -¢ ) }T] .  Then, in view of the i.i.d, nature of 
the sequence X1, X2,.  • . ,  X ~ , . . .  of random vectors, the conditional expectat ions 
of the est imates A~ a n d / ) ~  given the X~'s for which i E S~ are G(O~) and H(O~) 
respectively. Further,  since 0 is the median of X~, we must have G(O) = A and 
H(O) = 19. Note that  Proposi t ion 3.1 ensures the existence of all the expectat ions 
that  occur here as finite Lebesgue integrals. 

3.1 The case d >_ 3 
Our preceding observations imply that  each of the matrices An - G(O*) and 

B n  - H(O*) has zero conditional mean given the Xi 's  such that  i E S~. Since 0~ 
is the L1 median based on i.i.d, observations Xi 's  with i E S~, where # ( S ~ )  = k~ 

and each Xi has median 0, k~/2(0:~ - 0) must remain bounded in probabil i ty 
under Condit ion 2.1 as n tends to infinity (see Brown (1983), Pollard (1984) and 
Chaudhuri  (1992)). Observe at this point that  given the X~'s for which i C S~, 
conditionally the vectors ( X i -  0*)'s with i E S~ are independently and identically 
distributed. Since /)~ is an average of matrices with bounded  Euclidean norms, 
the entries (which are real valued random variables) of the ma t r i x / )~  - H ( O ; )  will 
have variance with order O([n-k~]  -1) as n grows to infinity. Further,  Proposi t ion 
3.1 guarantees tha t  when d _> 3, the asymptot ic  order of the conditional variance 
(given the Xi 's  such that  i E S~) of each real entry of A~ - G(O;) is O([n - k~] -1) 
in probability. Recall now the assumption that  as n goes to infinity, bo th  of r t - lkn  
and 1 - n-lk,~ remain bounded away from zero. Hence, it follows that  each of 
A-n - G(O•) and Bn - H(O*) is O(n -1/2) in probabil i ty as n tends to infinity. 

The assertion in Theorem 2.1 will follow if we can show now that  bo th  of 
G(O;) - A = G(O*) - G(O) and H(O*) - B = H(O*) - H(O) have asymptot ic  order 
O(n -1/2) in probability. For x, 0, ¢' E R d such that  x # ~ and x ~; ¢', some 
simple applications of triangle inequality imply that  

I(x - ¢)1 x - 41 -a - (x - ¢ ') lx - .¢'l-a I <_ 21¢ - 0'1 min(lx - o1-1, I x - ¢ ' 1 - 1 )  

a n d  
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IIx__ ~ 1 - 1  __ Ix__~'l-ll ~ I~-~'lmax(lx-~l-2,1x-~'l-2). 

Using these inequalities and Proposition 3.1, it is easy to see that there exist 
nonnegative random variables Tn and/~n, both of which are bounded in probability 

as n tends to infinity, such that 

I G ( 0 ; )  - G ( 0 ) l  _< ~ 1 0 ~  - 01 a n d  I U ( 0 ~ )  - H ( 0 ) I  _< R ~ I 0 ~  - 01. 

Since 0~ - 0 is asymptotical ly O(n -1/2) in probability, this completes the proof of 
Theorem 2.1 in the case d _> 3. 

3.2 The case d=  2 
In this case also, the matrices A~ - G(O*) and ])~ - H(O~) will have zero 

conditional means given the Xi 's  for which i E S~, and the difference t)~ - H(O~) 
will still be asymptotical ly O(n- 1/2) in probability. However, when d = 2, the 
terms appearing in the average A~ -- (n - / ~ n ) - i  E i ~ s £  Q(Xi - 0") may not have 
finite conditional second moments.  In this ease, Proposit ion 3.1 can only guarantee 
tha t  the entries of A~ will have finite p-th moments  for any p E [1, 2). We now 
state a fact, which is a minor modification of a result s tated and proved in Bose 
and Chandra  (1993) (see Corollary 3.6 there this fact is not hard to prove with 
relatively s tandard arguments).  

Fact 3.1. Let Zi,,~, where 1 < i < r~ and n _> 1, be a t r iangular  array of 
zero mean random variables such tha t  the variables in each row are independent 
and identically distributed. Assume tha t  the positive integers r~'s are such tha t  
n-lr~ remains bounded away from zero and infinity as n tends to infinity, and 
sup~> 1E(]Zi,~I p) < oc for some p E [1, 2). Then E(I ~ 

_ Ei=I Zi,~l) is o(n 1/p) as n 
tends to infinity. 

Since Proposit ion 3.1 eusures tha t  for any p c [1, 2) and given the Xi 's  with 
i C S~, the conditional p-th moment  of each real valued entry of the matr ix  
Q(Xff - 0~) - G(O*), where j E S~, is bounded in probability, it is now obvious 
tha t  the asymptotic  order of A~ - G(O~) will be o(n -~) in probabili ty for any 
constant  r E [0, 1/2). 

Once more consider x, ¢, ¢~ ~ R a such tha t  x ~ ¢ and x ~ ¢~. The inequality 

[(X -- @)Ix -- ~] -1 - - (X--@')[X--(~ ' [ - - I [  ~ 21~b-- 6 ' [ m i n ( l x  6 1 - 1 , 1 x - 6 ' 1 - 1 )  

and Proposit ion 3.1 again ensure tha t  H(O~) -H(0)^is  asymptotical ly O(n 1/2) 
in probability. Hence, when d = 2, the difference Bn - H(O) = B~ - B must 
be O(n -1/2) in probability as n tends to infinity. Let us now fix a constant  

E (0, 1) and consider I0 - ¢ 'F~-I l Ix  - ¢1-1 - Ix - ¢'1-11. For this expression, if 
I z - 61 -< (1/2)16 - ¢'1, we have via triangle inequality 

r e -  ¢'1 ~ - 1  IIx - ¢ 1 - 1  - Ix - ¢'1 11 -< I¢ - ¢ ' l ~ l x  - ¢ 1 - 1 1 x  - ¢ ' 1 - 1  

< 2 ~ l x  _ ¢ 1 - 1 1 x  _ ¢ , 1 ~ - 1  

_< 2 ~ m a x ( I x _  01~ 2, ix _ ¢,16-2). 
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On the other hand, if Iz - 01 > (1/2)10 - 0'[, we have 

10 - 0'1 ~ -111*  - 01 - ~  - I .  - 0 '1 - '1  -< 10 - 0'1~1- - 01 *1~ - 0'1 < 

_< 2~1~ _ 01~-~1~  _ 015Ii - 1  

< 2 a m a x ( I x  - 01 ~-2, Ix - 0 '16-2).  

Therefore, when d = 2, in view of Proposition 3.1 and the definition of G, we can 
conclude that  for any constant K > 0, 

sup 10 - 0'16-11G(0) - G(0')I < ~ .  

Since the above is true for any ~ ~ (0, 1) and 0* - 0 is asymptotically O(n 1/2) 
in probability, it follows that G(O*) - G(O) is asymptotically o(n -~) in probability 
for any r E [0, 1/2) when d = 2. The proof of Theorem 2.1 is now complete by 
combining this with our previous observation about A~ - G(O*). 

4. Some concluding remarks 

(a) In the construction of the estimates _~ and/),~, we have used the estimate 
0*, which is based on the X~'s for which i C S~. Clearly, 0* is independent of the 
Xi's for which i E S~, and it is quite apparent from the arguments presented in 
Section 3 that  this independence plays a crucial role in the proof of Theorem 2.1. 
The strategy of splitting the entire sample into two independent half samples, and 
then using one half to estimate the location parameter 0 and the other half to 
compute AN and/)~ ,  is a convenient technical device that enables us to establish 
the desired rate of convergence of the dispersion estimate. In a way, the approach 
here has a similarity with cross-validation techniques used in model selection prob- 
lems, where a part of the data is used to estimate model parameters, and the other 
part is used to judge the adequacy of the fitted model. It will be appropriate to 
note here that  there is a definite practical disadvantage in using 0~, which is based 
on all of the n data points, in the computation of A~. A few of the data points, 
which are too close to the median 0~ of the entire data cloud, may cause the ma- 
trix rt -1 E ~ - I  Q(Xi - 0~) to behave in an undesirable way due to the presence of 
ix I 1 in the expression defining Q(z). In technical terms, this practical problem 
translates into serious difficulties in establishing appropriate asymptotic bounds 
for the difference n-* Ei%a Q(Xi  - Or~) -- A. 

(b) As we have already indicated, in order for Theorem 2.1 to hold, we need 
that  both of n-lk,~ and 1 - r~-lkn to remain bounded away from zero as n tends 
to infinity. This leaves us with a wide range of choices for kn. Efficiency consid- 
erations are expected to provide finer insights into the issue of choosing kn in an 
optimal way. However, we have not tried to dig deeper into this matter because it 
is beyond the scope of this paper and requires technical machinery that  will carry 
us into a different domain of analytic investigations. 

(c) In view of the way we have constructed An and t)~, these estimates depend 
on the choice of S~, and hence they are not invariant under a permutation of the 
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labels of the data points. For a given subset Sn of {1, 2 , . . . ,  n} such that #(S,n) = 
kn, let us denote by /)(Sn) the estimate of the dispersion matrix constructed 
using our method. Then define Dn = (n - kn)!k~!(n!)  -1  }-~s, D ( S n ) .  So, /)~ 
is nothing but the simple average of various possible D(Sn)'s corresponding to 
different choices of S~. It is obvious that /),~ is a symmetric function of the data 
points, and it is easy to see by straight-forward refinements and extensions of the 
arguments used in Section 3 that it will also converge to the true dispersion of 0n 
at the desired rate as the sample size n grows. 
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