A NOTE ON WAVES DUE TO ROLLING OF A PARTIALLY IMMERSED
NEARLY YERTICAL PLATE*

H. N. MANDALT anD 8. BANLEILAZ

Abatract. A rigid, nearly verticu), partinlly immeised wide plate is constrained fo rotate about a horizoncal
axiz through it. The waves from amall rolling oscillations of the plate are studied. Expressions for the
first-nrder comrections to the amplitudes of the wave motion so set at larpe distunces om the dehl and left
sides of the plate ure obtained by the wse of Green's intepral theorem. Assuming a Fourier expansion of a
function related o the shape of the plate, these corrections are calculated explicitly, Considering some
particular explicit forms for the shape tunction, numerical calculations are performed.
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1. Introduction. Within the framework of lingarised theory of water waves, only
a limiled number of problems admit of exact soluticns. One such problem is concerned
with oscillation of a2 partially immersed thin vertical plate due Lo rolling aboul a
horizontal axiz in its plane. The problem was tackled initially by Ursell {7] who vsed
Havelock's expansion of water wave potential to oblain the wave amplilude al infinily,
and also the explicit form of the velocity potential at any point in the fluid region can
be found [rom his analysis. Later, Evans [2] computed the wave amplitude at infinity
produced by the general motion of a partially immersed thin flexible plate by 4 simple
applicalion of Green's integral theorem in a very interesting manner.

Problems associated with nearly vertical barriers were first tackled by Shaw [8],
who considersd the diffraclion of waler waves by a partially immersed nearly vertical
plate and used Creen’s integral theorem to reduce the problem to the solution of a
singular integral equation whose solulion was then oblained up to first order by a
perturbational technique. The first-order corrections to the reflection and transmission
coefficients were also obtained. Recently, Mandal and Chakrabarti[4], used a simplified
perturbational technigque (different from Shaw’s [6]) along with the application of
Green's theorem with Evans's type of idea, to determine these corrections in a much
simpler way. Very recently, Mandal and Kundu [5] also used the method of Shaw [6]
a5 well as that of [4] [or the problem of diffraction by a submerged nearly vertical plate.

In the present paper we generalize the problem of rolling of a partially immersed
vertical plate considered in [ 7] to the problem of rolling of a partially immersed nearly
vertical plate. Because of the curved nature of the plate, the ampliludes ol the wave
motion at large distances on the two sides of the plate could ool be the same. The
first-order corrections to these wave amplitudes are obtained here by employing a
perturbational analysis similar to that used in [4] and [5] along with the exploilalion
of Evans's idea of ulilizing a suitable application of Green's integral theorem. Consider-
ing some particular forms for the shape of the curved plate, the amplitude of the wave
motion at larpe distances from the plale on ils lwo sides are calculated numerically
and compared with vertical plate results.
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2. Statement and formwulation of the problem. We consider a nearly vertical thin
plate x=rgc(y), 0Z2y=g (where £« 1 and e(y) iz a continuous bounded (unction)
gxtending from above the Free surface of an incompressible inviscid fluid cccupying
the region ¥ =0 with y =10 as the mean free surface. The plate is hinged at (sc(b), b)
and i foreed Lo perform smull simple harmonic oscillations of amplitude 8=
Re {8, ¢ “"}aboutits nearly vertical mean position, « being the frequency of oscillation,
We agsume the motion to be irrotational and is described by the velocity potential
Re {@ix, y} e ). Then ¢ salisfies

{21} Vi =0 inthe Ruid region,

the linearised free surface condition
a
{2.2) K¢+éf—-{) ony=0, x#U,

where K =a°/g, g being the acceleration due to gravity, the condition on the plate
{see Appendix A for derivation of the condition)

e . 2
(2.3} P idply B onx—=gc(y), O<y=ag,
#/dn being the normal derivative on the curved plate. If A and B denote the amplitudes
of the wave motion set up by rolling oscillations of the plate at large distances on its
lwo sides, then

(2.4) {PW{AE KetiKs e v g,

Be ™™ aexs—w,

Also ¢ satisfies the edge condition that

(2.5 r“* Vg  is bounded as r =0,

where r 15 the distance from the lower edge of the plate, and the botton: condition that

{2.6) ¢ Ve—=0 asyv-s0

3. The method of solation. The houndary condition {2.3) can be expressed approxi-
mately ta the first order of £ in the form (cf. Shaw [&])
de_ 4

d
3—{c{y}a—¢}=icrﬂu{y ~b} onx==0, O0<y=a
J_’

Q0 ax  dy

This form of boundary condition supgests that we may assume the following perturba-
tional expansion, in terms of the small parameter &, {or the unknown guantities o,
Alg), and Bie} as

@lx ¥ &) = palx, ¥)+se,(x, ¥) FO(£7),

{3.2)
A=A + A +0(e"),  B=By+zB+0(e").

Here A, and 8, are Lhe ampliledes {complex) al infinity of Lhe wave motion set up
by the rolling oscillaticns of a partially immersed vertical plate on its two sides, so
that A, = -8, {cf. Evans [2]). Thus A, and B, are the firsl-order corrections Lo the
wave ampliludes al large distances from the nearly vertical plate at its two sides. We
content ourselves with the calculations of A, and B,. Substituting (3.2} in the basic
partial differential equation (2.1} and the boundary conditions (2.2), (3.1}, (2.4)-(2.6),
we lind alter cquating the coefficients ol identical powers of £ (rom both sides of the
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resulls thus derived, that the functions @, and ¢, are the solutions of the following
two indegpendent boundary value problems.

{BVPI) The function ¢, satisfies
Vig,=0 iny=0,

] :
Koyt —2=0 onp=0, |x|=0,
oy

i
ﬂ=fnrﬂ.;.{y—b} onx—=+0 0O<yp<a,
{Au E—Kv-l ik as x 0,
'pﬂ- ‘".A.“ E—K‘p—er a5 X = _m,

# Ve, isboundedas r={x"1{y—a)?=0,
ey, Y= 0 asy—son
(BYVPIL) The function ¢, {x, v) satishes
T, =0 inyp=0,

bl
Kegyh A % ony=0, lx|=0,
ay

dipy d{ 30 } _
={} =—\¢ i v 0y
ax ': ] .}?::I d_}-‘ L{J"} E]}r ': ,}} 5 <Y -r:;_a_,

Ay e T gixso
P {B. e~ XV HRE a5 ks —aD,
r'*Te, isbounded as r={x"+ (y—a)?}¥ =0,
@, Vi, =+ 0 as y—+om.
For {RVPT), we note that g,(x, v} is the velocity potential of the motion set up
by small rolling osallalions of a thin vertical partially immersed plate about a line in

its plane through the point {0, b}, and its solution was obtained in [7] {although the
explicit florm was not given there). Il is piven by {see Appendix B for ils detivation)

A, g~ fxx+f ¥k Kk cos ky — K sin kv) e dk, x>0,
(3.3} @lx,¥)= 5

[E4]

—A, e & ”“—J. ¥k kcosky—Ksinkp) e dk,  x<0,
[y

where
A, ; K
x{kn=ﬁ[tq+ ip)an(ka) === Li(ka)
ALk ke - Hﬂ:m:uurkan}

T 1T Kh—1
A, = K3 Ka)+ = I Ka),
1 1-Kbh
(3.4} P;L(Ka][i L{Ka)+ Xa

{3.5) Ag=wobyga’|wh{Ka)—iK,(Ka)}.

1

{I,{Kﬂ}h;.{ Ka)—1,(Ka)Ii Ka]l} —% K,{Ka}] ;
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Let ¥, x, ¥ be the solution of the diffraction problem lor a partially immersed
thin vertical barrier due to a normally incident train of surface water waves represented

by ¢ "% Then ¥.{x, ¥} is given by [4]
E—K}:+!Kx+ R| —Ky—ix

kx i
"'__\_J_ Ji{ka) e (k cos ky Ksmk}]dk —.
u}

i -'-KJ

T{,.E.x, }_‘} B .]-D & Ry viks

1™ Fika) e ™k cos kv — K sin ky) _
= L L PE dk Forx =1,
where
_mh(Ka) K Ka)
{3.!6_] R[I_ .ﬁ 4 T{‘.l_ f:'- 1

A=wl{Ka)+ik, (Ka).

In order to obtain B, we utilize Evans’s [2] idea slong with the application of
Green’s theorem to the harmonic functions ¢, (x, ¥} and ¥y{x, v} inthe region bounded
by the lines

¥=0, 0<x=X, x=X, 0=r=Y, ¥y=Y, -X=x=X
x=-X 0=p=Y, y=0, —-X=x={ x=0—, =yv=a,
x=0+, O<y=<a withX, Y=,
and ultimately make both X, ¥ -0, We find that
= d
(3.7} —iH.—-J {Ta{‘l‘ﬂ v}—li+{} yi—=W{-0, Jr]'ﬂ[ 0, H}

0
Now it is known that (cf. [4])

e Bl My forv=a,

where

Miyi=— ——— di
{(»)= A J_ az_r;}I.-_,

Using this in (3.7) we find

—f3.=£"e d[cm 2 o ) e ik ﬂ,y}}] dy

I j e‘“"Miy}E[ciyllai}__{%(Jrﬂ, :r'}ﬂﬂ-ui-—ﬂ,:r')}] dy.

But from (3.3} we find that
{3.8) ol t0, ¥)=—go{—0, 3} forally,
then the second term in the right side vanishes so that B, is given by

(3.9) BJ—-—fJ e‘”i[c{v} lpul+0, ¥} = @l 0, Jf”}
i dy
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Similarly, to obtain A, we apply Green's theorem o @,{x, ¥} and T{—x, 1) in
the same region and it is found that
(3.10) A =8,

To simplify {3.9) further, we need a convenient expression for ¢.{x0, ¥). To obtain
this let us define

W(y) = eol+0, ¥} = @l -0, ¥).

Then from (3.8} we find that
(3.11} Piy) = +2¢y(+0, ¥)
50 that

Pivi=0 fory=a
But from (3.3} we find that

K¥ipr+ ?TP =-2 r (k*+ K*)x(k) sin ky dk.
The integral on the right side can be calculated and it is given by {of. {1, p. 99])
iy} forQ=yp-<a, 0 fory=a,

where

El

. 3
L(J’J=ﬂ'ﬂﬂu{[if+ip}m—£

J,EEJ_PZ}L-Q
(3.12) 5
T _].-'
+—(1— Kb}y h————=|.
ﬂ'n‘{ » n}"r {ﬂz—}'l:'l’?}
Thus utilizing (3.11) and {3.8), we find

—he_F‘”'J‘ e™Lit) dr forD<yp<a,
'-’Fsr(i[]'. J’j - ¥

0 fory=a
Hence from {3.9) and (3.10} we finally obtain
(3.13) Ay =By =2iK I: L{y)g{¥) dy,
where
{3.14} glyy=e™ _[:!c’lir}—KﬂH}}e dr,  O<y=a,

which is obviously related to the shape of the curved plate. Thus {3.13) is the zeneral
resull for the first-order correction to the amplitude of the wave motion at a larpe
distance from the curved plate.

We now assume a general Fourierexpansion for G{8)=glasin 8)/a{0=8=w/2)
to deduce A;. We assume that

.
(3.15) G(E}:%-ﬁ ¥ {a, cos daf + b, sin daf),

n=t
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where a,, £,'s can be obtained once the shape of the plate is known. Thus we obtain
from (3.13)

':3.]6:} lA‘I B]—Zﬂ'a &U [”Da'ﬂ_,_ z {aﬂalf I bIBlr.]i|
where
Ka Eb-1
ay=—(p-igl+——+ ;
3 T
Kal16n’ + 3 lﬁn(Kb—l]l} 1
317 =P — el TR
Ey {F 7 9—16n’ o 16n2—1
5 Bn 1-Kb | 1 Eb—1
n={4(p—ig)n+2K +
A {“’ L T T ST Er e e
where
3"=I “sin(4n+2)0
a sin @
go that

4
Sa=1 g2 Seme A=l
from which all 5.°s can be calculated,

a.'s and 8,°s are numerical constants independent of the shape of the corved
plate and can be evaluated once Ka and &/a are known. Some representative values
of these coefficients &, (#=0,1,2,3) and 8, (n=1,2, 3} are given in Table 1. We note
that for any fixed values of the parameters Ko and b/a, o,’s and 8,°s deceease as n
INCTEARES.

We now consider particular explicit forms for the shape function o). Let us take

(3.18) cly)= a(l—i)m,
o

where mi is a positive integer. Then G{#) can be evaluated explicitly from (3.14) and
15 given by

1 :
G': &} =E {e—h.ﬂalﬂ ﬁll::l —5in &'}m _Exa gln-'.l}

{3.1 ) .
mopme— - - {m—fHL ; i ;
+ E = ; {E’ Kas nd{l_Sln ﬂ)m _r_eha:slnﬁ}_
1= (—2¥ " Ka)
TavLe |
bia=i,
Kr &y &, g & £ B Fr

i —. H414429 =.307a e —. 1521472 — 1022456 ETOAT RLERL ] 568813
— M523 L0 +. 0003 5BEL + (B 51 +. 00K T 50 +.00t 4550 +. 0GRS 4 +. S B
s S TAbE2Y B2 4R A24 5] 351 ZRRRAEH) 115262 Aad 1y
it —. L TOIES| +, 001392559 + 2T 28 +, 001 12EE +, 04337501 MELT2TL +.01 454 17
L8 JTEIGTE —A%31478 — 1554798 - IHMETY 150240 Aepdb42 250G
i 4 4460250 — (287941 — 0K —0n312s — I TR — DEGTRZ = 3730393
14 - 184485 - 40TIE95 —. 1479955 - STOSG Z4R01TL A7z ETE14

+.22Hr63 — U5 — 3505 — 00 5456 — D3Ka4031 — DARIGEE — 1854764
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The Fourier coefficients &, (n=0,1,2,---Jand b, {a=1,2,---) in the expansion
(3.15} of G{8}in {0, w/2) cannot be found explicitly. However, they can be calculated
numerically onee Ka and m are known.

4. Discussion. Taking £ =001 and .0003, we have computed the quantities |A}|,
|A*|, and [B* for vatious values of Ka between 0.1 and 2.0 and m between one and
five, whers

I & — A+
Ay =Bl de oAl gy [mAot 24y
oo™ o™ FL %

Here |A, is the amplitude {actual) of the wave motion at large distances set up by the
rolling oscillations of a vertical plate, |A|=|4,+ &4 | and |B| =|-Ay+ &A,| are the
same [up to first order of e} for a corved plate at its right and left sides, respectively.
A representative set of these values are given in Tables 2{(a) and 2{b).

From (3.5) we note that [Ay| first increases and then decreases with Ka This is
also reflected in the numerical results for |A¥]. Here |A}| first increases and then
descreases as Ko increases from 0.1 to 2.0. For any lixed m, a similar behaviour is
observed for the values of | A% and | B¥|. Thus the qualitative behaviour of the amplitudes
at infinity of the wave motion set up due to rolling oscillations of an immersed curved
plate on its two sides is the same as that For a vertical plate with respect to the wave
number Ka.

Again for a hxed Ka {(and fixed g), the value of |A* decreases while that of | B¥|
increases rather slowly as m increases from 1. However, these variations are observed
only beyond the fourth decimal place. This is plausible since the variation of m
{fm=1,2,--+,5) causes a very slow change in the free surface slope {=—1/em) of
the curved plate as £ is much smaller compared o m. It is also observed that the
values of |A*| or [B¥| differ from |AJ| {the vertical plate result)} bevand the fourth

TabL: 20}
eivl=afl wial" bfz=-01.
n = _.EHN.

H 1 I k] 4

Ka |af|— &Y |4} 12 [4%] 12 A% 1B A% &

LR L1 ki S0 ME5 0301554 03026D  OR0135E 0ER12E 0501560 0504237 0501360
{X) JIMIITOR J2N2LESY 2HIARTE ZRIYIRR 23y 2HIYR2 2834158 ZRA9R00 2834240
L0 3544512 SRFEOLE ARTLE2G JAFTE 0 ARTILTG JERTOEY  ESTRRGS GINGTTR ISVIETR
1.4 517343 S166033 14760 3165367 3udsd) JA164818 0 MRiod 3164349 SIERGE
1.5 2T 2THIRAT 21T 270272 ZTR1s0T ST ZTh2053 2749738 2TH2T40

TARLE Iih]
cirl—all—r )", bla - 0L
& — x5

.

" 1 ¥ k|

Ko |af]-|B} 4% B 4t E:4 la* 187 |47 |

0.2 0147 L5001 284 LE 330 A5 ZRE LE1332 L5 ZR2 L5011 33% RILIEI peE3E 501334
06 ZRANTR 283351 ZRITTER A0S 2EITBTE ZHE04E JIEIIIG THE0MEL JRIIATZ
10 35adf12 501413 ASREZIT O 3561140 A56E4M 3560947 ASpRGES 3360740 AS6RE41
14 J3175393 A2 2 HNTE A1T0ATE ARG L3I0 RIS ST1GY9EAT IR
1% 256030 275318 ZTIBREZ 253148 2750916 TR0 2T00EE JATA2ETD ZTIDLES
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decimal place for small valves of Ka (here for Ko = (.3) while this difference oceurs
in the third decimal place as Ka increases (here for Ka>{0.3). This shows that the
influence of & and m on the amplitndes at large distances from the plate is quite
sipnificant when the wavenumber is not small,

5. Conclusion. First-order corrections to the wave amplitudes at large distances,
of the motion set up by the rolling oscillations of an immersed nearly vertical plate,
are obtained here by using a simplified perturbational approach. For some explicit
forms of the shape fonction of the plate, the wave amplitudes at large distances from
the plate are calculated up to first order analytically. Their magnitudes are cemputed
numericilly and it {5 observed that the influence of the shape of the plate on thosc
values is to some extent significant.

Appendix A. Derivation of (2.3). To deduce {2.3) we note that as the barrier is
hinged at {zc(h), b} and performs rolling oscillations with small amplitude 8, and
frequency o, its angular velocity is

w=wk,
wherg
fA1)} w = Re {—iod, e ")
and k is the unit vector along the z-dirgction, Let
(A2) r=i(x—ec(h))+j{y—b)

so that r is the distance of any point on the plate from the point (zc(b), B), where i,
j are the unit veclors along the x, p directions, respectively. The velocity v at any point
on the plate is then given by

{A3) v=Re[ithy e “{i{y—b)+jele(y)—c(b)}]

As the plate communicates itz normal velocity to the adjacent fluid particles,
a
v, = Re {j 2'“"]
il

t,=v¥-m,

on the curved plate. Now

where n is the unit vector normal to the curved plate and to the first order of z, is
given by

(A4} n=i—jec(y+O(e).
Thus from {A3) and (A4) we find that
t, = Re [iory e™ iy — )+ jle(y) - e(b))} - fi—jec'(y)} + O]
=Re[igh, e " {y—b)+ O{*)].

Thus

d
Ei_: =iwrthyly—b) onthe plate.
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Appendix B. Derlvation of ¢y{x, y). A tepresentation for ¢,(x, ») can be obtained
from [7] with obvious modifications {the notation A and B in {7] will be changed to
D, E, respectively, here) and is given by

ok %, ) = ﬂﬂﬂo[{ﬂ R N

{B1) h J {S()+IC ()} e (k cos ky— K sin ky) dk], x=0,

D
wolX, ¥)=—@ul—xp),  x=0
Then in the notation of {3.3), we have
Ay = oabp{ I} — IE), y(k)= aad fS(k)+iC (&)}

Explicit expressions for I3, E, and C(k) are given in [T]. However the expression for
S{k} is not given there, but can be calculated easily from the relation

ot

—%r(k""+ K1 k8(k) =J- .f{ﬂ{kcos ky— K sin ky) dy,

n
where

0 forD-<y-a,

i i3 4]
)= qi(f'x"j o BE du) for y = a,

dy , (wP—a?)t?
g being an unknown constant. Then S0k} is found as

Ji{ka)
K+ K

(B2} S(k)=ga

Again, an expression for C(k) is given in {71 and this can be further simplified as (cf.
[3, p. 683])

—;k{szr-Kﬂ(."(k}

B T Karka)+ L (1~ KbY (kY ea) ol k)L (R )}~ T phad(Ka),

where p is a2 constant.

For finding the constants £, E, and g, Ursell [7] first obtained the expressions
for I and E conpecting only p. These can be further simplified as follows {cf. {3,
p-683]):

D=Kb—
K

o U1+ Ka{K,(Ka)Lot Ka) + Ko(Ka)Lu(Ka))]+5 Ko Ka)-+ pek,(Ka),
(B4)

£ =(1- KB){£,( Ka)Ly( Ka) - I{ Ka)L,( Ka }}+% I{ Ka)— wapl,(Ka)

{an obvious misprint in the expression of E, i.e, B in [7], is corrected here).
Apain, [7] also obtained

(B5) L= qgqawl {Ka), E—=gaK (Ka}.
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Explicit expressions for ¢ and p can now be obiained and these are given in {3.5). D
and E are then found from (B4). Tt is now a simple task to find y{k)} and A;, and
these are given by (3.4) and (3.5} (the last relation), respectively.

Acknowledgments. The authors thank the referees for comments and suggestions
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