Stochastic quantization ot a dissipative dynamical system

and its hydrodynamical interpretation
K. Hajra

Indian Statistical Institute, 203 B. T, Road, Calewtta-T00 0335, Sndia
(Received 8 May 1990, accepted for publication 9 January 19913

In the framework of stochastic quantization the quantum theory of an open system is
enviszged here. A hydrodynamical maodel has been suggested for the motion of a quantum
particle in the presence of frictional dissipative force. Finally, & comparison 15 made
between gquanium conservative and nonconservative systems.

L. INTRODUCTION

Stachastic quantization procedure’ is possibly the only
scheme for quantization of dissipative system, as physically
meaningful Lagrangian or Hamiltonian, is not available in
this case? and so the canonical or path integral quantiza-
tion scheme cannot help in this regard. Instead, Nelson's
stochastic formalism can neatly be developed in absence of
Lagrangian or Hamiltonian as it is an effectively stochastic
version of Newton's equation of motion, Some works have
already been done for the stochastic version of guantum
dissipative system™ and all such works lead to the non-
linear Schridinger—Langevin equation hewristically de-
rived by Kostin.® In most of the above works the noncon-
servation {dissipation on antidissipation) arises due to the
interaciion between the considered open systemn and the
external system, the natore of interaction is vsually as-
sumed phenomenologically, Particularly, in case of dissi-
pation, energy flows irreversibly from the observed system
to the external world. The main feature of the earlier works
is to derive a Schridinger equation incorporating dissipa-
tive potential term and a random potential eerm from clas-
sical dynamical behavior of an open systern deseribed by a
classical Langevin equation.

In the present paper we are also interesied in deriving
a Schrddinger-Langevin equation from  the classical
Langevin equation by Nelson's stochastic formalism, but
after modifying MNelson's appreach on the basis of our ge-
ometry of internal space-time as perceived by us in realiz-
ing the internal symmetry of relativistic quantum parti-
cles,” quantum gravity phenomens,™ and geometric phase
factor like Berry phase'” in nonrelativistic quantum me-
chanics,

On the basis of our earlier work'' on relativistic gen-
eralization of Nelson's stochastic quantization procedure
introducing an anisotropy in the internal space-time we
have seen in a recent paper'® on stochastic quantization in
deriving Schridinger equation for conservative systems
that the element responsible for the generation of the ferm-
ion number in the relativistic domain is manifested as
“gquantum paotential’ in the nonrelativistic domain, In our
formalism, that very crucial thing is the anisotropic nature
of the internal space-time of a relativistic quantum particle
and it is better to say it is the main architect for the quan-
tization in general. This very nature of internal geometry
when incorporated in the nonrelativistic region Nelson's
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osmotie velocity becomes much mare conceivable. There-
fore, our interest automatically goes parallel m studying
the quantum mechanics far nonconservative system, which
is the main feature of the present paper.

In Sec. T1, we shall quote the results of stochastic quan-
tization in our formalism for conservative systems for the
comparison with the nonconservative sysiems.

In Sec. IT1, the Schrodinger-Langevin equation is be-
ing derived from classical Langevin eguation by owr mod-
ified Nelson’s formalism and a hydrodynamical model is
prescribed for the metion of quantum particle in the pres-
ence of dissipative foree.

In See. IV, the discussions of our derived resulis are
being made and a comparison between quantum conserva-
tive and nonconservative systems has also been discussed.

Il. STOCHASTIC QUANTIZATION OF CONSERVATIVE
DYNAMICAL SYSTEM AND TS HYDRODYNAMICAL
ANALOG

Before deriving the Schrédinger—Langevin equation
from Nelson's formalism we will quote, in this section, our
results of quantization in case of conservative system’® hy
our modified Nelson's formalism to have better realization
of nonrelativistic guantum mechanics. ITn the above work it
is assumed that the qouantum particle has an extansion and
this extension is given by the internal variable £{&,) in
addition with the external variable X{;} and the internal
Brownian motion is considered along with the external.
This has been done in analogy with the geometry of the
space-time structure in the relativistic domain to explain
the internal symmetry’ of a relativistic quantum particle
and to get a quantum feld theory from a stochastic feld
theory."! In the relativistic domain each external space-
time point X, is assoctated with an attached vector £, and
this &, can be written in terms of two spincrial variables
64, 9 which correspond to iwo internal helicities corre-
sponding to the particle and antiparticle configurations and
make the internal space anisotropic in nature. The metric
of the space-time in our geometry iz designated by
£,,(X,0,0) by which some problems of quantum gravity
is shown to be well explained.*?

To have better insight in the nonrelativistic case we
start with the assumption of internal Browman motion in
the internal £ space along with the external X' space. We
therefore assume {88, (=1.2,...,# to be the configura-



tion variable and, along with Welson's assumptions, we
further assume that Q5 is separable; ie.,

Qi) =qltig{&y).
The process .45, 1s supposed to satisfy the stochastic
differential equations

A1) = bAQUnEa) S0t -+ dea(t) (2.1)

and

dQ: (L) = bI(Q1.80h . E)d g + da,(Sphs (2.2)

which represents Brownian motion in external and inlernal
space, respectively, b, and & are corresponding velocity
fields and dw/’s are independent Brownisn motion such
that ot Mo £50) do not depend on QU557 for &
% 8" < &y}, Expectaiions of which have the values

{dm (81} =0

(oo () deod o' 3y == {Fidem )y B¢ — ¢ et Y,

{dm{£y)} =0, (2.3)
(e { Yo (50} = U/ ma) Bl &0 — £o) b dEi

Here, 7, is a constant having the dimension of mass.
To make the description symmetrical in both external
and internal iime we have the bacloward equations:

dgl{f I’-(r]' 'b*tgff 5u}=f=5u)dr+d{"?f:}’

A Gn) = b MQUELEy) 1L Ep)dEn + dwl{£y), {2.5)

where o™ hus the same properties as o except
dea¥ [t dw*(£:)) are independent of QI5.S5') with §
=108 = &)

The mean forward and mean backward denivatives sre
given by

(2.4)

Q40+ ALEn)

Nm 5= =

i At
Ar—tl

=8P L) b

Oil55 + 8&y) —
ady

— {hirEq}

DrQ}{I!EﬁI} =

Qi{#,6a)

D Glngn) = lim Ko
agg—l T

=5{Q(7.50).0.50),

Qr(!;:.{u]' Q.l“ 5, &f.'é-ﬂ}

D‘Q{IEHJ = lim & - iy

Y
=M L En) LED,
Q:(t.50) — Qs — Aba)

lim Ey e 2
TR A

= JfJ:*{Q{ I é'c. ::' s é:(:l]’

where £, E, are the conditional expectations with respect
to o algebra X. generated by the random variables
L), i=1.2,..H

DFEa@i 680) =

{2.6)
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In  pepersl, for  sofficlently function

FO{nEn) o} we have

tegular

o

DD g LGS = ( + 6 F + v )-F{Q{ﬁ&ﬂ,hgujr
a

D, FIQUo) r,bama(- 4 BT Ay ]f@u Eod i)
d

DRF(O(E0) 1k = (»~-+w m)ﬁg{:,gan,rgu},

d
D?‘EIQU:.}}!gﬁ} (—+-El'* F.—'A J

* F[Q{I,é’g] _JT:E‘.CIL
where ¥ is the gradient operator and

;32{??

V:and A; are the same with respect to g(&;).
Equation of continuity

£2.7)

a8

£+ diviup} =0 (2,83
is strafghtforwardiy ohtained frem forward and backward
Fokker—Planck equation for measurable probability den-
sity plg(e),) of the random variable £01,5). Here,

pe=d( D+ DY ko) =k + %)

is ihe earrent veloeity in the exiernal space.
Since distribution g 4°x is invariant on space-time Nel-
san' showed that

(2.9}

u=vgrad ln p, {213
where

w=i{h — b*), (2.11}

Defiting mean scceleration ¢ of the process Qi 5n) as

a=3¥D O+ DIDIO(LE) (2.12)
we obtain by (2.6) and (2.12}

%;a — (Ve 4 {aViu + vhu, {2.13}

ar

where w=Ff/2m,
Ia this theory, the dynamics is siven by Newton®s law,
ie.,

g=iim=— I¥F/m, (7.14)
where F is the conservanve exfernal force derivable from

potential ¥
Therefore, {2.13} takes the form
e (L mVV — {oVie 4+ {a-Vin -+ (£ 2 A
{2.15}
Drefining wave function

LP:'ER I &fﬁ’ where p= |[,.,p|'! {21'&}
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and

u=_({A/mygrad R, v=_(1/m)grad S (2.17})

we arrived at the vsual Schrodinger equation from Eq,
{2.15).

Equation {2.15) is of particular interest in the sense
that it gives hydrodynamical analog of nonrelativistic mo-
tion of a quantum particle,

By the help of relations {2.17}, {2.15) can be rewritien
in the form

AT L S 2.18)
mpr=— ( s (2.
where
d ‘F}
Dr_ﬂr-l_w :

Equation {2.18) is Euler's equation of motion for per-
fect Auid except the pressure potential is replaced by
— lmi? — [#/2)¥-u which is known as the quantum
potential in the literature.

In our modified formalism there are two other velocity
ficlds A" and b'* appeared in Eqs. (2.2} and (2.53}. S0 we
can define two other velocities

0 =HE + H*) = A/ m ) VR (2.19]

and

u'=i{b — ) =(1/7) VS (2.20)

catted as internal current and osmaotic velocities.
Introducing internal variable (&, in addition Lo the
external variable g{r) we are working here with six-dimen-
sional space, but to incorporate the effect of internal space
in the physically measverable three-dimensional space we
use the simplest form of mapping between g(¢) and

glia) as

ql&) =Cqli), (2.21)
where C is a suvitable parameter,
By (2.21) we get
VR=CV:R
. ﬁ \TR 'EC C‘]TQ ; b I; C_‘" 0
. H=E =Ev5¢R—"?U [by [2.19)]= "
(2.22)

S0, external osmotie velocity is effectively nothing but the
internal current velocity. Similarly, it can be shown that
internal osmotic velocity is effectively the external current
velocity. 1t is very consistent in the sense that an extended
particle in mation should have two independent velocities
one external and another internal.

Due to the above, it appears to us that the “quantum
potential,” which is the hidden clement for quantization, is
the manifesiation of internal motion of a quantum particle,
Moreover, if we look into the last two terms in the right-
hand side of {2.18) i,
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P A b s s
?(E nu +Ev'ﬂ)=?(j‘mu ) + i\-" ul ' Vxu=0]
thke first term gives an internal normal stress lmu® and
second term is like an internal viscous force anses due to
intermolecular friction within the internal structure of the
body. The coefficient of viscosity is here proporiienal to
diffusion coefficient,

On the basis of above discussions we may infer that
motion of a nonrelativistic goantum particle can be
thought of as an invicid motion of an extended fluid par-
ticle having nonstationary random behavior within, The
force interacting among the consiituents of a nonrefativis-
tic quantum particle may be imagined by the proper real-
ization of last two terms of the right-hand side of Eg.
£2.18),

lll. STOCHASTIC QUANTIZATION OF
NONCONSERVATIVE DYNAMICAL SYSTEMS
AND ITS HYDRODYNAMICAL ANALOG

Here, to study the stochastic quantization of noncon-
servative system we are particularly interested in dissipa-
tive systemn 1.2, in this section we shall derive the
Schridinger—Langevin eqoation from the classical Lange-
vin equation by adopting quantization procedure as advo-
cated by Nelson.*

In classical dypamics the moticn of a particle in the
presence of a frictional dissipative foree is given by the
equation

dixl1) dx ()
m—d{r= "'vV{x[fjrﬂ_T I

(3.1

where ¥ stands for the potential corresponding to conser-
vative external force and ¢ the friction coefficient arises due
to the interaction with the surroundings into which energy
dissipate irreversibly. In general there is a random Fforce
Fi#) in addition — v[dx{t}/44] in the above equation to
describe the interaction with the surrounding, we neglected
it for simplification.

In our modified formalism, Eq. (3.1) can be rewritten
in terms of configuration variable Q{4,£0), i=1,2,...,n as

mQ (tE) = — grad MO(n 50680 — ¥ @ (LEs), "
2

where our first assumption is that the particle trajectory
will be given by a diffusion process ({#.£y) which satisfies
the stochastic differential equations {2.1), (2.2), (2.4},
and (2.5) along with the separability condition on
Q(nép), Le, Q1én} = glt)gl&e). Here, also (2.3} and
(2.6)—{2.11) held avtomatically.

Our second assumption is that the Langevin equation
£3.2% can be expressed in terms of mean velocity and the
mean acceleraiion given by Bgs. (2.9) and (212}, S0 (3.2)
becames

ma = — grad P{CH{EEqR)nbnl — 1.
By the help of (2.12) and (2.6} we have

(3.3}
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a SRR 2 A 34
E=a—{u~?.‘lv Lol }”+'2'an H. (3.4}
So by (3.3}, (3.4} becomes
du fi
m'é;:u?Vr-- T‘U—miv'?}v+m[u-?}u+iﬁu,
£3.5)

Finally defining the wave function
W= yhere p o= U]

and w=(#A/m)grad R, v={1/m}grad 5, from Eq (3.5}
we arrive at

ol

vS
s — gt
n Vo4 ¥+

# 2
2 r-n“)lp

TSR S
“(“ * +2mﬂg'{-")'

T {3.6)

This noniinear equation coincides with that of Kostin® and
this eqguation is known as the Schrddinger—Langevin equa-
tipn which is the nonrelativistic equation of motion of a
quantum particle in presence of a dissipative frictional
force,

Ta have a hydrodysamical analog of this type of quan-
tumn dissipative system as in the case of conservative system
we go back to Eq. (3.5), which can be rewritten in the
form

m 3 (3.7
This equation iz nothing but & same hydrodynamical mo-
tton as in the conservative case except the frictional term
1 in the left-hand side. This extra term retards the flow as
in the case of any external resistance.

The crucial element, which is very apparent from Eq,
{3.7) is that, the “quantum potential” is same as that of
conservalive case. As we have discussed earlier the quan-
tum behavior of a particle is hidden within the quantum
potential so we can easily infer that difference between
guantum conservative and noncongervative dynamical sys-
tern is not quantwm in nature but as that of in the classical
case. We therefore suggest again that the motion of a non-
relativistic quanium particle in presence of a frictional
force can be thought of as an invicid motion of an extended
flnid particle having nonstationary random  behavior
within and constrained to move in a resisiing medivm
which ultimately helps it to approach eguilibriam,

D 1 fi
+ yi= H‘E«"(V—-Emuz-—?-uJ.

V. DISCUSSION

A comparison baiween Egs. (2.18) and (3.7) might
give us a very mtercsting result and leads us to a betier
understanding of guantum conservative and nonconserva-
tive systemns. In the diseussion just after Eq. (3.7} we have
noted that the motion of a quantom particle in presence of
friction will be such that the particle likes to dissipate en-
ergy maintaining its internal behavior unchanged and will
approach equilibrivm. But to have a connection between
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conservative and nornconservative systems we now iy to
find out the mathemarical interconnection of Egs. (3.18)
and {3.7).

Equation { 3.7} provokes us to write a hydrodynamical
equation of a perfect fuid particle having varying mass
with that of a potential of the same fornn. Obviously, Lkat
equation will be written as

D 1 , #
D—I[m{!}u]=_?[lf——§m{r}u —E‘i“u] (3.4

or

drnie) Py i l z:
P +m{I}E=—‘P[F—Em{I}H —E‘F u].

&

If we take m(s) = mne'“" we get

Dy 1 #
i =P e Bl - a—fig.
iy e+ Yo 'FI e 5 i — 5 e T u|,
(3.5}
where ¢ = myf.

A minute observation of Egs. [3.9) and (3.7) ie, of
Egs. {3.8) and {3.7) will possibly allow vs to infer that the
guantum patiicle prefars to maintain its internal character
{which we believe is responsible for the quantum proper-
ties fike its isospin, stranpeness, fermion number, efc. in the
relativistic domain} in presence of external resistance Jike
friction by emitting energy from within to the surround-
ings, it somehow an errangement is made such that it is
compelled to move withoui the exchange of energy with
the sarroundings, the role of friction can be thought of as
if the particle is acoumulating mass continuously along
with the increase in friction within [note thai sonconser-
vative system with mass mr; is equivalent with conservakive
system with mass me™ and nonconservative system with
coefficient (#/2)e ~® is equivalent to the conservative sys-
tem with coefficient (#/2) assuming external conservative
foree is absent],

From the above paragraph we can possibly naively
state that io study the nonrelativistic motion of quanium
particle in a presence frictional foree, & connection between
mass and energy may be smelled although it is the thing
which should be realized in the relativistic domain, More-
aver, we can ardive at another conelusion that the injernal
siructure of the quantam periicle {5 nonrigid in natuee,
This is very consisient with our earfier work on quantum
uncertaipty.**

Finally, we will like to mention that from the study of
quanium particle in the relativistic domain we have real-
ized that the iniernal geometey is anisotropic in nature, ie,
equivalent to vartleity in hydrodynemics, The nonretativ-
istic quantwm description is obtained in the sharp point
Hrit antd the geometrical and topological properties of a
refativistic particle are then sgueerzed through the so-called
quantum potencial.
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