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Multivanate sign tests attracted several statisticians in lhe past, snd i1 s evident from recent nonparametric liverature that they sl
continue W draw atiention. One of the most important features of the univariate sign st is that it does nat invlve much technical
assumplions or complicacy, and this mukes it quite popular smong seatistics vsers. N this anticle we have come up wilh o new methad
for constructing multivariate sign tests thal have reasumable slatistical propertics and can be vsed conveniently to solve onesamplc
locatiom problems, Cur principal soatcgy here is 1o make a wise wlilization of verlain geomatric struchures in the constelation ol
duls points for making inforence ahout the location of their distribotion, As we peoceed with the development of a Faitly broad and
general methodology, we indicate its relationship with previous work donc by others and semetimes ademptl 1o unify some of the
carlicr ideas, In particular, we pick up some well-known lests far uniform distribotion of dircetional data and integrate diem into
the technology of myltivatate sign wses to synthesize wseful new procedures. Chur provedunss enjoy affine invadance and the distributicn-
free pruperly for elliptically svmmctric models, We report seveeal interesting results that provide powerfal insights into contain critical
aspects of 1he problem. What is most sppealiog is the fandamental dependence of our approach on the busic peometrs of the data
clond formed by the observations. In this article vur vmly key o uolock the information contained in the dara is the spadal arangement

af data points n 4 d-dimensional Buclidean space.
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1. A REVIEW OF AVAILABLE TECHMIGUES

The simplicity and the distibution-free nature of the uni-
vanate sigo test for one-sample location problems have mo-
tivated numerous authors 10 gxplore several multivariate
versions of the test. Ploneering antempts to consiruct sign
tests, which are applicable to bivarate data, were made by
Blumen {1938) and Hodges £1255). These efforts continued
in the 19605 when Bennett (1962) and Bicke] (1965) devel-
oped some multivariate sign tests and Chatterjee {1966) in-
troduced a bivariate sign test. A stromg enthusiasm about
the problem still persists, as 15 apparent in recent papers by
Brown and Hettmansperger { 1989}, Brown, Hettmansperger,
Nyblom, and Cya (1992), Dietz (1982), Oja and Nyblom
{1989, Randles (1989, and others. The populanty of the
umivariate sign test has its oot in its widespread applicability
to solve a number of practical problems for which maone
sophisticated technigues cannot be used as they will fre-
quently require technical assumptions that are hard Lo jusify
in practice. Bivariate and trivariate sign tests have been used
to apalyvze several interesting data sets by Brown ctal. (19492),
Dhietz (1982), Oga and Nyblom {1989), Randles { 19893, and
others, In addition to these tests” practical importance, several
exceedingly challenging and stmulating theoretical issues
revolve around multivariate extensions of the sign Lest. Rel-
evant theoreteal studies in the literature have focused on
distribution-lree property. affine invarance, and asymptotic
efficiency. Tt is a well-known fact that the univariate sign test
Is actually a test for the median of the probability distribution
generating the data. So It is natural to expect that a multi-
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variate sign test will be a test for the median of the parent
multivariate distnbatiom from which the observations are
drawm. Because there are several ways of defining the median
of a multivariate distribution (sce, for cxample, Small 1990),
there 15 a wide range of possibilities for muoltivariate sign
lests. This creates ample opporiunily for statistcians to play
with new ideas, try innovative techniques, and discover in-
leresting facts.

Let X;, Xo, .. .. X, beiid observations in £% with a com-
mon absoluely continuous disinobutiom having median @
£ R“, where the median is defined in some appropriate way.
The basic multivariate one-sample location problem consid-
erad in this article can be formulated in terms of testing the
null hypothesis £y # = O against the alternative £, 8 (),
For & — 1, the standard sign test is based on sign(X,),
signi Xz}, .. .. signi X, ), which are tid random varables cach
taking the values 41 and —1 with equal probabilities under
Hy. 'Fo gel extensions of this estin dimensions = 2, one
must define the “s1gn™ of 2 random vactor in a suitable way,
Hereafier, unless specified otherwise, every vector in this ar-
ticle will be a column vector, and Twill denate the transpose
of vectors and matrices. For 1 = j = 4, let X; be the jth real-
valued componeni of the random vector X; . Then the most
nadve definition of sign (X, ) s given by sign{X,} = {(sign{ X},
sign( X0, ..., sign{ X007, and tests for Hy can be con-
strucled based on sign{X,), sign{Xz), ..., sign(X,). Such
tests have been extensively considered by Bennpett (1962),
Bickel (1963), Chatterjee {1966), Puri and Sen {1971}, and
others, and they can be viewed as tests for the median & of
X;, where the median of a random veelor 15 defined as the
vector of the medians of its real-valued components. Suppose
now Lhat the common density of the X;7s 15 of the form f{x
— ), where fis a symmetric function whaose value depends
anly on the absolute values of the coordinates of its «-di-
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mensional argument X — #. Then it is easy Lo see that the
null distrbution of sign{X; } does not depend on /. and in
fact it is uniform on the set of all 27 d-tples of +1°8 and
—I's. In particular, thiz ensures the distribution-free property
of any test that depends solely on signé X, ), sign(Xa),. ...,
sipn{X,.l.

In the case f = 1 and X; # 0, if we recopnize the fact that
sign{X,} = |X;|™'X,, we have another way of constructing
multivanate analog of the univanate sign lost. Ford = 2, let
us define the unit direction vector {7 X, } in the direction of
X;(#as (X)) = | X 'X;, where denotes the stan-
dard Euclidean norm. If the distribution of X; is spherically
symmetne around &, then 1t is obvipus that, under the hy-
pothesis £, U{X; ) will have a2 uniform distibuation on the
unit sphere §%" — Ix: x € R%and |x} = 1}. Hence, in
that case, atest based on (X}, L(X), ..., DX, isgoing
to be distribuetion free, and such a test can be looked wpon
as a lest for the L) median of X; |, where the £, median 9 of
X, isdefined as E{|X; — #|) = min . g Z(|X; — | ) assums-
tng thal ihe expectalions exist. This definition of the median
ot a random vector has been used by Haldane (1948}, Brown
(1983), and many others, and an interesting discussion gbout
it can be tound o the review paper by Small {(1990). It will
be appropriale 10 note here that there are numerous non-
paramelnie tests developed in the literature to test the uni-
formity of distributions on circles and spheres. Extlensive
review of such tests can be found 1o Jammalamadaka {1954),
Jupp and Macdia (1989, and Mardia (1972}, Any of thosc
tests for lgsting wniform distibution of directional data can
be used 1o construct multivariate sten 1esls using the direction
voclors DXy, DXL, ... DOXK), assuming spherical
symmetry of the probability law lollowed by the data,

Il is obviows that & test based on U(X, )'s will be invariani
under arthogonal transformations of the data, Bul neither
the sipn{X; s nor the LX) are invariani under an ar-
bitrary affine transformation of the X,’s. Hodges (1955} con-
sidered a bivariale sign test that rejects M, for large values
of the statistic sup,zp2 [ Z - sign({h, X; 5|, where (-, +%
denotes the wsual Epclidean ipoer product. Here, for the
sake of completeness, we adopt the convention that sign ()
= (. This test is ctearby affing-invanant and reminds us about
the well-known “union intersection criterion” introduced
by Roy (1333, 1937} to develap multvanale extensions of
several standard univariate tests. Further, this bivariate sign
test has a natural multivarate extension, and we will dem-
cnstrade Tater (in Sec. 3.2) that such a test has some funda-
mental connectiong with the “half space median™ and a re-
latexd noion of “data depth” in Tukey {19751 Blumen (1958)
introduced another affme-invanant brvanate sign test, which
was cxlended to a multivariate sign test by Randles (1959)
using the concept ol interdireetions™ {see Sec. 3,13, Puri and
Sem (1971, p. 148) criticized Blumen's test and Hodges's test
on the grounds that they wse statistics with very complex
distributions that are dificult to work with in practice. But
with recent developments in resampling techniques like the
haotstrap and the rapid emerpence of powerful computing.
tacilities capable of doing intensive strtulations, the disto-
butional complexity of a test statistic is no longer a serious
praciical problem. Recently, Brown and Fettmansperger
(1989) and Brown et al {1992) investigated o bivariate sign
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iest that is also affine-invariant. This test is natarally asso-
clated with (§a’s simplex median (sec Oga E983), and it does
not have the finite sample distribution-free property.

I this article we develop and sindy certain sign lests that
exploit some very tundamental peometric stroctures in mul-
tivariate data sets. Our pringipal goal here is wo form a basic
tool kit for constructing affine-invarant multivariate sign
tests. Ln the process of achieving this targel, we construct
new tests, extend existing procedures, and ennich the available
methodolopy by blending it with new ideas.

The article is orpamzed as tollows. In Section 2 we intro-
duce a data-driven coordinare sysiem under which the trans-
formed coordinates of the observations become affine-
invanani, We show thal the new set of transformed coor-
dinates is 2 maximal invarfant under nonsinpular linear
transformations, and that the “sign™ vectors associated with
transformed observations have the disiribution-free property
under models that are elliptically symmetric around the or-
igin. ‘We also develop a new family of mullivariate sign tests
using the “signs” of the lnvariant coordinates. Tn Section 3
we explore some intriguing relationships that exist among
varous tests considerad in the hilersture and the tests pro-
posed by us. In Section 4 we investigale the asymptotic prop-
ertics of the new ¢lass of sipn tosts and present some finite
sarmple restlis based on simelations, In Section 5 we conclude
the article with a discussion of some of the open guestions
and related issues. All technical proofs are relegated to the
Appendix.

2. CONSTRUCTION OF AFFINE-INVARIANT
MULTIVARIATE SIGN TESTS: A NEW APPRCACH

Lel us now assume that the 1id observations X;, X5, ...,
X, in R are obtained from an elliptically symmetnic disiri-
bution with density |27 flix —7Z '(x — §, where
iz 4 d ¥ o symmettie positive-definite matrix and | 2] i3
its determinant. As before, we will be interested in testing
Hy: 6 = U against A0 & # (), Because Z will typically be
unknown in practice, we cannot reduce the problem to a
spherically symmetric situation. Also, note that if the X,'s
eel transformed 1o AX's, where A is a & % & nonsingular
matrix, then # pets transtormed into A# and E into AZAT,
Becanse A8 = (0 if and only if & = O in view of the nonsin-
pularity of A, the problem s nirinsically affing-invariant,
and it will he most nataral to use statistics ihat possess affine
invariance o carry out the test. We will now prosent some
technigues that can be used to consiruct multivariate sign
tests that are affine-invanant. These techmigues are quite casy
to implement in practice and have very appealing geometric
nlerpretations. In Sectinon 3 we will demonstrate that Ban-
dles’s test {Randles 1989) and the obvious multivariate ex-
tension of Hodgess bivanale sign test (Hodges 1955) are
interesting specialized applications of a more general meth-
odology developed here.

2.1 Dota-Diiven Coordinate Systems

W begin by introducing some notation, Define 8, = { o | a
=11,2, . .., n}tand |«| = d}., which is the collection of
all subsets of size dof {1, 2, .., #}. Forahzed e £ 5, let

X ) be the J © d matrix whose columns are the andom
veelors X% with 7 € o, Here we are assurming that the ele-
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ments of & are natorally ordered, and in view of the absolute
continuily of the common disiribution of the X;'s, X {e)
must be an inveriible matix with probabilicy 1. We will
treat X{e) as the basis matrix for a data-based coocdinate
syslem. In terms of this basis matrix, a daia point X; such
that 7 & o can be represented as ¥ ' — { X(a)] ~'X;. Note
that here we are trying to view the data clond from a data-
centrie referenee frame ereated by the basis matrix X{a),
The transformed coordinates of the X;'s for | © o ate given
by the standand basis voctors in B9 and henee they are non-
informative, A simple but crucial fact can be stated as follows.

Proposigion 2.1, Fix an o« £ 5, and let the common
chstribution of the iid observations X, Xa, ..., X, be ab-
solutely continnous in B2 Then the transformed data points
Y " "swith | =7 = nand { € o torm a maximal invarjant
with respect 10 the group of nonsingular linear transforma-
tions on B2,

We can appreciate the invariance property of the trans-
formed observations Y ',-'ﬂ‘s more if we look at them with a
phiysicist's eyves. We can identify a nonsingalar linear trans-
formation as same kind of 3 motion on the data cloud and
the data-based coordinate system with the basis matrix X {e)
as a Tefercnee frame tor an observer. Because the dala-centne
reference frame moves with the motion of the data cloud,
the data points will appear Lo be stationary (i, invariant)
1o the observer. The following theorem reveals a fundamental
statistical property of the transformed observations.

Theorem 2.2, Recall from the beginning of this section
that the X; s are tid observations with a common ellipically
symmetric density |2 Tix — )72 {x  #}. Then,
under the hypothesis M0 8 = 0, the joint distribution of the
random vectors signlY }“j}‘s, where the imndex i runs in the
complement ofecin {1, 2, ..., ¢t} and & runs in 5, depends
ueither on E nor on f. Here the “sign™ of a vector is defined
in thg same way as in scetion L.

We will now use sign( Y [,-”3 }'s as basic building blocks for
the construction of varous affinc-anvanant versions of mul-
Uvaridale sign tests.

2.2 A Neaw Family of Muitivariate Sign Tests

Because the choice of 2 particular & £ 5, is quite subjective,
the tests constdered 1n this griele wall invelve all of the veelors
sign( ¥ E"]}’s with e varying in the set 5, and § taking its
integral values between 1 and & in the complement of o
Mareover, our lest statisties will depend on the o' and the
s in a perfectly symmetric way. In view of Proposition 2.1
and Theorem 2.2, any reasonable test for My agaimst A,
which is based solelv on the vectors signf{¥ \™')’s, will be
affing4nvanant, distnbution-free, and consequently a legit-
imate multivariate analog of the univariate sign test. A can-
didate that anses naturally is the test that rejeets Hy for large
values of the statistic

W, - Z |Z sien(Y ")
P 7.8
=22{ T {sign(Y ), sipn(Y ;) ¢
=1 jel LTS ali)
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We will gradually see that for & — 2, W, is related in a very
interesting way to a statistic used by Ajne (1968) for testing
the uniformily of a cireular distibution. Further, in the cass
d =3, ¥, is related in the same way to a spherical extension
of Agne's test considered by Beran (L 968). Beran {1968, 1969)
(see also Jammalamadaka 19845 Mardia 1972) developed
and investigated a very important class of lests for uniform
digtribution of cireular dats, This family includes famous
tests, like Ajne’s 4, test (Ajue 1968}, Ravleigh's test (see
Murdia 1972), and Walson™s west (Watson 1961) as parlicular
cases, and any test in the family has an obvious and natural
gxtension 1oa fest for uniform distribution on the unit sphere
S@=1 The vectors sien(Y "' 1’s can be used together with
Beran’s fundamental idey to generate an interesting family
of useful multivariate sign tests, as (ollows.
For 1 =i # j = &, let us define the quantity y.{7, j) as

. —d— DUd— 1))
hti, - 3|1 - E= 20
XX (sien(Y ), sign(y My

i Syoer B

and adopt the convention that (i, i) = 0. Hereafter, we
will use ¢.(7, f) as a nonparamelric estimate of the geodesic
angle cos— (¢ U(X;), U(X;)5) berween the data points X;
and X,, and a formal justification for it will be given in Sec-
tions 3.1 and 4. Recall that (X, ) and D{X;) arce unit di-
tection vectors along the dircetions of X; and X, as defined
in Section . When d = 2, Ajne’s A, test (Agnc 1968) for
testing the unitormity of the distribution of I7{X;)'s on the
unit circle 5™ uses a statistic eguivalent to L1, X5,
cos™' ({ U(X,), U{X;)3) (see Mardia 1972, pp. 191-192). It
is now ohvious that if we replace cos ™' (¢ LUX), GUX)0)
by .ti. f)in Ajne’s A, slatistic and in Beran's spherical
extension (Beran 1968} of the A, statistic, we obtain test
statistics equivalent to W, in dimensions ¢ = 2 and & = 3.
For testing the uniform distribution of the LX,)'s on the
unit sphere &' 'tin R a natural extension of a typical
member in Beran's family of test statistics (Beran 1948, 1909}
has the form T, = 21, 2P, Alcos ' ({U(X; ), UOX) 0
where £ is an appropriate real-valued kernel defined on the
mterval [0, w]. I we replace cos (LX), TUX)D ) by
violf, ) in the expression defining T,, we get the statistic
T# =20, 25 h{gaii, /). Note that for d = 1 and a pair
of distinct indices ¢ and f. {.(¢. j) equals O if sign(X,)
= sign(X;), and it equals = if sign{ X; ) # sign(X;). Hence il
{0 # Jr(w), then a test based on T'f will be equivalent to
the standard univanate sign test for the two-sided allernative.
Also, 1 view of our preceding results and observations,
T#* iz affine-invariant in dimensions = 2, and it will lead
10 tests with distribotion-free property under the assumption
of alliptic symmetry of the common distrnibution of the X;s.
It is easy to check that an appropriate kernel cormesponding
o Ajne’s A, lest is k() = (7/2) — ¢ and the associated
I* is equivalent to W, When

[ vy
“’“’*}:3[3 ﬂ(zw)]
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1 becomes Watson's statistic (Watson 19461), and

My S 2[%_¢-nrzif}+ (@-nu,f})f]

Vi 2

vields another multidimensional extension of the sign test,

3. GEOMETRIC CONFIGURATION OF FOINTS IN A
DATA CLOUD AND RELATIONSHIPS AMONG
MULTIVARIATE SIGN TESTS

We will now Ly Lo explore some more uselul peometric
structares in 4 multivariate data clond and relate them to
data-driven coordinales ¥ ‘E""s. Let ¢, be the collection of
all subsets of size  — 1 of {1, 2,..., n}, so that G, = {8:
A, 2, ..,n}and |8 =d — 1}, Forany § € 0, we
will denote by I7{ 8) the unique hyperplane in R containing
the origin and the data points X;'s with § € @, Clearly, HF{f)
will split R into two disjoint parts, which are nothing but
the two sides of this hyperplane, We assume that the elements
of @ are ordered in a natural way, and for 1 = j = nand
& 7, let us define A{ 8, f) to be the determinant of the o *
matrix whose Orst o — 1 columns are the X8 for which §
£ and the dth column is X,. Then sign{ A{2. 3} is an
indicator of the side of M {#) in which X, falls. The quantitics
sign{ A&, /)}’s, where j varies in the complement of § in
11,2, ..., 1t and 8 runs in €2, contain some lundamental
information regarding the spatial confipuration of the data
puoints X;'s shaping the geometry of the data cloud in B9 In
particular, note that | 2. sien § A(8, /3 } | gives the difference
between the number of data points that fall in one side of
{3y and the pumber of data points that fall in its other
side. Hereafler, we will denote the quantity | Z gz 8ign | A(S,
A by @08, Elementary matrix algebra and the prop-
erties of the determinant of a matrix lead 1o the [ollowing
imporiant fact.

Fart 3.4, As before, assume that the X,%s are iid random
vectors with a commeon elliptically symmetric density
|Z|7"2fd{x — HTEY{x — §)). The quantities ¥, 5)’s with
& = @, are invariant under any nonsinpular linear transior-
mation of the data points X, s. Further, under the hyvpothesis
Hy: 8 =), the joint distnibution of &, 8" docs not depend
on for Z,

This fact enables us to construct affine-invariant mubti-
variate sign tests vsing $,.(F)s as the key quantities.

3.1 Tha Notion of Interdirecticns and Randles's

Test

For & = 2, let us consider the test that rejects the null
hypothesis Hy, for lange values of the statistic Xaep, { B.(6) 1°
= Zl 2 [2seg,ae; slen{ AR, D }sign{ A(8, N1]. In
view of the defimition of the transtormed observation
Y E—“], we can view it as the solotion to the system of linear
equations X {a)}Y 1 = X;. Some clementary algebra, using
Cramer’s mle for solving linear equations and simple count-
ing, now yicld the following fact, which relates the veclors
sign(Y ©’¥'s to the quantities sign [ A(8, j)1’s in an inter-
esling way.

Fart 3.2,
that | =

For J = 2 and any pair of indices i and § such
¥ j = 1, we have Foeg m; (sian(Y i
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sign(¥Y ")y = (n — d — 1) Tpegams sign] AG, 0}
> sign{ A(B, ) }.

A This fact immediately implies that tor 1 = § # f = n,
¥l 7, 1), which 1s defined in Scction 2.2, can be writlen in
terms of A(#, /)'s as

s ln—d=1d = 1)
2 (n—2)1

Yali. j} =

X X sign{A(B, ) sign{A(#, f}}|.
b £ P

It is now obvious that the statistic Zaeg,_ 1 ®.(8)}7 is actually
equivalent to ¥, defined in Section 2.2, Randles (1989} in-
trodluced the concepl of “inlerdirections” and used i1 1o de-
velop an affine-Invariant and distribution-free version of the
sign test in multidimension (scc also Pelers and Randles
19900, I'or a pair of distinct data points X, and X;, let Cy
denote the number of hyperplanes H{8)s such that § € .
A2, jand X; and X, are In opposite sides of If( ), so that
sipn { A(#., i) }sign{ A, j)} < 0. Then the counts Cy's are
nothing but “interdirections,” and 1;!:,,( i, /}is a nonparametric
extimate of the geodesic angle between the dala points X,
and X; based on “interdirections.” Recall now T, and T3
defimed in Scetion 2220 In the speeial case A1) = cosqf, T,
is the Ravleigh's statistic, which is quite well known among
analysls of circular and spherical data (see Mardia 1972),
and T¥F taros out to be equivalent to the test statistic vsed
by Randles (1959}, Hercafier, we will denore the statistic
Sy T cosd (. /) by R,. It will be appropriate to note
here thal Randles (1989 was partly motivaled by Blumen's
bivariate sign test (Blumen 1958) and applied a finite sample
cormeetion 1o his wst so that 1t commeides with Blumen’s Lest
in the bivariate case,

3.2 The Mullivariate Extension of Hodges's Sign
Test

A patural multivariate wversion of Hodges's statistic
{Hodges 1955) is supnepe | 215 sign{{ X, X; 3)|. Because for
a tixed set of observations X,. X:, ..., X,. the quantity
| Z iy sign({X, X)) | must be maximized at some A € RY
such that |A| = 1, one can restate this multivariate test sta-
tistic as maxyegsw o | Loy signi{h, X)) Now, any unit
vector A € 5" determines a hyperplane {x: x € R,
{h, x3 = 0} that passes through the origin in R, and
| Z Py signi <A, X, )| is nothing but the difference between
the number of data points that fall in one side of the plane
determined by X and the sumber of points that fall m the
oiher side, Clearly, in view of the absolute continuity of the
underlying distribution generating the observations, any hy-
perplane in BY containing the origin can pass through at
most ¢ — 1 data points. Alse, any hyperplane through the
origin and containing & (0 < & = ¢ — 1) data points can be
rotated In appropriate direction(s} to bring it into a new
position satisfving the [ollowing eriteria;

t. The origin remains a fixed point on the plane during
and atter the rotation,

2. The points that were initially in a particular side of the
planc remain Logether in one side during the rotation and
when the plane reaches its fina] position.
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3. Afier the eolation is complete, all of the & data points,
which were originally on the plane, will fall in the side of
the plane that initially contained larger number of data points
compared to the other sde.

In other words, if the unit vectors h and A° determine the
initial and final positions of the plane respectively, we must
have |Z{. sign({h, X = |20 sien{{A, Xi 3} — k.
Similarly, il is easy 10 see that a hyperplane determined by
the unit vector A and containing the origin and & (0 = b < o
— 1) data points can be rolated inle a new position,
s0 that it can be made to contain the origin and  — 1
data points including the ones that were onginally on the
plane. Further, we will have |[Z7, sign({A. X3
= | 2 sign( N, X 3+ of — | — &, where the unit vector
A' corresponds to the final position of the rotaling plane.
Obvipusly, 1f we rotate a plane containing the origin as a
fixed point on it, until the plane hits a data point that was
previously nol on the plane, or unll @ data point that was
originally on the plane comes out of it and falls in one of its
sides, the quantity | Z =) signi{h, X 3)| remains unchanged
for different values of .'h. corresponding to different positions
of the rotaling plane. Combining all these obseryvations, we
now have an interesting result.

Faer .30 The mulbvanate extension of Hodges's test
statistic satisfies the identity
sup {2 signfdh, Xy = max .08 +4— 1.

Rty ) AE).

This tact enables us to visualize the basic geometry behind
extended Hodges's statistic. Lo a sense, this statistic measures
the “depth™ of the orgin within the data clowd in & -
dimensional Euchdean space and uses it 1o make the decision
abaut the null hyvpothesis that asserts the origin as a median
of the prabability distribution generating the data. 1t is now
guite apparent that the sign test based on this statistic has a
patural connection with Tukey’s “hall space median™ {Tokey
975, Donoho 1982), Further, Fuct 3.3 provides a nice and
convenient algorithm for compuating supe e | 25 sign{{A,
X, 1. Combinatorial and algebraic compulativns using the
idea of scanning data points on a circle using sermucircular
arcs can be found in Ajne (1968}, Jolle and Kloke (1962),
Klotz (1959, and others. In a similar setup, Bothman (1972)
considered the maximum number of ehservations in an arc
oi any specified lenegth on a circle. Finally, note that if &

TN T Fg;E.ﬁ.i,ﬂ H1 R TR T D E,»,r}
EQ,,,and 1 ‘-'_’ fio= fg = w0 = {43 . il 1% a matler of
straightforward algebra to verify {using the svsteims of linear
equations X (a)y ) — X with i & o) that &, 8 s noth-
ing but the absolute walue of the &th coordinate of
Ziew sign{Y Yy b B where £ is the d-dimensional veelor
with each coordinate equal to 1. In other words, Fact 3.3
can be restated as

sup |2 sign{ (X, }LH‘
aeRe |

=max || ¥ sign(¥ 'y 1 & “ Fid— 1),
=5 || rn

where forx = {x,, %2, . ... aapE RY x| = AKX g | ] -
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4. BEHAVIOR OF PROPOSED TESTS: SOME
ASYMPTOTICS AND SIMULATIONS

Randles (1989 established that when the oull hypothesis
15 true, the normalized differcoce between his lest statistic
and Ravlelgh’s statistic converges to 0 in probability as the
sample size # grows Lo infinity. Exploiting this critical ob-
servation, he showed that the asymptotic null distibution
ol his staustic 15 chi-squared with # { = dimension} degrees
of freedom after appropriate normalization and worked out
the Pitman efficiency of his test under contignioos alterpatives
for various models. If the kernel # that appears in the defi-
nitions of ¥, and ¥ (see Sec. 2.2) has a Fourier expansion
of the form A{L) = T, areos fof (sce Mardia’s discussion
of Beran®s class of wests in Mardia 1972, pp. 190-191), whers
the 2.'s are nonnepative and X, gy < oo, it is easy to
see that the conditional expectation E[#{cos™ ({ U(X,),
L(X,15) 1 X,] becomes identically a constant for any value
of X; whenever (X, Yand £{X,) are two independent and
yniformly distributed random veclors on the unil sphere
591 Tence the kernel # is depenerate in such a situation.
It tollows from a well-known asymplotic properly of degen-
erate £ statistics (see Serfling 1980, chap. 3, sec. 3.5.2) that
as n tends tu inﬁni‘r_}f, the limiting distribution of 7 7
=n "2 Z0 Aleos T EEX), DX} will be same
as that of g weighted sum of independent chi-squared random
variables afier appropriate centering. In the case = 2, Beran
(1969} explicilly derived Lhe limit law of £ Y7, and it turns
out to be the distribution of a weighted sum of independent
chi-squared variables cach with 2 degrees of (reedom, where
the weights are proportional 1o the coethicients q's that ap-
pear in the Fourier expansion of A; see Mardia (1972, p.
193} for some interesting heuristics, We now state 4 theorem
that gives a uselul generalization of one of Randles’s fun-
damental aobservations.

Theorew 4.7, Assumme that the X,%s are 1id observations
with a common absolotely continuons and spheneally syme-
metne distribulion around #, and, as defined in Section 2.2,
let T E.-] A cus']{{b’{h Y, LX)} and 1
= 3", | 2E . Addali, /), where Jt is a continuous function
on [0, 7} satisfying f?[yi} = A{x ). Then, under the
hypothcsis Hq: @ = 0, the difference n™'T*% — 27'T, tends
to  in probability as # tends to infinity,

Ll us Ury Lo see some of the crucial implications of Theo-
rem 4.1, The elliptically symmetric density || Y27 {(x
— )77 (x — #)} beeomes spherically symmetric if and only
il £ = ¢l ¢ being some positive constant and I; being the
d ¥ d identity malnx, Recall also that the distribution of
7% does not depend on Z or f when the iid chservations
X.’s come from an clliptically symmelric distribution around
the origin. Combining this with the preceding theorem, we
can now conclude that the asymplotc null distribution of
¢t L1¥ under the assumption of elliptic symmetry of the par-
ent distribution is aclually same as the limiting distribution
of # 71T, based on iid observations coming from a spherically
symmetric distribution around the origin. But note that a
test based on T* wall be allincainvanant and will have the
distribution-ftee property for arbiteary elliptically symmetric
models, whereas a lest based on T, will possess neither of
these leatures.
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Talle 1. Observed Powar (I Percant) af the 5% Lava!

Value of noncentrallty parameler [aTZ a)*7*

Tast
siafisiic i .25 i 75 1.00 1.25 1.50
MNormal distribution
W, G007 1127 3280 G393 8803 97ET 9983
An 500 1007 2897 6057 8563 9663 9947
e 500 1150 3567 6837 9153 9920 =100
Expawnential power distribution with p — 1.0
W, &.00 653 1280 2503 4213  BFET 724D
Ay 5.00 837 1163 2147 3633 5137 6747
e 4 67 613 1183 2317 3953 5693 T247
Expanential power distribution with p = 3.0
L 500 B850 8410 9753 9847 9310 =100
A, 5.OG 2540 8443 S99BF 100 =100 =0
e £.33 TAQ 1857 2TI 3930 47HB0 5507
Cauchy type distribution with g = 2.0
¥ 5,00 857 1967 3633 5447 6863 T913
A, 5.00 6593 1483 27563 412 5433 BH63
e 277 350 83 1203 2013 2873 3837
Cauchy type distribwlion with g = 2.5
W, 500 14897 4613 TFEET 9200 9793 9937
A, 500 1113 3437 6243 8283 89287 9580
Te 4 B3 287 2370 hBI3Y 66T 8R00 93483

It is obvious that the kernels associated with Ajne’s 4,
statistic {which is cguivalent o 75 with &) = (7 /2 — )
and Rayleigh’s test statistic (which is equivalent to T, with
A{Y) — cos ) will satisfy the condition A(g) = —A(x — ¢
As a matter of fact, this condition will hold whenever A{y)
has a Fourier cxpansion of the form () = £ 2 gay,_jcos(2k
— 1w In particular, Theorem 4.1 can be used to derive
asympilolic approsimations for the null distributions of W,
{which is equivalent to TF with A{y) — (#/2} ) and the
lest stalistic &, (which is nothing but T¥ with Ay} = cos,
as described in Sec. 3.1). Exact asvinptotic distribution of
Ajne’s A, statisbe for areular data can be found in Jam-
malamadaka (1934), Beran {1 268) provided some useful ap-
proximations for the limitiog distribution of the spherical
extension of this stalistic,

The statistic 14, has a simple and natorally appealing form,
as we have observed in Sectioms 2.2 and 3.1, 10 1s quile casy
to compute, which is not true for many of the other TFs
arsing from different choices of the kernel function £, Cne
can easily simulate the exact finite sample null distribution
of W, on a computer, and the cotical values necessary for
implementing the test can be conveniently estimated. In Ta-
ble 1 we report some simulation results in an attempt to
compare H, with the siatistic X, which is equivalent to the
statistic propased by Randles (1959, and Hotelling's T2 sta-
tistic. In each of the cases reported, the sample size is 20,
and we restricted ourselves to thi: case f — 3. In addition 1o
normal distribution, we have considered elliptically sym-
metrie exponential power distributions, with having the
form f{2} = aexp{—|z|"Wp = 03, and elliptically svmmeinic
Cauchy-type distributions with [{z) = b{1 + |z|*} (g = df
2). We used mandom number penerating routines gvailable
in IMSL; in each case the observed power is based on the

Journal of the American Sialisfical Asseciation, December 1973

outcomes of 3,000 Monte Carle replications. Because H,
and R, arc affine-mvariani disiribution-free statisies, we used
simple simulations to estimate their 5% critical valves, For
the 72 staistic, the critical value was determined from the
F-distribution table. It is quite apparent from the figures in
Tuble | that W is a clear winner, outperforming both of B,
and 77 tor several nonnormal probability moedels. Even in
the case of normal distribution, when 77 is the most powerful
invariant test, W, falls behind 72, but the race between them
15 quite close.

5. CONCLUDING REMARKS

I. Randles (1989} showed that for several clliptically
symmetric models, the Pitman efficiency of his test increases
with the dimension ¢. The multivariate /., median &, de-
finedas 57, |X; — 8, = minge v 2=, |X; — @], bears a
close connection with Randles™ test, andd it will be appro-
priate to note here that the asympiotic efficiency of this lo-
cation estimate in spherically symmetric models inereases
asthe dimension & grows (see Brown 1983; Chaudhuri 1992},
In vigw of Theorem 4.1 and the discussion preceding it the
statistic »~'T*% is approximable by a degenerate [ sratistic
and has 4 limiting distdbution, which 14 same as that of a
welighted sum of independent chi-squared random variables,
Inierestingly, in the case of Randles’s tesi (ic. the est with
h{y) = cos ¢ as the kernel funcrion), the test statistic has a
limiting chi-squarcd distribution with & degrees of frecdom
(Le., the weighted sum actually reduces to a single chi-square)
afler appropriate normalization. As a matter of Fawt, nor-
malized Rayleigh's statistic, which approximates normalized
Randley’s statistic under the null hvpothesis Sy as the sample
sice prows, has the form a~'T, = n~'| 22, £(X)]°. This
preatly simplitics the ctheiency computation for Randles's
test via some standard contiguity based analysis. But when
the limit law of # ' T, (and hence that of 7' TF ) is not so
simple, the derivation of asymptotic efficlency of the asso-
clated fest remadns g highly nontrivial unsalved problem.

2. The performance of Ajne’s A, test. Ravleigh®™s test,
Walson's test, and, in peneral, Beran's class of tests for cir-
cular data has been extensively studied in the literature.
Jammalamadaka {(1984), Tupp and Mardia {1989), and
Mardia {1972) have reviewed many results related to the
finite sample and the asymplotic behavior of Beran™s class
of tests. In particular, Mardia (1972, chap. 7, sec. 7.2.5) gave
an exgellent summary of several oplimal power properlics
of these tests. Though our principal goal in this article is to
develop a vision cncompassing vanous sign lests and their
interrelations rather than recommending a particular test, it
15 appropriale to consider the question of how Lo choose the
kernel #. Clearly, the answer to this guestion requires
knowledge of the form of the density £, which is typically an
unknown object in practice. In the case of tests for nniform
distribution of directiomal data, it is well known that different
s {le., statistics in Beran’s family) associated with different
choices of & will be optimal {in erms of power) Tor diflerent
types of alternative hyvpotheses {1.e., hvpotheses correspond-
ing to different tvpes of nonuniform distributions oo circles
anied spheres). The nature of nonuniformity Introduced in
the distribution of (X} due to departure from the null
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hypothesis Hy: # — O depends critically on the form of the
unknown density /2 Recently, (ha and Nyblom (1989) ex-
plored asvmptotic relative efficiencies of several bivariate sign
tests that are affine-invariant and have the distribution-free
Properly.

3. Jofte and Klotz (1962) and Klotz (1959, 1964) have
thoroughly investigated the fimite sample as well as the
asvmptotic performance of the bivariate version of Hodges's
test (see also Ajne 1968; Bhattacharva and Tohnson 19649;
Rao 196%), Similar properties of the multivariate version of
indges's test are vet to be worked out, and Fagr 3.3, which
expresses the statistic In terms of the maximum of a finite
nummber of simple diserele random vanables, can be quite
useful in such investigations. But there is a practical problem
in using this test statistic thal must be pointed oot here. When
the sample size is oot very large, the distribution ol this sia-
tslic remaing eoncenirated on very fow point muasses. As a
result, an exact implementation of 2 3% or a 1% test will
TeOUITe an exeessive amount of rundomization,

4. Ope encouraging feature of Table 1 is the monotonicity
in 1he observed power with respeet o the noncenirality pa-
rameter 8 728, We have run some simulations with sample
sices other than 20, and such a monolomicily s elearly vistble
in all ¢ases. It makes one wonder about some formal analvtic
proofs [or this particular characteristic of the power lunctions
of the test statistics when the underlyving probability distri-
bution is elliptically symmetric. Along the same line, another
interesting open problem is to deterimine the nature of de-
pendence of the power lunciions on the parameters pr and
7. which control the tail behavior and the degree of concen-
tration of masses in their respective distrbulions.

5. As we have observed o Section 3.2, Hodges's test has
a natural connection with Tukey's “half space median™ and
an gssovisted concepl of data depth™ (see Tukey 1973). Lin
{1990 introduced the notion of *simplicial diats depth™ and
defined what 15 called the “simplicial median®™ for multivariate
data. Oja and Nyblom {1989 introduced an affine-mvariant
bivarale sign lest (see the test staustic L7, discussed in Cja
and Nyblom 1989, pp. 250-251) and investigated s prop=
criics. Interestingly, this test siatistic is equivalent to W, in
dimension « — 2, and both of them can be vigwed as sign
lests thal naturally correspond to the “bivariate simplicial
median.” It is a matler of imple and straighuorward algebra
1o verify that in the bivariate case, W, is equivalent to the
statistic that counts the number of trigngles (simplices in the
Lwo=dimensional Buclidean plane). which are formed with
the data poiots as their vertices and contain the orgin
E R? a5 4o interior poinl. But an analogous result fails to
hold in any of the dimensions = 3, The implications and
the conscguenees of this intnguing observation are not fully
woderstood at present.

APPENDIX: PROOFS

Proofaf Propestiion 2.1, 1et & be a nonsingular = @ matnx
and et & = AX; For | = § = a Then il 1% easy 1o see that 2{a)
= AX(a). Henee (Z{a) 1 7'Z, = {X(e)! 'A AN, - [X{w)}7'X,
for all 1 = i = n. This cnsures the invariance of the ¥ 1™ under
nonsingular lincar transformations. Also., or two sels of dawa points
IX, X, X and {4, Fa L ) i we have X Cad ) 'K
= {#la)} 7, for all i & e, then we automabically have X,
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= X (o Z{a)} ', lor all § such that | = § = r. Note that the
cqualion 1s wEvially rue lor § E a, Therelore, the dala sel X, X,
. K.} is obtginable from {Z,. Zs, ..., Z..] by a nunsingular
Lhnear trunsformation and viee versa, This completes the proot by
cstablishing the masimality of the invanant coordinates.

Prooi'vf Theoremr 2.2, Using the posilive delinileness of Z, et
us whle &, = Z7X; for all 1 = i = », Then the Z75 will be iid
observations with 4 commoen sphencally symmetoc distobution,
Define r; = (Z;| and E; = Zir7' . Clearly, when # = [, the E;'s
hecome jid random vectors that arc uniformly distributed on the
unit sphere 8 " in RY. Bor 2 € &, we will denote hy k[ a) the d
¥ of matrix whose coluimns are the vectors K5 and will denote by
Ria) (he o o diagonal malrs with diagonal entries £°s, where
o, Now in view of the delinition of the basis mairx X (), we
have X (o) = ZY2E{ ) RBia). At this point, il we ix un o £ 5, un
index # such that ! & e, and then look @t the tmnsformed obsenvation

¥ e oget ¥ [K{ep)™"X, = {R{cc)} " {Efe)!'27"
¥ EVEy o [R{a)l 7' [K(e)i "Ex . This immediately implics

that sien{¥ ') = sipn({ E{a)} 'L, ), using the fact that each of
the #'s is positive. Recause under &, the joint disteibution of the
E:s is complelely free lrom E and [ the same muost be true for the
juint distribution of sign(¥ I ),

Proefof Theorenr 4.1, Using the condition () = =iz — )
and the idea in lemma ALl of Randles (1780, we st conclude
that

.E.l.l,:,[.’! II‘:‘ " I::In.:':

oo z
=B | E R (AL 0 — hleos WU LI
oL iml ;

m E F o LRDECE b — Rloos™ (00N ), LR
[
Then, in view of the iid nature of the X, 's assumed in the theoem
and the factthat i {01, 0} Fleos™ (LUK ) DX )G = {0}
lor | = § = #, wa must have
TR B S Y Y
=n7tr = BEy [AIEE 0 — Adeos DN LA
lor any part of distinet indices fand §. On the other hand, it s quitc
easy Iy see (ses, lor example, Raondles P89 that the difference
Wod {0 — cos TN DX, 3 LX) 3 ), where £ and j are fixed indices
such that 1 = ¢ # § = n. will convergs 10400 10 probabilily as @ tends
to infimty 1f the hvpothesis £ 8 = 0 s troe, Hence an apphcation
of Lebespue's dominated convergenee theorem using the conlinuity
of A vields
lim B, Lk {$alf ] — A foos (LR, LIXDITE - 0.

A=

Conseguenily, we must have lim, . Fyin Ty rRTVEE

= (). This compleles the proot of the theorem,

FRecvived Augrupe 199 Revivedd fecentheyr [G02]
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