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Stochaeatic nrdering hetween probability disleibutions i a widoly stod.
ted concept. Tt arses in numercus settings and has usefl applications,
Binee it is often easy to make value judgmentz when such orderings exiat, it
is degirable to recognize their occurrence and to model distributional
structure under auch ovderings. Unfortunately, the necessury theory for
statistical inference procedures hus not been developod for many peobloms
involving stochastic ordering and this development zeems to be a diffienlt
task, We show in thia paper that the stronger notion of uniform atnchastie
ordering (which i3 equivelent to failure rate ordering for continuous distri-
butions) is quite tractable in matters of statistical inference,

L particular, we consider nonparametric masdmnm likelihood cgtima-
tion for A-popalation probleme under uniform stochostic erdering restrie-
tivna. Wa derve closed-fortn eolimules even with right-censored data by a
reparameterization which reduces the problemn to a well-known izotomic
regregsion problem. We alan derive the asymptotie distribution of the
likelihood ratio atatistic for testing equality of the & populations wgainst
the uniform stochastic ordering restriclion. This esympiotic distribulion is
ol the chi-bar-sguare type os diseussed by Robertoon, Wright and Dykstos,
These distributional results are obtained by appenling to elegant results
from» empirical procesz theory and showing that the proposed test e
amvmptotically dirtribution free. Recurrence formulss sre derived for the
weiphits of the chi-bar-square distoibution tor particular cases. The theory
developed in this paper ie illustrated by an example involving data for
aurvival times for carcinoma of the oropharnmx.

1., Introduction. Stochastic ordering between probability distributions s
a8 widely atudied concept. It arisea in numerous aettings and has useful
applications. Since it is often casy to make value judgments when such
orderings exizt, it is desirable io recognize their occurrence and to model
distributional structure under such orderings. Unfortunately, statistical infer-
ence procedures have not been developed for many problems involving stochas-
tic ordering and the development of the necessary theory for these problems
seemsa to be a difficult task.

Uniform stochastic ordering, as discussed in Keilson and Sumita (1982), 15
stronger than ordinary stochaestic ordering but weaker than likelihood ratio
ordering, In the continuous case, uniform stochastic ordering is equivalent to
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failure rate ordering. We show in this paper that uniform stochastic ordering
is quite tractable in mattere of statistieal inference.

DererTion 1.1, The univariate cdf 7, is uniformly stochastically greater
than the edf F, (F, = F,) if

(1.1} Fi(x)/Fy x} is nondecreasing for x in |: -x, F, Y 1}]

(where F, = 1 — F; is the survival funection corresponding to F,).

If Fy and F, are absclutely continuous with failure rates r; and r, defined
by v, = F'/F, 1 = 1,2, then (1.1) ia equivalent to saying that r(x)} < ro{x) for
all x. For ihiz reagon, the ordering = 1z sometimes called failure rofe
ardering.

Definition 1.1 i3 also equivalent to the inegualities

P X>s+8X>82P(Y>s+tY>1t) foralls = 0,1,

where X has cdf F, and ¥ has cdl F,.

In other words, the conditional distributions, given that the random vari-
ghles are at least of a certain sire, are all stochastically ordered (Gn the
standard sense} in the same direction. Thua, if X and ¥ represent the survival
times of different models of an appliance that satisfy this ordering, one model
is better (in the sense of stochastic ordering) when the appliances are new, the
same appliance is better when both are one month old, and if fact is better no
matter how mmch time has elapsed. It is clearly useful to know when this
strong type of stechastic ordering holds since gualitative judgments are then
easy to make.

This type of ordering is certainly of intereat when populations correspond to
survival times for different medical treatments. Even if the better of two
treatments (better in the senae that its survival time stochastically dominates
that of the other treatment) is administered initially, it may not be the better
treatment when patients are examined at a later point in time. However, if the
treatment populations are ordered in this stronger sense, there can he no
doubt which treatment is preferred at any point in time.

It is easy to see that F; = F, implies that F) is stochastically larger than F,
in the sense that F(x} < Fy(x) for all x. However, as shown in Ross (1983),
this ordering is weaker than likelihood ratio ordering, that is, f{x)/fylx) is
nondecreasing in x. Various other relationships between uniform stochastic
ordering and other partial orderings have been ohtained by Bagai and Kochar
{1988). Recently, Capérad (1983} has used this notion of ordering of probability
distributions to compare asymptotic efficiencies of rank tests in two-sample
problems. For applications of this ordering in queuing theory, see Roas {1983)
and Stovan (1983}, Lynch, Mimmack and Proschan {1987) have discussed
some closure properties of uniform stochastic ordering.

Tests for equality of distributions againet ordered failure rates in the
two-sample situation have been given by Kochar {1979, 1981), Jeoe and
Proechan (1584), Cheng (1985) and Aly {1%88). However, none of these tests



a72 F. DYKSTRA, & KOCHAR AND T. ROBERTSON

allow for censored data. Proechan and Singpurwalla (1980} discuss a Bayesian
procedure for estimating =everal populations when the corresponding failure
rates are presumed to he linearly ordered by ri{x) = rylx) = -~ = rylx) for
all x. Their procedure requires pooling adjacent violators, but is very different
from what is done here.

The literature on estimation and hypothesis testing problems involving
{ordinary) stochastic ordering is extensive. Brunk, Franck, Hanson and Hogg
(1866) obtained nonparamwetric maximum likelihood estimates of two stochas-
tically ordered cdf’s and studied their properties. Dykstra (1982} considered a
gimilar problem with censored data. Dykstra and Feltz (1989) obtained maxi-
mum likelihood estimates of more than two edf”s subject to stochastic ordering
restrictions by using an iterative alporithm. Reobertson and Wright (1974) have
congiderad stochastic orderings in higher dimensions, as have Sampson and
Whitaker {1989). Testing procedures which are based on maximum likelihood
estimates of two stochastically ordered distributions are discussed in Robert-
son and Wright (1981), Lee and Wolfe (1976), Franck {1984) and Dyksira,
Madsen and Fairbanks {1983). Closed-form algorithms for maximum likeli-
hood eatimates of more than two stochastically ordered distributions have not
been found, Distribution theory for tests based on the likelihood principle have
not been developed to a satisfactory conclusion to the best of our knowledge.

In this paper, we consider the multiple-sample problem when the observa-
tions are randomly censored on the right. Nonparametric maximum likelihood
estimators of the survival functions are obtained under the assumptions that
the various populations are uniformly stochastically ordered. We also discuss
the likelihood ratio test for testing equality of distributions against the uni-
form atochastic ordering restrictions in a linear order situation. Asymptotic
distributions are derived and related to the distribution of tests occurring in
other situations. Finally, an example involving survival times for carcinoma of
the oropharynx is discussed in Section 5.

We will use terminology as if the measured quantity of interest is survival
time, although this need not be the case. Thus deaths will refer to complete
ohservations and losses will refer to censored ohservations.

2. Maximum likelihood estimation. Suppose we have independent
random samples from populations with corresponding edf’s F|, F,, ..., Fy. We
allow the possibility that our observations may be censored on the right with
reapective censoring distributions ., ..., Gy. We do assume that the censor-
ing distributions are independent of the distributions of interest and that we
are always dealing with nonnegative random variables,

The problem will be to ¢construct nonparametric maximum likelihood esti-
mates of the survival functions subject to the constraints F; = F, = -+ = Fy.
Similar procedures will work for other ordering configurations of the sur-
vival funetions since a good deal is known sbout other ordering problems
[Robertson, Wright and Dykstra (1988)]. For example, there exists a pool
adjacent violators algorithm (PAVA) which will work nicely for a tree ordering
(F, = F,i=2,..., N) However, we will restrict ourselves to the ahove lingar
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order since it 18 of considerable interest and is indicative of general hehavior.
We will assume notation as in Feltz and Dykstra (1985).

Suppose that complete observations from all N samples oceur on a subset of
the times &, < 5, < --- <8, _, 8,= —=, §_,, == We let

rrt

d;; — numher of complele observalions lrom the ith population at 8 ;

{;; = number of observations from the ith population censored in [S Sy}

(we assume thesc occur at L\ r = 1,2,...,1,,)
=L (d,. + 1) = number of UhSLI"V'dtlUl‘lb fmm the ith population sur-

viving to just prior to 5,

We interpret maximum likelihood estimators in the generalized senae given
by Kiefer and Wolfowitz (1956). Since these estimates of the ¢df's will put
probability only on actual observation points and since censoring distributions
are independent of survival distributions, the likelihood function is given by

e :
{u}mm—ﬂp[ﬁa;_qwﬁﬂmmﬂﬁmh

where H will depend on the censoring distributions, bul not on the vector of
survival functions F. We wish to maximize L(F) under the eonatraints that

(2.2} F{ty/F._ () ig nondecreasing in ¢ fori = 1,..., N — L.

Note that if the survival functions F satisfy the constraints (2.2), then the
likelihood is not decreased and the constraints are still satisfied if Fi(!) ie
replaced by LT F(S,; Mg s, A

Thus it will suffice to maximize L(F} over this class or, equivalently, to
maximize

g 3
rll FI[F{*J ) = F(8))F(8,)
i=17=

suhject to the constraints

FiS,) . F(S,.1)
:4-1{3] J+1( .‘_r'—'l}l

This iz equivalent to maximizing

% = F(S,) || F{S;-1) B(S;-0)

NI - 78, [F,-(SJ- 2) Fi(5, o)
F{(5;} F{S; )

F, Sf—l} F:"[S.r'—z]

subject to the constraints

{ .r) _:+1[S.i")

{S ) = F:+1{S.."-- 1} ,

d;;
- Fi{sa}

L
. FI{SJI

(2.4)

s L [ T

"!JH
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We reparametenze hy settmg 0, =F{8)/F(8,_) i=1....N, j=

1,...,m [so that F (8,) =TTi.8.] Rtarrang'ing terms and noting that
T |
Il l_lﬂ‘{ i+ = l_I ]_[ i
J=1r— r-1 ;-r—-1
m—1
= [ et = ]_['j“ rfr
r=1 =1

we see that maximizing (2.3) is L‘quivalunt to maximizing

(2.5) I ﬂﬂ“m"f‘u{l —8,)"
F=1i=k

gubjert io

{2.6) B28;=2 - =0y forall j

The constraints in (£.6) do not relate 8, ; for different values of ;. Thus the
m factora | 1Y 070 ~%u(l — @, Y, j =1, 2 , 1, can be maximized individu-
ally. Far each ﬁxed j this ia a hmassay pruhiem ag disciseed in Fxample 1.5.1
of Robertson, Wright and Dykstra (1938). The solution is the isotonie regres-
sion of the vector (¢, 0;,,..., 0,0 with weights {n,;, 1, ..., 54} where

(2.7) F I it

The “pool adjacent viclators algorithm’ (PAVA) provides an easy methed for
obtaining the solution, (6}, 8%, ....8%: ). The resiricted mle's of the survival
functions under the ordering constraints are found by computing
(2.8) Fr(ry= [1 85

[ 8;=4)

In order to maximize the likelihood under the constraint thai all the
survival functions are equal, we need only to set 8, ; = §; for all { and solve the
resulting optimization problems. This gives the estimates

= L:' n.l - :l‘.- dr"
(2.9) g = ———L —

EJ. Iﬂ’J._;l

The mle of the common survival function is then given as in (2.8) with ﬁj
replacing 6.

The fact that this simple reparametrization makes tractable a seemingly
complicated problem is clozely related to the problem solved in Dykstra and
Rohertzon (1932).

3. Hypothesis testing, Assume that all the random samples have a
common censoring distribution and that sensoring values are independent of
theoretical lifelimes. We alsu assume that for every i, F, has support on ihe
fixed set [S,,..., 8§ ) and that each point haa pogitive probability, so that we
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are concerned with discrete distributions with commeon support. In our agymp-
totic theory, m is fixed as the sample sizes change.

Consider the problem of testing the hypothesis Hy: F, = --- = F,; against
the uniform stochastic ordering allernative H: Fy = - = F, (F, £ F,_ | for
gome i} We baee our test on the statistic @ = —2In L, where L i3 the
likelihood ratin. Since we have consiructed the mle’s in Section 2, it is
gtraightforward to conatruet

m—1 N H'*
(31) @ =-2WmL=2% ¥ 4, ]11[ e

i=1i=1 )

+ (ny, ci_r-]ln[[?]

A

(since in this setting #, = #2, = 0 for all i),

If we expand In(1 — ﬂ*} ;;fd In 8% about #,, we can write

2.!?: 1 ';lv‘ E!T . s
@=L BT 9 ey @Y
(3.2} [ _ el
B2 — 8, 8z — 8,
il C de:j]“‘igj—” = (ny - d:‘j]%},

where max{la;; — #,18;; -~ 8} < i6% ~ §,|. Combining the first and third parts
of the previous sum, we obtain

(3.3) zmgl " N{ ‘- §)n E’E‘ﬁ {ﬁ'*—ﬁ) 3
3. i — ar - gt n,:..— )
i-1 [:1 ) Hj}"'ﬂ'. i-1 ! i=1i=1 {1 ﬂJ}ﬂj # ‘r}

However, by properties of the isotonic regression [Robertson, Wright and
Dykstra (1988), Section 1 3]

E =k Byngy = E By
so that the first part nf {3 3)is 0. Mq:r:_re-nver, the second part can be written as

1 _o
b a*d ] g.1n..
E { H]ﬂJ 1; Lt ljn}_f Jlgl :_,lnl:_,l:|

m-—1 i Y
=2 E R - E E":'Q:-E!I«-- e= EE é."ﬂx ]
P 0 Y P R P R
N i
(3.4) [siuﬂe _}:l{ﬁ,.j — 0x)0%n,, = u]
=
_ EHEL ﬁ (8% — 8, )05n,;
et (18,5
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Since we are concerned with asymptotic results and since #% and EJ,-
converge to 8, if the sample gizes go to = and H, is true, we may use
Slutsky’s theorem to replace «,; and $,; by #, in (3.2} without affecling the
asymptotic behavior (recall we assume #,; > [}j. The second and fourth parts
can then be combined and are asymptotically equivalent to

S -
ek —d (6% — 8;) T )05 - H.r'}z
L L =t 72 -
J—1 =1 {1—3“;} I
(3.5) _ _ _—
_ "‘E‘i ﬁ —67 + (28, - 1)8;; (65 - 8))

jo1i-1 (1-86,)8 {1-8,)8, E

Since Iﬁu - & — p0 if H, is true, the first factor converges in probahility to
—1. By combining (3.4) and {3.5), we see that the agymptotic distribution of §
ia the same as that of

@0 R RN

This agymptotic dietribution can be found by using the multivariate central
limit theorem for multinomial distributiona and the & method. However, we
appeal to some empirical processes results given in Shorack and Wellner
{1987). To paraphrase the needed theory, assume that X, X,,..., X areiid.
with common cdf ¥, and ¥,,..., ¥, areiid. random variables {independent of
the X's) from the censoring distribution . It is assumed that Z, = min{ X, ¥}
and & = Iy .y, are observed for i = 1,2,...,n. We let

H(t)=1-P(Z>t)=1- (1 - F{t)}{1 - G(¢)),

H(t)=P(Z<t,6=1)= j;u (1-G.)ap,

HY)=P(Z<t5=0) =f {1-F)da
[0, ¢]

(where _ denotes the left-continuous version of ) and let their empirical
counterparts be given as

1 X
H,.t) = T To. el Z;).
1

P
AT

1
Ha{“) = - Z I[u,e](zi]ﬁ.'s

i=1

1~
H::a-:I i ; E Ilu_.:]{z:'”l —&;}.
i=1
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The cumulative hazard function correaponding to F is given by

Al t R
"“_fm.ql—F_

and the empirical version is

1
Alt)y= — dH},
A1) f[wl 5 9

Theorem 1 of Shorack and Wellner [(1987), page 307] states that if A{z) is
the true cumulative hazard function of F, then
vr (A1) — A1) =y W(C(2)),
where W(¢) denotes a Brownian molion process and the time transformation C
iz given by
1-F"
1-F_|

(3.7) C(t) = fm K —~H )y M1-arM)dr |1-aa=

For our problem where 5,,..., 8, are the support points of the F, the
empirical cumulative hazard function for the ith population is given by

'ﬁ'i.--"i[-’t}= E [l_ﬁjJ}! I:=1r-'-1 N!
ju
while the true cumulative hazard function is given by
'I‘!Li{i}ﬁz{l_ﬂfj]! £=1!”-rN~

F=t

"'E{(l =) (1 ' ﬁu]]
vn [{ﬁ'i[S.i] ZE *"‘:‘(S.i—i)} = {Jﬂli.n{Sﬂ 5 "112.=1{S_f—1}}-|
=V [(A (85 = Ad80) - {Aua(8i0) — Ad5,00)]

Iteme censored before 8| convey no information about the survival fime-
tions of interest, and we assume they do not oceur. Thus we take
{fy, s .., iy} to be nonrandom and assume these are the number of
items initially put on test. We let n =LY n, and assume that v, =
lim, ,.n;/n exists and is poaitive and finite. Then

-
= |
pr—
B

L
I
=
[
o
Il

il

i
: LY nfj n 1 .

T N r Gi{8
? - T L B Tn_“,§lf[x,,z.gj}r{1:,as,-] e Y‘F(S"; _}GE{SJ _:I

by the law of large numbers. Moreover, since the transfer function in (3.7}
corresponding to the ith population has incrementa

‘g:'{s,r'} - U:'(Sj—ﬂ = H-'j“ - ";z:j}[Fe{S;‘ _}Ee(sj _]]_1

and since a Brownian motion process has independent increments, it follows
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that
1 ‘
TR Hi . — 8. . — — -1
n =) N{o, [v B8, -)E(S; ) )
((x-8)5)
if H,, is true, and Lhat all the W”” will be as;.rmptﬁtlmlly independent. We let
W{‘" indicate the vector which otcurs when 7 is held fGxed.
quppose now that E_(x|H,) indicates thc least squares projection with
weights w of the vector x onto the set of constant veclors, while E_(x|H ) is

the projection onto the set of nondecreasing vectors. We can then represent @'
as LT3, where

Wi -

@) = | B (W™ H,) - B (W),

w,={n;/n,...,ny/n) and ||l indicates the usnal least squares norm
with weighta w

After noting the E_(x|H,) is a continuous operator in both x and w, we
employ a continuity argument to express the asymptotic distribution of '
(and &) in terms of normal random wvarmables. This leads to the following
theorem,

Trrorem 3.1, I F, =F,= - = F, aid the common disiribution puts
positive probubility on each of 8., 8,,..., 8,,; if there is a common censoring
distribution G such that G{(5,_,_) > 0; and if the sample sizes increase to = in
such o manner that v, = lim,_ __ n., /n exists, posttive and finite, then Q' {and
&) hos a limiting distribution which is the same as the distribution of

(3.8) T E (2 -Z)y.,

J=1i=
where the {Z,;} are independent, Z,; ~ N0,y "),

s N
Z,- 5 7,

and
Z¥ = *F{Z -|H1}.

L

s the ith element of the antitonic regression of (Z;, Z,; e ea Zpgd with
weights {y,..., ¥t

Note that the distribution of the inside sum in (3.8) does not depend on j s0
that the agymptotic distribution ia that of a convolution of independent,
identically distributed chi-bar-squared random variables as discussed in
HRobertson, Wright and Dyvksira (1988},

If the numbers of items on test mre initially nearly equal (r; ~ g ~
=+ ~ny) and sufficiently large, the chi-bar-squared distributiona of
LE(Z} - ZYy; can be taken to be of the equal weight variety, These
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distributions are much more tractable than the unequal weight case and will
be digcussed in Section 4.

If the censoring distributions are different but known for the wvarious
populations, the asymptotic distribution still reduces to & convolution of
chi-bar-squared distributions. However, the summands need not be identically
distributed.

It is an appealing aspect of the proposged test that it is an asymptotically
similar test. That is, the asymptotie distribution of @ under the null hypothe-
sis does not depend on the common F,. This is in contrast to the likelihood
ratio test for standard stochastic ordering for two populations discussed in
Robertson and Wright (1981), where the asymptotic distribution varies with
the common F,. Note that the test 8 invarlant under 3 common, increasing
transformation of the samples.

Assuming that there is a eonstani censoring distribution G [with G(S,,_) »
0], the hypotheses H | and H, are eguivalent to

H:l-FG=1-FG= - =1-F,G
and
Hi1-FG=1-FGx --- =1 F,G.

Of course, if onc does not distinguish between censored and complete ohserva-
tiona, but treata them all as being complete, the appropriate odf's would be
1-FG,...,1 - F,G. Thus, if a test iz eomsiructed by treating censored
vhservations as if they were complete, the reaulting tesi, will still be Lesting the
correclt hypotheses. Moreover, the asymptotic distribution of &' and @ under
H, will be the same as before, although, of course, the value of the tost
statiatic will be different. One might conjecture that this teat would not be as
powerful, since it makes no use of the knowledge of whether an ohservation is
cenagored. We have not investigated the power properties of this test, however.

4. Equal weighis case in hypothesis testing. The distribution of the
inner sum of (3.8) has been studied extensively. It is called a chi-har-squared
distribution and its survival function is given by

N
(4.1) E o B G o

where xﬂ denntes a central chi-squared random varisble with § degrees of
freedom '[ xa = 0). The weighting element, P.{{, N) is the probability that the
vector, Zj‘ = E {Z;|H) has exactly [ dlstmct values. The quantity P {E NYis
called a level prnhahﬂlty and is generally difficult to compute since it dependa
on the variances of the Z;; [ef. Robertson, Wright and Dykstra (1988), Chapter
3] If ¥y = ya = -+ = yy, Bartholomew {1959) conjectured and Miles (1959)
proved the recurrence relation

——P({,N -1,

(4.2) P(I, N} = %P(z sl b



£E0 E.DYESTRA, 3. KOCHAR AND T. ROBERTSON

where P(0, N — 1} = P(N, N — 1) = 0. {It is customary to omit the weighta
when they are equal.) This recurrence relationship makes it easy to compute
all necessary values of the P{I, N¥s. Once these values are koown, il is
straightforward to compute p values and critical points for the distribution
given in {4.1) when ¥, = v, = -+ = yy. (S8ec Robertson, Wright and Dykstra
(1888), Table 4.4.]

The moment generating function of the distribution associated with (4.1} is
given by

i
my(t) = By(s) = L P (I, N}s"?

l=1

with s =(1—28)""° for £ < 1/2 (s> 0) In the case y, =y, = "+ =¥y,
the reearrence relation, (4.2}, implies that
s+ N -1
(4.3} By(s) = T@N-J{S}z N=2,8,.-.
Agauming henceforth that v, = y, = -+ = ¥, the sum in (3.8} is the sum

of m 1 independent random variables each having moment generating
function given by &,{(s). Using (4.3}, the moment generating function of the
sum in (3.8) is given by

—— s+ N-1]""" iy
Py wl5)=8y(s)" "= [T] [On_1(5)]
(4.4)
s+ N-—1[= !
= [TJ cb}v'—l,m(s}'

By expanding ({s + N = 1)/N)™ !, expressing n®y  (¢)and @y | . as poly-
nomials in 5 and eqguating coefficients on the two sides of {4.4), we can
conclude that the random variable in (3.8} has a chi-bar-squared distribution
whose level probabilities satiafy a recursive formula. This result is summarized
in the following theorem.

THECREM 4.1. Assume the conditions of Theorem 3.1 and v, =y, =
© = vy Then the asymptotic survivel function of @ and @ wnder Hy is
iven fry
MNim 1}

(4.5) ¥ RN Bl ey

lI—m—1
where the B(I, N, m) sutisfy the recurrence relationship
R(I,N,m)

(4.6) m ]fk—1-'“‘1'“(%]“R(J_H,N—1,m}
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ford=(m-1),..., Nim -1} We toke RUIU N.m)=0ifl<m -1 orl>
Nim 1.

If we fix m and arrange the RE({, N, m)in a “triangle’ similar to Pascal’s
triangle with R, N, m) [ - m - 1,., .. N{m 1), forming the Nth row,
then (4.6) saya that each row is formed by taking a convex combination of the
slermnents in the proceeding row [where R{m — 1,1, m) = 1 for m = 2] This is
analogous to Pascal™s triangle and can be used to generate as many of these
values ad necessary.

If v, =y,= -+ =,_, the moment generating function correaponding to
the distribution given in {4.1) can be explicitly calculated as
(g+1)r(3+N-1)

Nt
where 5 = (1 — 2¢)~ " and £ < 1/2 [Robertson, Wright and Dykstra (1988),
page 81]. From this, the mean and variance for the corresponding distribution
can be calculated as L[,/ and Y0377 — %), respectively [Barlow,
Bartholomew, Bremner and Brunk {1972), page 151}

If the weights R({, N, m] are taken to be a probability mass function in I,
the respective mean and variance of this distribution will be

myls) =

A N
(m-1DL " and (m-1L (it -2

i=1 i-

Since the ratio of these two values converges to one as N — =, one might
suspect that this distribution can be well approximated by a Poisson distribu-
tion if N and m are sufficiently large, Our experience indicates that a Poisson
distribution with mean (m — 1DE Y (™! — i %) which has been translated
m — 1 units to the rght gives a significantly better approximation than a
straight Poisson. This approximation to the weighting distribution is quite
good even for N and m as amall as 5. The approximating distribution for the
asymptotic distribution of @ formed by replacing R{I, N, m) in {4.5) by its
Poisson counterpart is generally quite accurate,

Of course, the central limit theorem ensures that the normal distribution
may also be used as an approximation for the asymptotic distribution of @ if
m i3 large enough. This can be esasily implemented since the mean and
varianee of the asymptotic distribution of § are given by

w N
fraccty s f L sand (el ¥ (850 d)

=2 J=2
In the event that the v/’s are not all equal, matters become much more
intractable. Although the asymptotic distribution of @ ia still of the chi-bar-
gquared type, the correct weightings will generally be unkmown. Robertgson and
Wright (1983) have investigated the chi-bar-square distribution and conclude
that this distribution is quite ingensitive to different values of the y,'s as long
as their ratios do not differ from 1 by too large a factor. They conclude that as
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Iong as all ratins stay between 1/4 and 4, the equal weights chi-bar-aquared
distribution will serve as an adeguate approximation. If this is not the case,
they propose other approximations.

5. Example. To illusirate the methoda diecussed in earlier zections, we
consider some data given in Data Set 11 from Kalbfleisch and Prentice (1980},
These data conaist of aurvival times for patients with carcinoma of the

TanLE 1
Survival iime in davs for careinoma of (e oropharyax

Group Pop 0 Pep 1l Pop 2 Pop i
Group I 48 1 105 3] a0F 112 147
0-160 107 154 124 11 94 112 147
10683 14 g9 127 139

T4 23 134
53 112 144

Group I1 187 218 7a 162 182+ 214 235
161-260 72 2404 L&4 172 192 219 2pA

™ 232 173 0o 218

238 224 174 e 235

243 230 177 209 245
Group IIT - 276 343 2Y5 438 279 62 T AT 4
261380 285 3ol 401 347 33t 264 272 30§

e 344 310 266 PYE T

A36 328 3dd anm 203 887
(rroup IV 372 446 3EZ2 a5 264 414 513
351540 374 146 352 407 J6% 458 817

ATH 446 485 L 461 526

404 495 47T A7 480 538*

442 225 Bl18 413 adq
CGroup ¥ 941 ilek] Sdi 44 637
G41-T00 J45 a3 G0S S46*  H7E*

Lol b= G651 oS il

1| B0 GEE 593

ga1* Bl BIT
Group ¥VE V14 T2 51% Tag THd  BOG
701800 7ah Taa Bia= 1 A -

H3 825* o7 Ta4*
BFa” Ta0r 8500

Group VIO 943% 1823* 923 915 108R*  B11* 1377
901-1850  Bag* B33~ 918*% 1307 911 1448

1219+ 1086+ 928* 1312* Dl4* 14737

12347 1092 DAL 14585 Y16 1565

1460 1317 1068* 1489* 1095+ 1586*

1574 1317 1060* 1485% 1350*

1766" 1608* 1064 1644% F318%

*ropresents cenaored cheervation,
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oropharynx and several covariates. A substantial portion of the survival time
entriea are censored.

These patients were classified into four populations, depending on the
amount of Iymph node deterioration upon entry into the siudy. Population 0
indicates no evidence of lymph node metastases, while populations 1, 2 and 3
indicate the presence of sequentially more serfous tumors. [This classification
is indicated under the variable N in Kalbfleisch and Prentice (1980}.] Since
this example is for illustrative purposes only, we ignore other concomitant
information. The survival time data for the four populations are given in Table
1. Note that the sample size corresponding to population 3 iz aignificantly
larger than the sample sizes eorresponding to the other populations.

It would seem reasonable that the survival times for the four populations
should he stochastically ordered sinee lymph node deterioration is an indica-
tion of the serivusness of the carcinoma. It is not clear whether uniform
stochastic ordering should hold, however, gince this is a considerably stronger
condition.

Figure | shows estimates of the survival funetion of the four populations
cbtained by the Kaplan-Meier (1958) approach. As we would expect, the

k.1 4

1
[ |
145

0.0

0 mE a0 60 F0 e 1200 | 10p | e | 1eeg
oAYS
Fio, 1. Koplan—Meier estimates (MLE ) of survivel functions from date in Toble 1.
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D20 M0 e B0 1000 MOD W0 TWD 1800
BAYS

Fic. 2. MLE's of survived functions from dota in Table 1 subject fo uniform stochestic ardering
restrictions.

survival function of population 3 lics substantially below that of the others.
However, the survival functions of the other three populationa croes a number
of times and the survival function of population 0, surprisingly, hes helow
those of populations 1 and 2, particularly beyond 350 days.

The mle's of the survival functions of the four populations under uniform
stochastic ordering (F, = F, = F, = F} are given in Figure 2. Since uniform
gtochastic ordering 8 a rather stringent restriction, the estimates become
subatantially separated, especially in the far right tails of the distributions
where there ia little information.

To illuetrate the testing procedure, the data are grouped into seven classes
as indicated in Table 1. We ireat the grouped exact data ss occurring at the
interval midpoints, and the grouped censored data in an interval as oeccurring
after the midpoint. The »;'s and d;;'s for the grouped populations {as
discussed in Section 2} are given in Table 2. The groups were chosen rather
arbitrarily. We tried to roughly halance the survival times eorresponding to
each group and to have at least 8 minimal number of observationa from each
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TavLe 3
Number of survivalz end deaths for grovped deie

Pop 0 Pap 1 Pop 2 Pap 3
Group Interval n d R d n d n d

1 0-160 a9 3 2B 2 a7 2 91 L7

iI 161280 36 G 25 2 30 a T3 13
nl 261-360 31 a 24 i a0 4 bl 13
v 381540 25 a 14 2 26 L 43 12
v Ad1-T00 15 4 14 4 21 4 29 i
Y1 T01-900 10 2 11 1 17 1] 21 G
Vil BO1- 18a0 8 L 7 2 14 2 12 3

n is the numbar surviving at the beyginning of Lthe imterval: d is the number of
deatha ire the interval,

----------------- -
i ““““"é
fimmern e 3
e e o
1
.34 ! i
— -.....i 7
]
b.24 |
014
0.04 —_—
T T T T T T T Y . T T T | e D S e mmm |
1] 200 i L L] 1000 100 1900 1600 1800

Fuz 3. Aapien-Meier extimates { MLE'r) of survival fiunctions from grouped dote in Table 1.
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0.1+

.04
T T T T T Ll T T T

T L o BTk Belonn e, B reow S e e |
a 1] 40 i, ] e 1000 1280 1400 160 1800
DAYS

Fic. 4. MLE’s of sureival furctions from grouped dote in Tebde 1 subject to uniform stochastic
AFIEPIRG Pestrichons,

population in each group. The choice of groupings could have a considerable
effect on the outcome of the analyais.

For the grouped data, the unrestricted mle’s (Kaplan and Meier) are given
in Figure 3, and the restrieted (uniform stochastic ordering) mle’s are given in
Figure 4. As indicated previously, populations 0, 1 and 2 seem to be guite
gimilar, while population 3 tenda to be substantially smaller.

The p value of the likelihood ratio statiztic discussed in Section 3, where
equality versus uniform stochastic ordering is tested, i 0.04 [where the
approximation in (4.5) is used]. A p value this small sgeems somewhat surpris-
ing since the graphs in Figure 3 would not appear to support stochastic
ordering. However, they also do not zupport equality. Population 3, with its
large number of observationa, lies well below the other three populations. The
Fact that it nearly satisfies the uniform stochastic ordering constraints appar-
ently has a large impact on the test statistic and is the main reason for the
small p value.
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