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THE RUSS0-SEYMOUR-WELSH THEOREM AND THE EQUALITY
OF CRITICAL DENSITIES AND THE “DUAL" CRITICAL
DENSITIES FOR CONTINUUM PERCOLATION ON R2

By RantL Roy

Indian Statistical Institute
A Russo—Seymour—Welsh (REW) theorem s established for continuum
percolatinn on B2, The equality of various definitions of critien] densities
for the contintuin percolation on B* is deduced az an application of the
REW theorem. Tt iz alse shrwn that varicus notiona of the size of a cluster
vield the sume notion of eritics] densicy,

1. Introduction. We consider a percolation model defined on FEZ2 Thia
maodel should be viewed as a continuum analogue of the discrete site /bond
percolation model, Instead of sites /bonds being independently cccupied or
vacant we have a Poisson process on B? with each Poisson point being the
centre of an “occupied” dise of randem eadius. We shall assume that the
random variables deacribing the radil of the dises are i.1.d., strictly positive and
bounded above hy a positive constant. The model is deacribed in more detail in
the next section.

This model was introduced by Gilbert (1961} to model the transmission of
radio aignals. Hartigan (1981) has also considered this model in a cluster
analysis setup. For this model Hall (1985) has shown that under certain
moment conditions on the radius random variable the critical densities for
phase transition exist. Zuev and Siderenko (1885} and Men’shikov, Molchanov
and Sidorenko (1986} have shown that in any dimension and for the radius
random variable bounded above the critical densities arising from cecupied
clusters are all egual.

In thiz article, besides considering critical denaities defined through *oc-
cupied” clusters we also comsider critical densities defined through * vacant”
closters, vacant clusters being the analogue of the “dual”™ in a digerete
percolation setup. We show that in H2 all the critical densities arising from
occupied or vacant clustera are equal. In three or more dimensions one cannot
expect guch a result becanse, as in discrele percolation, one expecls a nonde-
generate interval of intensities where infinite cccupied and infinite vacant
clusters coexiat.

Our argument rests crucially on a version of the Russo-Seymour-Welsh
itheorem for vacant crossinge of suitable rectangles in the two-dimensional
continuum model. The idea aof the proof of the REW theorem is aimilar to the
idea of the original proof for the two-dimensional discrete model [Russo {1978)
and Seymour and Welsh {1978)], but we have to make suitable modifications to
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take into account the dependent structure of the continuum model. In facl, it
is Lhis dependent struciure which would nef allow us to mimic the proof of
“R8W for vacant crossings" to obtain ““ RSW for occupied crossings.” Unfortu-
nately, we have not been able to obtain a REW theorem for secupied crossings.
The BSW theorem apart from its intrinsic interest is also expected to vield
power estimates for the continuum medel as in diserete percolation models.

All these results are motivated by corresponding results in site /bond perco-
lation. For the diserete model Keaten {1980} (for iwo dimensions), Alzenman
and Barsky (1987 and Men shikoy (1986} have shown the equality of various
definitions of critical parameters. The original proof of Keaten (1880} and the
subsequent modification by Russo (1981) rested on a REW argument and
hence was restricted to two dimensions. We follow a similar line of argument.
In thia context we remark that in discrete percolation the derivation of many
of the power laws and scaling laws are dependent on the REW argument and
as such restricted to two dimensions.

For many of the long technical arguments we sketch the main ideas and
refer the reader to Roy (1987} where the details of the proof are presented.

2. The model, definitions and statement of resnlts. Conasider a Pois-
son point process £, £, .. . of intensity A on B2, Centred at £, £,,... are discs
V(g ), Vg, ... of radii py, py, ..., respectively, where p,, p,, ... are iid.
random variables and have Lhe game disiribution ag that of a strictly positive
rundom variable p. We call this a Poisson system and denote it by (2, A, p).

Given two digjoint regions A and B in R® we say that a continuous curve
ia an occupied /vacant connection of A and B in a region 8§ if y N4 + &,
yn B+ yoSand y o U7 V&) [y n VgD = @ forall i = 1] We dencte
by A~, Bin 5 (A -, B in 8)the existence of an occupied /vacant connec-
tion of A and B in the region 5. In particular, if S =[0,7,]1>[0,1,] and
A={0} = [0,!,] and B = {{;} = [0, ;] the left and right edge, respectively, of
8, then any oecupied /vacant connection of 4 and B in 8 is called a left-right
{I.-R) occupied /vacant crossing of the rectangle &. The top-bsttom {(T-B)
occupied /vacant crossing of the reciangle 5 ig defined similarly. Finally, if
A ={g} and B ={b) wo write o -, & and a =, b to denote, respectively,
oceupied and vacant connections.

Now we define two regions in K%, W0} = {x: x ~_ (0 in 1%} and W*0) =
{x: x ~», 0 in R¥, ie., the occupied and vacant cluster of the origin, respec-
tively. The crossing probabilities are defined as follows:

a({I,1,),1, 1) — P{3 al.-R occupied crossing of [0, {,] = [0,1,]},
a?*((1,4,),1, A} = P,|3 a L-R vacant crossing of [0, {,] % [0, {.]},
a{{,,1,),2,4) = P{3 a T-B occupied crossing of [0, {,] x [0,[,]},
o*({1,,4y},2, 1) == P,{3 a T-B vacani erossing of [0,1,] > [0, I,]}.
The critical denaitiea defined by the Lebesgue measure |W{0)| of the oeoupied
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cluater W(0) in B® are as follows:

(2.1) Ay = nf{A: B{IW(0) = =} > 0},
{2.2) Agp o inf{a: E,[[W{0) - =]},
(2.3) Ag = inf{,a; limsupo{(n,3n),1,1) > ﬂ}.

f—rn
Hall (1985) has shown that if Elpl® < = and Elp|® = = then A, = 0 and
A, = 0. More generally, in &-dimensions, if Elp/*** " < = and Elp/**" = =
then Ay = 0 and Ay > 0. Clearly, we always have Ap < Ag.
The critical densities defined by the Lebesgue measure |W *(0)| of the vacant
cluster W=(0) in B? are

(2.4) My = sup(A: BW*(0)] = =) > 0),
(2.5) 5= sup{A: E,[IW*(0)I] = o},
{2.6) Af = sup{ﬂ.: limaupo*({#,38),1,4) }D}.

L—e
These critical densities correspond, in a sense, to the “dual” parameters of the
FPrisson gystem.
Another notion of the size of the cluster is #W(0), the number of Paisson
points comprising the occupied cluster W{0). This leads to the following
definitinne of eritical densities:

(2.7 A, =inflA: P{#W{0) = =} = 0],
(2.8) Ay = Inf{A: B, [#W(0)] = =].
Clearly, no definition of the dual parameters can be made with this notion.

Men'shikov, Mclchanov and Sidorenko (1886} have shewn the following for
arhbitrary dimensions,

TurorREM 2.1 (Men'shnikov, Molchanov and Sidorenko). n o Poisson sys-
tem (B, p, A) with

(2.9} 0<p=<R as forsomeR >0,
S = T

The proof of this theorem is by approximation with percolation models on
nonplanar, multiparametric periodic graphs where the equality of the corre-
sponding critical parameters hold.

In addition, il we use diameler as the measure of the size of a cluster, ie.,
dCW0N = supldix, v): x,y = WD), where d(-,- ) represents the Fuclidean
distance, then we have

(2.10} Ay = inf{A: P{d(W(0)) = =} >0},
(2.11) Ap = inf{A: E,[d(W(0)}] = =],
(2.12) x5 = sup{A: P{d(W"(0)) = =} > 0},

(2.13) Aty o= sup{ : E,[d(W*(0)}] = =}.
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These various notions of size arise naturally [zee Kesten (19877 We shall
show that the eritical densitiea remain unaltered regardless of the definition of
size we adopt, In particular, we prove the following theorem.

Tueorem 2.2. In a Poisson system (2, p, 1) on R? where (2.9) holds, we
hﬂ-Uﬂ {j.:} :IluH == .r'llu# = —;ll.d, {ii.} "'H"T = J‘.N = .'i._[“ {j.i.i} r’!ir = .r'lluii a-n-d [‘1‘:’} Af]t_' = .'ii.

Although we prove the shove theorem for two dimensions, the proof extends
to any dimensions.

Nexi we prove the equality of all the critical densities in R® To this end we
first obtain the RSW theorem for the Poisson system on B2,

Tarorem 2.3 (RSW). Consider o Poisson gvslem (2, p, A) on R2, where
(2.9} holds. If for some constants &, = 0 and &, = 0 and for some 1,1, = 4R
and 2R <1, < 31,/2,

T Y A kb end o (150 150 20 ) by,
then for any infeger k = 1,
o (kI 15),1,4) = K (A, B) [,(61, 8,0,

where K (A, B} > O iz independent of 5, 8§, and f,(5,, 8;) is independent of A
and R.

The imporiance of Lhe above theorem is in eonstrucling vacani cireuils
arpund the origin [see Chapter 6 of Kesten {1882)]. Unfortunately, we have not
been able to obtain the RSW theorem for occupied patha. Nonetheless, the
above ltheorem allows ug to prove the [ollowing theorem.

TuroreM 2.4, Tn a Poisson system (2, p, AY on B2 where (2.9) holds the
critical densities defined in (2.1)+2.8) and (2.101—(2.13} are ol equal.

In view of Theorems 2.1 and 2.2 to prove Theorem 2.4 it suffices to show
Ay = A4

BrMank., An alternate proof of Theorem 2.1 for two dimensions using
Bussn's pivotal point argument and the above BSW Theorem 2.3 can be
obtained in Roy (1987}

3. Proof of Theorem 2.2, First we state two preliminary results. The
firet lemnma, a version of the FKG inequality, needs some groundwork.

Consider ihe space ..~ { 1,1/**E where @, (0,x), and let ¥ dencte
the Borel o-field on »°. On (", *} we gssign the probability measure
corresponding to the Poisson system (E, p, A), i.e, for any set A CR” X B_
the number of points (=, r) € A {z € BY, r € 1) with wiz, ) 1, for some
configuration & = .-, has a Poisson distribution with mean (£, > uXA), {,
being the Lebesgue measure on EY which assigns mass A o the unil eube in
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R? and u is the probability distribution of the radius random variable p.
Intuitively, w{z, ) = 1 means that there {a a Poisson point of radius » centred
at z.

Let @ and o be two configurations in . We say that @ < w' if for any
zeRYand r € B_, w'lz, ) = 1 whenever wfz, r) = 1. A function f: »— Kis
eaid to be increasing (decreasing) if flw) = flo?) [ flo) = flw)] for every
o o= w. An evenl A = .5 is said to be increasing (decreasing} if the indicator
function 1, ig an increasing {decreasing} funetion.

Lemma 3.1 (FEG inequality). If A end B are both increasing or both
decregsing events in 7, ther P{A N B) = PLAYP(B).

The proof of thig lemma {follows from a latiice approximation together with
the martingale convergence theorem and the standard FKG inequalily on a
partially ordered lattice [see Kemperman (1977}]. For more details see Roy
(1987).

For any bounded region § in ¥? an easy application of the FEG inequality
yields E(4(WF 51 < (A, SIE(AIW=(0))), where {4, 8} iz some positive
constant and W*(8) = U, JW=0).

The next lemma is a version of Theorem 5.1 of Kesten (1882} for continuum
pereolation, Ite proof [ollows, after minor adjustments, from the proof of the
original site percolation version. This lemma provides exponential bounds on
the probabilities of the growth of occupied (vacant) clusters at the origin when
the probability of occupied (vacani) erossing of a suitable rectangle is amall.
Although the lemma holds for arhitrary dimension, we state here only for Lwo
dimenaiona.

Limma 3.2, Consider a Poisson system (5, p, A) and suppose (2.9} holds. If
for some (N, Np) with Ny, Ny = R and for sume x < (25¢)7137%4 we have
(3.1} a({N,,8N.), 1,A) =k and o((3N;, N,),2,4) <&,

then there exist positive conslants O, Uy, O, C, depending on A such that the
following hold:

{3.2) PIHW(0N = a) <« Cyexpl —Cua) foralla =0,

(3.3) Pld{W(D)) = b} = C,exp(—C,b) forailh =0,

Also, if for some (M, M} with M, M, = R and for some «* < (252) 127,
(8.4)  o*((M,3M,),1,8) <x* and o*({(8M,, M,),2,A) < «*,

then there exist positive conatants €, Cy, Oy, Cy depending on A such thot the
following hold:

(3.5} FPIHW™0) =z a} = Cyexp{ —Cya) foralie >0,
(3.8} Pld({W*0)) = b} = Crexpl —Cyb) foralfh >0,
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Fiz. 1. The segments 7, Tg, .., T @i e regton 1,

Now we proceed to prove Theorem 2.2, Although the proof presented below
im for two dimensiona it can easily be extended to any dimension.

First we prove {iii}, ie., A% = A%5. For any integer m = 1 let 8, denote the
square [ix: < m, [y| < m} and let D, = {{W*0) N SE 5l = R%L

We show that for any A > 0 and some conatant C(A} = 0,

{(3.7) PID,, occurs) = C{AYPL{d{WH(0)) — ).

Indeed, lel 7, 7., .., 75, be disjoint segments of length K on the perime-
ter of 8., (see Figure 1). For 1 <j < 8m, let R, = ((x,») lx - ol < 3R,
lv & = 3R for sume (e, b) & m;} and define the randem variable I = min{;:
3 a contimnous curve ¥ in 5, p with one endpoint at the origin and the other
endpoint on o, and gueh thal for any Poisson point § situated in 87 .,
v 1 Vig) = &), I is well-defined on both {d(W ™)) — =} and on { WH0) — =}
We nole here that the continuous curve v in the definition of 7 may intersect
an occupied disc centred outside the square S, 5.

The events {f =i}, i =1,2,...,8m, being mutunally disjeint, we have

R
PP, vccursy = Y PR, has no Poisson point|f — i} P{I = i}

i=1

= C{(A)P{d{W=(0)) =}
Here the first inequality followa because the event {I = i} depends only on the
Poisgon points centred in &, 5, while the event {R; has no Poisson point}
depends on Poisson points situated in R; which is disjoint from S, 5. Thus
(3.7} is true.

Similarly, for any A > 0, we can show
{3.8) P{D,, occurs} = C(A)PW*{0)i = «}
for some constant C{A} > 0. (3.7) and (3.8) easily imply {ii} of Theorem 2.2,

W
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The above proof ean he modified to vield
{3.9) Ag = Ay

Now we prove (iv), ie, A% A%

Let S,pli) = S5 +(0,i48) = {(x, ) (x,y — i4R) = S;;} and
WHE, gl = U, g, W (x) By translation invariance we have, for any
k=1,

P {3 a vacant L-R crossing of [0, 3%] x [0, 3% 1]}
s B(U{A(W(S,a(D) = )
< Y Bld(WH(8zp(i))) = 3%}
< 3F VP {d(W*(S,5(0))) = 3%} /4R,
where the union and the sum are over all integers i between 0 and 3*"! /4 R.
If A =A%, then &, 3% ' P{d(W=(0)) = 3%} < = and alao, by the applica-
tion of the FKG inequality mentioned earlier, £, 3% \P{d(W* 8,5, )) =
3%} < o. Thus, ¥, ., P{3 a vacant LR crossing of [0, 3%] x [0, 3"+ ']} < =, and
s0 we can find an integer &, = 0, such that for all £ = &, P{3 a vacant L-R
crossing of [0, 3%] » [0, 3% ']} < 25e 11 An application of Lemma 3.2 now
vields A = A%. This shows A% = A%,
Similarly we can show A% = A%. Thia completes the proof of Gv)
Again, the proof above can be easily modified to yield

(3.10) o
Thus in view of (3.8} and (3.10), to prove (1} and (ii), it remains to show
{(3.11) Ag=hy and Ay = Ap.

Clearly, d{W(0D < 2R{FW), ie., A, < A .
Conversely, suppose A, < A < A,. Then, for some § = 0,

(3.12) PIEW(D) ==} =5 > 0.
Thus, for any m > 0, P{#(W{0) n S5} = =} = 4. In particular, for any m,
(3.13) P{W(0}n S + @} =d2>0.

But this contradicts Lhe fact that A < A, Henee A, = A,. This completes the
proof of the first part of (3.11).

To prove A, = A,, we first observe that |[W(0) = V(R M¥W(0), where Vig) =
ma®, the area of a disc of radius a. So, A, = Ap.

The reverse inequality ia proved in the following two cases.

Case 1. Suppose there exists o >  such that ¢ = 7 a.5. We partition R*®
by the integer lattice 72 and let  be a cell of this lattice. Let S(C') be the
Poisson process 2 restricted to the region outside . Let W, {0} denote the
maximal comnected, occupied region in H? containing 0 and formed by
the Poisson process S(() with the radius random variable p. Let #(x} denole
the Euclidean distance of W.{0) from the poini x in B2 For all cells ' at a
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distance of at least ¥ from the crigin we have
E(#(W(0) n C)IE(C))

Y. kP2 k Poisson points in C with at least one of them having
k=1

LA

an agsoviated dise which intersects Wo(01/2(C)}

% ke"‘ﬁ*{l = [[IGP[;J < S(:::J]dxl)... (fCP{p < S{xﬁ}}dxk”}f.&!

k=1

Elke-w{k - [LP(,; < 5(x)) d‘x)},r’k!

1A

1A

< k(fﬂP[p > 8(x)) dx:],

for some constant & = 0.
W.log assume n < 1/2. Let v = min{V(5), 1), where Vin} = #n* We have

E(W(0) 1 CI[E(C)) = ve ™A fUP{p = 8{x) dx}].

This iz becanse if a diac i3 centred in a cell at least Vi) of its volume area be
mside the cell. Thus, from the shove two inequalities, for spme constant
lf'{—;‘-.) = D!

(3.14)  E(#[W(0) 1 C]|B(C)) < (A E(W(0) r CI|B(C)).
Also, for any eell C at a distance less than K from the origin we have the
trivial bound E(#{W{0) n €D = E{#[C]) = A. Bo taking expectations on both

sides of (3.14) and summing over all €, we have E[(#W(0) < AiR?+
e{ ) E{| WD), This shows that Ay = 4.

Cask 2. Now suppose that there does not exist any 5 > 0 such that o = 5
a.s. Then, for any A < A, setting 8 ={Ap — A}/Ap, there exists 0 <a < g
and 7, > 0 with P{p < r,) = a. Let & > A be such that & = (4 — A)/A. Since

0 <a<pB, wehave A <& <Ay Thus if we set g = 2 — A, then
Plp <ry) =u/(h +p).
Now let p, and pp be two random variables whose probability distributions
are as follows:
Pipzr)=Plpz=rlp=ry),
Plp,=zr)=Plp=rlp <rl.

Let (=, A, py) and (5., &, p,) be two Poisson systems of intensitiezs A and g
and radiug random variables p, and p,, reapeetively. The superposition of
the above two Poisson systems 13 a Poisson system (2, A, p) of intensity A
and radius random wvariable p. This is because Pt e E,|l¢ 8, U Bl =
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AN + ) If WD) and W0} denote the occupied elusters of 0 in the systems
(2, 4, p ) and (5, A, p), respectively, then we have W, (0} = W0).

Let (S, A, p) be a Poisson system independent of all other Poisson systems.
Then, since A < Ay, [or the occupied cluster W {0) in (E, A, p), we have
E(W ) < =, But (5,, A, p) and (5", &, p) are eqguivalent in law, s we have
Ef|WAO} < o, Thus, E(|WI0)]) = E(|[W{0H) < =, But p, = r, a8 and W,0)
is the occupied cluster in (5, A, p,), 80 we have from case 1, E(#W {00 < =
Again Plp, =z r) z Plp = r) for any » > 0, so if W(0) is the occupied cluster
of 0 in the Poisson aystem (5, A, p} then we must have E(# W00} < E{#W,000.
This shows that E(#W(0)} < =, thereby proving A, < A,. This completes the
proof of Theorem 2.2. O

4, Proof of the RSW theorem (Theorem 2.3). The proof of the REW
theorem is quite technical. Here we present the main steps of the proof.

Congider a lattice L, =a,# % g, ¢ for some @, > 0. We firat prove a
“discrote wversion” of the REW theorem for I, and I, which are positive
integer multiplies of 4a . Since we eventually let @, — 0, by the monstonicity
property of the crossing probabilities [Le., o™({a, b), 1, A) = o*((e, ), 1, A) and
o (e, 0),2,4) = oo, d)2, A for 0<a=e<xand 0 <b = d < =] this re-
giriction on {| and I, will not affect the proof of the R3W theorem.

By a cell in the lattice 1, we will mean the closed cell, ie., we include the
perimeter of the eell. Two cells in thiz lattice are said to be adjacent if thev
have an edge in common. A cell C in L, will be called vacant (occupied) if
Crtl, VgD =3[0 (U, VEDN = &) A (vacant foccupied) | -path is a
sequence of (vacant/occupied) adjacent cells. A (vacant/occupied) L-R -
crossing r of the rectangle [0, {,] X [0, {,] is a (vacant /occupied) L -path lying
in the rectangle [0, 7] = [0,1,] with one end-cell of # having an edge on
{0} x [0, !,] and the other end-cell of r having an edge on {{,} % [0,{,]. The
T-B L -erossings of the rectangle [0, 7,] » [0, 1,] can be defined similarly. We
dencte the | -crossing probahilities as follows:

a¥((, 1), 1, 1) = PJ3 avacant L-R | -crossing of the rectangle
[0,¢,] % [0, ]},
¥ (4, £,),2,4) = P{3 avacant T-B | -crossing of the rectangle

[0,1,] % [0,1,]}.

Let » be a L-R [, -¢rossing of the rectangle [0, {,] % [0, {,]. Let 7 denote
the piece of » in[{, /4. ¢4,] x [0, I;] after its ''lasi intersection’ with the line
{{,/4} » [0,1,] and let m{7} denote the reflection of 7 an [{,) % [0,1,]. Also
define F(r) = {(x,, x,) = [{,/4, 7, /4] = [0, L.]: (x,, x,) can be connected by a
continuous curve v to [{, /4,7, /4] x {I,} such that v < [{ /4,7 /4] x [0, {,]
and y n {7 Um(r)) = @) Let ¥ir)=supla. (/4,207 {i} x [0, ]}
(see Figure 2).
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£

Fia, 2, The L-R erousing rof 0,2, x |0, 1) The segment Fof r after the Lost intersection with
e Livee {1y /4) 2 [0, Lq] Is depicted by the thick fine, The reflection af Fon {1,) = [0, Lul s m{F) The
ragion J(7) ig the region above F U m(F) in the rectengle [{ 74, TL 4] =0, 1)

Lemma 4.1. P{3 o vacant L-R L crossing r of the rectangie [0, 1] # [0, 4]
with Y(r)=1,/2 ond e vacont | path s with s F =@, s CJir) and
5[4, /4, T /4] = {11 = @) = K(A, R,nde 200, 1) 1, Ade ¥, 1), 2, A) /4,
where KA, B, n)=expl —AM3R ~a ¥2R+a_ )and {,i=1.23, are as in
Theorem 2.3

This lemma does not follow from the BSW lemma for bond /site percolation
on the lattice because the events {r is a vacant [ -croasing of the rectangle
0,4,1x[0,L,]} and (3 a vacant [ -path ¢ with s F=& s CJdir) and
a nA[i, /4, Tt /4] x {1,]) = @} are not independent. This dependence is han-
dled by the eonstruction of a suitable L-R vaeant [ -croesing of the rectangle
[{; —2R,!{] » [0,{,] which starts on {{, — 2R} =« [0,{,] at the end of the
"lowest’” L-R vacant L -erossing of the rectangle [0, {, — 2R] « [0, {,]. Taking
this vacant | ,-path as the L-R vacant [ -crossing r of the rectangle [0,1,] %
[0, i,]), we can decompose the event {r is the lowest vacant [ -crossing of the
rectangle [0,1,] = [0, 1,]} into two events A and B (zay), such that the event
E={3 a vacant [ -path s with s "7+ @, s CcJ(r)and s N (I /4, 7, /4] x
{I.}y # 3} is positively correlated {in the FKG gense} with one of the events A
{zay), while conditioned on A the events E and B are independent. The
details of the proof of this lemma being rather tedious and technical we refer
the reader to Roy (1987).

Now let {2}, .. | be a sequence decreasing to 0 and such that I, /4, I; and i
are all integer multiplies of o, for all n = 1. As n = =, (1, 1), 1,A) =
a* (I, 1), 1, AYand a2((1,, 1.}, 2,A) = o*{{1,,1,),2, A). Thus from Lemma 4.1
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we have
FPJ3 avacant L-R crossing v of the rectangle [0, /] % [0,1,]
with ¥{v) = I,/2 and there is a vacant path ¥’ with
v FE@, vy Cdly)and ¥ N ([1,/4, T, /4] X {1,)) = D)
= exp( —6R%)o*((1,,1;), 1, A)e*{(15,15),2, ) /4.

Here [or any L-R croasing v of [0, 1,] % [0, I,], %, ¥{y), m{$) and () are
defined as befure.

An iteration argument aa in Lemma 6.1, Kesten (1982} completes the proof
of the thecrem. O

5. Proof of Theorem 2.4. We shall show
(5.1} A= Ah = A 2 AL = Ay,

This together with Theorem 2.1 will establish Theorem 2.4,
First we clearly have

(5.2) T =A%,
Moreover, (3.6) of Lemma 3.2 directly implies
(5.3) A%, < A%,
To show

(5.4) Ap =AY,

we ohserve that as in the proof of (iv) of Theorem 2.3 in Section 3, if A < Ap,
we obtain

(5.5) Y. PJ3an eccupied L-R crossing of [0, 3%] x [0,37 "]} < =.

k=1
Since there exists an occupied L-R crossing of [0, 3%] « [0, 4% 11 if and only if
there does not exist a vacant T-B crossing of [0, 3] x [0, 3% 1], from (5.5) and
on an application of the Borel-Cantellh lemma we have

P,{3 a vacant L-R croasing {, of [0, 3%7!] x [0, 3"] for all large k} = 1,
P,{3 a vacant T-B crossing ¢, of [0, 3] x [0,3%*?] for all large k} = 1.

A horizontal erossing I, of [0, 3% "] x [0,3%] and a vertical crossing T, of
[0, 3%*+1] > [0}, 3% '%] must intersect. Also, £, and I, ,, must intersect. So the
vacant crossings {{,},., and {¢;),.; comhine to ¥ield Pf3 an unbounded
connected vacant region in the first guadrant} = 1, ie, PJd{W*(x ) = = for
some x = {x,, X,), x,, x5 both rational} = 1. This along with translation invari-
ance implies PJd{W*0)) = =} = 0, which establishes {5.4).
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We remark here that the shove proof ig essentially two dimensional and fails
in more dimensions.

Finally, we use the RSW theorem to show A% < Ay,

First we establish the fullowing proposition.

ProrosiTION B.1. If A < AL, then there is o sequence of integers 0 =0, <
Hy = -+ withn, tT=as k 1= such that for every & = 1 and for some § = 0 the
following hold: {a} Brig,_,/4) = ngy, (B) o (rgy_1, 12,01, A) = & and {c)
T {5n., /4, 012,00 = 8.

Proor. We hegin with a lamma whose proof iz aimple and ean be obtained
in Roy (1987), Lemma 4.8.1.

Levwma 8.1, Letn, b > 0and £ = 0 be such that o*i{n, {1 — 2n), 1, A} >
{. Then for any ¢ = 0 and for some f{L R, CY > 0, o®(in, (1 + 28n), 1, A) =
(e, &, {).

Since A < A%, there is an increasing sequence {m }, ., of positive reals with
m, T as & 7o and some &, > 0 such that for all 2 = 1, o*{(m,, 3m )1, A) =
f#,. Now taking n,, | = bmg, /6 and n,, = m, and applying the monotonicity
property of the crossing probahbilities and Lemma 5.1, we have for some
0 < & < &,, both (b) and (¢} of Proposition 5.1 hold. Thiz proves Proposition
51 O

Suppose A = A% and {n,},., and & > 0 as in Proposition 5.1. Let j, = ny;
and I, = myy, ; + 7y foral 221 Wlog assume f,,, > 3f, forall & = 1.
By the R8W theorem and the FKG lemma, for every & = 1, Pf{3 a vacant
gircuit surrounding the origin and lying in the annuli §; ~ 8, } = ClA)g(4),
where C(A) > 0 is independent of k and & and g(&) > 0 is independent of A.

An application of the Borel-Cantelli lemma yields P[3 infinitely many
vacant circuits surrounding the origin} = 1. Thus P{IW(0) = =} = 0, ie.,
A = Ag. This completes the proof of Theorem 2.4
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my FhI. thesis submitted to Cornell Umversity. 1 am grateful to Harry
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