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Abstract The present paper is concerned with scattering of water waves from a vertical
plate, modeled as an elastic plate, submerged in deep water covered with a thin uniform
sheet of ice. The problem is formulated in terms of a hypersingular integral equation
by a suitable application of Green's integral theorem in ternes of difference of potential
functions across the barrier. This integral equation is solved by a collocation method using
a finite series involving Chebyshev polynomials. Reflection and transmission coefficients
are obtained numerically and presented graphically for various values of the wave number
and ice-cover parameter.
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1 Introduction

Linear water wave interaction with thin floating plate has been a subject of interest since
early twentieth century because this is perhaps the simplest model of breakwater. Deanl!!
studied the problem of water wave scattering by a thin vertical plate completely submerged and
extending infinitely downwards in deep water under the assumption of the linearized theory.
Later, Urselll?! used the singular integral equation formulation to obtain the closed form solution
of the problem of scattering of water waves by a thin vertical barrier partially immersed in deep
water. Evansl®l used a complex variable theory to study the problem of scattering of water
waves by a submerged vertical plate present in deep water. The works mentioned above are
among the limited number of problems which admit of closed form solution.

Duiring the last decade, immense theoretical advances have been made on the topic of ocean
wave and sea ice interaction. As the boundary between the ocean and atmosphere in the polar
region, sea ice plays a critical role as a leading indicator in global climatic change. Sea ice acts as
both sunscreen and blanket to the ocean surface, which reflects the solar rays. This prevents the
solar radiation from heating the water beneath and also prevents the ocean heat from escaping
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to air above. This phenomena has important bearing on conserving the marine life. Thus, sea
ice acts as Earth’s polar refriperator, cooling it and protecting it from absorbing too much heat
from sunlight. Continnous unbroken sheet of ice extending over a larpe distance that oceurs
in the polar region, often encounters with waves propagating at free surface. The amplitude
of the waves travelling beneath the ice is important to be studied as it causes the ice-cover to
bend. The bending of ice-cover is attributed to its elastic property where the continuous thin
sheet of ice is modelled as a thin elastic plate. A significant research is carried out to study the
problem related to ocean wave interaction with sea ice (see Fox and Squit{:lij, Squirel”, Chung
and Fox® | Linton and Chungl”, Chakrabartil® | Gayen et al.”!). Mathematically, the boundary
wvilue problem (BVP) related to ice-cover involves fifth order derivative of the potential function
in the ice cover condition whereas the governing partial differential equation is of second order.

The literature concerning a study of ocean wave interaction with ice-cover in the presence
of & body submerged beneath the ice-cover floating in a deep water & rather limited.

Dias and Mandal'” mvestigated the problem of ocean wave and sea ice interaction in the
presence of a long horizontal eylinder. Maiti and Mandall'! considered the problem when the
barrier & in the form of a thin vertical plate submerged at an angle with the vertical beneath
the ice-cover extending infinitely downwards. They nsed Green's integral theorem to reduce
the BVP to a hypersingular integral equation in terms of the difference of potential across
the barrier. Following Parsons and Martin'? the hypersingular integral equation was then
solved by collocation method after approxcimating the unknown function satisfying the intepral
equation by a finite series of Chebyshev polynomials.

In the present paper, we study the problem of wave diffraction by a thin vertical plate
submerged beneath ice-cover in deep water. Here, we use Green's integral theorem to reduce the
boundary value problem to a hy persingular integral equation in terms of the unknown difference
of potentials across the barrier. A collocation method is wsed to solve the hypersingular integral
equation after approximating the wnknown function satisfying the integral equation by a finite
series of Chebyshev polynomials. This reduces the equation to a system of linear equations
which can be solved by standard methods. Using the solution to the hypersinpular integral
equation, the reflection and transmission coefficients are evaluated mumerically and depicted
graphically against the wave number.

2 Formulation of problem

We consider two-dimensional irrotational motion of an incompressible, inviseid, and homo-
geneos fluid covered with ice. We choose a rectangular Cartesian coordinate system, in which
the y-axis is directed vertically downwards into the fluid region ¢ 20 and the r-axis is along
the rest position of the lower part of ice-cover. Iee cover is modeled as a thin elastic plate of
thickness by and density p. A thin rigid plate at = = 0, a < y < b is submerged beneath the
ice cover. A train of time harmonic waves represented by velocity potential Re{ '™ (z, y)e ")
is incident on the barrier from negative infinity, where

d’i"ﬂ{mkyj =E—1K5r+il.ﬁ'1-1 {lj

o is the angular frequency, and k& = AKX is the unigque real positive root of the dispersion relation

(Dk*+1 - 6Kk — K =0, (2)
K = ‘L—ﬂ, g is the acceleration due to pravity, D = ﬁ, L = m%-] is the flexural rigidity of

ice, E is Young's modulus, v is the Pokson ratio of the elastic material of the ice-cover, p is
the density of water, § = %h;.

The other roots of (2) are MK, MK, MK, and A3 K with Red; > 0 and ReXs < 0.

Assuming linear theory, the two-dimensional motion is represented by the velocity potential
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Re (¢(z, y)e™'7!), where o satisfies

Vip=0, y=0,
4

i s .
(D@+l—dﬁ)¢g+fi¢=ﬂ on y =10,
gp=0 om z=0, a<y<bh

r’i‘vﬁb 5 bowunded as
r=(z—a)?+y-nH2 -0
The far field conditions are
"z, y) + R™(—z,y) as x— —oo,
T¢™(z,y) as z— o,

oz, y) — {

where B and T are the reflection and transmission coefficients.
Let us consider the function 10z, i) as

'1}5’1{31 y:l = ¢{$1 y:' e {t'irm{z'- '!_,I':|,

where 1 satisfies

Vip=0, y20,
ot o
(D@+l—ﬁfi)wg+fit,:=ﬂ on y=10,

' d {ree

T}u-—ﬁﬁb (0y), a<y<bh
r’l‘?ﬂ;} is hounded as + — (0,
Vih =0 as y— oo,

Ro™(—z,y) as z — —oa,

Wz, y) — {{T— lmiun{m‘yj as T — o0,

(9)

Let Glx,y:£ 1) be the source potential which describes the motion in water covered with
ice due to presence of a line source at (£, 7). The expression for Gz, y:£, 7)) is given by

Chowdhury ¥ as follows:

* e M ((DE* +1 — §K)kcosh{ k) — K sinh(kn))
v & i _2 et
Gle,3:8m) _L Dk + 1 — 6K )k— K)
T . (D 41— 8Kk — K

T

cos(k(z — £))dk,

where r, v'=((z — £+ (y F ﬂ]ﬁjﬂl , or alternately,

! R i Lk, y) L(k,n) Y P L,
Glz,wi&om) = 2_£ R0 — ok + Db T KT Ok

1 E—KJ«.I: wtilHIAK [2—£|
MBDEAM — §K +1)
1 . -
—2mi . o~ H (o) +H A K e
T MGDEN K+ 1)

+ 2wi— _1
MBDRAN, — 8K + 1)

— 2mi

o K (y+a)—iha K|x—g|

cos(k{z —£))dk

(10)
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where Lik, y) = k(DE* — K + 1) cos(ky) — K sin( ky).

We now apply Green's integral theorem to the harmonic function Giz,y; £, 9) and ¥z, y)
in the region bounded by the lines y = 0, - X £ 2 £ Xie =X 0y s Vg =¥ X =
s Xir=0+,0= y < band a circle of radius = with centre at (£, %) and finally we make X
YV — oo, and £ — 0 to pet

2w, ) f fl '-:.r G0, y: &, m)dy, (11)
where

Fly) = w(+0,y) — (-0, y)
= ¢(+H), y) — d(—0, %), y€E (ab). (12)

Noting (8], (11) reduces to

HEm) = $"(E m) — — f F(5) L G0, €, m)dy, (13)

where ¢'"“(z,y) is given by (1).
Now, by the conditions (5) and (1), we have
dg(0,n) =0, 7€ (a,b),
and
B (0,) = —iAKe K7y € (a,b). (14)

Using these results in {l:i:h we obtain

f{ i) G(0,1:0,7)dy = 20K e 5" 5 € (a, b), (15)

a?z;

I
where :f denotes hypersingular integral. Now, from (10), we have

1 1 R P R
Gag(0,950,0) = — T e EHL —de, (16)
where
A(k) = k(Dk* — 6K +1) - K. (17}

Using (16, the hypersinpular integral equation (15) transforms to

f’ 1 1 2K Zride— MK (y+n) - MK eyt 0
A ({y—qﬂf 2 (y+ )2 E ED(AK) + 1 — 8K B A KDE 6K+ 1)K

s 1 f,—*’-"ﬁliar+rr]‘,-‘3
HaliAl) L NE(DNKL T 28— aka) — Kas " ) )y
= —2mAKie " g<p<bh (18]

To solve the above equation, we substitute

- (b—gﬂ+b;ﬂ)t,

! b —
"'i‘=(j-,:u+ ygﬂ)u
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into (18] to pet

fl(h_:lm + L{u,fj)F{fjdf =hu), —l<ce<l,

where

(b—a)?

Ml = v T AP =+ w) + b= a (P

(b—a? K2mkie #*K (h—a)? A 2K foe b
2 L k(Dk'+1—40K)- K

5 GDAK)S+1-0K T

(b—a)? oK z ;
4 w AK(DMK?* + 74 — §Kz%) — Kz®

A
e 5 gt

+ (MK

b—a,
p=b+a+ Tu{f.+u:|,

F(t) =f(fi+ﬂ+b;ﬂ

P(£1) =0,

f.), it

and
bh—a P
hu) = —zwufi-Te"*““‘*—Jbe”], S

Following the methodology used hy Parsons and Martin!'? | we assume
F(t) = (1-")3g(0),
s0 that
F(£1) = 0.

Here, the bounded function g(t) is approximated as

g(t) = aula(t), -l<t<l,

where U, (t) is Chebyshev polynomial of second kind given by

sinf{{n + 1)8)
sin f

Upleosd) =

and a,, are unknowns to be determined.
Substituting (26) and (27) into (20), we have

N
Z A (u) = hlun), —-1<u<l,

=l

where

Aplu) = —min + 1)U (u) +—/;1{l —fgj’i‘U,,{ij{u,fjdf.

(20)

(28)

(30)



G40 P MAITL P RAKSHIT. and 5. BANER.JEA

Now, the collocation points u = u; are defined as (see Parsons and Martin['?)

{j+l:|7r) )
j =0 ], =0,1,---, N,
1 {‘-:xs( Nig ) J

and also

254+ 1)w
1Lj={xm(£—2-'{-ﬁ-%-), =01,---,N.
This reduces (30) to the linear system
N
> andn(uy) = ki), j=0,1,--- N (31)

=l

Now, using standard method, the linear system of equations can be solved for a,,. Knowing a,, .
one can obtain g(#) and hence F(#) from (26). Knowing F{#), f(#) can be obtained from (23).

R and T can be obtained from (11) by making £ — +oo, and noting the behaviour of 10 (£, 5)
from (9) as £ — +oo. This gives

. Ke KM
Ri= _ﬁ DRI — oKk £ 171 Widv, (32)
and
I " a— A
Ke b o
= fu DRI 3K £ 171 Wdv- (33)

Putting y = Iﬁ,lii + I%f. and after some manipulation, we have

N
(b—a)K (L= ) 3Ualt)  _geaqigaiisay :
Rou— 2:1/ GDRIN R+ T)° dt, (34)
and
T—1 vil.i—ﬂ Z 3 l—fﬁj%r}n{ :I .F'.J«.I:—t—+|" “1] ¥ 35
o "=ﬂﬂ"f ﬁDR 414 ‘5‘& s ljl . {1 1 :I

Now, i and T can be evaluated mumerically after finding the values of a,,.
3 Numerical results

Numerical computations of | B and |T'| are carried out for different values of non-dimensional
parameters DY = a% and § = f; and the wave mumber Ka. For numerical computation of the
reflection coefficient ||, we choose N = 15 in the expansion (31). The different inteprals are
evalnated by using Mathematica.

In Table 1, | Rogact| is tabulated from the exact result given by Evans!® for water with free
surface (i.e., D'=0 and §=0) against the wave number Ka for bja = 4. Also, |E| is computed
from (34) for various values of Ka for very small values of D', & (DY = 0.0001, & = 0.0001)
and presented in Table 1.
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Table 1 Comparison of | By | and | 8| with different Ka

|R1:u:n.ct | |R|

& =0 & = 0.0001
.01 0000 700 8 (000 714 2
005 (LT 950 9 (L0115 165 2
(.10 0047 THE 2 (046 083 0
.15 (1 084 7040 6 (1084 845 9
(.20 0. 117 G400 (L.117 58010
.25 0.143 0250 (1.143 0690
(130 0. 1602930 (1L.160 345 0
01.35 01703470 0.1703700
(.40 (L1714 5850 (1746110
045 0. 174 403 0 (1744220
(050 0171004 0 (L1T10180
1.00) (.08 450 3 (0091 412 6
1.50 0L.038 470 5 0038401 1
2AN (.015 184 1 (0151275

It is observed from Table 1 that |R.. .| coincides with |R| upto 34 decimal places. This
demonstrates the effectiveness of the mumerical scheme based on mumerical solution of the
hy persingular integral equation.

In Figs. 1 and 2, |R| and [T'| are plotted, respectively, apainst the wave mumber Ka for
f—: =4, IV = 0.0001, & = 0.0001 and D' = 0.5, & = 0.01. In Fig. 1, it is observed that | R
increases at first and then decreases as Ka increases to unity. Similarly in Fig. 2. |7 is observed
to decrease as Ka increases and then increases as Ka increases to unity. This & plausible since
large values of wave number correspond to short waves, which are confined near the ice-cover
surface, are mostly transmitted over the barrier. In both Figs 1 and 2, it is observed that
for 0 < Ka < 0.15, the values of |[R| almost coincide for D' = 00001, & = 0.0001 and
D' = 0.5, & = 0.01. Similar behaviour is exhibited by |T] in Fig. 2 for 0 < Ka < 0.15. This
phenomens occurs since the small values of wave number correspond to the waves with long
wave length and the long waves travel towards the bottom of the ocean and thereby do not fell
the effect of ice-cover. As Ka increases from (.15, |R| increases and reaches a peak and then
decreases with increase in Ka. It is observed that the peak value in R decreases as D' increases
from 0.000 1 to 1.5 and & from 0.0001 to 0.01. This shows that presence of ice-cover diminishes
the reflection. Similarly, from Fip. 2, it is observed that presence of ice-cover increases the
transImission.

(18 12
(16 1000k
14k (008 — D= 0,000 1, &'=0.000 1
e
012 0996 b D=5, =001
= r (.54
E 010 .
008 0.8902 -
— D=0.000 1, §'=0.000 1
(LG i ﬂ'=ﬂ.5,5'=ﬂ.|}1 (1.0
04 (L5988 -
DO02F (LERG
ﬂ i i i 1 i i 1 i 1 “ Q-Hli i i i 1 i i i 1 i
01 02 03 04 05 06 07 08 09 10 U001 02 03 04 05 06 07 08 08 L0
Ko K
Fig. 1 |R| against Ka for bfe = 4 Fig. 2 |T| against Ka for bfe = 4

In Figs. 3 and 5. |R| is plotted apgainst Ka for % =4, & =001 and for D' = 1.0 and 1.5,
respectively. Similarly in Figs. 4 and 6, |T)] is depicted against Ka for £ = 4, § = 0.01 and

[
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D' = 1.0 amed 1.5, respectively. It is observed from Figs. 36 that behaviour of |R| and |[T| are
complementary to each other. In fact, for all values of D', &, and Ka in Figs. 1-5 the energy
identity | R + |T|? = 1 is verified.

In Figs. 3 and 5 for a fixed length of barrier values of | B| increases at first and then decreases
as Ka increases. However, unlike in Fig. 1, here the values of |R| exhibit sharp oscillatory for
0,15 < Ka < 0.3 and IV = 1.0 and 1.5. Similar oscillatory hehaviour is observed for [T in
Figs. 4 and 6 for these values of D' and §'. This peculiar behaviour in |R| and [T'| may be
attributed to the elasticity of the ice-cover. As the flexural rigidity of ice-cover increases, the
waves interaction with ice-cover and submerged barrier produce sharp fuctuation in the values

of |R| and |T7].

0.18 1.002
016+ 1,000
014+ 0,908
012k 0,906
A0 0,904
0,10 =
008 0,902
0L06 0,980
0.0 0,988
002 0,986
] I I I 1 I 1 I 1 I 1,984 L i 1 L I L i I i
01l 02 03 04 05 06 0T 0.8 09 1.0 U0 01 02 03 04 05 06 07 08 09 LD
Ka Ka
Fig. 3 |R| against Ka for bja = 4, D'=1.0, Fig. 4 |T| against Ka for bje = 4, D'=1.0,
and &' =0.01 and &' =0.01
0.18
0.16 ¢ L0
0.14 -
0.12 o9ask
= 010 - &
0,08
0,90+
0,06
0,04 -
.02 - 0.885 1
01 02 03 04 05 06 07 0.8 09 1.0 0 01 02 03 04 05 06 07 08 0.8 1.0
Ko K
Fig. 5 |R| against Ko for bja = 4, D'=1.5, Fig. 6 |7T| against Ka for bja = 4, D'=1.5,
and &' =0.01 and &' =0.01

In Figs. 7 and 8, |R| and |T| are plotted for ;I;' =4 Ka=1D"=00001,§ =00001, D' =
0.5, 1.0, 1.5, #=0.01. It & observed from Figs. 7 and 8 that || decreases and |7 increases as
Ko increases. However, the decrease in || or the increase in [T is very sharp for D' = 0,000 1,
& = 0.0001 as compared to D' = 0.5, 1.0, 1.5, & = 0.01. Thus, the increase in flescural rigidity
of ice-cover reduces the rate of diminishing of |R| and the rate of increase of |T7).

In Fig. 9, | R| is plotted against the wave ommber Ka for f—: =4, 10, amd 15, respectively for
the values of ice-cover parameters D' = 1.5 and §'=0.01. It is olserved that |R| shows sharp
oscillation for Ka=0.1 to 0.3, It iz also seen that with the increase of length of the plate, the
maximum peak value of |R| increases. This mplies that longer plate produces hiph peaked



Scattering of water waves by thin vertical plate submerged below ice-cover surface G4

ascillation of reflection of coeflicient waves.

0.10 L0000 e
— =000 1, §=0.000 1 e
0.0 .”'=U-5. J-'=']_u] 0,500 5
008 --- D=1, é=0.01
= -Dral5, #'=0.01 aen
0 09085
e 09980 '
= 0.08 =075l
o 0970
i S n-mas — ['=0.000 1, 8 '=0.000 1
.02 RE R RT ne i - =05, 4'=0.01
e (.5 ) --- D=1, #'=0.01
0.0 - D=L5, i§=0.01
ﬂ-ﬂﬂ L Il i i L D.WE‘E i i i i i L [l
10 1F 20 25 30 35 40 45 5.0 Lo L5 20 25 30 35 40 45 &0
Ko Ka
Fig. T |R| against Ka for bfa = 4 Fig. 8 |7 against Ka for bjae = 4
Lo — ba=4
o fa=10
L S .- bla=15
&
05k
N
04 of oy
oaf | e
o2fi
01
0 : 1 1 1 i 1 1 i 1 i
01 02 03 04 05 06 07T 08 08 1.0

Ka

Fig. 9 |R|against Ka for bfa = 4, D'=1.5, and &'=0.01

4 Discussions

Water wave scattering by a thin vertical plate submerpged beneath an ice cover in an in-
finite depth water is investigated by using hypersinpular integral equation formulation. The
reflection coefficient | R| and transmission coefficient |T'| are computed numerically by using the
approximate solution to the hypersingular intepral equation. Also the effect of the presence of
ice cover on |R| and [T are visualised from the figures. It is observed that the behaviour of
|R| is complementary to that of |T|, |R| and |T| satisfy the energy identity |R|% + |T|? = 1.
Dmie to the presence of ice cover, |R| or |T| chanpes the values rapidly for the range of values of
Ka = 0.15 to 0.3 as the Hexural rigidity of ice-cover increases. Also, it is observed that due to
increase of the length of the plate produces more reflection of wave energy.

The results in the present paper are based on the linear theory, which may be regarded as
benchmark. However, one can consider nonlinear seattering problems in water with ice-cover
but that constitutes a separate class of problems. In recent past, Marchenko and Shriral'!l
studied two-dimensional nonlinear waves in a liquid covered by ice, which may be utilized to
carry out further study in this direction.
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