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ON WAVES DUE TO SMALL OSCILLATIONS
OF A VERTICAL PLATE SUBMERGED
IN DEEP WATER
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Abstract

This paper is concerned with surface water waves produced by small oscillations
of a thin vertical plate submerged in deep waler. Green's intepral theorem in the
fluid region i5 wsed in & suitable manner to obtain the amplitude for the radiated
waves al infinity. Particular results for roll and sway of the plate, and for a line
source in the presence of a fixed vertical plate, are deduced.

1. Introduction

Ursell [8] used Havelock’s expansion of the water wave potential to obtain
an explicit expression for the wave amplitude at infinity for the wave mo-
tion set up by small oscillations of a partially immersed thin vertical plate
due to rolling about a horizontal axis in its plane. Evans [3] used Green's
integral theorem in the fluid region in a very interesting manner to obtain
the amplitude (complex) of the radiated wave at infinity produced by the
general motion of a partially immersed flexible plate and recovered Ursell's
[B] result for a rolling ship as a special case. He also deduced expressions
for the wave amplitude at infinity due to sway of the plate, given by Haskind
[5], and due to a line source situated in the fluid in the presence of a fixed
vertical partially immersed plate. Recently Basu and Mandal [1] used Evans’
[3] idea to derive the effect of a completely submerged fixed vertical plane
barrier on the amplitude at infinity of the waves radiated by a line source.
Wave amplitudes at infinity for these problems were derived in a natural
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manner by a suitable application of Green's integral theorem in the fluid re-
gion, by using Ursell's [7] explicit solutions for the velocity potential when a
two-dimensional plane wave is normally incident upon a fixed vertical plane
barmier partially immersed or completely submerged in deep water.

The problem of a two-dimensional plane wave normally incident upon
a fixed vertical submerged plate was considered by Evans [2], who solved
it by a technique based on the theory of complex variables. However, the
explicit form of the velocily potential was not given by Evans [2]. Mandal and
Goswami [6] considered the problem of a plane wave obliquely incident on
the submerged plate, by an integral equation formulation based on Green’'s
integral theorem. From the results of this paper, the explicit form of the
velocity potential when a plane wave is normally incident upon the plate
can be deduced. In the present paper, this explicit solution for the velocity
potential is utilised in Green’s integral theorem, in a manner described in the
note of Evans [3], to obtain the wave amplitude at infinity produced by the
general motion of a completely submerged flexible vertical plate. When the
upper edge of the plate approaches the free surface, the various results given
by Evans [3] are recovered.

2. Statement and formulation

We consider the plane vertical thin plate submerged in deep water which is
incompressible and inviscid, and use a coordinate system in which the y-axis
is taken vertically downwards, the mean free surface is the plane ¥ = 0 and
the position of the plate in the equilibrium positionis x =0, a<y < h. The
plate makes small oscillations of circular frequency ¢ about its equilibrium
position. Assuming the resulting motion in the fluid to be irrotational, a
velocity potential exists which can be described by Re{g(x, y)exp(—iot)}
as the motion will be everywhere harmonic of frequency . Within the
framework of the linearised theory of water waves, @(x, ) satisfies

‘i'z;a =0 in the fluid region, (2.1)
Kop+g9,=0 ony=0 {2.2)

where K = o° /g, g being gravity,
o.=f(¥y) onx=0, a<y<h, {2.3)

where f(y) is the prescribed normal velocity of the plate. Thus @(x, ¥) is
odd in x. As |x| — oo, the waves travel away from the plate so that

@lx,y)~xdexp(—Ky L iKx) as x — %00 {2.4)
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where A4 is the complex amplitude of the radiated waves at infinity and
is to be determined. Near the two edges of the plate, V¢ has integrable
singularities which can be expressed as

P9 50 asr—0, (2.5)

where r denotes the distance from the edges (0, a) and (0, b) of the plate.
Finally, we assume that

¢, Vg —0 asy— oo (2.6)

3. Solution of the problem

To determine the complex amplitude 4 of the radiated waves at infinity,
we require the function W(x, ») which is the velocity potential due to a
progressive wave train represented by expl{—K y+iKx) incident upon a fixed
vertical submerged plate x = 0, a < y < b, from negative infinity. The
explicit form of ¥(x, ¥) can be deduced from the general result given by
Evans [2]. However we deduce it here for completeness from the result given
by Mandal and Goswami [6] in the form

Wix, y) =exp(-Ky + iKx} +¥y{x, y) (3.1)
with
W =L [ 260, n:x, e 32
u(x,.v}—ﬁfa LomGA0, n; x, y)dn (3.2)
where
G, n; x, ) =2miexp{-K(n + y) + IK|§ — x|}

(kcoskn — Ksinkn)}(k cosky — Ksinky) o~ KlE=xl
¥ 2f s dk, (33)
i
fo() = Cexpl(—kn) [ exp(Kun)l(w) d, (3.4)
Hu) = (@ - w* K" —a”) " - ')} (3.5)
C=1ifﬁ A=a-f-iy, (3.6)
e exp(—Ku)(d* - ) {(@® = Wb =y Pdu, (3.7)
o .
y = f exp(—Ku}(u)du, (3.8)

g = [ " exp(-Ku)i(u) du (3.9)
b
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andd® is given by
h
f exp(Ku)l(u)du = 0. (3.10)
a

Using (3.3) in (3.2), ¥{x, ») can be calculated explicitly for x > 0 and
x < 0. Equation (3.2) involves two integrals which can be simplified. One

integral is 2K j’: exp(—Kn)fy(n)dn and this is 2iy/A, and the other in-
volves f:,ﬂ]{r;}{k cos kn — K sin kn) dip which, after using (3.4}, is simplified

to —2iJ(k}/A where
b
J{k}:f 1ue) sin ke du, (3.11)

Hence we finally obtain

Yx,y)= Gret) exp{—Ky + iKx)

A
" oo —kx i ;
_ 3_,_/~ J(k)e {k-.;usk}?] Kambrl e s
A Jy o+ K {3.12)
and
W(x,y) = exp(—Ky + iKx) - %ﬂ?‘l“"!’ - iKx)
; oo kx L ;
+£f J(k)e {kcn:sk}’i Ksmkr)ﬂ,k, for x < 0.
A Jo K+ K (3.13)

We now apply Green's integral theorem to the harmonic functions g, ¥
within the region bounded by the lines v =0, - X < x < X; x =X,
0Sy<Y;yp=Y, X<x<X;x=-X,0<yp<Y; x=0",
asy<bh;x=0",a<y<b;with X, Y >0 and ultimately allow X, Y
10 tend to infinity, Following the arguments similar to those of Evans [3], we
find

h_
A=i [ F)s0)dy (3.14)
where
P(y) =¥(+0, y)} - ¥(-0, y). (3.15)
Using (3.12) and (3.13), this gives

4i [ J(k)kcosky — K sinky)
—f dk.
nA fo ki + K?

F(y) = 22 exp(-Ky) -

L
2 (3.16)
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MNow

4i = .
W+ T () H[} Jik)sinky dk

4i [t o .

-2 [ 1 {fu smkuﬂnkydk} du
2 [t .

Ef ) (u — y) du

{%!{y} a<y<b,
0 otherwise.

Hence 5
Yy} = —exp{ Ky) /! Jexp(Ku) du (3.17)

where we have used the condition that ¥(a) = 0, while ‘I‘(b} 0, is auto-
matically satisfied due to (3.10). Using (3.17) in (3.14) we find

o
=3 [ tamay (3.18)

where s
g(y) = exp(K ) [ £ exp(-Kr1) dt. (3.19)

Equation (3.18) is the general expression for the complex amplitude of waves
radiated to infinity due to a prescribed normal velocity f(y) of the plate,

4. Special cases

{a) Rolling of a plate

Let us suppose that the plate is hinged at the point {0, ¢) and makes
small rolling oscillations of amplitude & and frequency o. Then the plate
communicates 11s normal velocity to the adjacent water particles so that the
linearised condition to be satisfied on the plate is

Re{g exp(—iot)} = igf{c—y)sinat onx=0,a<y<b
which gives
fv) = -iob{c - y). (4.1)
Hence by {3.19) we find
g¥) = —(i00/K")[1 - K(c - ) - {1 - K(c - a)} exp{K(y - a)}].
Then
2iaf

2 b:!
4= L L T b?E{q}}H:-’EE (d%"‘ ; )

(4.2)
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after using (3.10), where K{g) and E{g) are complete elliptic integrals
{Gradsteyn and Ryzhik [4]) defined by

x/2
K{q}=f (1— ¢ sin’ 0)" ' do
0

rf2
E(q) = f (1— ¢ sin’ )’ 20 (4.3)
0
g=(6"-a)"m <1.
The corresponding result for an immersed plate given by Evans [3] or

Ursell [8] can be deduced from (4.2) if we make p{= a/b) — 0. We note
that as p — 0, i.e. g — 1 {Gradstein and Ryzhik [4], Evans [2}} we have

K(g) ~ In(4/u), E(g) ~1,a~0,
B~ —bK,(Kb),y ~ brl (Kb) (4.4)
P g %{f, (KB) + L]{Kb}}] [ ln(4/ 1)
so that as u — 0,
A~ bK (Kb) — ibrl (Kb),
d’K(g) - b E(g) ~ (d” In(4/u) - b”) (4.5)
~ S (Kb) + L, (Kb)}

where [ (z} and K (z} are modified Bessel functions and L (z) is a mod-
ified Struve function. Hence as u — 0,

aitbr 1, PR
al(Kb)+iK,(Kb)|2 Kb
This expression agrees with that obtained by Evans [3] and Ursell [8].

A

U, (Kb)+ L (Kb)} . (4.6)

{b) Swaying of a plate
The amplitude of the waves at infinity due to a swaying plate can be ob-
tained from (4.2) by letting # — 0, ¢ — oo in such a way that the product
fic remains a finite real constant €, the amplitude of the sway.
202 (@K (q) - B'E(@). (4.7)
Haskind’s [3] result (also mentioned by Evans [3]) for the case of a partially
immersed plate can be deduced as before by making ¢ — 0 in {4.7).

A=

{c} A line source in the presence of a fixed vertical sabmerged plate

Let a line source be sitnated at the point (£, ) in the presence of a fixed
vertical submerged plate occupying the position x =0, a <y < &. To
obtain the amplitude of the waves at infinity we write

Yix,)=9+Gx,y.&:m (4.8)



32 B. M. Mandal ]

where G is the potential due to a line source at the point (£, n) in the
absence of the plate and is given by (3.3). Since ¥, = 0 on the plate we
have

P (0,¥)=-G.(0,y;{,n) (a<y<b)
50 that

S(y) = - 2sgnd[nK exp{-K(y + n) + iK|{]}
el j""“ (kcosky — Ksinky)(kcoskn — Ksinkn)
0

e exp(—k[|) dk].

Hence

8(») = ~2sgn¢ |7 exp(~Kn + iKIED) {exp(K(y - 2a)) - exp(—=K))
= kcoskn— Ksinky

0 K+ K*
x {sinky — exp(K(y —a))sinka}dk|. (4.9)

exp(—k[¢|)

Using (4.9) in (3.18) we obtain for this case after simplification

_ 2 = Jik)kcoskn — Ksinkn) B
A=A m=—goenz |2 e exp(—K[E]) dk
— myexp(—Kn + if-.’rr.ﬂ}] : {4.10)
Thus if
W(x, ») ~ BE(E, n)exp(—Ky + iKx) asx — oo
then

+ = £ L e
B(&, n) = 2niexp(—Kn =K¢}+A(¢.u},} @1

B (¢, n) = 2niexp(—Kn+iKE{) — A&, n).
From {3.12} and (3.13) we note that
¥(+0,7) = 22 exp(-ky)
B ﬂf"” J{k)(kcosky — Ksinky)
na fo e s

dk

and

2i [ J(k)(kcosky — Ksinky)
+ E A kz »: }{'2 dk.

F(~0,y) =
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Hence
() = 2 exp(-Ky)
4 ™ J{k)(kcosky ~ K sinky)
na Jo k% + K*
But ¥ =0 for y <a or y > b so that we obtain
* J{kWkcosky — Ksinky)
0 ko K
for y<aoryzb. Thusif £ -+ +0, A(+0, g)=0for n<aorn=h,
and similarly 4(-0, 5) =0 for n <a or n > b. Hence when the source is
directly above or beneath the plate, the plate has no effect on the source.

dk.

dk = %}*em{—ifrl

Acknowledgement

This work is partially supported by a TWAS research scheme (TWAS RG
No. 274). The work was done while the author was at the Department of
Applied Mathematics, Calcutia University.

References

{1] U. Basu and B. N. Mandal. “A plane vertical submerged harrier in surface water waves™,
Tnternat. J. Math, and Math. Sci. 10 (1937) 815-820.

[2] D. V. Evans, “Diffraction of water waves by a submerged vertical plate”, J. Fluid Mech.
40 {1970) 433-451,

[3] B ¥, Evans, “A note on the waves produced by the small oscillations of a partially
immersed vertical plate™, J. Inst. Machs, Applics. 17 {1976) 135-140,

[4] L. 8. Gradstein and I. M. Ryzhik, Tables of Iniegrals, Series and Products {Academic
Press, 1980).

[5] M. D. Haskind, "Radiation and diffraction of surface waves by a flat plate floating
vertically™ (Russ.), Prikl. Mo Mech, 23 {1959) 5346-556.

{6] B. N. Mandal and S. K. Goswami, “The scattering of an obliquely incident surface wave
by a vertical plate”™, S. Marh. Phys. 25 (1984) 1780-1783.

[7] F. Ursell, “The effcct of a fixed vertical barrier on surface waves in decp water™, Proc,
Camb, Phil. Soc. 43 (1947) 374-382,

[8] F. Ursell, "On the waves due to rolling of a ship™, Q. J. Mech. Appl. Marh. 1 (194%)
246=252,



	on waves-1.jpg
	on waves-2.jpg
	on waves-3.jpg
	on waves-4.jpg
	on waves-5.jpg
	on waves-6.jpg
	on waves-7.jpg
	on waves-8.jpg

